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PREFACE 

The text of this book has been written for the benefit of Students 
preparing for Diploma, B.Sc. Engineering and A.M.I.E. Examinations. 
The book has been written in S.I. Units. A large number of well graded 
questions have been solved keeping in view the needs ofaverage students. 
Important questions from various examining bodies have been included in 
the text. These have been approximately converted into SJ. Units. 

The vast material available on the subject has been freely consulted. 
The author acknowledges with thanks authors of various standard treatises, 
which were consulted during the preparation of the text of this book. 

The author would like to express his thanks to Messrs Shahid Akhtar, 
Chaman Lal Arora and Prof. Ravi Kapoor for their help at various stages 
of preparation of this book. 
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1 
Simple Stresses And Strains 

Elasticity 
One of the most significant properties of a structural material is 

elasticity. You will observe that when a steel wire is suspended and 
gradually loaded along its axis up to a certain maximum load, the length of 
the wire increases and when the applied loads are gradually removed, the 
wire comes back to its original length. 

A body which returns to its original shape and size and all traces of 
deformation disappear when the loads are removed is called an elastic body. 
This behaviour of the material is called elastic behaviour and the property 
by virtue of which it returns to its original dimensions is called elasticity. A 
perfectly elastic body shows 100% recovery i. e. deformation completely 
disappears. But in practice no material has been found to be perfectly elastic. 
Steel is supposed to be the best example of an elastic material. Copper, brass, 
aluminium, concrete etc. are all elastic materials of varying degrees. 

All discussions in this chapter a,re based on the assumption that the 
material of which the structural member is made is homogenous and 
Isotropic. 
Ho:mogenous Material 

A homogenous material is one which has the same modulus of 
elasticity (E) and Poisson's ratio µ at all points in the body. The material 
has the same physical and chemical composition throughout. 
Isotropic Material 

The second assumption usually made is that the material is Isotropic 
i.e. it possesses the same elastic properties in all directions at any one point 
of the body. 

AU materials are not isotropi,,. Materials having no symmetry in 
elastic property are called Anistropic nr sometimes aeolotropic materials. 

Mechanical Properties of materials 
Ductmty 

If a material can undergo deformation without rupture, then it is called 
a ductile material. It is due to this property that a material may be drawn 
into a wire. Copper is an example of ductile material. 
Brittleness · 

Brittle materials possess very little resistance to rupture. Such 
materials can not undergo deformation v:hen external forces are applied and 
fail by rupture. Cast iron is an example of brittle material. 
Malleability 

The property of a material by virtue of which it can be rolled into plates 
is known as malleability. Wrought iron is an example of malleable material. 
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Plasticity 
A material is said to be plastic when the deformation produced by the 

application of an external force does not disappear even after the removal 
of the external force. Lead is an example of plastic material. 
Elasticity 

As already explained the property by virtue ofwhich a specimen of 
a material regains its original shape and size after the removal of the 
deforming forces is called elasticity. Mild steel is an example of elastic 
material. 
Loads 

When a structural member is subjected to external forces, their 
combined effect on the member is called load. 

Loads are classified according to 
(1) Their manner of application 
(2) According to the effect they produce. 

Dead Loads 
The loads which do not change under any conditions are called dead 

loads. Self weight of a member is an example of dead load. 
Live Loads 

Loads which are applied velocity and change their value are 
called live loads. Weight of the traffic crossing a bridge falls under this 
category. 

Depending upon the effect produced on the member, loads are 
classified as 
Tensile Loads 

Tensile Loads 
Fig. 1.1 (a) 

Compressive Loads 

These loads have a tendency to 
pull the member in the direction of their 
application. 

These loads try to compress the 
member on which they act. They shorten ... 411--.... ( ~ 
the dimensions of the member in the ------
direction in which they act. 

Compressive Load 
Fig. 1.1 (b) 

Shearing Loads 

-
Shearing Load 

Fig. 1.1 (c) 

The loads which cause sliding of one face 
relative to the other ofa body are called shearing 

· loads. · 
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Twisting or Torsional Loads 
When two couples are applied at opposite 

ends of a member, they tend to turn these ends in 
opposite directions in parallel planes. The loads 
produced by the couples are called twisting loads. 
Bending Loads 

( J) ~ I._____ __ 
Twisting Load 

Fig. 1.1 (d) 

Loads causing a certain degree of 
curvature or bending in the member are 
called bending loads. 

Stress 

Bending Load 
Fig. 1.1 (e) 

When a body is subjected to external forces the body deforms in shape, 
size or volume. The natural tendency of the body is to resist any deformation 
hence internal forces of resistance are developed within the body to resist 
the external fr.rces. These internal forces of resistance per unit area of the 
body are called stresses. 

Since internal forces developed within the body are equal to the 
applied forces, hence stress may be expressed as the applied force per unit 
area of the body. 
Direct Stress or Normal Stress 

When external forces are applied along the axis of a body, then the 
resulting stress is called direct stress or axial stress or normal stress. 

,.._r 1 Axially applied load 
l~orma stress= r • 

Area or cross-sect10n 
p 

CT= -
A 

Stress is measured in units of forces per unit area and expressed as 
N/mm2 or MPa. Depending upon the nature of the applied force direct stress 
may be classified as 

1. Tensile stress 2. Compressin: stress 
Tensile Stress 

Fig. 1.2 (a) 

Compressive Stress 
When equal and opposite 

forces are axially applied on a body 
such that the body is compressed, the 
stress produced is called compressive 
stress. 

When equal and opposite 
forces are axially applied on a body 
such that the length of the body 
increases, then the stress produced is 
called tensile stress. 

.. ------, ---cc= __ _j-
L--- - - --' 

Fig. 1.2 (b) 
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Strain 
When an axial load is applied on a body the body undergoes 

deformation. Strain is the measure of deformation of the body.His the ratio 
of change in dimension of the body to its dimension. 

S ni _ S:han13e in dimension 
tra_n -- 0 . . , ct· 

ngma1 1mens10n 
, . d" 'S . 0 L. 5 . Changeinlength 
LDngltu mat tram r mear tram = 0 . ~ l l · h 

ngma engt 

ol 
f:::::-

l 
Tensile Strain - When the stress induced is· tensile in nature the 

corresponding strain is called tensile strain. 

T .. . Increase in length 
ens1le strarn = 0 . . 11 'h 

ngma engtu 
Compressive Strain 

When the body is compressed and a shortening in length takes place 
due to compressive stress, the corresponding strain is called compressive 
strain. 

C . ~ . Decrease in length 
ompress1ve :'itrarn = 0 . . l l 1 ngma engt,1 

Since strain is a ratio of two dimensions hence it is a pure member. It 
is a dimensionless quantity. It has no units. 
Hooke's Law 

Sir Robert Hooke in 1678 observed that the relation between stress 
and strain is linear for comparatively small values of strain. Hooke's law 
states that within elastic stress is to strain. This ratio of 
stress and strain is always constant and depends on the nature of the material 
only. 

Stress a Strain 
Stress --5--.- = Constant 

tram 

Q=E 
t 

Hooke's law holds both in tension and compression. This 
constant Eis called modulus of elasticity or young's modulus. 
Modulus of Elasticity 

The quantity E is the ratio of unit stress to unit strain, within elastic 
limit. It indicates how much stress accompanies a given strain in the material 
of a given structural member. As strain is merely a number, the units of 
modulus of elasticity are same as those of the stress. 

Eis measured in GN/m2 or KN/mm2. 
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Modulus of efasticity E for some structural materials. 
TABLE 1.1 

r------i--
1 

S.No. I Name of material 
Value o'.l"'modufus of elasticit,: E 

2 " 2 "' 

1 I n i 
in GN!m or KN/mm , 

/ . I :,tee 

I 2· II 

3. 
I I I 4. 

I s. I 

Wrought iron 

Cast iron 

Copper 

Brass 

200-220 

190-200 

100-160 

90-110 

80-90 

60-80 

--j 

I _· - - -· 6 I Aluminium 

L____!_·~-1 _1_·i_m_,b_e_r _____ ~ ____ 1_0 __________ ___, 

Stress-strain curve for mild 
steel 

When a specimen of mild 
steel is gradually loaded in a 
tension testing machine and a 
graph is plotted between the 
stress and the corresponding 
strain, a curve is obtained as 
shown in - L3 

Limit of Pi·oportionality 

1 u 

PE_\/1 ~B 

~ 
U) 
(!) 

U! ~, 
I 
~ 

I 

STRAIN 
13 

It is observed that with a gradual increase in loading there 1s a 
increase in strain as well. The maximum stress 

is maintained is called the limit of ~r,,~,WhA~ 

Point P on the curve shows the limit of proportionality. 
Elastic Limit 

It is the maximum stress upto which the material behaves as an elastic 
'material. There is no permanent or residual deformation left when the load 
is entirely removed. Point E on the curve represents elastic limit. These two 
points are very close to each other. But in most cases elastic limit is higher 
than limit of proportionality. 
Permanent Set 

It is the permanent dimensiona1 change which persists after all the 
loads are removed. If the specimen is stressed beyond the elastic limit it will 
not regain its original size and shape when the deforming forces are 
removed. This small permanent deformation is called permanent set. 
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6 Simple Stresses And Strains 

Yield Point 
It is the point Y on the stress strain curve. It will be observed that at 

a point just above the limit of proportionality a considerable increase in 
stram rakes place in ductile materials with little increase in stress. The stress 
value at which this large increase in strain takes place is termed as 'yield 
point' of the material. In some materials there are two yield points on the 
stress-str-ain curve at which there is an increase in strain without an increase 
in stress. These are known as upper and lower yield points. Stress at yield 
point is called yield stress. 
Ultimate Strength 

The maximum stress that the specimen under test can bear without 
breaking is termed as the ultimate strength or the tensile strength of the 
material. It is shown as point U on the curve. 
Breaking Strength 

If the specimen is loaded beyond the point of ultimate strength the 
material will break and the graph will show a downward trend. It is shown 
as point B on the graph. 
Elastic Range 

The region on the stress-strain curve extending from origin to the 
point of proportional limit is called Elastic Range. 
Plastic Rapge 

The region of the stress-strain curve extending beyond the limit of 
proportionality to the breaking point is called Plastic Range. 
Percentage reduction in area 

When tensile forces act on a bar, the cross-sectional area decreases, but 
for calculation of normal stresses, original area is considered. If original area 
is A1 and A2 is the cross-sectional area atthe plane of failure of a bar then 

P d . . A1-A2 OO ercentage re uction m area = A x 1 . l 

Percentage elongation 
If the increase in length of the specimen after fracture is L1 and the 

original length is L, then percentage elongation is calculated as 

Incr~~sein length x 100 = .{,1 / 100 
Ongmal length L 

Proof Stress 
Some of the structural materials such as cast iron, concrete, timber 

etc. do not show a firm or well defined yield point limit. For such materials 
proof stress corresponding to yield point is generally specified, Proof~tress 
is defined as the limiting stress which produces a permanent . .set not 
exceeding 0.5% of the original length. 
Working stress and'factor of safety 

The maximum stress for which a structural memb!r is designed 1s 
always less, than the ultimate strength of the material. Working stress is 
generally 2 to 5 times less than the ultimate stress. 

Working stress is determined by dividing the ultimate stress by a 
number called factor of safety. 

ultimate stress 
Working stress = -----

factorof safety 
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F ~ f. "f . _ ultimate stress 
or a,.,tor o So. ety - k" 

wor mgstress 
Units 

The fo1lowing nomenclature are adopted to express quantities of 
various magnitudes. 3 · 

Kilo-- 10 MILLI - 10·3 

MEGA-- 106 MICRO -- 10-6 

GIGA - 109 MANA - 10·9 

TERRA--1012 PICA - 10-lZ 

In S. I. units force is generally expressed in Newtons. 
Kilo Newton (KN) means 1000 Ne_wtons. 
Stress intensiy is expressed in various forms like. 
Newtons/mm , Kilo ~ewton/mm2 GIGA Newton/nl 
One N/m 2 = 10-6 N/mm2 One Pascal 
1 N/mm2 = 106 N/m2 = 1 Mega Newton/m2 

? 
One Mega Newton Jm- = One Mega Pascal 
One Newton /mm2 = One Mega Pascal 
N/mm2 MPa 

Change in length of a bar due to an axial load. 
Let A = Area of cross-section of the bar 
l = length of the bar 
P c:: Axial load acting on the bar 
E = Modulus of elasticity of the material 
81 = Change in length of the bar 
CT = Stress induced due to force P 
Direct or Normal stress 

Axial load 
CT= 

Area of cross-section 
p 

a=-
A 

Since the applied load is compressive the direct 
stress will be compressive and shortening in the length 
will take place. 

Stress Strain £ = --------
modulus of elasticity 

cr 
-E 

P r d d _ Change in length 
Strain ~o uce - _ . ll h 

Ongma engt 

oz 
£ 

Change in length ol = £ X l = Strain X Original length 

bl= _E.__ X [ 
A.E 

1 
I 

1; 

Fig. 1.4 
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If the applied load is tensile, then tensile stress and elongation in iength 
can be similavtj' calculated. 

/ 
Example't.,1 

Determine the elongation of a steel rod 2 metres long and 40 mm in 
diam~t~r, when subjected to an axial tensile {orce of 6 KN. The modulus of 
elasticity of steel may be taken as 200 GN/m-. 
Solution. 

Axial load on the rod = 6KN = 6000 Newtons 

Area of cross-section of the rod =i ( 40)2 = 400 re sq.mm 

. Axial load 
Tensile stress = . 

Area of cross-sect10n 
6000 - 2 

cr = 400 re = 4. t7Nlmm 

cr = 4.77 MPa 

~ . Stress d E ,.,OOGN/ 2 200 X 109 N, 2 Stram = . l f 1 . . an = ,. 1 m = 6 Imm 
moctu us o e ast1c1ty 10 

4·77 0 n·23s . o-3 f=-----9 = .U X 1 

200X lQ_ 
106 

~ . . _ Change in length 
;::itram - . . 11 Ongma ength 

oz E=z 
or Ol =EX l = 0.0238X 10-3x 2xl03 

=.0478mm 
Elongation = .0478 mm Answer 

Example 1.2 
A straight bar of uniform cross-section is subjected to an axial tensile 

force of 40 KN. The cross-sectional area of the bar is 500 mm2 and its length 
is 5 metres. Find the modulus of elasticity of the material if the total 
elongation of the bar is 2 mm. 
Solution 

Sectional area of the bar = 500 mm2 

Applied Load = 40 KN 

. Load 
Tensile tress cr = . 

Cross-sect10nalarea 

40 x Hf 
500 

= 80MP 

Strain E = Ol = _2_ = .4 X l0-3 
l 5 X 103 
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Modulus of elasticity = E = _q 
£ 

80.0 
=---

0.4xlv3 

E = 200 K.c~/mm2 Ans. 
Example 1.3 

9 

Determine the change in the length of the rod AB as shown in fig 1.5. 
The length of the rod is4 metres and diameter 30 mm. Take E = 210 KN!mm2 

8 C D 

T 
2.4 m 

4m 30 KN 

J 
R 

Fig.1.5 
Solution 

The 30 KN load will produce a reaction R in the rod. 
Taking moments about the hinge c, we get 
Reaction in the rod R x 1.6 = 30 x 2.4 

. . h d JO x 2·4 45 KN React10n mt, e ro = 1.6 

3 
Stress induced in the rod = 45 x 10 = 63.66 MPa 

:. Strain caused in the rod 

~ (30)2 
4 
(j 

E=-
E 

E = 63·66 =0302 X 10-3 

210xl03 

:. Change in the length of the rod 

Example 1.4 

Sl=£Xl 
, • = 0.302 x 10-3x 4x 103 

==1.208 mm Ans. 

Calculate the diameter of the rod AB in the system shown in fig 1.6, if 
the stress is not to exceed 150 MPa. 
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1 m ~<11 0.5m~ 

~D 

0rl ~ 
C 1.50 KN 

Fig.1.6 
Solution 

Taking moments about D 
R X 1.5 = 150 X 0.5 

or R = lSO xO.S =50KN 
1.5 

:. Cross-sectional area of the member 
3 

.I A = 50xl0 = 333 - 2 · 150 ,j mm 

Diameter of the rod 

~ (d)2 = 333.3 mm2 

d = 20.60 mm Answer 
Example 1.5 

The diameter of the piston of a diesel engine is 300 mm and the 
maximum compressive pressure in the cylinder is 40 N!mm2 The cylinder is 
held by 4 bolts whose effective diameter is 20 mm and Length is 400 mm. 
Estimate the elongation of each bolt if E = 210 KN!mm2 

Solution 
Total pressure on the piston 

= Area of piston x pressure in cylinder 

= ~ (300)2 x 40 Newtons 

=911: x 105 N 

Total area of 4 bolts=~ (20)2 = 100 n sq. mm 

. 9n: X 105 
Stress produced m 4 bolts = 1001t 

= 9 X 103 Mpa 
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3 
Strain produced in 4 bolts= 9 x lO == .0428 

210 X 103 

TT • d d • b , .0428 ttence stram pro uce m one oit = - 4-

= .01071 
Elongation of each bolt= 400 x .01071 

= 4.282 mm. 
Example 1.6 

11 

A square tie bar 50mm x 50mm in cross-section is attached to a 
bracket by means of 8 bolts and carries a load P. If the permissible stresses 
in tie bar and bolts are 25 MPa and 15 MPa respectively,find the diameter 
of the bolts. · 

Cross-sectional area of the tie bar = 50 x 50 = 2500 rrun2 

Load carried by the tie bar P = CT x A 
P = 25 x 2500 = 62500 Newton 

Load carried by one bolt = 62~00 = 7812.5 N 

. , Load carried by one bolt 
Cross-sectional area of one oolt = . h b 1 stress mt e o t 

= 7812.5 = 520 33· . 2 
15 . mm 

1t 2 Area ofone bolt= 4 (d) = 520.83 

D. _ b l d ~ / 520.83 X 4 iameter or o t = \/ · 
n: 

or d = 25.75 mm Answer. 
Elongation of a bar due to self weight 

A bar AB of length L hanging freely is shown in fig. 1.7 
Let L = Length of the bar 

A =Cross-sectional area 
y = Weight density of the material of the bar 
E = Modulus of elasticity of the material of the bar 

Consider a small length dx of the bar at a distance x 
from the base. The downward force acting on this element 
of length dx is the weight of the bar that lies below this 
element and is equal to A.x.y. The portion of the bar of 
length dx may be considered to be subjected to the weight 
of the material below this section 

Stress in the small element = A:.y = xy 

Strain of the small element =~ 
E 

Fig. L7 
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Elongation of the element = !ff . dx 

. f 
Total elongation of the bar= J 

0 

- Jf1_ 
- 2E 

Total weight of the bar W = A. L.Y 

gd E X 

Simple Stresses And Strains 

Total elongation due to self weight ol = ~~ 
Example 1.7 

A u1iiform steel rope 250 metres long is hanging freely down a vertical 
·mineshaft. Determine the elongation of top 125 meter length o/the rope due 
to the self weight. Weight.ofsteelmay be taken 7.5x104Nlm and modulus 
of elasticity as 200 GN!m2· 

Solution 
The total extension of the upper 125 meter length L/44/ ,

of the steel rope is caused partially by the weight of · I I j 
lower 125 meter length of the rope and partially due to I 
its own weight 125 m I 

The weight of lower 125 meter length which can t l 
be assumed to be acting at the end of upper 125 meter 250 m 
length of the rope is i 

= 125 x ! v1 x 7.5x104 Newtons l 
= 937.5 x !!4 D2xl0 4 Newton . 

Flg.1.8 

Where D is the diameter of the rope 
The elongation due to this load is 

1t ., 
PL 937.5 x 4 D-xlO xl25 

81 = - =--~-----
AE ~ D2 x 200 x109 

4 

or 61 = . 005859 meters. 
The elongation due to the weight of the upper 125 meter length of the 

rope is equal to half of this extension 

0 _ PL _ .005859 
2 -2AE- 2 m 

=.002929m 

Hence to.ta! elongation of the steel rope is o = 81 + Oz 
=.005859 + .002929 
= .008788 metres 
= 8.788 mm Amwer 
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Example 1.8 
A solid conicai bar of circular cross-section is suspended 

as shown infig-1.9. lfthe length of the bar is L, the diameter of the base D, 
the modulus of elasticity E and the weight per unit volume is y, determine 
the total elongation of the bar due to its own weight. (Poona Univ.) 
Solution 

L 

1 

Consider a section of length Ox at a 
distance x from the free end 

Diameter of the conical bar at the 
section x-x 

\ X 

\j _.,,__i 

l<'ig. 1.9 

Stress at xx= 
nd 2x.'Y _1:3._ 

1t d2 - 3 
12x--

4 

d=D ~ .L 

Weight supported at the section xx 
. 2 

1t 2 X 1td 
T"4d XiY=ux.y 

Due to this stress, the elongation of the elementary length 

= :p,_ ox 
3E 

Total elongation of the bar 

=rL· 1 x<;. 
Jo . 3E ux 

- y.L2 . 
- 6E Ans. 

/,,-,,, . 

~rinciple of Superposition 
According to the principle of superposition when an elastic body is 

simultaneously subjected to two or more forces then their effect at a point 
on a given plane is the algebraic sum of the individual effect of each load. 
The total strain in the body will be the algebraic sum of the strains caused 
by all the forces separately. Principle of superposition is valid only if 

(i) The structural stability of the body is not affected. 
(i)The stresses are within the elastic limit .. 

L"/ (ii) Deflection does not affeft the applied loads. 
~ ree-body diagrams 

If a small portion of a structure is separated which is in equilibrium, 
then the separated portion will also be in a state of equilibrium under the 
combined action of the external forces acting on this portion and the internal 
forces acting on the cut part. The diagram showing such an isolated portion 
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of the structure together with the forces 
is known as free body diagram. 

on it external as wei! internal 

When two or more loads are acting on a body at different sections, the 
deformation of individual sections can be determined by drawing the free 
body diagram for each section. The total deformation of the body can then 
be found by algebraically adding the deformations of individual sections 
under the given system of loads. 

A B C D 

_j . L_. Pa-f 1· p L_ __ __J_j _____ . ___ _ 
. 1 P2 

Fig. l.10 
Consider a bar ABCD with axial forces Pi, P2, P3 and P4 acting 

at various sections of the bar as shown in Fig 1.10. The total strain of 
the bar will be the algebraic sum of the strains in sections AB, BC and 
CD. Now draw free body diagrams for each portion as shown in fig L 10 
(a), (b) and (c) 

A 8 
P P1=(P4+P2-P3) 

r-
-..1 

Fig. UO (a) 

B C 
P=(P1~~(P4-P3) 

:Fig. 1.10 (b) 

C D 

P4=(P1-P2·+~4 

Fig.1.Hf (c) 

Fig. 1.10 (a) Shows the free body diagram for portion AB of the bar. 
A tensile force P1 is acting at section A and a tensile force (P4 + P2 - P3) is 
acting to the right of section B. The sum of all the forces acting to the right 
of the section must be equal to Pi = (P4 +P2 -P3) Hence the portion AB is 
subjected to a tensile force P1 and the strain of this portion will be 

Pi (P4+P2-P3) 
E AB= AE = AE 

Where A and E are the area of cross-section and modulus of elasticity 
of the material of the bar 

Similarly for portion BC 
p 

£Bc=AE 
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and strain for the third portion CD 

P4 Pi -P2 + P3 
Eco:::: AE::= AE 

The total strain of the bar 

E = £ AB + 8 BC + E CD 

Example 1.9 
A mild steel bar of uniform section having an area of cross-section of 

1000 mm2 is subjected to axial forces as shown in fig 1.11. Calculate the 
total elongation or contraction of the bar. Take E = 200 KN/mm2 . 

A B C D 

4m1 f-;,,-50 KN .:=J L__ 
[ · 20 KN=:J Jrn KN 

~0.8ni .. ~ 1.om !!>1-o.5---I 

Fig.1.11 

Solution: 
Draw free body diagrams for each portion and calculate the change in 

length of each portion of the bar 
Portion AB 

p 
O !1 = AE x 11 4okt~IMe 

0.8 m 

40 X 103x 800 , . 
= ------3 = 0.16 mm \. elongation) 

1000 X 200 X 10 

Portion BC 
p 

6l2 = AEX l2 

lOx 103x 1000 
= 

1000 X 200 XlO 3 

(50-40) . (20-10) 

--~1okN 10~····· 

10 m 

= .05 mm (shortening) 

Portion CD 
p 

Ol3= - X l3 AE 
lOx 103x 500 

= 
1000 X 200 Xl Q, 3 

= :005 (elongation) 

ol = 0/1 + 812 + ol3 
= 0.16 - .05 + .005 

(40+20-50) 

~10 1ol<Nl___.J · ·· · -
0.5m 

= 0.115 mm (elongation) Answer 
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Bars of Varying Sections 
When a bar is made up of different lengths having different cross

sectional areas, then the total elongation of the bar is the algebraic sum of 
the elongation of each portion of the bar. 

s C 
A D 

P~.A1 ~ A2 ~ /l,3 ~p 

~L1-4~ l2 + L34 

Fig. :l.12 

Consider a bar consisting of three portions of lengths l2 and l3 and 
cross-sectional areas A1, A2 and A3 respectively as shown in fig l.12 Let 
the bar be subjected to an axial load P. Let Ebe the modulus of elasticity of 
the material of the bar. 

The total change in length of the bar will be 

3 l == ol1 + &l2 + &!3 
p p . p 

= -· - /1 + -- X /n + -- X l3 
A1E A2E L A3E 

=f PL+~+_!}_} 
E LAI A2 A3 , 

Sometimes the modulus of elasticity may be different for different 
portions of the bar. In such cases the total deformation 

{ ~ ~ ~ l 
j\Ol=P A1E1+ A2E2+ A3E3+---- J 

Exampl~O 
(a) Define Hooke's law 
~b) Find the elongation of the bar shown in the figure. Take E = 210 

GN/m A.M.U. 

btN 354' ~ 30q, 

t-500 mm .... J,i.,rc1---600 mm-..... -, ..... <111 ..... 500 mm..{ 

Slution 
Fig.1.13 

Draw the free body diagrruw, for the three portions and calculate S1 
Oz and 03 

Portion (1) 9~443) 

~KN 
500mm 
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9 X l03x 500 = = 0.032 mm 
~(30)2 X 210 X !03 

Portion (2) 

P2 
olz = Az.E . l2 600mm 

5 X 103 X 600 = = 0.01495 mm 
~(35)2 X 210 X !03 

Portion (3) 
P3 

ol3 =-x l3 
A3E ~ 

= 5 X 103 X 500 = _0152 
500mm 

~30)2 X 210 X 103 

ol = (.032 + .0149 + .0152) = .0621 mm Answer 
Example 1.H 

A bar ABCD is subjected to forces Pi, P2, P3 and P4 as shown in figure 
1.14. Calculate the force P3 necessary for equilibrium if P,·= 100 KN, P2 = 
200 KN and P4= 150 KN. Find the net £hange in the length of the bar taking 
modulus of elasticity E = 200 KN/mm°'. 

A B 20 x 20 C D rt (30 x 30) mm -1,+ .::,1 _ (25 x 25) mm . h 
P1 . p~ P3 P4 

r--1.5rn •I 1m .,!,. 2m 9f 

Solution 
Fig.1.14 

For equilibrium of bar 
P 1 + P3 = P2 + P 4 

100 + P3 = 200 + 150 or P3 = (350- 100) = 250 KN 
Portion AB 

Force on the section 100 KN 
(Tensile) 

Sl = P ! X l 1 
1 A 1E 

3 ' El . 100X 10 X 1.5 X 1Q-
ongat10n = --------

(30)2 X 200 X 103 

= 0.83 mm (elongation) 
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Portion BC 
Force on the section= 100 KN (Comp) 

. ' ' 

Shortening in the length of portion BC 

0[2 = 1005<_,103 X f X 103 = 1.25 mm 
(20t x 200 x l 03 (Shortening) 

Portion CD 
Force on the section =: 

150 KN (Tensile) 

Elongation in the length of 
portion CI> 

150x )3x 2x 1000 . 
ol3 =~2, · · 3 = 2.4 mm (elongation) 

(25}x 200xl0 
Therefore net change in the length of the bar 

oz = 011 + 012 + 013 
/ = (+; 83-1.25 + 2.4)mm 

Example. 112· . = 1.98 mm Answer 

. .. ·1,. f?~tene metre. le11cg is ef ]Oinm diameter fer a length ef 0.6 m and 
th~ r.e.n1q,tn,t1Jg{Hi.f!Jqn h£lf a diameter of40mm. The bar is leaded as shewn 
in fig_urf 1.15. Determine the tetal eleng_atien ef the bar. Take E = 200 
KN/mm · . t 50 KN 
Solution . 

Draw flle free body diagram l 
forportionr(11) as shown in fig us (a) 
Area of cross-section ·· · · · .. 06m 

A1 = ~ (30)2 = 9001t · 1·· .. 
4 4 

= 225 n mm2 

Stress on Section (1) 
P 50x 1000 

a= A= 22s 1t 

Elongation of Section (1) 
p 

o[J =-x It 
AE 

(30+20) 
Fig 1.15 (a) 

::t50x lOOOx 0.6x 1000 = _19mm 

. 2.25 1t X 200 X 103 

· from the free body diagram of portion (2) fig. 1.15 (b) 
1t 2 ... 

A2 = - (40) = 4001t 
4 

. p 
o[z =--x 12 

A2E 

0.6m 

® + 0.4 m · 

1 
20KN 

Fig.1.15. 

0.4m 
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20 X 1000 X 0.4 X 1000 
=---------

400 1t X 200 X 103 

= 0.127mm 
Total elongation of the bar 

01 = ot1 + 8!2 
= 0.19 + 0.127 = 0.317 mm Answer 

Example 1.13 

19 

A Prismatic bar fixed at both the ends is loaded axially at a distance 
'a'from one of the supports as shown in figure 1.16. Determine the reactions 
at the supports. (Engg. services) 

Solution: 

B 

1----.. p 

a f, b~---~/ 

Fig.1.16 

The application of force P at B as shown in the figure, will cause 
tension in portion AB and compression in portion BC. Reactions R1 at A 
and R2 at C will be in opposite direction to applied force P 

:. R1 + Rz = P ....... (i) 
Since the ends are fixed at A and C hence there will be no change in 

the length of the bar. Elongation of portion AB will be equal to the reduction 
in the length of portion BC. 

A 8 B C 

~1 
a b 

Fig. 1.16 a Fig. 1.16 b 
Now draw the free body diagrams for the two portions as shown in fig 

1.16 (a) and 1.16 (b) 
P R1x a 

OlAB= AElAB=AE 

P R2xb 
and 8l BC= AE . lBc = AE 

now Since 8l AB = 8l BC 

R1 x a R2x b ---
AE - AE 

R2xb 
or R1 = -- ............ (ii) 

a 
Putting R1 in equation (i) we have 

R1 + R2 = P 
R2xb 
-- +R2 =P 

a 
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or 

Now substituting R2 in equation 
R2 X b Pxa b 

RJ=-a-=(a+b). a 
Pb 

(a +b) 

H R P.b dR P.a 
ence 1 = (a+ b) an 2 = (a+ b) Answer 

Bar of Tapering Section 
IX 

;-1~~-1----_- 3I~ 
k-x_;,,,.f !-ox 

I 

ix 
...,,~,__ ___ L -----,,.; 

Fig.1.17 
Let a bar of length L taper uniformly from a diameter D at one end to 

a diameter d at the other. 
Consider a Section of length ox at a distance x from A 
Diameter of the bar at section xx 

X 
dx=d+(D-d).L 

pox 
Extension of the small length fa 1 1 

~ d + (D - d).f I 2 E 
L J 

For whole length of the bar the extension will be 

ol=j 4pox 
0 

{ d + (D - d) . iJ .E 

(D-i\ 
Let i--c-J= K 

oL= f 4Pdx 
o 1t(d + k.x)2E 

:. or 

--:: . ! [(d~kx)r = n~::d) [ 1 11 
d+D-d -d_ 

4PL 
= 

.n:E D.d 
Now when D = d, We have 
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OL= 4.PL = PL 
nEd2 AE 

Example 1.14 
A steel bar tapers uniformly from a diameter of 50mm at one end to a 

diameter of 30mm at the other end. The Length of the bar is one metre. If an 
axial force of 90KN is applied at each end of the bar. Determine the 
elongation of the bar. Take E = 200 KN!mm2 

Solution 
Elongation of the bar 

'ol = 4PL 
1tED.d 

4 X 90 X 103 X 1 X 103 
= 

1t X 200 X 103 X 50 X 30 
8 l = .38 mm. Ans. 

Example 1.15 
A flat steel plate is of trapezoidal form and uniform thickness of 

10mm. The plate tapers uniformly from a width of 150mm to 100 mm over 
a length of 500mm. Determine the eto,rga.tion of the plate under an axial 
puli of JOO KN. Take E = 200 KN/mm 

B1 
-------1100 mm 
100 KN 

;.....- )( ---,t,,j f"!f- OX 

150 mm .... 8- 2-
lOOKN 

-----500 mm •I 

Solution:
Fig.1.18 

. Consider a Small Section ox at a distance x from A 

The width at the section = B1 + (B2 - B1). f 

Area of cross section= (B1 + K.x) t 

l . f h . s:l P(o x) 
E ongatmn o t e section v = (B K ) E 

,L 

Total Elongation 8 L = J 
0 

J+ X XtX 

Pdx 
(B1 +Kx)tE 
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P 1 r f 
ol = tEX K Lloge,(B1 +Kx\ 

= _L ( Loge Bi+ K.L. \ = _L loge B2 
Kt E l B1 ) Kt E B1 
150- 100 

Where K = 500 = 0.1 

0 L = lOOx 1000 L 150 
O.lx 10x200x 103 oge 100 

=.!.Log 150 = l LS= 0. ~05 4 
2 elOO 2 

= 0.2027mm Ans. 
Stresses in Composite Sections 

When two or more bars of different materials are rigidly connected 
such that when subjected to loads, each bar undergoes equal change in 
length, the system is known as composite system. 

The Strains induced in all the bars die equal and the total load on the 
Composite section is shared by al! the bars. 

Let three bars of length L each 
and cross-sectional area A J, A2 and A3 
be subjected to a load P as shown in 
the fig. Let E1, E2. E3 be the modulii 
of elasticity of the materials of the 
three bars. Let P1,P2,P3 be the loads 
taken by the three bars. 

thenP=P1+P2+P3 
The bars will undergo equal 

change in length, hence strains will be 
equal 

8L 
Stress in each bar = L x E 

8L 
Loan taken by bar no (1) P1 = L x E1.. A1 

- DL 
Load taken by bar no (2) P2 = L x E2 .. A2 

8L 
Load taken by bar no (3) P3 = LX E3.A3 

or P= OL {A1E1+A2E2+A3E3} 
L 

or 

Fig.1.19 
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Stress in each bar 

O" I= 
· (A1E1 +A2E2 +A3 £3) 

PEz 
cr 2 = (A1 E1 +A2 E'2-l;A3 fo) 

PE3 
0"3 = 

· (Ai E1+A2E2+A3E3) 

23 

If there are only two bars one of steel and other of co13per making the 
compound section then 

P.Es P.Ec 
O"s= ----

(As Es+ Ac Ee) 
and O"c = --~-

(Ac /Jc+ As Es) 
Example 1.16 

A steel tube surrounding a solid aluminium cylinder is compressed 
between infinetely rigid cover plates by a centrally appliedforce of 200 KN. 
If the aluminium cylinder is 75 mm inside diameter and the outside diameter 
(>f the steel tube if 90mm, determine theioad taken by the rod and the tube. 
Es = 2/0KN/mm and Eal= 70 KN/mm 
Solution 

Shortening of the tube and the cylinder will be equal. 
Strain in the tube = strain in the cylinder 

or 

or 

ts= ta/ 

<Js <Jal 

Es= Eat 

Es 210x 103 = 3 ~al 
<Js = <Jal -E =.O"a/ X 3 v 

al 10 X 10 

Area of steel tube As.:.:.: (902~152)= 1943.86 m~2 

Area of aluminium cylinder Aat = ~ (75)2 = 4417 .86 mm2 

Total Load will be shared by the tube and the cylinder. 
:. P=P5 +Pa1 

200 X 103 = O"s .As+ <Jal .A al 

200 X 103 = 30"al X 1943.86 + O"al X 4417.86 

= ( 10248 .44) O" al 
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200x 103 
or Oaf = 10248_44 = 19.6 MPa 

:. CTs = 3cral = 3 X 19.6 = 58.8 MPa 
Load on the tube Ps = Os. As= 58.8 x 1943.86 

= 114 KN 
Load on the cylinder = O"a1.Aa1 = 19.6 x 4417.86 

= 86KN Answer 
Example 1.17 

An aluminium tube of 40 mm external diameter and 20 mm internal 
diameter is fitted on a solid steel rod of20 mm diameter. The composite bar 
is loaded in Compression by an axial load P. Find the stress in steel when 
the load is such that the stress induced h aluminium is 70 Nlmm2. What is 
the value of P? Es= 210 KN!mm2 Eal= 70 KN/mm2. JMI 
Solution 

Strain in both materials will be equal 
Strain in the tube= Strain in the rod 

Ea/= Es 

(Jal O"s 

Eat= Es 

Es 210 
= -.- X Ga/ = - O"a! = 3 CTa! 

Ea1 70 
or O's 

=3X 70=210MPa 

Area of the tube = ~ (402 - 202) = 300 1t mm2 

Area of the rod 1t 2 2 =- (20) = lOOn:mm 
4 

Total load will be shared by the tube and the. rod 

Example 1.18 

P = Ps + Pal 
= O"s. As+ O"a/. Aat 
= 3 O'a/.As +cra 1.Aa1 
= 3 X 70 X 100 7t + 70 X 3001t 
= 132 KN. Answer 

A reinforced concrete column 400 mm in diameter is reinforced with 
6 steel bars of 30mm diameter. The column carries a load of 200 KN. 
Determine the stresses induced in steel and concrete. 

Take Es= 210 KN!mm2 and Ee= 14 KN!mm2 

Solution 
Cross-sectional area of the column 

A=~ (400)2 = 125:66 x 103 mm2 

n: 2 3 2 
Area of 6 steel bars As= 6 x 4 (30) = 4.24 xlO mm 
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Area of concrete Ac= A - A, 
Aci= (125.66- 4.24) x 103 = 121.42 x 103 mm2 

Since steel and concrete will act as a composite unit, the strain in the 
two materials will be same, 

Strain = Es = fc 

O"s CTc Es 210 1 5 or - = -- or CT,= CTc X Ee·= -14 CTc = , 02 E E · , S C -

or cr5 = 15 Oc 
Load carried by the column 

= Load on cone. + Load on steel bars 

W = Ac. CTc + As. O's 

= 121.42 x 103 CTc + 4.24 x 103 x 15 O'c 

200 x 103 = (121.42 + 63.60)x 103 CTc = 185.02 x 103 CTc 

200 103 
or <Jc = 185.02 x HY = 1.08 M.Pa 

O's= 15 x 1.08 = 16.2 MPa Answer 

Example 1.19 
A reinforced concrete column 400 mm x 400 mm is reinforced with 4 

steel bars of 22mm dia one at each corner. Calculate the safe Load that the 
Column can carry if the allowable stress in concrete is 5N!mm2 and the 
modulus of elasticity of steel is 18 times that of concrete. 
Soh.1tioi.: 

Cross Sectional area of the column 
A= 400 x 400 = 16 xl04 mm2 

Area of steel reinforcement 

n 2 2 A.,= 4 x 4 (22) = 1520.53 mm 

Area of concrete in the column 
Ac= (A-As)= (160000-1520.53) 

= 158479.47 mm2 

~ E, 
Now O'c = 5N/mm"' and _:_ = 18 

Ee 
2 :. cr5 = 5 x 18 = 90 N/mm 

:. Total Load on the column 

~400mm~ 

·tt{ '.\;Ji! 
22 mm qi 
Fig.1.20 

= load on concrete + Load on steel bars 
= Ac. crc + As. crs 
= 158479.47X 5 + 1520.53 X 90 
= 792377.35 + 136847.776 
= 929245.122 N 
= 929.245 KN Answer. 
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Example 1.20. 
A steel rod 20 mm diameter is passed through a brass tube 25 mm 

\internal diameter and 30mm external diameter. The tube is l meter long and 
'is closed by thin rigid wa:,:hers and fastened by nuts, screwed to the rod. The 
nuts are tightened until the compressive force in the tube is 40KN. Determine 
the stresses induced in the rod and the tube. Take Es= 200 KN!mm2 and Eb 
= 80KN!mm2 

WASHER 

Fig.1.21 
Soh1tion: 

Area of steel?Q~ As=~ (20)2 = loo 1t Sq.mm 

= 275 1t Sq.mm 
Since the rbd and tube are rigidly fixed 
Therefore strains in both are the same. 
Let Si be th.e common decrease in length 
:. ·Strain in the rod= Strain in the tube 

sz 8l 
fs=fb=!= 1000 

Stress in the steel rod CTs = fs.E = lg~o x 200 x 103 

cr s = 200 ol MPa 
Stress in the brass tube 

ot ~ 
O'b = -·· -- x 80x 10"' = 80 8! MPa 

1000 
Force in the rod Ps =Os.As= (200 ol) (100 1t) Newton 
Force in the tube Pb= Gb. Ab= (80ol) (275n:) Newton 
Total Compressive force is 40000 Newton 

P = Ps + Pb 
40000 = (200 x ol)(lOO 1t) + (80ol) (275n) 

42000 re 
or 8l = 40000 = 1.3297mm 

Stress in steel rod cr5 = 200 ol = 200 x. 3297 NewtonJmm2 

cr s = 65.84 MPa 
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Stress in brass tube O"b = 80 ol = 80 x. 3297 Newtonlmm2 

1 O"b = 26.37 MPa Answer 
Jremperature Stresses 

A body expands or contracts with rise or fall in temperature. If the 
change in the dimensions of the body is prevented then internal stresses are 
induced within the body. These stresses which are induced inthe body due 
to change in temperature are called thermal stresses ortemper.ature stresses. 

i ~-------t~ 
N~b.----L---~•~t 

!:,et a·bar of length L be'heated 
through t0 c. The bar will expand, 
which is prevented by providing 
restrai11s at )~dt ends. Let a he the 
.coefficient of linear yxpan~ion. If the 
bar was free to expand die change in 

Fig. 1.22 length of the bar = d L t 

. d . . . · Change in length 
Hencestram uetonsemtemperatui:e=,-A··, 1.1 .. h• 

vngma engt 
a.Lt 

r=-=a.t 
L 

Temperature stress iritluced c; = a.tE 
When the ends yield by an amount o 
Net ~x~anhsiobn pre(v:;t~ ;)a. Lt('- o 0)_ 
Stram m t e ar = -.-L- . = a. t- L 

Stress indl:lced in the bar = (a t- f) X E 

Example l~•c, . _, , 
A Copper bar 3 meters iong having .a, cross-sectipnal area of 1200 

mm2 is.rigid}y attached tq the walls .as shown in fig J.2J: At a temperature 
of 35°C the b.ar. is st,:ess free. Determine the stress in the bar when the 
temperature falls to 20°C.A.ssume thatthe supp/Ms do not yield. Take Ee=; 
120 GN!m2 and <1.c = 20 x10-6!°C. · 
Solution 

.Assuming that the ends are not 
rigidly attached and the bar is free to 
contract due to fall in temperature of 
(35 - 20)!:: 15°C ""_.., ---- 3 m-1)---•.-.1 

·'----'·' 

Shortening o,f the bar Fig. 1.23 
= a.ti = 20x 10-6x 15 x 3 x io3 = 0.9 mm 

· But Since the en.ds do. not yield, a force P is required to prevent th~ 
bar from shortening by an amount 0.9 mm · 

. oz = P.L 
AE 

3 
0.9 = p X 3 X JO, Or P = 43.2 KN 

1200 x 120 x HP 
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p 
Stress due to this force cr = -

-A 

Simple Stresses And Strains 

43.2 X 103 

1200 = 36 MPa Answer. G= 

Example 1.22 
A railway track 20 meters long is to be laid so that the rails are 

stress-free at a temperature .of 80°C. If the temperature rises to 140°.C, 
Calculate 

(a) The stress if there is no allowance for expansion 
(b) Ifexpansioh allowance is 5 mm -----_ 
(c) The expansion allowance if the stress in the rails is :zero at 140°C 
(d) The maximum temperature to have no stress for an expansion 

allowance of l O mm. 
Take E = 20() KN/mm2 and.a= 12 x 10--6/0C. 

Solution 
(a) Stress= atE 

= 12 X 10-6 X (140 - 80) X 200 X 103 

cr = 144 MPa 
(b) Expansion allowance is 5 mm. 

Stress = ( Lat - x) x E 

-~ L 3 -6 \ 
= l20 x 10 x 12 x 10 x 60 - 5 Ix 200 x l 03 

20x Hf · ) 
= (14.4 - 5) X 10 = 94 MPa 

( c) If the stress is to be zero at 140°C then the expansion 
allowance = Lat 

= 20 >< 103 x 12 x >i0-6 x 60 = 14.4 mm. 
( d) If the stress is to be zero for anallowance of 10 mm 

then LCt.t - 10 = 0 
or 20 X 103 X 12 X 10-6 X t = 10 

10 
or t = 20x 103 X 12x 10-6 = 4L6oC 

Hence Maximum temperature= (80 + 41.6) = 121.6°C Ans. 
Example 1.23 

A thin circular ring of steel is heated and slipped over a rigid wooden 
wheel of 1 meter external diameter. If the permissible stress in steel is 40 
MPa,find the exact internal diameter of the steel ring and the temperature 
through which the ring is required to be heated before slipping on the wheel. 
Es= 200 KN/mm2 and a= I1 x 10--6/0C. (Tech Brn~rd Punjab) 
Solution 

Temperature sttess = 40 MPa 

cr = atE 
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40 = 11 X 10-6 X t X 200 X 103 

40 
t=llx 10-6 x2oox 103 =lS.lSoc 

Let the internal diameter be 'd' 
S . _ Contraction prevented 

tram - 0 . . 1 . c 
ngma, circum1erence 

bl= rcl000-1t X d = 1t (1000- d) 
nd nd 

But Strain::;: at 
1t (1000-:-d) 

or 1t d = a.t 

or 1000 - d = da.t or d ~ lOOO 
l + at 

1000 
or d = 6 = 999.8 mm Answer. 

1 + 11 X 10- X 18.18 
Example 1.24 
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Two parallel walls 5 metres apart are stayed together by a steel rod 
of 25 mm diameter at a temperature of 80°C passing through washers and 
nuts at each end. Calculate the stress in the rod when it has cooled down to 
a temperature of 20°C. 

(i) If the ends do not yield 
(ii) lfthe total yield at the two ends is 1.2 mm 
Take E = 200 KN!mm2 and a= 12 x w-6;oc. (Punjab Univ.) 

Solution 
(i) When the ends do not yield, stress in the rod 

cr = a.t.E 
= 12 x 10-6 (80 - 20) x 200 x 103 N/mm2 

= 144 MPa 
(ii) When the ends yield by 1.2 mm, stress in the rod is found by using 

the relation 

200 X 103 

Example 1.25 
A 30 meter steel tape 20 mm x 1 mm in section was found to be correct 

at a temperature of 40°C and under a pull of 160 newtons. Find the error 
in the tape when used at a temperature of 60°C a!Jf under a pull of 80 
newtons. Take Es= 200 KN/mm and as= 12 x 10-- 1°C. 
Solution 

Increase in the length of the tape when 
Temperature rises by 20°C = alt 6 

= 12 X 1 ff- X 30 X 1000 X 20 
= 7.2 mm 

Decrease in the pull on the tape = (160 - 80) = 80 N 
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Decrease in length due to a push of 80 N 
p 

=-X l 
AE 

80x 30x 103 
= 0.6mm 

20 X I X 200 X 103 

Hence the tape will be too long by (7.2 - 0.6) = 6.6 mm Answer. 
Example 1.26 

A 40 mm x 20 mm.copper flat is brazed to a steel flat 40 mm x 40 mm 
as shown in figure 1.24. 

The combination is then heated through 100°C. Calculate the stress 
produced in each flat and the shearing force at the platie of brazing. Take 
Es= 200 KN/mm2 Ee= JOO KN!mrn2; «c = 18.5 x 10-6 /°C and · 
«s = 12 X J0-6/ 0 C. . 
Solution 

Fig.1.24 
Let £ be the Common strain 
Compressive strain in copper {lat 
Ee = Strain when free to expand - Common strain 

=(act-£) 
Similarly tensile strain in steel flat 
Es = Common strain - Strain when free to expand 

£ - «s.t 
From equations (i) and (ii) 

Ee + Es = «ct - £ + £ - Ust = ( Uc - Us) t 

<Jc <Js 
But£ =-and£=-

c Ee s Es 

<Jc <Js 
- + ~ = ( <Xe - «s) t 
Ee Es 

<Jc + <Jc = (18.5 X 10-6 - 12 xl0-6) X 100 
100 X 103 20 Ox 103 

(i) 

(ii) 

cri: + 0.5 crs = 65 (iii) 
Now pull on steel flat = Push on copper flat 

<Js.As = <JcAc 
O"s x 40 x 40 = O"c x 40 x 20 

<J e = 2 0"5 (iv) 
From equation (iii) and (iv) We have 

· 2 O"s + 0.5 <Js = 65 
cr.s = (65/2.5) = 26 Mpa 
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and O"c = 52 Mpa 

Shearing force= O"c X Ac 

Shear stress 

Example 1.27 

= 52x 40x 20 = 41.6 KN 
Force 41.6 X 103 

=------= 
Shearing area 0.5 x J o3x 40 

= 2.08 MPa Ans. 
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Two steel rods each 50 mm diameter are connected end to end by 
means of a turn buckle as shown in fig ( 1.25). The other end of each rod is 
rigidly fixed with a little initial tension in the rods. 

The length of each rod is 4 meter and there are 0.2 threads per mm on 
each rod. Calculate the increase in the initial tension when the tum buckle 
is tightened by one quarter of a turn. Take E = 200 KN/mm2. 

State with reasons, whether further effect of temperature rise, would 
nullify the increase in tension or add to it more. ( Bang lore University) 
Solution 

! p p 

Fig. 1.25 

Cross-sectional area of each rod= ~ (50/ = 1963 mm2 4 , 
When the turn buckle is turned by one quarter of a turn, extension of 

each rod. 

rods 

1 1 
= 4 x 0_2 = 1.25 mm 

Total extension of both the rods = 2 x 1.25 = 2.5 mm 
If t be the increase in tension in each rod, then elongation of the two 

?)[ = 2 X t X [ = 2 X t X 4 X J 000 

AE 1963 X 200 X 103 

But total elongation of the two rods is 2.5 mm 
2 X t X 4 X 1000 = 2_5 
1963 X 200 X 103 

1963 X 200 X 103 X 2.5 
or = = 122.7 KN 

2x4xl000 
Further rise in temperature would cause increase in length of each rod 

and when rise in temperature has caused an increase in length of2.5 mm the 
tension would be totally nullified. 
Example 1.28 

A weight of 150 KN is supported by three short pillars each 500 
sq.mm in section. The outer pillar are of copper and the central pillar is of 
steel. The adjustment of pillar is .such that at a temperature 25°C each· 
carried an equal Load. After this the temperature is to J 25°C. 
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Estiimate the stres;'Ln each pillar at 25°C and 125°C. Take Es= 200KN!mm2, 
EC= 80 KN!mm2, ex s = 12 x 10-61°c and ex c = 18.5 x 10-6/°C AMIE 
Solution 

Initially at 25°C the Load shared by each pillar will be equal 

Load on each pillar= 1; 0 = 50 KN 

. 50x 1000 
Compressive stress= 500 = 100 MPa 

When the temperature rises to 125°C, the extension in length of each 
pillar will be ex t.L. But due to the Load of 150 KN each pillar will be 
compress~d. Let x be the shortening in length of each pillar due to 
compressive load; Hence net change in length will be (x - extL) 

S · · h 'll (X - ci.t.L) (X ) . tram m eac . p1 ar = L = L - ext 

· Stress produced = ( f- ext J . E.A. 

. Total Load = Load carriei by steel pillar + Load carried by 
. two copper pillars 

=[( f- exs:t) E~s] + {(f-exct) Ec4c] 

150x 103 = [(f-12 x 10-6 x IOOX200 x 103 x soo)J 
+{(f-18.5x 10-6x 100] [(80x 103 x500)] 

150x 103 {f-12xrn-4Jx 108+2[(f-18.5x 10-4)4ox 106] 

= f x 108-12x 104 + 2: x .4 x 108 -18.5 x 2 x0.4 x 108 x 10-4 

= l-:: X 108 -12 X 104 - 14.8 X 104 

15 X 104 = 1,:: X 108 - (26.80) (104) 

or 1 :", x 104 = 41.8 or t = ( 4/ g8) 10--4 = 23.22 x 10--4 

or W. = 23.22 X 10 

L9ad carried by steel pillar = (f- as .t) E5 A 5 

= (b.22 X 10-4 - 12 X 10-6 X 100) 200 X 10 3 X 500 = 112.2 KN 

Load carried by each cop::ier pillar= ( f- exc. t I Ee.Ac 
. = (23.22 x 10-4- 18.5 x ~o-6 x ioo) 80 x 103 x 500 

= 18.88 X 103 N = 18.88 KN . 
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. l ·11 112.2 x 103 2 4 4 M Stress m stee pi ar = 500 = 2 . pa 

. . . 18.88 X 103 
Stress m copper pillar= 500 = 37.76 MPa 

Statically indeterminate Problems 
Statically indeterminate problems involve determination of more than 

three unknown forces in a system. 
Such problems can not be solved by the three equations of static 

equilibrium. "LH = 0, LV = 0 and LM = 0. Hence some more equations are 
formed considering the deformations of the structure. This helps in getting 
the required number of equations equal to the number of unknown forces. 
Thus all the unknown forces can be determined. 
Example 1.29 

Two identical steel bars are pin-connected and support a load of 500 
KN as shown in figure 1.26. Determine the.cross-sectional area of the bar 
so that the direct stress in bar does not exceed 250 MPa, Als~ determine the 
vertical displacement of the point _B. Take E = 200 KN/mm and length of 
each bar, 4 me.ters. 

F 

"' P = 500 KN 

(a) 

B 

F 
tt 

500 KN 
(b) 

Fig.1.26 

(c) 

Free body diagram of point B is shown above F represents the Force 
in Newtons in each bar 

Resolving Vertically 
F sin 45 + F sin 45 = 500 

. 2F( fi-) = 500 or F = (:ri)= 353.6KN 

Hence the requ~ed area of each bar 

Force 353.6 x 103 __ 1414 2 
A = Stress = 250 mm 

The elongation of AB is represented by the distance DB' and BB' is 
the displacement of B 

, Stress 353.6 x 103 _ 3 
Hence DB = -E x L = 3 x 4 x 10 = 5 mm 

1414 X 200X 10 

BB'= 5 450 = 7.07 mm Ans. 
Cos 
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Example 1.30 
A rigid bar ABi's supported by three equally spaced rods of length 1.5 

meter each. The two outer rods are of steel having a cross-sectional area of 
200 mm2 each and the central rod is of copper of cross-sectional area 800 
mm2. If two Loads 40 KN each are applied midway between the rods, 
determine the load shared by each rod. The bar AB remainshorizantal after 
the loads have bee.n applied. Take Est= 200 KNlmm2 and Ecu = 120 KN!mm2 

/ 

40 KN . 40 .Kff 40 KN 40 KN 

Fig.1.27 

Solution 
Stn~e. the bar AB is in static equilibrium hence sum of all vertical 

forces must tie equal to Zero 
2Pst + Pcu - 80 = 0 (i) 

The elongation of each ba! due to the applied load is also equal hence 
strain in steel rod. i:s equal to strain in copper rod 

Es,:= ·Ee 
pst pcu 

Ast X Est Acu. Ecu 

Astx ·Est 
or pst = pcu X A . E 

cux.. cu 

P cu X 200 X 200 X 103 

= 
800 X 120 X 103 

40 
= Pcu X 96 = .416 Pcu 

or pst = .416 pcu 

Substituting Pst in terms of .416Pcu in equation (i) we get 
2 Pcu X .416 + Pcu = 80 KN 

or Pcu (2 xA16 + 1) = 80 KN 
;;80 

or P cu= 1.832 = 43.66 KN 

P5t = .416 Pcu = .416 X 43.66 = 18.16 KN 

(ii) 

Hence Load taken by copper rod is 43.66 KN and Load taken by each 
steel rod is 18 .16 KN Answer 
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Example 1.31 
A steel rod of cross-sectional area 1600 mm2 and two brass rods each 

of cross-sectional area 1000 mm support a load of 50 KN uniformity 
distributed as shown in figure 1. 28. Find the stresses in the rods 

Take Es= 200 KN/mm2 and Eb= 100 KN/mm2 (Alig.University) 

Solution 
Shortening in all the three rods will be equal 

ols = olb 

0 s (Jb 
E. t, =E. zb 

s b 

Es lb 
or O's = T·T x crb 

b s 

200 X 103 4000 
= x--cr 

100 X 103 3000 b 

8 
CTs=30'b 

Total Compressive Load 

50 KN 

Fig.1.28 

1 T Ir 
_j_ 

= Load shared by steel rod + Load shared by 2 brass rods 

P =P5 +2Pb 

= As O's + 2Ab.O'b 

50 X 103 = 1600 X t O'b + 2 X 1000 X O'b 

= O'b (4.26 + 2) X 103 

50 X 103 
or cr - 7.97 MPa 

b - 6.26 X 103 

8 
crs = -x 7.97 = 21.25 MPa Ans. 

3 

Example 1.32 
Two rods L meter long and 90 sq. mm cross-sectional area are 

fastened rigidly to a level support at distance of 1.20 mfrom eachother. A 

horizantal cross-bar is provided at lower ends as shown in figure 1.29. Find 

the position of a 50 KN load on the cross-bar so that the bar remains 

horizantal after loading. Also calculate the stresses in the two rods. Take Es 

= 200 GN!m2 and Eb = 90 GN!m2 AMIE 

Solution 
Since the cross-bar remains horizontal after loading strain in both bars 

will be equal 
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or 

Es 

(jb ' 
= T·lb 

b 

200 
or -E .crb = 

~b 90 ab 

crs = 2.22 (Jb 
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Total Load = Load on 
steel rod + Load on brass rod 

Fig.1.29 

As = Ab = 90 mm2 

p = As· as+ Ab.Ci b ~ooGN' 2 - 200 x 109 NI 2 L 1 ,m - 106 mm 

50 KN= 90 x as + 90 x crb 

50 = 90 (cr5 + ab) 
= 200KN/mm2 

90 GN/rn2 = 90 KN/IILm2 

= 90 (2.22 + 1) (jb 

50 2 
or ab = 90x3_22 = 0.1724 KN/mm = 172.4 MPa 

Load on brass rod= Ab a0 = 90 x 172.4 = 15.52 KN 
Stress in steel rod= (2.22) (172.4) = 383.07 MPa 
Load on steel rod = A5 0 5 

= 90 x 383.07 = 34476.3 N 
= 34.47 KN 

Taking Moments about A 
P .x = Pb X 1.20 

50 X x= 15.52 X 1.20 
x = .372 metres Ans. 

Example 1.33 
A Composite bar is rigidly attached to two su'fjPorts as shown in figure 

1.30. The left portion is a cooper bar of 7000 mm sectional area and 400 
mmJength. The right portion is of aluminium of uniform sectional area 1500 
mm and 300 mm length. At a temperature of 300°C the entire assembly is 
stress free. When the temperature falls down the right support yields 0.5 mm 
in the direction of the contracting metal. Determine the minimum 
temperature in order th9t the stress in aJuminium does not exceed 1 jO MP a. 
Tak~ EC = .!l-,0 KN/mm ac = 20 x 10- l°C and = Ea = 70 KN/mm and aa 
= 2J x 10 1°C 
Solution 

Consider that the bar is just cut to the · I ~ ~ 
left of B and is free to contract due to drop in A . ~B 
temperature t 0 c _ 

~ ~.--_o.E. __ ·. ~ 1. - , 3rn0m0.-~, Total shortening of the composite r ,;.~ ..... ~ ...., 
section = Shortening of copper bar + 

Shortening of aluminium bc1r uo 
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= (a.c Let)+ (a.A LAt) 
= (20 X 10,--6 X 400) t + (25x10-6 X 300) t 

The force requiredto prevent this shortening of the composite bar 
P X400 l PX 300 . 

= 7000 X 120 X 103 + 150()',< 70X 103 

Since the right Support Yields by 0.5 mm due to fall in temperature 
PX (400) + PX (300) 

7000 X 120 X 103 1500,X 70 X 103 

= [ (20 X 10-6 X 400)t+(25 X 10-6 X 300)t - 0.5] 
As the maxm stress allowed .in aluminium bar is 150MPa · · · 

The maxm value of Pis obtained from P = crA 

= 150 X 1500 = 225000N 
Putting the Value of Pin the above eqm1~ion we obtain the val.ue oft 

225 X 103 X 400 225 X 10 3 X 300 . +------
7000 X 120 X 103 1500 X 70 X 103 

= [(8 x 10-3 )t + (7.5x 10-3 )x t- 0.5J 
or 0iJ07 + 0.642 + 0.5 = (15.5 X t(r3)t 

t =)r;~5°x 103 = 80.6°C 

Fall irHeinperature = 80:6°C · 
Mitt lllifempetature = (300 .:.:.· 8iftry:::i"11'9i4°C A:.ns. -u :·-,. ,; :·c, :<,;,•·. '< 

Shear Stresses , . . • . 
When two equal and OJ?positf. for~~ •acJ l~~gen~~Y,J}ll ~~c8!9~~ 

sectf <>~al. plan~ <?f a ~,Y t~~1l'cW tq shde tfs, 911e part, o;ver ~t~w <?!~er '.at that 
plane, the body 1s said to be.,m a state of sh~ar and .the corr,e~.endmg stress 
is called shear stress. ., · · · · · · .. , ' · · 

Fig.1.31 

If F8 is the tangential force and A is the resisting area then 

Sh. 'Shearing Force 
ear stress=-.. ---,,~-

Resisting area 

Fs · 
't=-

A 
Shear stress is measured in N/mm2 or MPa 
The figure 1.32 shows a bar cut by a plan x-x perpendicular to its axis. 

Shear stress 't is acting along the plane where as normal stress O' is acting at 
right angles to the plane as shown. 
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Fig.1.32 

Sh.ear Strain 

! 

X 

X 
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A rectangular element under the action of shear forces is shown in 
figure 1.33 (a) 

!:" 
B B'' ~ C C~ ~.-~-.,,------.v 
A ---r= .P 

Fig. 1.33 (a) Fig. 1.33 (b) 

Fig 1.33 (b) shows the distorted shape of the rectangu19r element. The 
length of the sides of rectangular element do not undergo any change but 
there will be an angular movement of the comers. This change of angle y at 
the corners is the shear strain produced due to he shear force F. Shear Strain 
y is expressed in radians. 
Modulus of Rigidity or sh.ear modulus 

The ratio of Shear Stress to shear strain is called modulus of rigidity 
or shear modulus and represented by the symbol G 

G=:! 
2 1 2 Units of Gare GN/m or KN/mm 

Values of modulus of rigidity for Various materials are given in the 
table. 

TABLE 1.2 

Name of material 
Value of modulus of riajditv 

2 -G in GN/m or KN/mm 

Steel 80-100 
Wrought iron 80-90 
Cast iron 40-50 
Copper 30-50 
Brass 30-50 
Timber 10 
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Example 1.34 
Two Steel Plates A and Bare connected to each other by means of a 

rivet 25 mm in diameter. lf a force of 20 KN is applied as Shown in figure 
1.34 determine the average Shearing stress developed in the rivet. 

Fig.1.34 

Solution 
Fs 

The average shear stress= A 

Where A is the are,:i of the rivet hole. 
Diameter of the rivet = 25 mm 
Diameter of the rivet hole= 25 + 1.5 = 26.5 m 

Area of the rivet hole = 1 (26.5)2 

. 20x 103 2 
Average sheanng stress = · N/mm 

~ (26.5)2 

-c = 36.26 MPa 

Example 1.35 
A,hole of 20 mm diameter is to be punched in a plate 30 mm thick. 

Determine the force required for punching the hole and the stress in the 
punch if the shear stress is not to exceed 40 MP a 
Solution 

Area to be sheared= n. d.t. = n 20 x 30 = 600 n mm2 

Punching force = shear stressx area to be sheared 
= 40 x 600 nN = 75.38 KN 

The punch is subjected to a compressive stress 

Punching force 75.38 x 103 

a comp = Area of the hole = 1!_ r?Q)2 
4 ,-

Stress in the punch = 240 MPa Ans. 

Example 1.36 
A load of 40 KN is acting on the horizontal surface of an angle bracket 

w~ich is tranfixed to a vertical column as shown in fig. 1.35. Iftwo 15 mm 
diameter rivets resist this force, find the average shearing stress in each of 
the rivets. 
Solution 

Total force acting on the bracket= 40 KN = 40000 N 
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Area of each rivet, A= 1 (d/ 

1t 2 2 
A = 4 (15) = 176.7mm 

Total resisting area= 2 x 176.71 = 353.42mm2 

. 40000 
Average Shearmg Stress= 353 .42= 113.lMPa 

= l 13MPa Ans. 

Fig.1.35 
Exainple 1.37 

· A lever is keyed to a shaft of 120 mm diameter. The width of the key 
is 20 mm and the length is 75 mm as shown infigure 1.36. lf the shear stress 
in the key is not to exceed 85 MPa. Find the load that can be applied at a 
radius of 1.5 meters. 
Solution 

20mm I'", 
; 175mm 

Fig.1 . .36 

Cross-Sectional area of the key= 20 x 75 = 1500 mm2 

Allowable Shear Stress 't = 85MPa 
Shear Strength of the key= Area x 1: = 1500 x 85N 
Taking moments about 0 
p X 1.5 X 1000 = (1500 X 85) X 69 

P _ 1500x85x60 __ 100 N 
or - l.S x 1000 - :, ewton 

= 5.1 KN Answer 
Example 1.38 . 

p 

A pulley is keyed to a circular shaft of diameter 60 mm. Two unequal 
belt pulls TJ and T2 on the two sides of the pulley give rise to a net turning 
moment of 120 N-m. The key is 10 mm x 15mm in cross-sectfrm and 75 mm 
long as shown in figure 1.37. Determine the average shearing stress acting 
on a horizontal plane through the key. 
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10mm 
PULLEY 

.. Fig.1.37 
Turning moment otttlie'~liey::: 120 N-m Let F be the horiiontalforce 

exerted by the key on the pul1¢.Y. Then for equilibrium the moment of the 
force F about the centreiof thJ,pq\Jey must be equal to the applied fuming 
moment.. 

F x 30 = 120 x 100 or F = 4000 Newtons 
Let t = Shear Stress in k~y 
Area of Cross-Section Q.Nb,i:;.t~Y in Shear= 15 x 10 
Shear Strength of the key ,;."{ x 75 x 10 
This is the hori'.?ontal shear Force F8 

or Fs = t x 75x 10 011 t - 1:~~0 - 5.33 MPa 

Example 1.39 
0 Two length of a tie bar, e~h ':(;diameter 'D' are conne¢tecl py a pin · 

joint. The end of one part isf°'*ll. in w,hich is fitted the end of the othet 
arid both are secured by a pin of diameter 'd' passing at right angles to 
the axis of the bar as shown in fisurff.J-88 lf crr and t_ are the tensi,z~izna s~ear 
stresses in the. bars and the pin respectively, establish . a rrlatiim ship 
between their, diameters and stJesses, assuming that boti{ off,er equal 
resistance. 

F 

Solution 

.. -"'I d:!---
Fig'. 1.38 

Tensile strength of the bar P = cr, xi (D J2 this force f,tends to shear 
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the pin at two sections x-x an. d y-y and the pin is]thus under double shear. 

Strength of the pin against shearing = 2 [• x ~ d2 

Since both are to offer equal resistance, hence their strengths must be 
~~- . 

1t 2 1td2 
:. O"t X 4 D = 2 X 't A 10r 

O"t 
Answer. 

Poisson's Ratio 
You will obserye that when a specimen of an elastic material is 

subjected to tensile forces · along its horizontal axis, the length of the 
specimen increases and t,lie thickness and breadtlt decrease. Similarly when 
a compressive force in applied shortening in length is accompanied by an 
increas.ein the lateral dimesions (Thickness and width). This effect is called 
p9.isson: s,efft:ct. 

Therefore every longitudinal strain is accompanied by a lateral strain 
in a direction at right angles to the linear strain. 

L t ·a1 t . _ Chan~£! in Lateral dimensicln· 
a er s ram - 0 . . IL Id" . . ngma atera 1mens10n 

Within elastic limit the ratio oflatefal strairr to liner strain is constant. 
This ratio is called poisson's ratio and denoted byµ 

. , • _ Lateral strain 
Poisson s ratio µ - L" ,, ,.· . 
. · mearstram 

.. .. I 
µ Varies between O and 0.5 for all materials for metals the value ofµ 

lies between 0.2 and 0.45 I 
TheValue'of µ for some materials are given in the table .. 
. . TXB.LE 1.3 

Name·of ma'ferial Value ofµ 

, Steel .. . .. .. 0.25 - 0.351• 

Cast iron 0.23 -0.27 

Copper 0.31 - 0.34 

Brass . 0.32 -0.42 

0.32,-0.36 
ciincrete ·.. , 

/ 0.08-'-0.18 

Ply wood. 
·. 

.• 
0.07 

Volumetric strain 
When a specimen of a material is acted upon by stresses in three 

mutually perpendicular directio11,s,. the volume of the specimen changes. 
• • _ Change in Volume 

Volumetnc stram - 0 . . . al'V 1 ngm_ oume 
ov 

~"=v 
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Bulk modulus 
The ratio of stress and volumetric strain is called Bulk modulus of 

elasticity 
stress 

Bulk modulus = K = V 1 . . 
o umetnc stram 

K=~ 
Ev 

Relation Between Elastic Constants 

(i) Relation between E and G 
Consider a solid cube ABCD 
subjected to shear stress 't along the 
faces AB and CD. Complementary 
shear stress will be induced in the 
faces BC and AD. Let ABC'D' be 
the deformed shape of the cube 
Draw a perpendicular CL on AC'. 
As the deformation is very small, 
angle AC'C may be taken as 45 
degrees. 

A ....-i 

. CC' C'L 
Now qi= BC= Cos45BC Fig.1.39 

C'L 2 C'L = ---
Cos45ACCos45 AC 

B 

Since AC is very nearly equal to AL. there fore C'L is the elongation 
of diagonal AC 

. . f h ,r l C'L qi Lmear stram o t e uiagona = AC = 2 
'C 

But <j}=
G 

It means that strain in the diagonal is equal to half the shear strain. 
The diagonal AC elongates, where as diagonal BD is subjected to 

compressive stress. Therefore the strain of the diagonal AC 

or 

'C 't "C 
£Ac=£+ l).E = E (l+µ.) 

't 't 
-=- (1+µ) or E=2G(l + 
2G E 

E = 2G (1 + µ) (1) 

Relation between E and K Let the solid cube be subjected to a tensile 
stress cr on each face. 

Direct strain along each axis=~ (Tensiie) 
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Lateral strain along an axis due to the tensile stress along any other 

axis= ? (Compressive) 

T .1 . cr 11a ucr 
Net tensi.e stram = E -·'=jf- E 

cr 
=- (1-2µ) 

E 
Volumetric strain = 3 x Linear strain 

cr 3a ,, 2 , 
K = E (i- µ; 

or E = 3 K (1 - 2 µ) 
(iii) Relation between E, G, and K 

E= 2 G (1 + µ) 
E= 3 K (1-2 µ) 

( E "1 From equation (i) µ = 20 - 1 
1 

. . h" . . ~ (""\ J Puttmg t 1s m equatwn u, 

1 "( E rr E ,1 E=3 1-',e,-- =3Kl·l1--+21! 2G · G . )J 

( El ( 3KE\ 
E = 3K 3 - G) or E = 9K - G j 
E = 9KG - 3KE or EG + 3 KE= 9 KG 

G 
or E (G + 3 K) = 9 KG 

E= 9KG 
G+3K 

(2) 

(i) 
(ii) 

(3) 

Example 1.40 • · 
If the modulus of elasticity of a material is 200 GN!m2 and modulus 

of rigidity is 80 GN/m determine the pois son's ratio and bulk modulus. 
Solution 

Usin"g the relation 
E= 2G (1 + µ) 

200 = 2 X 80 (1+ µ) 
200 

or (1 + µ) = 2 x 80 = 1.25 

Poission's ratioµ= 1.25 - 1 = 0.25 

To find bulk modulus, use the relation 

E = 3 K (1-2 µ) 
200 = 3 K (1 - 2 X 0.25) 

200 2 
K = 3 x O.SO = 133.3 GN/m Answer 
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Principal strain 
Strains in the direction of principle stresses are called principle strains. 

Every principal stress produces a strain in its own direction and a strains 
apposite in nature in all directions at right angles to the principal stress. This 
is because of pois son's effect. Thus principal stress <Jx along x - axis will 

d . . l . Gx. . _.. . d UCTx d -LLO'z l 
pro uce a pnnc1pa stram E m its own mrect1on an . - E an E a ong 

Y and Z axis. 
V olm.netric st.rain of a rectangular Block 

4 cr 

/ 

/ 

,,"I 
/ 

a· 

Fig.1.40 

Let l = length, b = breadh and t = thickness of £,. rectangular block 
shown in fig. 1.40 

Let ol, .Sb, and ot be the increase in the dimensions of the block. 
Increase in the volume of the block Sv = (l + ol) (b + ob) (t + ot)- V 
Neglecting higher powers of small quantities 
ov = lb. ot+ 1 x t ob + b.t.ot 

= l X b X t (~t + t + ~l) 
= V (sum oi'three strainsj = V (et +fb + E1) 

Bv = Volumetric strain= Sum of three principal strains 
V 

Volumetric strain= (ex+~+ €.2 ) 

Volumetric strain of a cylindrical rod . 
Let l be length and d be the diameter of a cylindrical rod 
Let Bl and od be the change in length and diameter of the cylindrical 

rod. 
The Changed Volume of the rod 

it • • 2 
V+ Ov=d(d+ od) X (l+ Ol) 

1t 2 . 2 
V + ov = 4 (d .l + 2d.l.&i + d .ol) 

(Neglecting the product of smaller quantities) 
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1t 2 
NowV= 4 d .l 

Ov = ~ (2d. l.od + d2.ol) 

Simple Stresses And Strains 

or ov _ 2d.l.od + d2.ot = 2 od + ol 
V d2.[ d [ 

ov 
e v = - = (2 ed + Ez) 

V 

Hence volumetric strain in case of a cylindrical rod is the sum of strain 
in length and twice the strain in diameter. 
Example 1.41 

A metal bar 50 mm x 50 mm section is subjected to an axial 
compressive force of 500 KN. The contraction of a 200 mm guage length 
was found to be 0.5 mm and increase in thickness as 0.04 mm. Find the 
Values of Young's modulus and poisson's ratio. (J.M.I.) 
Solution 

N al S Axial load 
orm tress= . 

Area of cross-sect10n 
.... 3 

= 500 x 10 = 200 MP 
<J 50.x50 a 

Linear Str~in = ~O~ = 0,,0025 

Young's Modulus = E = Q = .200 = 80 KN/mm2 
'' · · · · · e 0.0025 

~l}teral Str_ain = 05~~ =:= 0.0008 

• p· .• ; · • · ,.Lateral strain 
msson s ratio = L" . mear,stram 

µ = 0;0008 = 0 32 Answer. 
0.0025 . 

Example 1.42 
A flat made of elastic material is subjected to two mutually 

· perpendicular stresses <!.f 100 MP a tensile and 80 MP a compressive. If there 
is no stress in any otliet direction, deffrmine the strains in tqe directions f 
applied stresses take E = 200 KN/mm and K = 170 KN/mm · 
Solution 

Using tll,e r~l~tion ·iS. 0 MP. a. , 

E=3k(l;-2µ) ,, _ 
200x ·103 ~ 3 x 170x 103 (1-2 µ) / h 

3 . I~--------200 10 20 I ··~90 · 
(1 - 2 µ) = x : ~ IMPa 

3 X l70X lif 51 Fig.1.41 
or µ = 0.304' . 

Strain in the direction of 100 MPa (Tensile Stress) 
_ err µ<Jy _ .!. ,.../ 
- E + E - E (100+ 0.3()4 )(.3VJ 
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124·32 = 0 fl0062 (T ·1 ) 3 ·~ ensLe 
200x 10 

= 

Strain in the direction of 80 MPa (Compressive) 
80 100 1 

= - + µ X - = - (80 + .304 X 
E · E E 

110.4 
.000552 (Compressive) ----c-= 

2QJ:Yx 103 

Exami,)}e \4~/ 
A steeYblock 200 mm x 20 mm x ~O mm is subjected to a tensile force 

of 40 KN in the direction of its length. Determine the change in volume of 
the blockf E = 205 KN/mm 2 and poission 's ratio µ = 0.3 (Roorkee Univ.) 
Solution 

. axial load 
Direct stress = . 

cross-sectional area 

40 X 103 
cr = 20 x 20 = lOOMPa 

. . CT lOO ~ = + 4.878 X 10 - 4 
Linear stram Ex = E = 205 x l oj 
Poisson's ratio = 0.3 
Lateral strain Cy = µ X Linear strnin 4 .1 

f y = - 0.3 X 4.871Ll< 10- =- 1.463 X 10-. 

8v 
tz=-1.463 X 10 

- =f +£ +£ 
V X y Z 

=(+4.878-l.468-l.463)x 10--4=+1.95lx 10-4 

8v = L95 l X 10--4 x Volume of the block 

= 1.951 X 10---4 X (200 X 20 X 20) 

8v = 15.609 mm3 Answer. 
Example 1.44 

A. rectangular block 240 mmx 80 mm x 60 mm is subjected to axial 
loads on each of the face as shown infigure.JA2. Assuming Poisson's ratio 
as 0.3 dete'.m_i~e the change in volume of the block and the /alues of 
modulus of t1g1d1ty and bulk modulus. Take E = 200 KN/mm 

Solution 

80 X 103 

CTx == 240 X 60 

= + 555 MPa (Tension) 

120x 103 

O'y = 240 X 80 

= - 625 MPa (Comp) 

(AMIE) 

120 KN 

80 KN 

)(. 
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40x 103 833 MP 'T . ) O"z = 80 x 60 = + ,. a , enswn 

Strain in the direction of each force 
1 rx = E r+ s5s - o.3 <- 625) - o.3 (833) J 

494.6 =+--
E 

1 
Ey = E [ cry - µ ( CTx + O"z)] 

= °i [ -625 - 0.3 (555 + 833) ] 

1041.4 
=--E-

1 
f.z = E [ O"z- µ ( O"y + O"x)] 

= °i [ + 833 -0.3 (- 625 + 555)] 

854 
=+T 

V olumettic Strain 

0v 
V . = Ex + f.y + Ez 

494.6 1041.4 854 307.2 
=~--E-+E=~ 

NowV = 240x 80x 60= 1152x 103 mm3 

307.2 . 3 3 
HenceOv=~x 1152x 10 = 1771.2mm 

Change in Volume= 1771.2 mm3 

Using the relation 
E = 2G (1 + µ) 

200X 103 = 2 G (1 + 0.3) 

G = 200x 103 2 
or 2 x 1.3 76.9 KN/mm 

Again 
E = 3K(1-2µ) 

E 
K= 3 (1-2µ) 

200x 103 2 
=,3 ( 1-2 X 0.3)KN/mm 

= 166.6 Ki~/mm2 Answer 
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SUMMARY 

1. Stress is load per unit area 
p 

Normal Stress Cf = A 
Units of stress KN/mm2 or N/mm2 Mpa (Mega Pasal) 

2. Change in Length per unit length is strain 

0 l s . h . 
£ = L tram as no umts 

49 

3. Hooke's Law states that within elastic limit stress is proportional to 
strain 

Stress 
-S-.- = Constant 

tram 

or ~ = E , Where E is called Modulus of elasticity 
£ 

or Young's modulus. Unit of E are GN/m2 or KN/mm2 

. p 
4. Change in length of a bar 61 = AE .L 

5. Bars of Varying section 

. P ( Ii lz /3 ) Total change m length 61 = E At + Az + AJ + .... 

6. Change in length of a bar due to self weight · 

ol= W.L 
2AE 

7. Change in length of a loaded tapering rod 

ol= 4Pl 
1tE D.d 

8. Compound Bars 

P.Es d P.Ec 
Cf = an Cf = -----

s (As Es+ Ac Ee) c As Es+ Ac Ee 
9. Change in length due to temperature variation 

Lt = Lo (1 + a. t) 
10. For bars- totally restrained at erids and su~jected to rise or fall in 

temperatu,·e. 

Temp .. Stress = Ea. t. 
. . . Lateral strain 

11. P01ss10n's ratioµ L" . 
mearstram 

_ Shearing Force 
12. Shear stress 'C - ---~--

Resisting area 

Modulus of rigidity G = ! 
r 
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q 
13. E = 3 K (1 - 2 µ) = 2 G (1 + µ) '" --;,K + G 

b 
14. Volumetric strain of a rectangular block ~ = (Ex+l\ +£2 ) 

8 .. 
15. Volumetric strain of a cylindrical rod £, "'_::_ = (2ed + £L) 

. V 

QUESTIONS 
(l) What is elasticity ? explain. In order of descending elasticity, rewrite 

the following materials 
(a) Rub!. o,r (b) ~ast iron (c) Timber (d) Copper (e) Steel 

(2) Define dir. :e,; stress, compressive stress, tensile stress and young's 
modulus of ~lasticity. 

(3) State Hool~ s Law, Explain elastic limit. 
.( 4) Draw the stress-strain curve for mild steel and explain various points 

on it.. 
(5) Explain Lateral strain, Linear strain and poisson's ratio. 
(6) What do you understand by shear stress, shear strajn and shear modulus 

of elasticity? 
(7) Explain bulk modulus .. Establish a relationship between the three 

modulus of elasticity E, G and K. 

EXERCISES 

(8) A surveyor's steel tape 30 meters long has a cross-sectional area 8 mm2 • A force 
of 60 N is axially applied on the tape. If the modulus of elasticity is 200 KN/mm 2, 
determine the elongation of the tape. ( Sl = U 25 rn Ans.) 

(9) A 25 mm x 25 mm bar 6 meters long is fixed at ends. An axial load of 60 Kl~ 
is applied at section 2.5 meter from the top. Determine the stresses in the bar 
above and below the section. (cr1 = 56 Mpa, crc = 40 Mpa) 

(10) A steel rod 20 mm diameter and 2 meters long is subjected to an axial pull of 20 
KN. Determine the nature and magnitude of the stress produced and the 
elongation of the rod. Take E = 200 GN/m2 

(cr1 = 63.6 Mpa, ol = .636 mm) 
(11) A circular punch 25 mm diameter is used to punch a hole through a steel plate 

12 mm·thick. If the force required to punch this hole is 360 KN, determine the 
maximum shearing stress developed. (1: = 382 MPa) 

(12) Three pieces of wood 40 mm x 40 mm 
square cross-sectional area are glued 
together and to the foundation. If a 
horizontal force of 40 KN is applied as pi 
shown in figure, 1.43 determine the 
average shearing stre~s in each of the glued 

joints (1:av = 50 MPa) 

. Fig.1.43 



Simple Stresses And Strains 51 

( 13) A metal bar 30 mm iQ diameter was subjected to a tensile load of 54 KN and the 
measured extension on 300 mm guage length was 0.112 11.illl and change in 
diameter was 0.00366 mm. Calculate' the poissons ratio and value of the three 
modulus (µ = 0.32, E= 206.4 KN/mm2, K=l91.7 KN/mm2 

, and G = 78.2 K~/mm2 ). 

(14) A rectangular block 250 mmx 100 mm x 75 mm is subjected to axial loads as 
follows. 
(a) 48 KN tensile in the direction of its length 
(b) 90 KN tensile on the 250 mm x 75 mm face 
(c) 100 KN Compressive on the 250 mm x 100 mm face 
Assuming poisson's ratio as 0.25 find in terms of modulus of elasticity E, the 
strains in the direction of each force. If E = 200 KNmm2 , find the values of K 
and G, Also calculate the change in the volume of the block. 

[ 420 680 620 KN 2] 
Ans Ex=E,Ey= -E, =Ez= E' K = 133 Ymm 

G = 80 KN/mm2• 6v = 3375 mm3 

(15) A steel bar4 meters Long is made up of three portion,AB= 1.5 meter long and 
20 mm dia, BC= 1 m long and 40 mm dia and portion CD=, l .5 meter long and 
30 mm dia is loaded as shown in figure 1.44. Determine the total elongation of 
the bar. , (Ans 6/ = 17 .62 mm) 

20<!> 4011> 

400 KN-........ ----1 ,,, 200 KN" 500KN 
. . -------· 

A 

~1.5m 

B C 

fi,11 1 m ~• 

D 

1.5 m---4 

Fig.1.44 
( 16) A round bar shown in figure 1.45 is subjected to a pull of 16 KN. Determine the 

diameter of middle pt>rtion if the stress there is not to exceed 25 MPa. What must 
J;>e the length of the middle portion if the total extension of the bar under the given 
load is to be 0.362 mm. Take E = 200 KN/mm2 

940 mm.i.-l----------1140 mm F 
i.--------4.0 m--------1 .. "'j 

Fig. lAS 
(17) Two prismatic bars are rigidly fastened together and support a vertical load of 

75 KN. The upper bar is of steel, 10 meters Long and6000 mm2 in cross-sectional 
area. The lower bar is of brass 6 meters Long and 5000 mm2 cross-sectional area. 
Determine the stress in each material. Take Es= 200 GN/m2 and Eb= 90 GN/m2. 

· Weightofsteelandbrassmaybetakenas7.7x 104 N/m3 and 8.25x 104 N/m3 

respectively. 
Ans - (~, = 15.75 MPa, crb = 14.25 MPa.) 

( 18) A Composite bar consists of two timber sections 500 mmx 250 mm and a steel 
plate 200 mmx 20 mm is symmetrically placed between them. If Es, = 200 
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KN/mm2 and Et = l O KN/mm2 ' determine the maximum tensile stress in steel 
plate when maximum tensile stres~ in timber is 80 MPa. The bar is subjected to 
direct tension. 

( 19) A reinforced concrete column 500 mm diameter has four steel rods of 30 mm 
diameter, one at each comer. If the column supports a Load of 1000 KN 

E" 
determine the stresses in steel and concrete. Take E: = 15 

Ans - (0'5 == 63.11 MPa, Ge= 4.22 MPa) 

(20) A uniform rope l O meters Long hangs vertically. Find the extension of the first 
4 meters of · ts length from the top due to the weight of the rope itself. Find also 
the total extt-'1~:on of th~ rope. Take= E = 200 GN/m2 and p = 3.2 x 104 N/m3· 

Ans - (0.08 mm; .00763 mm). 

(21) A steel rod· neters Long and 25 mm diamter is connected to two grips one at 
each end at " temperature of l 30°C. Find the pull exerted when the temperature 
falls to 60°C. 

(i) If the ends do not yield 

(ii) If the ends yield by 1.2 mm 

Take E = 200 KN/mm2 and oc = 12 x 10-61 C 0 

Ans· (82.46 KN; 58.90 KN) 

(22) A flat bar of aluminium 30 mm wide and 8 mm thick is placed between two steel 
bars each 30 mm wide and 11 mm thick. The three bars are fastened together at 
their-ends when the temperature is 20°C. (a) Find the stress in each bar when the 
temperature rises to 70°C. (b) If at the new temperature a tensile load of 50KN 
is applied to the composite bar, what are the final stresses in steel and aluminium. 
Take Es = 210 KN/mm2; Eal = 70 KN/mm2, ocs = 12 x 10-6 /°C and oc al= 24 x 
1.0-61°c Am,· [(a) as= 14.8 MPa, aa1 = 40.7 MPa] 

(23) Explain the following 

(a) (i) Hooke's law 

(ii) Poissions ratio 

(iii) Yield Stress 

(b) ;;Js == 52.69 MPa, (Jal= 63.22 MPa] 

(b) A reinforced Concrete Column 500 mm x 500 mm in Section is reinforced 
with 4 steel bars of 25 mm diameter one in each comer. The Column is 
Carrying an axial load of 200 KN. Determine the stresses in concrete and 
steel. Take Es= 210 KN/mm2 and Ee= 14 KN/mm2· 

O's= 108 MPa and O"c = 7.2 MPa. J.MI.1995 
(24) (a) Define three modulii and Poisson's ratio 

(b) A steel bar ABCD of Varying section is subjected to the axial forces as 
shown in fig (1.46). Find the Value of P neccessery for equilibrium. If E 
= 210 KN/mm2' determine total elongation of the bar. · (A.M.U. 1993) 
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(25) A metal bar 50 mm x 50 mm Section is subjected to an axial Compressive load 
of 500 KN. The Contraction for 200 m guage length is found to be 0.5 mm. and 
increase in thickness 0.04 mm. Find the Value of Young's modulus and 
Poission's ratio. AM.U. 1992 

(26) A steel rod of 20 mm diameter passes centrally through a fitting copper 
tube of external diameter 40 mm. the tube is closed with the help of rigid washers 
of negligible thickness and nuts threaded on the rod. the nuts are tightened tiil 
the compressive l9ad on the tube is 50 KN. Determine the stresses in the rod and 
the tube, when the temperature of the assembly fal.ls by 50°C. Take E for steel 
and Copper as 200 GN(m2 and 100 GN/m2 and oc for steel and copper as 12 x 
10-6 /°C and l.8 x 10-0!°C. A.M.U. 1992 and Cambridge 

Answe:r • ( CT3 = 123.lSMPa 

crc = 41.05 MPa) 

ODD 



2 
Analysis of Complex Stresses 

So far we have analysed the stresses produced in an elastic body 
subjected to one loading at a time. Normal stresses produced due to axial 
loading or shearing stresses caused due to Shearing force have been 
discussed. But when an elastic body is subjected simultaneously to several 
loadings then it gives rise to a complex system of stresses. The aim of the 
present discussions is to determine the n,:,rmal and shearing stresses on an 
arbitrary plane passing through a point in an elastic body when subjected to 
several loadings simultaneously. 
Two Dimensional Stress 

When a plane element is separated from a body it will be subjected to 
normal stresses as well as shearing stresses, 
Stresses on An Indined Plane 

If O'x and Gy are the normal stresses acting on two mutually 
perpendicular planes accompanied by a shearing stress cxy as shown in 
figure 2.1, then normal stress a and shearing stress Ton a plane inclined at 
an angle e to the x-axis are given by the expression, 

'XY41--t--

'xy 

Fig. 2.1 
O"x + O"y O"x - O"y · . 

Normal Stress O' = 2 - 2 Cos20 + 'txy Sm20 '"' (l) 

Shearing StresS't· = O"x; O"v Sin 2 e +~ 'txy Cos "2 0 ... (2) 

Principal Stresses 
The maximum and minimum values of normal stress depends upon 

the angle 0 or the direction of the inclined plane. 

When normal stress assumes maximum and minimum values at a 
particular inclination, then these stresses are termed as Principal 
Stresses. 

54 
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P:rindpai Planes. 
The planes perpendicular to which the principal stresses act are called 

Principal Planes. the shearing stress at which will be zero. 
Sign Convention 

(i) Normal stress is considered positive if it is a tensile stress. 
(ii) Normal stres_s is considered negative if it is a compressive stress 
(iii) Shearing stresses are considered positive if they tend to rotate the 

element in a clock wise direction. 
(iv) Shearing stresses are considered negative if they tend to rotate the 

element in a counter clock wise direction. 
Law Of Complementary Shears. 

--'l:xy .. -1---!c--

-O"y 

Fig. 2.2 
A state of shear stress along a plane must be accompanied by a 

balancing shear stress of the same intensity along a plane at right angles to 
it. The directions of these shearing stresses are such that if one tends to 
rotate the element in a clock wise direction, the complementary shear must 
rotate it in a counter clock wise direction. 
Normal And Shearing Stresses On An Inclined Plane 

Let an axial force P be applied on a bar of uniform Cross-Sectional 
area A as shown in figure 2.3 (a) 

p 

p 
Normal Stress ax = A 

p 

Fig. 2.3 (a) 

Now consider a plane inclined at an angle e to the x - axis of the bar. 

Cross-sectional area of the inclined plane AB = _A 0 smu 
Stress on the plane AB, 

/ 

O = P = P sin e __ / 0 ""'' a ..... ~_:\ ...... e __ ---., , iiJi 
_ Aisin 0 A . 'a·__.)/ i~ 

The component of Ci1 which is normal' /_/ _______ _ 
to the inclined plane represents the normal 1;f A 
stress on the inclined phue. Fig. 2.3 (b) 



56 Analysis of Complex Stresses 

:. cr = cr' sin 0 

p . 0 . 0 p . 2 0 = - sm x sm = - sm 
A A 

But 

F . . . 2 0 ( 1 - Cos 2 0 ) rom tngnometry, we can wnte sm = 2 

. cr = f ( 1 - c;s 2 0 ) 

p 
A= crx 

1 
cr = 2 O'x (1 - Cos 2 0) 

The component of cr' along the plane AB gives the tangential stress 't 
on the inclined plane · 

't = cr' Cos 0 

= f sin 0 Cos 0 

From trignometry we know that sin 20 = 2 sin 0 Cos 0 

't = "i O'x sin 2 0 

Shearing stress will be maximum when sin 20 is maximum i.e. when 
2 e = 90° or 0 = 45° 

Maximum Shearing Stress 
. 1 . 900 1 

'tmax = 2 O'x sm . = 2 O'x 

Example 2.1 . 
A bar of uniform cross-section 30 mm x 25 mm is subjected to axial 

tensile forces of 50 KN applied at each and of the bar. Determine the normal 
and shearing stresses on a plane inclined at 30° to the direction of loading. 
Also determine the maximum shearing stress in the bar. 

Solution 
Area of cross-section = 30 x 25 = 750 mm2 

Normal Stress on a cross . / 
-section perpendicular to the axis 16.66 MPa ~ o· 
Of the bar. ~ ..--:$30 

'
~· 

_ p_ _ 50x 103 28.86 ~ . 
O'x - A - 30 x 25 MPa ..:.-------' 

= 66.6 MPa Fig. 2.4 
The Normal Stress on a plane at an angle 0 with the direction of the 

loading is given by 

cr = 1 crx ( 1-Cos2 0 ) 

= 1 x 66.6 ( 1 - Cos 60°) = 1 x 66.6 ( 1 - 0.5 ) 

= 16.66MPa 
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Shear Stress on a plane at an angle 0 with the direction of loading 

't = .l O"x sin 2 0 
2 

= t x 66.6 x sin 60 = 28.86 MPa 

Shearing Stress will be maximum when 2 0 = 90° 

or 1 . 900 'trnax = 2 O"x sm 

1 = 2x 66.66x 1 = 33.33MPa 

Example 2.2 
A bar of uniform cross-sectional area 625 mm2 is subjected to axiai 

compressive forces of 60 KN at each and of the bar. Determine the normal 
and shearing stresses acting on a plane inclined at 30° to the line of action 
of the axial load. The bar is so short that the possibility of buckling as a 
column may be neglected. 

Normal stress on a cross-section perpendicular to the axis of the bar 

O"x = f. = - 60 x 1000 = - 96 MPa 
A 625 

The Normal Stress on a 
plane at on angle 0 with the 
direction of loading 

1 
O" = 2 O"x (1 - Cos 2 0 ) 

1 = 2 x 96 (1 - Cos 60) 

= 24 MPa 

Fig. 2.5. 

Shearing Stress on a plane at an angle 0 with the direction of loading 

't = .l O"x sin 2 0 
2 

= i x 96 x sin 60 

1 = 2 X 96 X .866 = 41.56MPa 

Stresses On An Inclined Plane Of A Body Subjected To Normal 
Stress In One Plane Accompanied By A Simple Shear Stress 

N y 
\ I . 

~a, 

-'txy xy 

'txy-

Fig. 2.6 (a) Fig. 2.6 (b) 
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Consider a rectangular block subject to normal stresses O'x and shear 
stress "Cxy as shown in fig. 2.6 (a} on a plane inclined at an angle 0 to the 
x-axis, the normal stresses and shearing stresses are required to be 
determined. 

Fig. 2.6 (b) represents the free body diagram of a triangular element 
separated from the block by a plane inclined at an angle 0 to the x-axis. Let 
A be the area of the inclined face. 

Now applying the conditions of equilibrium along the axes chosen 
parallel and perpendicular to the inclined plane as shown in fig 2.6 (c) 

LFN= o 

(txy·A cos 6) 

Fig. 2.6 (c) 

(txyA sin 0) 

(a.A= (crx. A Sin 0) Sin0 + ("Cxy.A sin 0) Cos0 + ('Cxy.A cos 0) sin0 

cr = O'x Sin20 + 2 "Cxy sin 0 . Cos 0 
1 . 

O' = 2 ax (1-Cos20) + "Cxy sin 2 0 (1) 

Now consider the equilibrium of forces along an axis T parallel to the 
inclined plane 

LFr = 0 
-c.A = O'x. A sin 0 Cos 0 - "Cxy. A . sin2 0 + "Cxy. A. Co} 0 

"C = t O'x . sin 2 0 + "Cxy Cos 2 9 (2) 

To determine the maximum Value of normal stress, differentiate 
equation (1) with respect to 0 and equate the derivative to Zero 

d O' ' de= ax sin 2 0 + 2 "Cxy Cos 2 0 = 0 

. 2-cxy 
tan20p = --

O'x 
(3) 

Here 9p defines the planes of maximum and minimum normal stresses. 
These planes are called Principal Planes. 

The normal stresses that exist on these planes are called Principal 
Stresses 

There are two solutions to (3), consequently two values of 2 0P differ 
by 180° and also two value of 9P differ by 90°. 



Analysis of Complex Stresses 59 

Putting the values of sin 2 0 and Cos 2 0 as obtained from equation 
(3) in equation (l) We get the following results. 

Maximum normal stress 

1 ... I 1 2 2 
O"max = 2 O"x + \J ( 2 O"x) + ('txy) 

Minimum normal stress 

O"min = t O"x - -'1,-~-t-O"_x_)_2_. _+_(_'t-xy_}2 __ 

Maximum Shearing Stress 
To obtain the maximum value of the shearing stress 

differentiate equation (2) and set the derivative equal to zero. 
dt 
da = O"x Cos 2 0 - 2 'txy Cos 2 0 = 0 

(4) 

(5) 

we enotc 

O"x 
tan 20s = -- (6) 

2 'txy 
0s defines the planes on which shearing stress is ma~imum or 

minimum. 
Now putting the values of sin 2 0 and Cos 2 0 as obtained from 

equation (6) in equation (2) we obtain the following expression for 
maximum and minimum shearing stress. 

'tm;ix = ± "1 ( -21 O"x )2 + ( 'txy )2 (7) 
mm 

Example2.3 
A plane element in a body is subjected to a normal stress in the 

x-direction of 80 MP a, as well as a shearing stress of 20 MP a as shown in 
figure 2.7 

(a) Determine the normal and shearing stress intensities on a plane 
• inclined at an angle of 30° to the normal stress. 

(b) Determine the maximum and minimum values of the normal stress 
that may exist on inclined planes and the directions of these stress. 

(c) Determine the magnitude and direction of the maximum shearing 
stress on an inclined plane. 

'tx~ = 20 MPa + Y 
.,. I 

( -'txy= 20 MPa 'txy ·= 20 MPa • 

Fig. 2.7 (a) Fig. 2.7 (b) 
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Solution 
(a) Normal stress on a 1,Jane inclined at an angle 8 to the x-axis is given 

by the equation. 

l l C 2 e 0:::: 2nx- 2 CTx OS + sin 2 8 

1 l 
= - (80) - -

2 2 
Cos 60° + 20 Sin 60° 

= 40-40X 0.5 + 20 X .866:::: 40-20 + 17.32 
= 37.32 MPa 

Shearing Stress on a Plan inclined at an angle e tothe x-axis 
l . 

1: = 2 Gx sm 2 8 + 'txy cos 29 

l . 6 = 2 x 80 Sm O + 20 Cos 60 = 40x .866 + 20x 0.5 

= 34.64 + 10 = 44.64 Mpa 
Maximum normal stress 

l - ,.--1--2---2-
(j max= 2 cr x + \/ (2crx) + ('t.xy) 

= 40 + ~(402) + (202) = 40 + 44.72 
= 84.72 Mpa 

Minimum normal Stress 

l -~ 2 cr mim = 2-Ox - ·\/ (tJ.x)" + ('txy) 

= 40 - ,V (402) + (202) = 40 - 44.72 

= -4.72 Mpa. 
The direction of the planes on which these principal stresses occur are 

'txy 20 1 
tan 28 p = - -- = - - = - -

l cr 40 2 
2 X 

Since the tangent of the angle 20p is negative the values of 28p lie in 
Hand IV quadrant. Hence 28p = - 153° 26' in the 2nd quadrant and 20' p 
= 333° 26'. in the fourth quadrant. Consequentiy the principal planes are 
defined by 0p = 76° 43' and 0'p = 166° 43'. 

:. Principal stress on the principal plane oriented at 76° 43' to the 
x-axis 

l 1 . . . 
O" = 2 crx - 2 O"x Cos 20 + 'txy sm 20 

cr = 40- 40 cos 153° 26' + 20 sin 153° 26' 

= 40- 40 (- 0.893) + 20 (0.449) 

= 40 + 35.722 + 8.998 = 84.720 MPa 
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4.72 MPa 

4.72 MPa 

Fig. 2.7 (c) 
( c) Maximum Shearing stress 

'Cmax = ± 
mm 

,-------
(. '-l 

1 , 1 )2 
12CTx I+ ~1:xy 

\. ) 

=± 44.72 MPa 

61 

The direction of the planes on which these stresses occur is given by 
1 . 

z°x 40 
tan 20s = -- = - = 2 

1:xy 20 
The angles 20, will be in the first and third quadrant since the tamgent 

is positive Thus 295" == 63° 26' and W's= 343° 26', 8 = 31 ° 43' and 6'5 = 
121° 43'. The shearing stress on any plane inclined at an angle 8 with the 
axis of x is given by 

1: = f CTx sin 2 9+ 'txy cos 20 

1 = 2 X 80 X sin 63° 26' + 20 cos 63° 26'::::: 44.72MPa 

Hence Shearing stress on the 31 °43' plane is positive the normal stress 
on the planes of maximum Shearing stress is 

1 1 a = 2 crx = 2 (80) = 40 MPa 

This normal stress acts on each of the planes of maximum shearing 
stress as shown in the figure 2.7 (d) 

~Q_'b- ~<ti} 

vs(.) '.~ 

,#~ y /'-x-, R~ 

~
1t.7 ~::. 

';,~~~---~~ 

31°.43' 

Fig. 2.7 (d) 
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Example2.4 
1A plane element in a body is subjected to a normal compressive stress 

in the x- direction of 60 MP a and a shearing stress of 15 MP a as shown in 
figure 2.8 ( a). Determine 

( a) The normal.and Shearing stress intensities on a plane inclined at an 
angle of 30° to the normal stress 

(b) The maximum and minimum values of normal stress on the inclim:d 
planes and the direction o these stresses 

(c) The magnitude and direction of the maximum shearing stress on 
inclined plane. 

Y t . /""txy = 15 MPa ~ ~~-a. 
~ i. 28 MPa n..?:,·b; 

-i i ~M~ 60MPal• 
( -------· 

'xy = 15 MPa---t---

J ;~;;) 15MPa 

· O'x = 60 ,MPa. · . . · 

' 30° 

15 MPa 

Fig. 28 (a) 

(a) O'x = - 60 MPa and 'txy = - 15 MPa 
Normal stress on a plane inclined at 30° 

~ = t crx -t crx cos20 + 'txy sin 20 

Fig. 2.8 (b) 

1 -1 = 2 (- 60) 2 (- 60) cos 60 + (- 15) sin 60° 

= - 30 + 15 - 15 X .866 = - 30 +15 -12.99 
= -27.99 Mpa = 28Mpa 

Shearing Stress on a plane inclined at 30° 

't = t crx sin 20 + 'txy cos20 

= i (- 60) sin 60 - 15 cos 60 

= - 25.98 - 75= - 33.48 MPa 
Normal and Shearing Stress on a plane inclined at 30° are shown fig.

- 2.8 (b) 
(b) Maximum normal stress 

"™=~cr,+ -vr~, \(,,,)2 
= _ 60 + ( _ 60)2 + (- 15)2 

2 2 
= - 30 + 'V900+ 225 = - 30 + 33.54 
= 3.45 MPa 
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(j X "\ Ir (JX \~ _,_2_ 

cr min=-;:;- - 'I 17- I + (1:xy) 

L ~\ - / 

1 60 2 ,:;: 2 = - -;o - \·- -l + r - L) . 2. \ 

= - 30 - 33.54 = - 63.54 MPa 

The direction of the planes on which these principal stresses occur are 
given 

1:x:y -15 
tan 20p=--= 

1 1 2 -crx -· -x 60 
2 2 

The angles defined by 20v he in secorn;l and fourth quadrants since the 
tangent is negative. Hence 26p = 153°26" and 2fYp = 333°26' Thus the 
principal planes are defined by Elp= 76° 43' and fYp = 166° 43'. Substituting 
these values in the equation 

1 l C, • 1 cr = -2 Cix - :; CTx cos 2 o + 1:xy sm ~ B 
L 

= - ~o - ~ (60) cos 153° 26' -15 X sinl53° 26' 
L, L 

= - 30 - 26.83 - 6.70 =- 63.54 Mpa 

Thus the principal stress of 63.54 MPa occurs on the Principal plane 
oriented at 76° 4'3 to the x-axis as shown in the figure 2.8 

Maximum Shear stress 

'tmax = ± -V,-,,(-2-1 cr-x-112--l--(-1:xy-}2-
min _ __,,...,.......,,. ___ _ 

2 - ,---:-

= ± (-=f6o)+(-15)2 =±-\f(-30)2+(-

= ± --./900 + 225 = ± 33.54 Mpa 
The direction of the planes on which these shearing stresses occur are 

1 
2Cix -69'2, 

tan 2 Els= --= ~ = 2 
'txy - D 

Therefore 29s = 63°26' and 20's = 243° 26' 

or fls = 31°43' and S's= 121°43' 

The shearing stress on any plane inclined at an angle 0 with the x-axis 
is given by 

1: = t crx sin2 0 + 'txy cos 20 

sin 63° 26' - 15 cos 63° 26' = - 33.54 Mpa 
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Therefore shearing stress on the 31 °43' plane is negative. The normal 
stress on the planes of maximum shearing stress is given by 

1 -60 
s = 2 sx = - 2- = - 30 MPa 

This normal stress acts on each of the planes of maximum shearing 
stress as shown in the figure 2.8 (d) 

J:,<Pa 
63.s~·l·J. I ~MPa 

76°.43' 
I ----- -

t 
3.54 MPa 

Fig. 2.8 (c) 
General Case Of Plane State Of Stress 

Fig. 2.8 (d) 

A rectangular block subjected to normal stresses O"x and Uy in two 
perpendicular djrections as well as shearing stress 'tzy.as shown in fig. 29 (a) 

Fig. 2.9 (a) 

Determine thi: normal and 
angle e to theX-axis. 

B 

A ..:;_-A,.;;.0_-r----' 
--+--o,.'txy 

Fig. 2.9 (b) 

stresses on a plane inclined at an 

Pass a plane AB inclined at an angle S to the X-axis. Fig. 2.9 (b) 
represents the free body diagram of the triangular element separated from 
the biock. Let A be the area of the inclined face AB. Fig 2.9 (c) shows the 
equilibrium forces on this element. Now · applying the conditions of 
equilibrium along an axis to the inclined plane and an 
other axis T- parallel to the inclined AB. 



Analysis of Complex Stresses 65 

y 
' I ',Ni 

a.~. 1,.. 
'l_.t-
,,. 
o A cos 0 

B 

<:C ./ 

.£: ~e Ox.A sin e 
© ' 

<C •xy A sine 

2.9 (c) 

l:FN = 0 
a. A =(ax. A Sin0) Sine+ ('txy. A Sin0) Cose+ (ay.ACos 9) cos0 

+ ('txy. Acos0) sine . 

cr = Gx sin2 0 + cry . Cos20 + 2 'txy . Sine Cos0 
From trigometry we know that 

s· 20 _ (1 - Cos20) C 20 _ (1 + Cos20) d s· 20 _ zs· a C e m- 2 ,os- 2 anm:--m os 

(1 - Cos 2 0) (1 + CosW) s· 'J" cr = crx 2 + cry 2 + ,: xy m""o 

cr = f (ax+ cry)-f (O'x- cry) Cos20 + 'txy Sin29 ... (1) 

This is the normal stress on any plane inclined at an angle 9 to the 
X-axis 

Similarly resolving all forces on the element along the inclined plane 

I. Fr= 0 
1:. A =(ax. A Sin0) Cose- ('txy. A Sin0) Sine+ ('txy. A Cos0) Cos6 

(a.y . A Cs0) Sin0 . 
,: = (crx - cry) Sin0 Cose+ 'txy (Cos20 - Sin2 0) 

But from trignometry we know 

Sin20 = 2Sin0 Cose and Cos20 = (Cos2 0 - Sin2 0) 

:. ,: = f (Ox - Ciy) si.n20 + 'txy Cos23 (2) 

Therefore the above equation gives the shearing stress on any plane 
inclined at an 0 to the X-axis 
Principal Stresses . 

Often it is required to determine the maximum values of normal stress 
and the plane on which such stesses will occur. For this differentiate 
equation (1) with respect 0 and set this derivative equal to zero 

:~ = (crx - cry) Sin20 + 2 'txy Cos20 

Hence thevalues of 0 leading to maximum and minimum values of the 
normal. stress are given by 
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. 2'txv 
t&. 1 28o = --( -~) (3) 

C ax-cry 
The planes defined by the angle Sp are called ' 

The normal stresses that exist on these planes are 
stresses" 

Equation (3) has two roots. Since the value of the tangent of an angle 
in the diametrically opposite quadrant is same. Hence these roots are 180° 
apart for double the angle. Therefore roots of e are 90° apart. On one 
the normal stress will be maximum, on the other corresponding plane normal 
stress will be minimum. 

The of these principal streses can be obtained by 
substituting value of 28 from equation (3) into equation 

1 ( l , 2 
c;max=2 (ux+cry)+ . ticrx-ay)J 

1 '\/11 12 
O'min == -2 (Cix + Oy) - -.J <~(O"x- O'y}r 

l L. J 
Maximum Shearing Stress 

To obtain the maximum or mm1mum shearing 
corresponding planes on which these stresses act, 
differentiated with respect to 0 and the derivative is set 

!~ = (crx - cry) Cos28- 2 txy Sin29 = 0 

~ <Jx - Ciy 
tan L.Els = ---

2t'xy 

(5) 

stress and the 
is 

Here 08 defines the planes on which shearing stress is maximum or . 
minimum. Like equation (3 ), equation (6) has also two values of the angle 
205 giving two planes mutually perpendicular to each other. 

Substituting the value of 208 from equation (6) into equation (2), we 
get the maximum and minimum shearing stress 

... /r 1 ]2 2 'tm'.1x.==± 'llicrx-o) +(tX)') 
mm L 

{7\ ,_, J 

Comparing equation (3) and (6) we find that the angles 20p and 20s 
differ by 90° Since the tangents of these angles are negative reciprocals of 
one an other. Hence the planes defined by angles 6p and 0s differ by 45° i.e. 
the planes of maximum shearing stress are oriented 45° from the planes of 
maximum normal stress. 

To determine the normal stresse on the planes of maximum shearing 
stress substitute the values of sin 20s and cos from equation (6) into 
equation (1) 

. l 
a = ~(ax+ O'y) 

- £.. 

Thus on each of the planes of maximum shearing stress acts a normal 
1 stress of magnitude 2 ( ax + cry) 
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Derivation of specific cases from the general case. 
1. Stresses on an inclined plane of a body subjected to normal stresses 

in one plane accompanied by simple shear stress. 

•xy 

-
------•xy 

-rxy 

2.10 (a) 

In this case cry= 0, hence equation ( l) 
will be reduced to 

O"x (l - Cos 20) 
Normal stress cr = 2 + 

'txy Sin 20 

and Shearing Stress 't = i O"x . Sin 20 

+ 'txyCos 20 
2. A state of simple shear 

/ 

2.10 (b) 

The normal stresses O"x and cry are both equal to zero. Hence stresses 
on an inclined plane will be 

0 ---·--

•xy 

2.11 (a) 

Normal Stress cr = 'txy Sin 20 
Shearing stress ,: = 'txyCos 20 

~) 
0 

2.11 (b) 

3. Tension and compression in two directions Here 'txy = 0 

Normal Stress 

O"x (1 - Cos 2 0 ) 
cr = 2 

O"v( 1 + Cos20) 
+ 2 

<Jy 

2.12 (a) 

•xy 

/ 
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Shearing Stress 

'C =t (CTx - cry) Sin20 

( 4) Stresses on an inclined plane of a 
body subjected to tensile stress in one plane 
only. 

In this case Gy = 0 and t'.xy = 0 
Normal Stress 

l 
cr = 2 CTx (1 - Cos28) 

Shearing Stress 

't =_!_ CTx Sin20 
2 

~--+-=h( 
. . L i . ..J 

2.13 (a) 

5. When CTx = 0 and 'Cxy = 0, Then 

Normal Stress 

cr = cry ( 1 + Cos28) 

Shearing stress 

Example 2.5 

1 . 
,: = - - cry Sin 29 

2 
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2.12 

/ 
/ 

/ 8 

/ 
/ 
e 

·-- --- . ----

°:Y 
2.14 (b) 

A Plane element is subjected to the stresses shown in fig. 2.15 
Determine the following stresses 

(a) The princival stresses and their directions 

(b) The maximum shearing stresses and the directions the planes 
on which they occur. 
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! 

d80MPa 

40 MPa,-- 1 

~ I I 60MPa 1--1--+,. - .-. X 

60 MPa . , I +i 
t 1» 40 MPa 

80 MPa 

Fig. 2.15 
The maximum normal stress is given by 

' ~/r1 ' 2 l 
Omax = 2 (Gx + 

l 
Gmax = ::;

L-

+ \j tl ( CTx - Gy ) ; + ( TxyJ 

= 70 + ,j 100+ 1600 = 70 + 41.2 = 111.23 MPa 
The minimum normal stress in given by 

I 
l '\/[1 ' 2 , 

Gmin = ·2 ( crx + cry) - 'I ~ 2 (ax - Gy) t + (rxy)?-
l ) , 

69 

1 "'Ir ,2 
=t(60+80)- \11i(60- 80)~ + (40)2 =70-41.23=28.77MPa 

l ) 

The directions of the principal planes on which these stresses are 
induced is given by the equation 

't -40 = __ ::l!1 __ = ----== 4 
1 1 
2 {O'x - O"y) 2 (60- 80) 

tan 

28p = 76° and 256° avo €Ip= 38°, 128° 
Substituting 9p = 38° in the equation 

CT= t ( Sx + 0-y) -t (CTx -Gy) COS2 6 + 'txy sin 20 

a= i (60 + 80) -t (60 - 80) cos 76° + 40 sin 76° 

= 70 + 2.41 + 38.81 == 111.23 MPa 
The element oriented along the principal planes at 38° and subjected 

to the above principal stress are shown in the figure fig. 2.15 (a) the shearing 
stresses on these planes are zero. 



70 

28.77 MPa 

111.2~ 

·/ / 
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>~~ 28.77 MPa · 

Principal. stresses 
Fig. 2.15 (a) Fig. 2.15 (b) 

(b) The maximum and minimum shearing stresses are given by the 
formula. 

tm~== "'1{t(ax-ayf + (txy)2 

Mm 

= ± ./ft (60 - &oi}' t (40)2 

= ± --./100+ 1600 = 41.23 MPa 

The planes on which these shearing stresses occur are obtained from 
the equation 

icax- O"y) 1(60- 80) 
tan 205 = = 40 =--0 .25 

'txy 

Hence 29s = 166°, 346° 
and 05 = 83° and 173°. These planes are located 45° from the planes 

of maximum and minimum normal stresses 

Now to determine whether the shearing stress is positive or negative 
on the 83° plane 

I 
1: = 2 ( CTx + O"y) Sin 2 0 + t"xy Cos2 0 

Putting 0 = 83°in the above equation, we get 

i- = 1 (60 - 80) Sin l 66° + 40 cos 166° 

= -2.41 - 38.81 = - 41.2 MPa 
Normal Stresses on these planes of maximum Shearing Stresses are 

fm.1ftd from the equation. 
l . ! 

n = 2 ( CTx+ Gy) = 2 (60+80) = 70 MPa 
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The orientation of the element for which the Shearing Stresses are 
maximum are shown in figure 2.15 (b) 
Example 2.6 

A Plane element is Stfbjected is the stresses shown in fig. 2.16 (a) 
Calculate the Principal Stresses and their direction (b) the Maximum 
shearing stresses and the direction of the planes on which they occur. 

ax= 90 MPa 

Solution 

y 
ay = 120: 

-1---'~ 'txy = 60 MPa 

~ 

ax= 90 MPa 
- -X 

"--60 MPa 

ciy = 120 MPa 

Fig. 2 .. 16 (a) 

. O"x = - 90 MPa, O"y = 120 MPa and 'txy = - 60 Mpa 
The Maximum normal stress 

~ , .... -1---.--z~--2-
cr max= i (crx +cry)+ 'J 2 (O"x ~ O"y) + ('txy) 

1 
<J"max = 2 (- 90 + 120) + 

2 

i,(-90-120)} + (-60)2 
,----___ _,__ 

= 15 + 11025 + 3600 

= 15 + 120.93 = 135.93 MPa 
The minimum normal stress is given by 

cr min=} (crx + cry) - '1,_{_t_(O"_x ___ cr_y)_}_2 _+_(_'txy-)2-

= 15-120.93 = - 105.93 MPa 
The directions of the principal planes on which these normal stresses 

occur are obtained from the equation 

'txy -60 
tan Wp = 1 1 = - 0.571 

i(O"x-O"y) 2 (-90-120) 

tan 20p = -,- 0.571 
) :. 2 0p = 150° 15', 330° 15' and 0p:::: 75°8', 165° 8' 

Now determine the planes on which these principal stresses occur 
by using the relation 
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1 l . . . 
cr = 2 (CTx x cry) - 2 (ax- a y) Cos 20 + 'txy sin 20 

and putting El= 75° 8' 

cr= l(-90+ 120)- -2
1 (-90-120)cos 150°15'-60sin 150°15' 

2 . 
= 105.93 

An element oriented along the principal and planes subjected to the 
above principal stresses is show in figure 2.16 (b) the shearing stresses on 
there planes are zero. 

105.93 MPa 
75°.a· · 

;;35.93 MPa 
Fig. 2.16 (b} 

(b) The maximum and minimum shearing stresses are found from the 
equation 

min 
• ± '1 { ~a, - cr,i}' + (,,,)2 

= ± '1 { ~- 90 - 120>}' + (- 60)2 

= ± 120 .~3 MPa 
The plane on which these 

maximum shearing stresses occur are 
given by 

1 
2 (O'x - cry) 

tan 20s = ----
1:xy 

.!(-90-120) 
2 =-----

-60 

= - ~gs= 1.15 

:. 20s = 60° 15', 240° 15' 

15 MPa 

30°.s' 

Fig. 2.16 (c) 

05 = 30°8' and 120°8', these plane sare located 45° from the planes of 
. maximum and minimum normal stresses. 
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. ""\· 
To determine whether the shearing stress is positive or negative on .. 

30° 8' plane, put 0 = 30° 8' in the following equation •."· 

't = f ( ax - cry) sin 20 - 'txy cos 20 

= f (_:._ 90 -120) Sin 60°16' - 60 cos 60°16' 

= - 120 .93 MPa 
The normal stresses on these planes of maximum shearing stress are 

found from the equation 
1 

cr= 2 (crx+cry) 

= t (- 90 + 120) = 1? MPa 

The Orientation of the element for which shearing stresses are 
maximum is shown in figure 2.16 (c) 

MOHR'S CIRCLE METHOD 
Th~ graphical approach to the two dimensional stress problem was 

first presented by Otto Mohr in the year 1882. In this representation a circle 
is used, accordingly the construction is called Mohr's Circle. 

The rules for the construction of Mohr's circle are summarised as 
follows. 

txy....---

Sti~aring 
stress 

·-'-· . Fig. 2.17/ 

L 

Normal• 
stress 

KN bl. 

(i) Normal stresses ax and cry are plotted along-x- axis to a suitable 
scale. · 

(ii) Sliearing stresses "txy are plotted io the same scale along the 
vertical axis . . . , . 

(iii) Tensile stresses are plotted to the right of the origin 0; 
Compressive stressed are considered negative and plotted on the left side of 

< the origin 0. · 
(iv) Shearing stresses which rotate the element in clockwise direction 

are considered positive and negative if they rotate the element in an anti 
clock wise direction · 
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(v) Point Band Dare thus located and 
the diameter B D as C. 

mark the mid point of 

(vi).Now with C as centre and BC= CD as radius draw a circle. This 
is the Mohr's circle. · 

(vii) Now measure an angie 20 from the diameter BD in a cGunter 
dock wi'se direction and mark points E and F on the circle. 

.. (viii) The cordinates of point F represent the normal and shearing 
stresses on the plane ·inclined at an angle e to the x - axis. In the above 
diagram ON represents cr and NF represents the shearing stresses 't. 

(ix) CL represents the maximum shearing stresses. 
Example . 2. 7 · 

~ 

A bar of uniform cross-sectional area 750 mm~ is subjected to axial 
tensileforces of 50 KN applied at each end of the bar. Determine the normal 
and shearing stresses on a plane inclined at 30° to the direction of loading 
,vith the Mohr's circle. ~<?'I> 

'i:)'()9:> 6x 
j£_!<i~ 30° 

Fig. :tUI (a) 

cr x =~o··= 60Mpa 

Shearing~ 
.st~essl~ 

I ' 

a= 16.6 MPa 
Fig. 2.18 (b) 

K C H 
0 

~oMt!6~ 
/Fig~.18 (c) 

Norma! 
stress 

Represent Normal stress on the horizontal axis, lay off OH= 66.6 MPa 
and mark its mid point C. Now draw a circle with center C and radi.us OC 
= CH. This is the Mohr's circle. Measure angle 29 = 60° counter clock 
wise from OC. The coordinate of point D are 

DK= 't = ! x 66.6x Sin 60° = 28.86 MPa 
" 
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OK= a= OC-KC = 166.6 -166.6 Cos 60° = 16.6 

Since the value of shearing stresses in negative it indicates that 
shearing stresses on this plane of 30° tends to rotate the element in a counter 
clock wise direction 
Example 2.8 

A plane element is subjected to the stresses shown in fig. 2.19 ( a) using 
Mohr's circle determine 

( a) The principle stresses and their directions 
( b) The maximum shearing stresses and the direction of the planes on 

which they occur. 

Solution 

YI 
I 

20MPa---....1 -

80 MPa 

--1 --. 20 MPa 

I 
Fig. 2.19 (a) 

Given O"x = 80MPa (Positive ) Tensile 

'txy = 20MPa (Positive) on vertical faces 

'txy = - 20 MPa (Negative) on horizontal faces 

M 

G 

8-r 
H 

20 MPa =,xy 

stress 

L 

1--<1x = 80 --J 

Fig. 2.19 (b) 
(1) Principal stresses are represented on the horizontal axis. 
(2) Shearing stresses are represented on the vertical axis to. 
(3) Locate point B by laying out OF= O"x = 80 MPa and 

FB = 'txy = 20 MPa to a suitable scale. 
Locate point D by laying OD = - 20 MPa on the negative side of the 

vertical axis to the same scale 
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Now draw the line BD and Locate centre C 
(5) Draw a circle with C as its Centre CB= CD as its radius. Now 

this is the Mohr's Circle. The end point represent the stress Conditions 
existing in the element in its criginal orientation. 
Principal Stresses 

Point G and H represent the principal stresses. stresses can 
now be measured from the. Mohr's Circle 

crrn;x =OH= 84.72 Mpa 
O"min = OG = -4 72 Mpa 

20 l 
The angle 28p = 40 = 2 or = 76° 43' 

The principal stress represented by point H acts on a plane oriented 
at 76° 43' from the original.;x:.- axis as shown in figure 2.19 (c) The shearing 
stresses on these planes are zero, since points G and H lie on the horizontal 
axis of the Mohr's circle 

4.72 MPa 

4.72 MPa 

Fig. 2.19 (c) 

40 MPa 

Fig. 2.19 (d) 
The maximum shearing stress is represented by CL on the Mohr's 

circle, CL = 44.72 Mpa, The angle DCL=205 is found to be 63°26' or l\ = 
31 °43'. Hence on this plane the shearing stress tends to rotate the element 
in a counter clock wise direction as shown in the figure 2.19 ( d) 
Example 2.9 

A plane element is subjected to stresses as shown is fig 2.20 Using 
Mohr's circle determine 

(a) The principal stresses and their directions 
(b) The maximum and minimum shearing stresses and the directions 

of the planes on which they occur. 

Y! 
1'xy = 15 MPa1 

rxy = 15 MPa 

Fig. 2.20 (a) 
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Solution 
Given CTx = - 60 Mpa (Compressive) 

'txy == - 15 Mpa (Negative) on vertical faces 

'Cxy = 15 Mpa (Positive) on horizontal faces 

77 

Represent principal stresses on the horizontal axis to a suitable scale 

Represent shearing stresses on the vertical axis to the same scale 
Plot CTx = OF= - 60 Mpa on the horizontal axis and 'txy = FB -

15 on the positive side of the vertical axis and obtain Point B. 

(ii) Plot Point D "xy = 15 Mpa on the positive side of the vertical axis. 
Join BD and mark its mid point c. 

(iv) Draw a circle with C as centre and CB= CD as radius. This is the 
Mohr's circle. The end points of the diameter BD represent the stress 
conditions existing in the element if it has the originai orientation as shown 
in fig. 2.20 (b) 

L 

G 
0 

·cxy = -15 MPa 
11 

1
1 

J __ -
B I 
~cr)~-60-, 

MP a 
Fig. 2.20 (bf 

CD= '\/(30)2 + (15)2 = 33.54 Mpa 

f 
+15 MPa 

H 

cr max= OH+ CH - CO = 33.54 - 30 = 3.45 Mpa 
crmin = OG = OC + CG= - 30 - 33.54 = - 63.54 Mpa 

tan 2 0p = ~~ = -t = or 2 9p = 153° 26' and Sp= 76°43' 

The Principal stresses on a plane oriental at 76°43' from the original 
X-axis are shown in fig 2.20 (c) since G and H lie on X-- axis, hence the 
shearing stresses on these planes are zero. 

3.54.1 
I . 

3.54 MPa 
Fie;. 2.20 ( c) 

30~ 

31 °.43' 

Fig. 2.20 ( d) 



78 Analysis of Complex Stresses 

(b) The maximum shearing stress in represented 
The angle 29s = (2 Sp - 90) = (153°2'6 - 90) 

CL= 33.54 

= 63°-26' or Els= 31 °43' the shearing stress represented by point Lis 
positive. Hence on the 31 °43' plane the shearing stress tends to rotate the 
element in a clock wise direction. This is represented in fig 2.26 (d), 
Example 2.10 

A plane element is subjected to the stresses shown in figure Determine 
( a) The principal stresses and their directions 
(b) The maximum shearing stresses and the directions of the planes 

on which the occur 

Given 

Solution 

uy == 80 MPa 

Fig. 2.21 (a) 

crx = 60 Mpa (Positive) Tensile 
Ciy = 80 Mpa (Positive) Tensile 

'txy = - 40 Mpa (Positive) on the vertical faces 

'txy = - 40 Mpa (Negative) on the horizontal faces 

L 

I. D 

~aoiPa~ 
~ig. ~.21 (b) 

40 MPa 
_L 

Draw OJ = ax = 60 Mpa and Ok =+ cry == 80 Mpa on the horizontal 
axis. Draw J B = 40 Mpa, KD, = -40 Mpa on the Vertical axis Point B 
represents the stress conditions of crx = 60 Mpa and •xy = 40 Mpa existing 
on the vertical faces of the element · 

Point D represents the stress conditions of cry = 80 Mpa and ,: = -
40 Mpa existing on the horizontal faces of the element Join BD anY find 
its mid point C Now draw a circle with centre C and radius CB = rn. This 
is the Mohr's circle. 
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(a) Point G and H represent the principal stresses. 

CD= "-i(cK)2+ (KD)2 or CD= "1(10)2+ (40)2 = 41.23 Mpa 
Maximum principal stress 

crmax =OH= OC + CH= 70 + 41.2 =111.23 Mpa 
crmin = OG = OC-- CG= 70- 41.23 = 28.77 Mpa 

40 
Tan 20 = - = 4 or 20 p = 76 ° or 0 = 38° P 10 P 

1.11.23 MPa 
28.77 MPa 

28.77MPa 

Fig. 2.21 (c) 
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The Principal stress represented by point H acts on a plane inclined at 
38° from the X-axis as shown in fig 2.21 (c). Shearing stress on these 
planes are zero because G and H lie on the horizontal axis of the Mohr's 
circle. 

(b) The maximum shearing stress in represented by CL = 41.23 Mpa 
20s = 166° or 0s = 83 ° , 

The shearing stress represented by point L is positive, hence on this 
plane the shearing stress tends to rotate the element in clockwise direction. 
Also from Mohr's circle the abscissa of point Lis 70 Mpa and this represents 
the normal stress occuring on the planes of maximum shearing stress. 

SUMMARY 
1. The planes mutually perpendicular to each other on which shear stress 

or tangential stress is zero are called principal planes. The 
corresponding values of normal stresses are called principal stresses. 

2. · The planes which will have only shear stress but no normal stress are 
said to be in pure shear, 

3. The planes at 45° and 135° carry normal stresses tensile and 
compressive in nature and each of the same magnitude but do nbt carry 
any shear or tangential stress. 

4. Normal and shearing stresses on a plane inclined at an angle 0 to the 
direction of loading. 

cr = 1 O'x (1 - Cos0) t = f <Jx Sin20 

5. Normal stress on an inclined plane subjected to direct stresses <Jx and 
cry in two mutually perpendicular planes accompanied by a shearing 

. stress txy 
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O'x+O"y 
Normal stress a = 2 

O'x-O"y 
2 Cos20 + 'txy Sin20. 

Shearing stress 't cr x; cr Y Sin20 + Txy Cos28 

Principal stresses 

r z 
ax+ a y '\ I ( Ox - Ciy] 2 

O'max - 2 + "I 2 + ('rxy) 

( ,2 
, O'x - cry) ( )2 
I 2 +i-xy 
\ 

<Yx+O"y 
O'mim 2 

- 't.xy 

tan 29p = ( "x;"' l 
Stresses on an inc)ined plane of a body subjected to normal. stress in 

one plane accompanied by a simple shear stress. 

cr = i Cix (1 - Cos20) + 'txy Sin20 

't = f Gx Sin20 + 'txy Cos20 

'tmax= ± 
min 

EXERCISES 

(1) A bar of cross-sectional area 600 mm2 is acted upon by axial tensile forces of 50 
KN applied at each end of the bar. Determine the normal and shearing stresses 
on a plane inclined at 30° to the direction of loading. 

(cr = 20.83 MPa, t = 35.8 MPa) 
(2) A bar of cross-sectional area 800 mm2 is subjected to axial compressive load of 

80 KN at each end of the bar. Determine the normal and shearing stresses on a 
plane inclined at 35° to the direction of loading 

. (o == 32.9 MPa, -c = 49. MPa) 
(3) Solve the above problems using Mohr's circle method. 
(4) A plane element is subjected to stresses shown in the figure. Determine 



(a) the principal stresses and their directions 
(b) The maximum shearing stresses and the directions of the 

they occur. 

YI 
I -i-soMPa 

120 M:i{__L~ MPa 
30 MPa ---1--.;i,.-

i 
I 

Fig. 2.22 
(5) Solve the above problem Graphically. 

81 

on which 

(6) A plane eternent in a body is subjected to the stresses Gx = 40 MPa, cry = 0 and 
·rxy = 60 MPa. Determine the normal and shearing stresses on a plane inclined 
at 45° to the horizontal axis. (a= 80 MPa, 1: = 20 MPa) 

(7) A plane element is subjected to the stresses crx = 100 MPa and Oy = 100 MPa. 
Determine the maximum shearing stress existing in the element (Ans. Zero) 

(8) Draw Mohr's circle for a plane element subjected to stresses cr,. = 100 MPaand 
cry = l 00 MPa. Detennine the stresses acting on a plane inclined at 45° to the x 
- axis. (cr = zero and r = 100 MPa) 

(9) A plane element is subjected to the stresses shown in fig. 2.23 Determine the 
principal stresses and their directions. (b) The maximum shearing stresses and 
their directions. 

i 
---;-- 25 MPa 

100M1lia. I : Li. 100MPa 
! l !' 
l -1 

25 MPa--,----

Fig. 2.23 
(IO) Solve the above problem using Mohr's circle. 
(11) A plane element is subjected to the stresses shown in figure 2.24. Determine 

analytically or Graphically (a) the principal stresses and their directions (b) the 
maximum shearing stresses and the direction of the planes on which they occur. 

+20 MPa 
10MPa--t-

+ 
-----1----. 

t 25 MPa -----------t-10MPa 

*-io MPa 
Fig. 2.24 

Gmax = 37.66 MPa; 0-min = 14.34, Sp= 29° -
't max = ± 11.66 Mpa, 0, = 130° - 48 

mm 
D 
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When external forces are applied on an elastic body the body 
deformed. The work done on the body by the applied forces is stored within 
the body in the form of strain energy. 

When th<. external forces are removed the stored energy is released 
and the body re u;ns to its original dimensions. The internal strain energy 
stored within tt body is equal to the amount of work done on it by the 
applied force. S .,a.in energy is always a positive scalar quantity. 
Resilience 

v' When a body is stressed within elastic limit the amount of internal 
en«?,r,gy stored is called resilience or strain energy 

. .pfoof resilience 
When a body is stressed upto the elastic limit the maximum amount 

of.strain energy stored is called Proof resilience . 
.,,.Modulus of resmence 

/Proof resilience per unit volume is called modulus of resilience. 
M.~des of Loading 
" Strain energy stored in a body depends upon the mode of loading. 
Loads can be applied in three different Ways 

(i) Gradual loading 
(ii) Sudden loading 
(ii) Impact loading 

(i) Gradual Loading 
A gradually applied load means starti ng from zero, the applied load 

gradually increases to the maximum value. 
(ii) Sudden loading 

A suddenly applied load means that the total load is applied at once 
on the body 
(ii) Impact loading 

When the load falls from a height causing strain, the loading is called 
impact loading. The maximum stress induced in the body by the three 
different mooes of application of the load will be different 

Strain energy dne to gradual loading 
Let an axial load P b,e gradually applied to a bar of length l and 

cross-sectional area A. Let St be the extension of the bar. 
82 
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1 - - -·- A 

l 

J. 
T :-- -1 

... p 
Extension 

(a) Fig.3.1 
Energy stored in the bar 

= Work done by the gradually applied load P 
= Average load x extension of Qar 

1 =2 . P.ol 

_ _!_ A ol .l' 
- 2 (J. . l 

1 CJ lcr2 
= 2 a. A. l. E = 2£ x Volume of bar 

(J2 
U = 2E . x Volume'ofbar 

(b) 
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If the value of stress at the elastic limit is <Je then Proof.resilience Up 
(J~ . · 2 2 

= 2E x Volume of bar and Modulus of resilience = ~i , while 0; . is 

called coefficient of resilience, which may Qe looked upon as the property 
of the material. 
Example 3.1 · 

A steel rod I metre long and 12 mm diameter is subjected to a 
gra(iually applied load till elastic limit is reached.1{the safe stress for steel 
is 150 MPa ad modulus of elasticity is 200 KN/mm , determine . 

(a) Proof resilience 

( b) Modulus of resilience 

( c) _The coefficient of resilience 

Solution 

(a) Proof resilience 
(J2 

Up= 2i x Volume 
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(150)2 1t ------x 
2 X 200 X 103 4 

= 6361.725 N-mm. 
(b) Modulus of resilience 

Strain Energy 

X l X 1000 

= Resilience Per unit Volume 

a2 (i50)2 = = ------
2 E 2 X 200 X 103 

= 0.562 MPa 
( c) Coeffcient of resilience 

7 a-
- E 

(150)2 

200x 103 
= .112 Mpa 

Answer. 
Example. 3.2 

Calculate the strain energy stored in a bar 3 metre long and 40 mm 
in diameter when subjected to a tensile load of 80 KN What will then be the 
modulus of resilience of the material of the bar? Take E = 210 KN/mm2 . 

Solution 
Area of Cross-section of the bar 

A=~ (40/ = 400 1t mm2 

Volume of the bar= A .l 
= 400 n x 3 x 103 = 12 n x 105 mm3 

Load applied on the bar= 80 x 103 Newton. 
Strain energy stored in the bar 

(52 < 

U = 2E x Volume 

2 ( P 12 I( 80 X 103 '? 2 
and CT = l A I = 40011: ) == 4052.84 N/mm 

4os2':84 s 
:. U == 3 x 12n x 10 N-mm 

2x210x10 
= 363.77 x 102 N-mm 

. . Strain energy 
Modulus of res1hence = v· 1 oume 

363.77x 102 
::: 

12n X 105 

= 9.649 x 10-3 = .00964 N-mm/mm3 

Example; 3.3 
A bar of section hangs vertically as shown in fig. 3.2 

Determine the strain energy stored with in the bar. 
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Solution 
The bar wll be subjected to its self weight only and . 8 

strain energy due to this weight will be. stored in the bar. : ~4Tr 
' . ! 

Let A = Area of cross-section of bar. '1' I l 
. i I 
I I l 

l = Length of the bar. 
y = Weight density of the material of the bar. 

Now consider an element of length dx at a distance x 
from A. 

Force acting on this element.is the wt of the portion 
below it. P = A . x . y 

j ~·. i dx : i: 
X I 
j 

Strain energy stored in the shaded element 
rA,. ,2 

du \ -' 'v ' 
= 2AE .ax 

Strain energy stored in the whole bar 

U = f1 (A .x .y)2 d = kiz3 
JO 2A E x 6E 

_ A y/ 
U - 6E Answer 

Example. 3.4 

A 

Fig. 3.2 

Two bars A and B each 2 metre long are shown in fig 3.3. The 
maximum tensile stress in each bar is 150 MPa. Compare the strain energies 
of the two bars assuming that they are made of theame material. Take E = 
200 KN!mm2. 

~--1_2_o_m_m_,$ ___ ~ 60 ;m~ j ~• 
j.:,,,- 0.5 m-...... 1,,rr.----1 m---.,,._l!O-l<Fl(-o.5 m-,....j 

1 t I 
[ ::~:: ~nm_, -l. __ 12~or_m _ __.lJ 

82 
J---- 1 m--------1 m----1!'....J""' 
~·-------2-m----------i 

Solution 
Fig. 3.3 

For bar A strain energy stored 

UA= VAi + UA2 + 

Since U Al and U A3 will be equal 
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VA = 2VA! + VA2 

[ 
2 l r ? l 

= 2 ~E x VJ + l ~~ x Volume of midde portion J 

I (150)2 n 11 
U A = 21 3 X i (60)2 X 0.5 X ! 000 + 

L2 x 200x 10 J 

[ (150)2 X ~(l20)2X 
2 X 200 X !03 4 

= 159043. 12 + 636.72.51 = 795215.63 - N -- mm 

DB= DB!+ DB2 

l 

l X 1000J 

[ ~ l 
= ZE x Volumeoflst 2Ex Volumeof2ndportionJ 

r 2 , 

=I (1 50) 3 x ~4 (90)2 x 1.0 x 1000 II + 
L2 X 200X 10 _1 

r (150i____ X ~ (J. 
L 2 x 200 x 103 4 

= 357847.03 + 63617.51 = 994019.63 N-mm 

. UA 795215.63_ = 0 799 Answer. 
.. VB = 994019.63 . 

X 1. 0 X 10001 
J 

Example 3.5 
Compare the strain energy stored in each of the three steel bars shown 

in figure 3.4 subject to the condition that the axial stress in the lower portion 
of the second bar is equal to that in the first and the third bars namely 100 
MP a. 

u,~l~1~Lb-
• l A - I A -

80021 4 m 8002 
mm mm 

I A::: 
400 
mm2 

1 
:Fiig. 3.4 
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Solution 
Strain energy in each bar 

(J2 

U = ZE x Volume of the bar 

Ui == Strain energy stored in the first bar 
(j2 

= 2E . A. l 

=l(lg~:?. (800) (4 X 

'-

"'l 32 l=-x 
J 2£ 

(100)2 
+-·-·-

2E 

(Hi0' 2 '} 16 
U3 = ,-;EJ (400) {4 X W-') = 2E X 

Ratio of strain energies in the three bars 
U1 : U2 : U3 = 32: 12 : 16 

= 8: 3: 4 Answe:r 

Sudden L;;au,m!!: 
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(2 X J 

Let a force P be suddenly applied on a bar of length l and cross
sectional area A. Let 01 be the change in the length of the bar: Let cr be the 
instantaneous stress in the bar when the load P has just been applied then 
equating the strain energy in the bar to the work done by the applied load 
we have 

U = Work done by the load 

( Q J ~l - "l or l,2 . A . o - P .. u 

2P 
or O'= A 
Instantaneous stress developed in a 

bar subjected to sddenly applied load is thus ] 
twice the stress produced by the same load ~ 
applied gradually. 

Instantaeous elongation 

= ~.l = ~~.l 

81 
0 Extension A 

Fig.3.5 
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Thus, Instantaneous elongation of a bar subjected to suddenly applied 
load is twice the extension produced by the same load applied gradually. 
Example. 3.6 

A compressive Load of 40 KN is placed all of a sudden on a bar 
length 4 metres and diameter 40 mm. Determie the amount by which the 
leng.t-h._oJ the bar shortens and the amount of work done ? Take E = 200 
KN/mm · 
Solution. 

Since is load is suddenly applied the stress produced in the bar will be 
instantaneous. 

2P 2 X 40 X 1000 
:. Instantaneous stress =A= = 63.66 MPa 

63.6,, 
Strain in the bar == -----··-

200 x 
Shortening in length Ol == £ x l 

::c0.318x 

= 1.273 Il1ffl 

VVork done on the bar ::: p X ol 

X 4 X 

= 40 X 1000 X 1.273 N-r.:rn1 
= 50.92 x 103 N--mm Answer 

Example 3.7 
· An axial load of 50 KN is a bar 100 

mm x 100 mm. Length of the bar is 5 metres. calculate 
-fa) The maximum instantaneous stress 
(b) The in of the bar 

( c) The work s~ored in the bar at the instant 
Take E = 210 GIV/m-
Solution 

Area of section 

(a) Instantaneous stress 

, 2 X 50X 103 
cr = A = . 1900 

=52.63 MPa 

S . . 52·63 0 25 10-: tram£= · =·. x 
210 X 103 

Elongation of the bar. 

Of = £ X l = 0.25 X 10-3 X 5 X 

= 1.25 mm 

Work stored in the bar = Energy stored 

11 

Fig. 3.6 
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Example 3.8 

U = c?- x Volume of the bar 
E 

= (52·63)2 
X 1900 X 5 X 

2l0x 
::; 1253.05 x 100 N-mm 
= 0.125 KN-m · 
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1000 

A bar of copper o:ne metre long and 80 mm diameter is subjected to a 
shock of 0.50 KN-m. Determine the instantaneous stress and the change in 
the of the bar. Take E = 1 JOKN!mm2 · 

Solution 
Shock energy 

U = .Al 
2E 

c?-___ 3 X i (80)2 X l X 103 

2x llOx rn 

or 
= 0.5 x 106 x 2 x 100 x 1 Cf x 4 

1C X (80)2 X 1 X 1{)3 

cr = 141 MPa 
Clwnge in length of the bar 

Ol = Q. X l 
E 

141 
= ----- x 1 x 1000 = 1.28 mm 

110 X 103 

Example 3.9 

Answer 

The material of a bar of lengthl.5 meter and cross-sectional area 600 
has an elastic limit of 150 MPa. What is its proof resilience ? 

Determine the maximum suddenly applied load may be applied 
without exeeding the elastic limit. What gradually applied load will produce 
the sa!Jle exiension as that produced by the sudden load ? Take E = 210 
GN/m"". 
Solution 

Proof resilience 
(J~ 

x Volume 
2E 

(150)2 
= ' X 600 X L5 X 1000 

2x 210x 103 

= 48214.28 N-mm 
= .0482 KN-m 

Let P be the maximum suddenly applied load within the elastic limit 

2P = 150 
A 
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Suddenly applied load P = I SO~- 600 = 45000 N = 45 KN 

The effect of gradually applied load will be one half of the effect of 
suddenly applied load, therefore the extension produced by a suddenly 
applied load of 45 K.N., will be produced by a gradually applied load of 2 
x 45 = 90 KN. . . . 

::. Gradually applied load = 90 KN 
Strain Energy Due To Impact 

Figur~ 3-7 represents a rod of length land cross-sectional area A. The 
upper end of the rod is fixed and a collar is provided at the lower end. Let a 
load P fall from a height hon to the collar and 81 be the extension of the rod. 
let er be the stress induced: 

cr2 
Energy stored U = 2E x Volume of the rod 

- - - (i) 

. Work done = P x distance moved 
= P (h + Bl) - - - (ii) 

pquating (i) and (ii) 

I cr2 
. ZE x V = P (h + ol) 

or 
2 _ P (h + B l) X 2 E 

O" -· 
V 

When Bl is very small as compared to hit 
may be neglected 

cr2= 2PhE 
Volume of the rod 

2 2PhE · 
·O" = --

A .l 
Example 3.10 

l 

l 
Fig.3.7 

A mild steel bar 2 metre long and 25 mm diameter hangs freely and 
has a collar firmly fixed with the lower end. Determine the instantaneous 
elongation of the bar, if a load of 2501ewtons falls on the collar from a 
height of JOO mm. Take E = 200 KN/mm . 
Solution 

Since elongation will be very small as compassed to the height of fall, 
81 can be neglected; 

Strain energy = ~ x Volume of the bar 

Work.done=:= P (h +Bl) 
Neglecting ol and equating work done to strain energy 

Pxh=crxV 
·2E 
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-, Px hx 2E 
0-=---v 

250x lOOx 2x 200x 103 

98l.74x. 103 

cr2 = 1.018 x 104 or cr = 100.9 MPa 

I . 100 .9 100 .9 504 10-3 nstantaneous stram = -E. = 3 = . . x 
200x 10 

Elongation of ~he bar = 0.504 x 10-3 x Length of the bar 
= 0.504 X 10-3 X 2 X 103 

= 1.009 mm Answer. 
Example 3.11 
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Determine the maximum load P that can be dropped250 mm on to the 
flange at the end of a steel.bar. The bar is 25 mm x 50 mm in cross-section 
and 2 metre long. The axial stress is not to exceed 150 MPa. Take E = 200 
GN!m2· 

Solution 
Area of cross-section= 25. x 50 = 1250 mm2 

Volume of the bar= 1250 x 2 x 103 = 250 x 104 mm3 . 
Stress induced due to falling load 

2 2x·Px. lfE 
(J = .·. -

.Votiime of the. bar 
. 9 

(150)2 = 2 X PX 250 X 200 X 10 

250 X 104 X 106 
=40P or 

or 
.. 150~150 . · 

P == ·· · 40 = 562.5 Newtons Answer 

Example 3.12 
A rod of 12.5 mm diameterstreches 3.2 mm under a steady load of JO 

KN. What stress would be produced in the rod by a weight of 700 N which 
falls through 75 mm before commencing to stretch the rod, the rod being 
initially un stressed. Take E = 200 KN!mm2· r / • 

Solution , i 
· K 2 2 .Cross-sectional are of the rod= 4 (12.5) = 122.65 mm . 

3 

. Stress iri the rod = \ 0
2; -~~ = 81.53 MPa 

H . . h d 81.53 ence stram m t e ro = 3 

oz 
Length of the rod = --. = 

stram 

200x 10 · 

3.2 X 200 X 103 ' 
81.53 = 7.85 metres 

Stress induced by a weight of 700 N 
2 2PhE . 

(J ·= . 
Volume of the rod 
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2x 700x 75>'. 200x 
1
103 = 21785 _76 

122.65 X 7.85 X IO-
U = l 47 .6 MPa Answer 

Example 3.13 
A crane chain whose sectional area is 900 m,n2 carries a load of 15 

KN which is being lowered at a rate of 60 metres/minute. When the 
length of the chain unwound is 10 metres, the chain jams suddenly on the 
pulley; Estimate the stress induced in the chain due to sudden stoppage. 
Neglect the weight of chain. Take E = 200 KN!mm2. 

Solution 
Volume of the chain = 900 x 10 x 103 = 9 x 106 mm3 

. 60x 1000 . 
Velocity of the load= 60 = 1000 mm/sec. 

K . . 1 2 1 P 2 
metlc energy = - m v = - - x v 

2 2 g 

=lx 15xl03x(1000)2j765"'· '06N 
'J 3 ~ . _ ... x 1 -mm 
~ 9.81x 10 

. (J2 
Stram energy = 2E x Volume of the chain 

2 9 106 I 

= (j X X 1 = 22.5 c/ 1 
2x 200x 10-

Since there is no loss of energy therefore kinetic energy is converted 
into strain energy. 

22.5 cr2 = .7652 X 106 

(52 = .7651~ x_ 106 = 33900 - .) 

cr = 184.33 MPa Answer. 
Example 3.14 

A brass rod 30 mm diameter is enclosed in a steel tube of 30 mm 
internal and 50 mm external diameter. The composite bar is 
suspended and held rigidly at the upper end of a collar provided-at the lower 
end. A weight of80 KN fallsfreely on the collar from a height of 150 mm. 
If the length of the bar is 3 meters.jind the maximum stress produced in each 
material. Take Es= 200 KN/mm and Eb= 80 KN/mm2. 

Solution 
1t 2 

Area of brass rod = 4 (30) = 706.8 sq. mm 

1t 2 2 
Area of steel tube= 4 (50 - 30 ) = 1256.6 sq. mm. 

Let ol be the extension produced by the falling load 
Strain in steel tube = Strain in the bar. 

Es= Eb 
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or 
Es 

O's= CTb. Eb 

200 X 103 
or O"s = O"b x. 3 = 2.5 O"b 

80x 10 

Work done by the falling load 

= S\fain energy in the tube + strain energy in the bar, 
2 2 

h s::, Cis A l Cib l p ( +vi)= 2.,,, . s. + 2E x 1,o. 
LS b 
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80 ,. 103 (1so crb x 3 x 103] = (2 .s ab)2 A l-'- al A l 
X " + 3 I 2,,, . 5.. , 2 /:? X b X 

\ 80 x 10 ) l',S Lb 

Simplyfying we get 

72.12 cr\- 3 X 103 O"b- 12000 X 103 = 0 

Solving the quadratic equation 

O"b = 429 MPa and O"s = 2.5 Cib = 1072.5 MPa 

Strain Energy due to Shear 

D D' 

I 
yl 

F 

Fig. 3.8 

Answer 

Consider a rectangular block ABC D, subjected to a shear force F and 
fixed at the base A B. Let the thickness of the block perpendicular to the 
plane of the paper be unity. Under the action of the shearing force F the edge 
DC takes up the position D'C'. Let the force F be applied gradually 
increasing from zero to the value F, then the work done by the force in 

displacing the point D to D'. will be f x DD' 

Now DD'= AD tan y 

If y is small then DD'= :y 
F F 

External work done= 2 x DD'= 2 AD.y 

Shear strain y = ~ 
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F t 
External work done = 2 x AD . G 

Shear Force F = DC x I x t 

I 'C 
:. External work done= 2 (DC x l x t x AD. G) 

'C2 
=-x DCx ADx 

2G 
't2 't2 

Therefore strain energy = 2G . Volume = 2G . V 

Strain energy per unit Volume = ~ 

Strain Energy 

Pulling 'C = G:y, we get strain energy per ~nit volume= i '( 
Example 3.15 

Calculate the total strain energy al a point in a material subjected to 
a shearing stress of 20 x 1 a3 MP a. Take modules of rigidity for the material 
as 80KNI mm2. 

Solution. 
. ' . 1 'C2 

Stram energy per umt volume = 2 G 

1 (20 X l<f)2 

=2 80x 103 

U = 2 . 5 KN-mni. Answer 
Example. 3. 16 

Calculate the total 3 strain energy stored in a rectangular block 600 
~': x8~ 2i;;:m1. 50 mm. When subjected to a shear stress of I 00 MP a. Take 

Solution. 
Volume of rectangular block = 600 x 120 x 50 = 36 x 105 mm3 

1 't2 
Strain energy stored U - 2 G x Volume 

1 (100)2 
U = -2 x 3 x 36 x 105 = 214KN-mm Answer 

84 X 10 
SUMMARY 

· 1, Strain energy U = ~ x Volume Where cr is the instantaneous · 

stress and E the modulus of elasticity 

2. Proof resilience Up= ~ x Volume 

3. . Modulus ofresilience = ~ 
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4. Instantaneous stress when the load is suddenly applied 
2P 

O'= -
A 

2 2PhE 
O' =-· --

. A .l 

5 .. For impact loads 

6. Strain energy due to shear 
't2 

U = 2G. Volu~e 

. 2 7. · Modulus of resilience = ;G 
QUESTIONS 
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(.1) .What is strain energy ? Explain. From the first principle, derive an 
expression for the energy stored in a bar subjected to a gradually applied 
load. 

(2) Explain the following 
(a) Resilience 
(b) Proof resilience 
(c) Modulus of resilience 

(3) Show that in. a bar subjected to an axial load the instantaneous stress 
due to suddenly applied load is twice the stress caused by the gradual 
application of the same load. 

( 4) Obtain an expression for the stress induced in a body if a load is applied 
with an impact. 

(5) Calculate the strain energy in a bar 2.5 m long and 50 mm diameter 
when it is subjected to a tensile load of. 100 KN . .What will be the 
modulus of resilience of the material of the bar? Take E = 200 KN/mm2 

(31831N-mm, .0065 N-mm/mm3) 

(6) A Copper bar 80 mm diameter and l.5 meter long has to bear a shock 
of 640 KN/mm. Determine the instantaneous stress and the change in 
length of the bar. E = 200 x KN/mm) 

(1600 MPa, 12 mm) 
(7) A mild steel rod 4 meter long and 25 mm diameter is subjected to a pull 

;!a!!:·(:~::~~::;;~a~t; ~f2: ~i:!~~ ~~~7~0:1~~ ;~f !e.!/) 
(8) A crane chain whose sectional area is 625 mm2, carries a load of 10 KN; 

which is being lowered at a uniform rate of 40 m/minute when the length 
of the chain unwound is 10 meters, the chain jams suddenly on the 
pulley. Estimate the stress induced in the c~ain due to sudden stoppage. 
Neglect the weight of the chain. Take E = 210 KN/mm2 (123.3 MI'a) 
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(9) A hammer weighing 100 Nfalls 2 on a 100mm cube mild steel block J 

before coming-to rest. Find the-instantaneous stress and the.compression J 

____.ofttieolock. Also determine the velocity with which the hammer will i . 2 ! 

strike the block. Take E = 200 KN/mm . . / 
(20.0 MPa, .001 mm, 6.26 m/sec Y, 

(10) A Vert~c_:al ti~,.ftxed rigidly at the top end consists of a steel rod 2.~ 
_metres1ong and 20 mm dia. encased thfoughoutin a brass-tube 20 mnj. 

. ./ internal dia. and 30 mm. external diameter. The rod and the casing are 
fixed together at both ends. The compound rod is suddenly loaded in 
tension by a weight of 10 KN. falling freely through 3 mm. before being 

. arrested by the tie. Calculate the maximum stresses in steel and brass. 
Take Es = 200 KN/mm2 and Eb = 100 KN/mm2; (118.5 MPa, 59.25 
MPa) 

(l l)An unknown weight falls through 10 mm on a collar rigidly attached to 
the lower end of a vertical bar, 3 metre long and 600 mm2 in section. If 
thfmaxim11m instanfaneous extension is known to.be 2 Illm, what is the 
corresponding stress and the Value of unknown wdglit? Take E = 200 
KN/mm2. (133.3 MPa, 6.66 KN) 

DOD 
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4 
Thin Wailed Pressure Vessels 

Thin cylindrical and spherical shells have very small thickness of wall 
plates as compared to their cross-sectional dimensions. The wall thickness 

is generally less than 2~ th ofthe internal diameter. 

Water pipes, steam boilers, air vessels storing fluids have to with stand 
internal fluid pressure. A uniform fluid pressure acts on the internal surface 
and the direction of the pressure at any point is normal to the surface of 
contact. since the walls of these pressure vessels are very thin the stresses 
induced across them is assumed to be uniformly distributed. Two principal 
tensile stresses acting on the walls of these vessels are 

(i) Circumferential or Hoop stress 
(ii) Longitudinal stress. 

Circull1.ferential or Hoop Stress · CJh 

Hoop .stresses are induced at right angles to the Longitudinal axis of 
the cylinder. These stresses along the circumference of the cylinder may 
brea the cylinder into two traughs. The stresses acting tangentially to the 
circumference are known as hoop stresses and represented by CJh 

Longitudinal Stress CJL 

Stresses that are set up parallel to the len·gth of the cylinder are· called 
Longitudinal stresses. These stresses may break the cylinder into two 
cylindrical parts. 

Fig. 4.1 (a) Fig. 4.1 (b) 

Determination of stresses 
The following assumptions are maqe while determining the hoop and 

longitudinal stresses. 
(a) The rdial stresses in the cylinder walls are negligible. 
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(b) There are no longitudinal stays in the cylinder. 
(c) The sresses are uniformly distributed through the wall of the 

pressure Vessels. 
Circumferential or Hoop Stress <Jh 

A B 

A B 
(a) (b) I 

Fig.4.2 

(c) 

Consider a thin cylinder of internal radius r. Let p be the intensity of 
iritemalfluid pressure: Consider the equilibrium of an elementary length l 
l>etween the sections AA and BB. Let a very small strip of this shell subtend 
an angle oe at the centre and let it be inclined at an angle e to the horizontal 
axisx-x 

width of the strip · Os = r. Be 
Area of the strip = l. r. oe 
Radial force acting on the strip. = p X l X r X oe 
Vertical componant of this radial force. 

= p X [ r X O 0 sin 0 
Total vertical force perpendicular, to the diameter 

=J 1t p.l. r. sine o0= 2p.l.r 
o· 

It <Jh is the intensity of Hoop stress, then the resisting force. 

= 2<Jh X l X t (ii) 
Hence for equilibrium of the material, equating (i) & (ii) 

2 <Jh X l X t = 2p.l.r 

<Jh = P...:!.. 
t 

Longitudinal Stress ( <JL) 

(i) 

Consider the thin cylinder closed at both ends by cover plates and 
subjected to uniform internal pressure p. Let r be the internal radius and t 
be the thickness of the walls of the cylinder. 
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Total force on the ends acting axially due to the internal fluid pressure. 
= Area x intensity of fluid pressure. 

2 X (,') = 1t r p 
Resisting force = 2 n: rt x GL 

For equilibrium of the material equating (i) & (ii) 
2 2n.r.t.CiL = n r p 

CTL = f!..:_!_ 
2t 

Hence the Hoop stress CTh is half the longitudinai stress CTL 

Maximum shear stress 
Hoop stress CTh and longiludinal stress CTL act on two mutually 

perpendicular planes. Hence at any point on the circumference of a 
cylindrical shell subjected to internal fluid pressure, these are the principal 
stresses. The maximum shear stress is therefore given by the relation. 

<Jh-fJL 
'tmax = 2 

Example 4.1 
Find the Longitudinal and the circumferential stress induced in the 

walls of a cylindrical Boiler 1.5 meter diameter if subjected to an internal 
fluid pressure of 2.5 MP a. The walls of the cylinder are 30 mm thick. 
Solution 

Diameter of the cylindrical shell = 1.5 meters 

. 1.5 X 103 
Radms of the shell= 2 = 750 mm 

Wall thickness = 30 mm 
Internal pressure = 2.5 MPa 

= 2 .5 x 750 = 62 5 MP 
<:5h 30 . a 

L .1 ct· l ~ 2 5 X 750 ong1 u ma stress CJL = 2t = 2 x 30 31 .25 MPa. 

Answer 
Example 4.2 

A Compressed air cylinder is subjected to an internal pressure of 15 
MPa. The outside diameter of the cylinder is 250 mm. If steel has a yield 
point of250 MP a and a factor of safety of2.5 is used, Calculate the required 
thickness of the walls. 
Solution 

W k. 250 100 MP or mg stress = 25 = a 

Hoop Stress CTh = ~ 
t 

or t = ~ = 15 x 125 = 18.75 mm 
Cih 100 

Required wall thickness= 18.75 mm Answer 
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Example 4.3 
The tank of an air compressor consists of a cylinder closed by 

hemispherical ends. The cylinder is 500 mm internal diameter and the 
internal pressure acting on the internal surface is 3 A1Pa. If the yeild point 
of the material is 250 MPa; and a factor of safety of 2.5 is used. Calculate 
the wall thickness of the cylinder? '.. 
Solution 

Radius of the cylinder= 250 mm 
Intensity of pressure p = JMPa. 

250 
Hoop Stress CTh = 2_5 = 100 MPa 

CTh = I!.:!_ 
t 

or 
£...:!. 3 X 250 -

t = cr~ = 100 = I .5 mm. 

Example 4.4 
A vertical cylinderical gasoline storage tank is 30 m in diameter and 

is filled to a depth of 15 m with gasoline whose relative density is 0. 74. If 
the yield point to the shell plate is 250 lv/Pa and factor of safety is 2.5. 
Calculate the required wall thickness at the bottom of the tank neglecting 
anylocalised bending effect ? 

Solution -

104 2 
Pressufe intensity == (15 x 0.74) x - 6 N/mm 

10 
= 15 X 0.74 NI 2 

100 · mm 

Internal radius = 15 x 1000 mm= 15000 mm 

W k. S -- lSO -- 100 MPa or mg tress 
2.5 

. I!.:!.. 
Hoop Stress CTh = · 

t 

Required wall thickness t = £...:!. = 15 X 0.74 x lSOOO = 16.6 mm 
CTh 100 X 100 

Example 4.5 
A Vertical stand pipe stands 25 meters high and has a diameters of 4 

meters. Determine the wall thickness\/ the pipe is filled with water. The yield 
point of the material is 250 MP a and a factor of safety of 2 is used. Water 
weighs JO KN!m3· 

Solution -
Head of water = 25 meters = 25 x 103 mm 
Radi14s of pipe = 2 meters = 2 x l o3 mm 

Allowable working stress ah= 2; 0 = 125 MPa 
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3 
,.u . h f" 3 10 X 10 vv e1g ,t o water per mm = 9 10-5 N/mm 

10 
Water pressure p = wh 

p = 10-S X 25 X 103 = 250 X 

Now hoop stress 
nr 

CTh = r..:.:_ . t 

N/mm2 

250x 10-3 x 2x 103 
or = 
Wall thickness = -4 mm 

125 

Answer 

Change in V olu.me of thin cylindrical shells 
Let land r be the length and radius of the cylinder. 

p = intensity of internal pressure 
µ = Poisson's ratio 
E = Modulus of elasticity of the material then 

Circumferential stress <:Jh = !.!_:!_ 
t 

l!. r Longitudinal Stress CJL = _:._ 
2t 

and Circumferential Strain = -k ( Gh - µ<n ) 

- l_ ( E:.!.. E:.!.. ) 
Eh- E t -µ.2t' 

f!_!_ , 1 = 11---u) 
tE · 2' 

Longitudional Strain = J ( CTL- µ <:5h ) 

1 n r n r 
EL= 2:.. 1 t:....:.._ µ .t:.....-) 

E \ 2t t 

= f!_!_ (l- µ'1 
t E 2 ' 

Volume of the cylinder V = n r2z 
Ov = 2 1t r l d r +n: r2 dl 

Cv 2n: r l dr :re r2dl 
Ev=-=---+--

v n.r2.l n: ,21 
2 dr dl 

Volumetric Strain = -- + -
r l 

= 2 x Hoop strain + Longitudinal strain 
= 2£h + fl 

= 2P...!. (1-H:.J+ f!_!_ (1--µJ\ 
tE '- 2 tE \.2 

WI 
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=l!I...(1-2µ 1 
t E 2 ) 

ov n.r ,1s J Volumetric Strain Ev = V = ili \2- 2 µ 

Change in the Volume of the Cylinder . 
Ov = V X Ev 

= ~(1_2µ '\ n:r2x l 
t El2 )" 

Example 4.6 

ov = 'fJi ( i- 2 µ) x Volume of Cylinder 

Calculate the change in diameter and length of an air vessel 400 mm 
in diameter and 12 mm thick when subjected to an internal pressure of 16 
MP a. Take the modulus of elasticity of the material as 200 KN/mm2 andµ 
= 0.3. The Length of the vessel is 1.5 meters. 
Solution 

Diameter of the Vessel = 400 mm 

Radius = 200 mm 
Internal pressure = 16 MPa 
Thickness of plate= 12 mm 

Circumferential stress CTh = [!_.:!_ 
t 

16 x 200 = 266.16MPa 
2 X 12 

Longitudinal stress CTL = Tt 
16x 200 

CTL= 2X12 = 

C. .: . l S . <Jh µ <JL 
ircum1erentia tram Eh= E - E 

133.3MPa 

1 (266 . 6 - 0 . 3 X 133 . 3) 226 . 6 
Eh=~~~~~~~~~-

200 X 10 3 - 200 X 10 3 

= 1.133 X 10-3 

:. Change in diameter 8 d = 1.333 x 10-3 x 400 

od = 0.533mm 

. d" l S . <JL µ CTh Long1tu ma tram = E - E 
l 

fL = ( 133.3- 0.3 X 266.6) X 3 = 
200x 10 

= 0.2 666 10-3 

53.32 
200x 103 



Thin Walled pressure Vessels 103 

Change in Length 81 = 0.2666 x 10-3 x 1.5 x 103 

81 = 0.3999 = .4 mm Answer 
Example 4.7 

Calculate the increase in volume of a boiler 8 meter Long and I meter 
diameter when subjecte'd to an internal pressure of 1.5 MPa. The wall 
thickness is such that the maximum tensile stress in the shell is 30 MP a. Take 
E = 200 KN!mm2 andµ = 0.3 
Solution 

Wall thickness when maximum tensile stress is 30 MPa. 

<Jh = !!..:I. or 30 = 1.5 x ( 500 ) 
t ' t 

500 
or t = 1.5 x 30 =. 25 mm 

· n 2 
Volume of boiler = 4 (d) x l 

= ~ (1000)2 X 8 X 1000 

= 2 n x 109 mm3 

Increase in Volume 

6v= 2P .Er ( 5 - 4 µ) x Volume of Cylinder 
t. i 

1.5 X 500 ( 5 - 4 X 0.3 ) z l09 3 = x nx mm 
2X25 X 200 X l(f 

750 X 3.8 X 2 n X 109 
= 

107 

= 179.07.x 104 mm3 

= .00179 m3 Answer. ' 
Example4.8 

A cylindrical shell 800 mm internal diameters and JO mm wall 
thickness is subjected to an internal pressure of 20 MPa. Calculate the 
maximum intensity of shear stress induced in the shell. If the length of 
cylinder is 2 m, calculate c;hangein in the volume of the shell. Take E = 
200 KN/mm2 and pois son's ratio 0.3 

Solution 
Radius of the shell = 400 mm 

Wall thickness = 10 mm 

-·Intensity of internal pressure = 20 MPa. 

!!..:I. 20 X 400 
Hoop Stress <Jh = t = 10 = 800M_Pa. 
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Longitudinal Stress CTL = f!._:!_ = ZO x 400 = 400 MPa 
2 2xl0 · · 

Maximum intensity of shear stress 

= Gh-GL:::: 800-400 = 2.0. OMP 
2 2 ·· a 

Volume of the cylindrical shell 

= re (r)2 x l = n ( 400 )2 x 2x 103 mm3 

Changein Volume = n V x I!._:!_ i 5 - 4 
2tE' 

Ov = 1t ( 400 )2 x . 2 x 1 o3 j 20 x 400 
L 2 x 10 x 200 x 

= 47.728 x 104 mm3 Answer 

Built-up Thin Cylindrical Shells 

(5-4 X 0.3)1 
J 

Large size thin cylindrical and spherical shells can not be made of one 
single piece of metal hence joints are necessary for making such pressure 
vessels. This is done by joining different plates usually by means of rivets. 
Sometimes plates may be welded as well. The plates are bent to required 
diameters and butt joints are provided. Individual fabricated shells are joined 
by Lap joints. 

Built-up shells are not as strong as seamless shells or shells without 
joints. These joints reduce the resisting strength of the shell plates both 
against bursting and tearing. Depending upon the efficieney of the jointsthe 
circumferential stress and Longitudinal stress are calculated from the 
modified formula as under . 

Hoop Stress CTh = I!._:!_ 
t n. 

Longitudinal Stress <JL = -f!-:!_ where 11 is the efficiency of the 
d .TJ 

joints. 
From the above expressions for CTh and IJL it is to noted that the effect 

of providing joints is that the hoop and Longitudinal Stresses are increa&ed. 
Example4.9 

An air vessel provided with an air compressor is 12 mm thick 2 metres 
long and of 1200 mm diameter. It is designed for a maximum working 
pressure of 3.5 MPa. Determine the maximum and the minimum stresses 
induced in the material of the vessel when. 

(i) It is seamless and 
(ii) It is built-up with longitudinal and Circumferential joint 

efficiencias as 70% and 65% respectively. 
Solution 

; (i) Maximum stress induced is the hoop stress 

CTh = 7" = 3·5 ; 2 
600 = 175 MPa 
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Minimum stress induced is the longitudinal stress 

. = I!.:!_ = 3.5 X 600 = 87 S MP 
(JL 2t 2 X 12 . " - a 

For built up shell 

<Jh = !!._:!__ = 3.5 x 600 = 250 MPa 
t. fl 12 X O .7 
_11_:!_ 3.5 X 600 

GL = 2t X Tj :::: 2 X 12 X O .65 = 134·6 MPa 

Example 4.10 
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Answer. 

A cast iron pipe is required to carry water at a pressure of 4 MP a. If 
permissible longitudinal stress and hoop stresses are 40 MPa and 60 

MPa and e.fficiencies of longitudinal and circumferential joints are 60% 
and 70% respectively. Determine the thickness of the metal if the diameter 
of the pipe is 180 mm. 
Solution 

Permissible Longitudinal Stress 

(J L = ..I!_:!_ 
2t •Tl 

:. Thickness of the metal t = _f1__:!_ 
2<JL .fl 

40 X 90 
t = 2 x .60 x 40 = 7·5 mm 

Maximum permissible hoop stress cr1i = E.:!_ t..n 
Thickness of metal required t = --1!.:!_ == 4 x ~O = 8.57 mm 

11 X C'ih X 

Minimum thickness of metal required for the pipe will be the larger 
of the two values. Hence 

t = 8 .57 mm Answer. 
Thin Spheirkal SheHs 

Thin spherical shells when subjected to internal fluid pressure are 
likely to burst into two hemispheres along the centre line of the sphere. The 
tensile stress developed at all points of the shell is same therefore for 
equilibrium total bursting force must be equal to the resisting strength of the 
plate.,'----
Let p = intensity of internal fluid pressure. 

r = radius of the shell 
t = thickness of the shell plate 

Gh = stress induced in the shell material 

Then 

total ""'""''"'''·"' force = Area x intensiy of pressure 
= n r2 X p --- (i) 

Ke:s;stmg Strength of the shell 

= 2 :It r X t X Gh -~: 



Equating (i) and (ii) we get 

Hoop stress in the waU Oh = E..:!..2·7 
~t 

Thin "falled pres."ure Vessels 

Fro~ symmetry this circumferential stress is the same in all directions 
at any poi~t in the wall of the sphere. 

If 11 is the efficiency of the in the spherical shell, then the hoop 
stress in the shell will be 

(Jh =··~ 
2t .. rt 

Change in V oiume of thin spherical shell! 
l 

Strain in the diameter of the shell = E ( ah - µ Oh) 

(jh (' ) = E i.-µ 

= .£..:!:. ( 1-µ) 
2t .E 

Since the hoop stress Uh is same in all directions of X - Y - axis 
and Z - axis, therefore strains in aH the three planes wm be same 

Volumetric strain = fx + fy + fz = 31:'. 

or 

or 

3 n r 6v== _:::....:_ 
2 tE 

Ev = 3. t; (l - µ) 
ov 3 n .r 

E =-·= - i,;:_::_ (1-µ) 
v V 2 tE . · 

µ ) x Volume of spherical shell 

3 p .r . 4 3 
2 t£(1--µ) X 3 1tr 

4 
= 2npr (l- ) 

tE µ._ 

Example 4.11 
A spherical of steel is used to store gas under pressure. The 

diameter of the is 25 meters and wall thickness 15 mm. If the yeild 
point of the metal is 250 ,HPa and a factor of safety of 2.5 is adequate, 
determine the maximum internal pressure. If the joint efficiency is 75% 
determine the permissible pressure. 
Solution 

Diameter of the shell = 25· m 
Radius = 12.5 m == 12.5 x 103 mm 
Wall thickness== 15 ;mn 

W '-' 2 ,SO '00 MP onung stress = Ll =· 1 r a 

Hoop Stress Oh = E..:!.. · 2t 
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M . . l <5h X 2t 
:. ax1mum mterna pressure p = 

Joint efficiency = 75% 

r 

P = lOOx 2x 15 =0.24 MPa 
12.5 X 103 

:. Permissible internal pressure 
75 

p = 0.24 x 100 = 0.18 MPa Answer. 

Example 4 .12 
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Calculate the increase in volume of a spherical shell one meter 
diameter and JO mm thick, when it is subjected to an internal pressure of 
1.2 MPa. Take E 200 KN/mm2 and µ = 0.3 . 
Solution 

4 3 4 3 
Volume of the shell= 3 7t r = 3 1t (50) 

= 17t x 125 x Hf= 523.59 x 1a3 Cu. mm 

Increase in Volume 

~ Sv= 2tE (1- µ) x Volume of Shell 

Sv= 3 x 1.2 x 50 (1 - 0.3) x 523.59 x 103 
2 X 10 X 200 103 

= 16.5 mm3 Answer. 
Example 4.13 

For a thin cylindrical shell and a thin spherical shell subjected to same 
internal pressure and having the same diameter/thickness ratio compare ( a) 
the maximum tensile stresses and (b) the proportional increase in volume. 
Takeµ= 0.3 
Solution 

Hoop stress for the cylinder cr111 = I!.!.. 
t 

Hoop stress for the sphere 

:. <5h1 = 2 
<5h2 

n r' 
<Jh = ~ 

2 2t 

Increase in the Volume of the cylinder 

6Vi = it~ (5-4µ) 

6v1 = it~ ( 5 - 4µ) = it~ (5 - 4 X 0.3) 

_ l.9pr 
..,. tE 
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0 _li!...:!.(1 
V2 - 2 t E ' -

=lE_:_!_rl-03) 
2 t E' .. 
1.05 =ill pr 

. OVi = l..:2e!: X _!_]£_ = 
· · Sv2 t E · 1.05 pr 1.05 

= 1.809 

SUMMARY 

1. For cylindrical shells 

Hoop stress iJh == I!._:_!._ 
t 

. d" 1 S V.; Long!t.u ma tress = <JL == 2 t 

Hoop Stres is also called circumferential stress 

Answer. 

2. Hoop stress is twice the Longitudinal stress in case of thin cylindrical 
shell 01; = 2 

M . h cr1i - crL · I!._:_!._ 
3. aximum s ear stress 't= = ,, · = 2 L. t 

4. When a thin cylindrical shell is to withstand an internal fluid pressure 

5. 

6. 

7. 

p and tensile stress in the material of shell does not exceed CJh then 
the thickness of the plates is given by 

t > 
fJh 

. P...!.. 1 
Hoop Strain Eh = t E ( 1 - i µ ) 

Longitudinal Strain EF= lj-i: ( l ~ t- µ ) 

Volumetric strain Ev = 2£h + EL 

- ~ ,i 2 ) 
- tE l2- µ 

8. For built-up cylindrical shells 

CJh = [!_:..!_ when 1J is the efficiency of the 
t.11 
D.f' 

CJL =-"--'--
- 2 t .. 11 

9. For spherical stress 

n_r d Q.r 
/Jh = .:..:..:... an r!iL = s:;_;:__;;_ 

2t 2 t 
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10. If Ti is the efficiency of the joint. 
_I!_:!_ then crh = 
2 . Tl 

11. Volume of thin spherical shell 
1t d3 

V=6 
Circumferential stress = ~ 

Strain in the diameter of the shell 

=.l?...:.!:..(1-) 
2t E µ 

- 'ii!.!:. Volumetric strain Ev - .., E ( 1 - µ) 
,<, t 

QUESTIONS 

( 1) Explain with sketches the following 

(a) Longitudinal Stress 
(b) Circumferential Stress 
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(2) A thin cylindrical shell is subjected to an internal fluid pressure p, show 
that the tendency to burst length wise is twice as great as at transverse 
section 

(3) Derive an expression for the hoop stress in a thin cylindrical shell closed 
at bot:h ends and subjected to an :internal fluid pressure. 

( 4) How the efficiency of a thin cylindrical she!! is affected by providing 
joints ? ;.;,""'""''· 

EXERCISES 

(5) A cylinde:rical boiler 1 meter diameter and 20 mm wan thickness is subjected to 
an internal fluid pressure of 2 MPa. Determine the longitudinal and 
circumferential stress induced. (250 MPA, 500 MPa.) 

( 6) A wa!er main one meter diameter contains water at a pressure head of 100 meters. 
If the weight of water per cubic metre is 10,000 N. Find the thickness of the metal 
requried, if the permissible stress in the metal is 20 MPa. 

(25 mm) 
A 20 m diameter spherical tank is to be used to store gas. The shell plating is 10 
mm thick and the working stress of the material is 125 MPa.. What is the 
maximum permissible gas pressure. (0.25 MPa) 

(8) Calculate the increase in volume pen.mit volume of a thin circular cylinder closed 
at both ends subjected to a uniform internal pressure of 0.5 MPa. Radius of the 
cylinder is 350 mm, wall thickness 1.5 mm andµ= 0.33, Talce E = 200 KN/mm2 

(~ = 10-3) 
V ) 

(9) The air vessel of a torpedo is 530 mm external di&"Ileter and 10 mm thick, the 
length being 1.83 m. Find the change in external diameter and the length when 
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charged to 10.5 MPa internal pressure. Take E = 210 KN/mm2 andµ= 0.3 
(AMIE) (0.574 mm, 0.466 mm) 

( 1 O) A thin spherical shell 1.2 mm diameter is subjected to an intemai pressure of 2 
MPa. If the maximum permissible stress in the plate material is 160 MPa and the 
joint efficiency is 60% Find the minimum thickness. (6 .. 25 mm) 

( 11) A seamless spherical shell of 1 meter diameter and 5 mm thick is filled with fluid 
pressure untiil its volume increases by 200 x 103 mm3 . Calculate the pressure 
exerted by the fluid on the shell. E = 205 KN/mm2, u = 0.3 (0.75 MPa) 

(12) Show that in the case a thin cylindrical shell subjected to same internal fluid 
pressure the tendency to burst length wise is twice as great as at transverse 
section. 

ODD 



Shearing Force And Bending Moment 

When the applied loads are vertical or inclined to the longitudinal axis 
of a beam they produce the following two effects. 

(i) They produce forces which tend to shear one of the beam 
with respect to an other portion. 
Moments are developed in the beam which try to bend the beam the 
beam should be strong enough to resist both these actions. Hence it 
is essential to calculate such forces and moments at every 
the longitudinal axis of the beam. 

Beam. 
Beams are structural members which are designed to all 

of load coming on to a floor supported on them. 
Supports. supports may be classified into the 

Roller Supports 
(b) Hinged Supports 
(c) Fixed Supports. 

Roller Support 

types. 

A in which beam is free to move to the or left of it Roller 
support develops only one support reaction which is perpendicular to the 
axis of the beam and the roller. 

Roll 

Rh 

AX ~T V V 

Roller Hinged 
Support 

Support Fig. 5.1 

2. Hinged Support 

Fixed 
Support 

The structural member supported on hinged support can not slide side 
ways i.e. the position is fixed. The structure is allowed to rotate. Reactions 
developed at the hinge are two. One perpendicular and the other in lateral 
direction. 
3. Fixed Suppo:rt 

Fixed support does not allow either lateral movements or the rotation 
of the structural member. Two reactioris, one horizontal-, the other vertical 
and a moment which prevents rotation, develope at the fixed support. 

111 
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Classification Of Beams 
Beams are classified into the following types : 
(i) Statically determinate beams Statically indeterminate beams. 

Statically determinate beams 
Beams in which the support reactions can be easily determined by the 

three equations of static equilibrium LV = 0 "IB = 0 and I.M = 0 are 
termed as statically determinate beams. 

(a) Cantilever 

I 
.J 

A cantilever is a beam which is 

fixed at one end and free at the other 

Fig. 5.2 

(b) Simply supported beam 
A simply supported beam rests 6;: 

freely on supports at both the ends. rft' 
Over hanging beam Fig. 5.3 

If a bea.'ll extends beyond its supports it is called an over hanging beam 

~ V"'2 'A§ w 

~~ ,f t J i 
f n?7 

Fig. 5.4 Fig. 5.5 

Statically indeterminate beams 
Beams in which the support reactions can not be determined by using 

the three equations of static equilibrium are known as statically 
indeterminate beams These beams are classified as 

A fixed beam has both ends 
~ rigidly fixed into supporting walls. 

Fig. 5.6 

(b) Contimmus beam 
A beam which rests more 

than two supports is called a 
contim.1ous beam. 

w w/unit length 
\ 

5.7 
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Types of Loading · 
1. Concentrated Or Point Load 

w A concentrated load is assumed to 
be a load concentrated at one.p_oint. t 

Fig. 5.8 

2. Uniformly Distributed Load 
These loads are uniformly applied 

over the entire length of the beam. 

3. Uniformly Varying Load 

,.w/unit length 

Fig.5.9 

Triangular or trapezoidal loads fall uner this category. The variation 
in intensities of such loads is constant. 

Fig.5.10 Fig. 5.11 
Shear Force 

Defi~ition - Shear force at a section of a loaded beam may be defined 
as the algebraic sum of all vertical forces acting on any one side of.the 
section. 

X 

Wi ~ ~ ~ I \"{; ~ 

1 i ! l I t l I 

Rf 
I ii I 
I 
X 

Fig. 5.12 
The Shear force at sectionx-x of the beam shown in figure; 5.12 when 

forces to the left of x-x are considered. 
S.Fx-x=RA-Wi -W2-W3-W4 

When the forces on the right hand side of the section are considered. 
S.F x-x = RB - Ws - W6 
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Sign Convention 
When external forces acting on the portion of the beam to the left of 

the section tend to push that part up, the shear is positive or when the external 
forces acting on the portion of the beam to the right of the section tend to 
push that part down the shear force is positive. 

] 

Positive ,hear Force Negative Shear Force 

Bending Momi.. 111 

Bending r )rr,ent at a section of a loaded beam is the algebraic sum of 
the moments ot all the force on any one side of the section. 

IA\. V"2 1x \f"3 I X1 W4 
! I ' ri,-a 

b---i 4x 
I 

I X 

C 1x1 

Fig. 5.13 
Bending moment at section x-x of the beam shown in the figure can 

be written as 
M x-x = RA.x - W 1 (x - a) - W2 (x - b) 

Simitarly at a section XJ- x at distance XJ from A 

MxrxrR A.xi - Wi (x1 -a)- W2 (xi -b)- W3 (x1 -c) 
Sign Convention · 

Moments producing compression in the top fibre and tension in the 
bottom fibre are positive. These moments try to bend the beam down wards. 

" Posilive Bending Negative Bending 

Moments which bend the beam upwards and Cause Compression in 
the bottom and tension in the top fibre ~re taken negative. 
Bending Moment And Shear Force Diagrams 

This is graphical representation of bending moments acting 
simultaneously at various sections of the beam under a given system of 
loading. 
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Similarly the graphical representation of shearing forces at various 
section of a beam under a given system of loading is called shear force 
diagram. 

!\Relation Between Bending Moment And Shear Force 
J, 

F 
F+SF 

Fig. 5.14 
Consider a small length 8x of a simply supported beam carrying 

uniformly distributed load w/unit length. Let Mand F be the B.M. and S.F 
at AB and ( M + o M) and ( F + 8 F ) be the bending moment and shearing 
force at CD. Since the element ABCD i.s in equilibrium, the sum of an 
vertical forces on it must be Zero. 

Hence F + w ox = F + o F 

d F = w (''; or dx , 

Thus the rate of change of shear force is equal to the intensity of 
loading on the beam. similarly equating all moments at AB to Zero 

(!) (&'2 
M+(F+oF) ox-T-(M+oM) =O 

Neglecting the products and squares of small quantities, we get 

Fox - SM = 0 or d M =F (ii) 
dx 

That is the rate of change of bending moment is equal to the shearing 
force. 

Now·integrating equation (i) we get 

F = ( wdx 
0 

Integrating equation (ii) we get 

M = ( F dx = ( ( w dx 
0 0 0 

(iii) 

(iv) 

Hence the change of bending moment from o to x is proportional to 
the area of shear fQrce diagram from o tox 

For bending momenfto be maximum ~ ~ = 0 

But dM .,__,r f . ( .. ) -d = -__p rom equat10m n 
X -

Thus bending moment is maximum where shear force is Zero or 
changes sign. 
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Standard Cases 
Cantilever With A Concentrated Load at The Free End 

A cantilever A B of span L with a point load W acting at the free end 
B is shown in figure 5 .15 

xi W 

A~i-----'--
1---ta 

~ Xt-,-X-+-1 
-------L ~I 

w~::::::::::::::::::~w 
S.F. Diagram 

WL~ 

B.M. Diagram 

Fig. 5.15 

Shear force at B = W 

Consider a section x-x at a distance x from B. 

At section x-x shear force is Wand it remains constant as the value of 
x increases front'Zero at B to Lat A. Therefore S.F. is Constant throughout 
and represented by a rectangle. 

B. Mat-B = 0 

B Mat x-x= Wx 
B Mat A = W.L 

Therefore B.M. is Zero at B and maximum at the fixed end A and 
represented by a triangle as shown. 

EApleS.1 
A cantilever AB of span 3 metres is fixed at A and carries a 

concentrated load of 5 KN at the free and B . Draw the shear force and 
bending moment diagrams. 
Solution 
Shear Force 

Shear Force at B = 5 KN 

S. Fxx= 5 KN 

S. FA= 5 KN 
Shear Force diagram will be a rectangle as shown in figure 5.16 
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Bending moment 

B.M. Diagram 

Fig. 5.16 

Bending moment at 0 

B.M xx=5.x 
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B. MA=5 x 3 = 15 KN-m 
Ex,a~ple 5.2 . 

. / Draw the S.F. and B.M. diagram for the cantilever shown in 
figure 5.17. 

,,1 3 KN 2 KN 

. At1 mi:;2 m=i;1 m~ 8 
~. ,D C 
,....~~~~4 m~~~~.._., 

2 KN 

C B: 

Fig. 5.18 
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Solution 
Since there is no load between Band C, hence S .F. between Band C 

will be Zero. 

Shear Force 
SF. ate = 2 KN 

S .F at D = 2 + 3 = 5 KN 

S. Fat A= 5 KN 

Bending moment 

/\ 
/ \ 

ExalJiple 5.3 

Bending moment from B toC will be Zero 

B.MB= Zero 

B.Mc = Zero 

B. MD= 2 x 2 = 4 KN

B.M at A = 2 X 3 + 3 x 

= 9 KN-m 

"' A Cantilever A B 4 metres long is fixed at B and carries point loads 
of 2 KN, 4 KN, 6 KN and 8 KN as shmvn 5. I 8. Draw the S. F. and 
B. M. diagrams. 
Solution 

S.F. Diagram 

B.M. Diagram 

Fig. 5.18 
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Shear Force 
S.FA=2KN 
S .Fc=2+4=6KN 
S .F0 =2+4+6= 12KN 

S .FE= 2 + 4 + 6 + 8 = 20 KN 
S .F8 = 20 KN 

Bending moment 
B.MA.=0 
B. Mc= 2 x 1 = 2 KN-m 
B. M D = 2 x 2 + 4 x l = 8 KN-m 
B. ME = 2 X 3 + 4 X 2 + 6 X 1 

= 6 + 8 + 6 = 20 KN-m 

B .MB = 2x 4+4x 3+6 x 2 + 8x 

= 8+12+12+8 

= 40 KN-m 
Cantilever With Uniformly Distributed Load w Per Unit. Length. 

A~.X>IB 
~j,,i: ~-L~x_._!~~--i~ 

i 

S.F. Diagram 

. ~7)."~. ' ' 

' 2 ,: ' ' wl;v··· ' 
' , 

~ '. 

I· RM. Diagram · 
fig. 5.19 

Consider a section x-x at a distancex from the free end B. 
Shear Force 

S -" N -B ::: Zero 
S . F at-x-x = w.x 
S. Fat A= w .l 

Bending moment 

119 

For B. M the load over the length x will be (w.x) and act through its 

C.G. Hence(w.x) wiH act at i from B. 
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B .M at-B = Zero 

B .M at-x-x= (w.x) (1) = ~ / 2 

B. Mat A = (:.L) ( t) = wt 
Example~ 

A cantilever of span 2 metres carries a uniformly distributed load of 
I KN per metre run throughout its length. Draw the S.F. and B. M. diagrams. 
Solution 

~' 
A~?::::)B 

I 2 m -t 
I 

2~: 
. S.F. Diagram 

2KN-m~ 

Shear Force 

8.M. Diagram 

Fig. 5.20 

S. FatB= 0 
S .Fat x-x = w .x = I X x 

S .Fat-A= I X 2 = 2 KN 

Bending moment 
B.M at-B = 0 

X 
B.M. atx:..x = (w.x) 2 

[!.M. at-A= (1 X 2)(t) =2KN-m 

Examplfs -
A · . cantilever A B of span 3 metres is loaded with a uniformly 

distributed load of 4 KN per metre run over half its span from the free end. 
Draw the s. F. and BM diagrams. 
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Solution 

6 KNr::::::~ 
S.F. Diagram 

B. M. Diagram 

Fig. 5.21 
Shear :Force 

S .F8 = 0 
S.Fc =4 x 1.5= 6 KN 

S .FA= 6 KN 
Bending moment 

B.MB = 0 

B .Afc = (4xl.5) (1.Sl = 4.5 Ki"l"-m 
2 

( 1 . 5 '\ 
=(4xl.5)1-2-+ 1.51 =13.5KN-m 

\ ) 
Exampl.e • 5.6 
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A cantilever A B of span 3 metres is loaded with a concentrated load 
of 3 KN at the free end and a uniformly distributed load of 0.5 KN/metre run 
over a length of 2 metres from the fixed end. Draw the S.F. and B.M. 
diagrams 
Solution 

S.F. Diagram 
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~77///////7.77)77//////v 

10 l~. , -~. , ;., 
KN-mi;;,;r 
. _ V .· B.M. Diagram 

Shear Force 

RM. Diagram 
5.22 

S.FB=3K..~ 

S.Fc= 3 KN 
S.FA=3+0.5x 2= 4KN 

Bending moment 
B.M.B= Zero 
B .M.c = 3x 1=3 KN-m 

B .M.A = 3 X 3 + (0.5 X 2) ( ~) 

= lOKN-m 
Example 5.7 

Moment 

A cantilever AB 4 meters long is loaded as shown in figure 5.23. Draw 
the S. F. and B. M. diagrams. 
Solution 

~ :l#5KNLm 

A~~B 
~2 m~·~2 m-,,...1 
----4 m )I,! 

s.M. Diagram 

Fig. 5.23 
Shear Fo:rce 

S. FB = 0 
S. F c = 1.5 x 2 = 3 Ki~ 
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S .FA= 1.5 X 2 + 2 X 2 = 7 KN 
Bending moment 

Example 5.8 

B .. M B = 0 

B .Afc=(l.5x 2)x(%! =3KN-m 
\ ) 

B .MA=(1.5x 2)(%+ 2) +2x 2(~J 

= 9 + 4 = 13 KN-m 

Daw the shear force and B. M. diagrams for the cantilever shown in 
fig 5.24 
Solution 

4KN 

. 10KN 

S.F. Diagram 
I 

~ ,!) 
~I 

B.M. Diagram 

Fig. 5.24 
Shear Force 

S .F8 = 4 KN 

S .F B-c= 4 KN 
S.FD=4+2x1+4 =lOKN 

S.FD-A= 10 KN 
S. FA = 10 KN 

Bending moment 

B. Ms =0 

4KN 

4KN 
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B . Mc = 4 X I = 4 KN-m 

B. A1 D :::: 4 x 2 + 2 X l x (l 1:::: 9 KN-m 
2} 

\ F \ 
I l I 

B. MA = 4 x 3 + (2 x l ) ! 7 + l I + 4 x l = J 9 KN-m 
l.- . 

Example 5.9 
A cantilever411Jeters long supports a u.d.l. of 1 KN per meter run mi 

the whoe iength and point loads of2 KN, 3 KN and 5 KN at 1 meter, 2 metres 
and 3 meters from the free end A. Draw the S. F and B.M. diagrams. 
Solution 

Shea:r Force 

2 KN 3 KN 5 KN 

A B 
C D E 

~ 1m-!i>f1 m~1 m ~1 m-1 
------4 m ..-1 

//. j 14 KN 

t f/////J/ttttlLu /_ 

S. FA = 0 

S.F. Diagram 

8. M. Diagram 

Fig. 5.25 

S. F c = 1 X 1 + 2-=, 3 KN · 

S. FD =l x 2 + 2 + 3 =7 KN 
S.FE = 1 x 3 + 2 + 3 + 5 = 13 KN 
S. Fe = 1 x 4 + 2 + 3 + 5 = 14 KN 

Bending moment 
B.M A=O 
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( \ 
B.Mc=(lx l)xj1!=0.5KN-m 

ll.MD = I X 2 r11'+J2x I = 2 + 2 = 4 KN-m 

B. ME = Ix\ t!) + 2 x 2 +3x\=4.5 +4 + 3 =11.5 KN-m 

( 4) 
B.Ms = l X 4 l~ !+ 2 X 3 + 3 X 2 + 5 X l = 8 + 6 + 6 + 5 

= 25 KN-n{ 
Example 5.10 
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A cantilever of 6 meters span has a central downward load KN. 
at c and an upward force of 1.5 KN at the free end. ft also corties a u.d.l. of 
0.5 KN/meter run between the two point loads as shmvn in the figure. Draw 
the S.F. and B.M diagrams. 
Solution 

Solution 

4KN 

A~-.~~~~--~----~8 

a ... l"'t---- 3 m ~- =-- 3 m---f ___ __,.,. 
1.5 KN 

ty?77 /77777 77/1 

4KN~ ~ 
/,/,/////(/////~ 

i.5 KN 

9.75 
KN-m 

S.F. Diagram 

B. M. Diagram 

B. M. Diagram 
Fig. 5.26 

Shear Forces 
S. Fs = i - 1.5 KN 

S. Fe= - 1.5 + 0.5 x 3 = 0 
S. FA = - L5 + 0.5 x 3 + 4 = 4 KN 
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Bending moments -

B Ma== Zero 
3 

B. M.c = - 1.5 X 3 + 0.5 X 3 X -
2 

= - 4.5 + 2 .25 = - 2 .25 KN-m 

B . M.A = - 1.5 X 6 + 0.5 X 3 ( t + 31 + 4 X 3 
=- 9+1.5 (4.5) +12 =-9+6.75 +12 
= 9.75 KN-m. 

A Cantilever with Uniformly Varying load 
Consider a cantile;ver AB of span l with a uniformly varrying load zero 

at B increasing tow per unit run at the fixed end A . 

. T 
w 

.j:::::~!:=::==::::!=::='.::~~:!:::::ls 

~--·· -x-~ X 

~~ 
SF. Diagram 

B. M. Diagram 

Fig.5.27 

At any section x-x at a distance x from B, intensity of loading 
w.x 

d . . . 1 
Total loa on this portrnn = 2 . x 

1V. X wx2 

2 l 
. xf actmg at 3 rom x-x 

Shear force at B Fs = 0 
x=O · .~ 

Shear force at A FA = vvl''"/2l = wl/2 
x=l 

wx2 x wx3 
Bending moment at x-x = 1 1 x ~ -· 6 -

- ,, .) l 
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Bending moment at B when x = 0 , is Zero 

. wP l wt2 
Bendmg moment at A when x =l , -::;-L x -3 = --

,., 6 
Example 5.U 

A Cantilever 5 metres long carries a uniformly varrying load, which 
increases from zero at the free end to 10 KN per metre at the end. 
Determine the value~ of maximu,n shear force and Bending moment and 
draw the diagrams 
Solution 

~~~B 
l----5m I . ~ 

I 

.~~~ 
S.F.Diagram 

:~f///~ -q-v· 
B.M. Diagram 

5.28 

A . h fl ,. W X 10 X t any sectwn x- x t e rate o oaamg = - = x -
l 5 

Shear fo:rce 
Shear force at B = 0 

Shear force at Section x-x = w · x · 1 
~h f A w l IO x 5 -- 25 KN <l>, ear orce at = 2 = 2 . 

Bending moment 
Bending moment at B, when x = Q, is zero. 

. wl 2 10x(5) 2., 250 
Bendmg moment at A, B.MA= - 6- = 6 --'- = 6 

= 41.66 KN.:m. 
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l 

TABLE - No. -5.l 

S. F. and B. M. Diagrams 

Standard Cases Of Cantneve:rs 

w 
CD A{ __ I __ ts 

S.F.D. 

Wl~ 

B.M.D. 

w/unit length 

@A~B 

wl~ 

S.F.D. av~ 
B.M.D. 

w/unit length 

@ J===~========:!:j 
'--i1~ 
' ! ..,. ____ , ---....i 

B.M.D; 

B.M.D. 

~u.l.~· A ======--------·B ---1-1 

~~ 
S.F.D. 

~2~ 
B.M.D. 

S.F.D. 

B.M.D. 
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Simply Supported Beam With a Point Load at Mid Span 

w 

~-t 
! 

T 1 
C 
a; 
L ~ 

S. F. Diagram 

I I WL . ~ /! ___ _ 

B. M. Diagram 

Fig. 5.29 

129. 

A simply supported beam A B of span L with a point load Wat its mid 
span is shown in the figure. since the load W is acting at the centre of the 
beam the reaction at the supports will be equal. 

w 
RA=RB = 2 

w 
Shear force between A and C = RA = 2 

w 
Shear force between C and B = R8 = - 2 
Bending moment at any section x-x between A and C = RA.x 

. L W L WL 
Bendmg moment at C= RA. 2 - 2 . 2 - - 4-

Bending moment between C and B is 
( ft. 

Mx=RA.x- W1x- 2] 

Bending moment at 8 = RA . L - W tl -}} 0 

Shear force and bending moment diagrams are shown in the figure. 
Example 5.12 

A simply supported beam of span 2.6 metres carries a concentrated 
load of 15 KN at its mid span. Draw the shear force and Bending moment 
diagrams. 
Solution 

Taking moments about A, - R8 x 2.6 + 15 x l.3 = 0 



BO Slieatihg Porce'Aiid Behdbig'Momtfrt 

· · 15,KN 

t 
~.·. 

p 
2·.pm 

B. M. Diagram 

':·· Fig/s .. 30. 

Rs= 15xL3'=7.5KN 
2.6 · .. · 

Taking moments about B 
- RAX 2.6 - 15 X i}<=;: 0 

R = 15 x 1.3 -b 7.5 KN 
·· A 2.6 ·· 

Shear Force 
S.F between A and C =RA= 7.5 ~ 
S.F between C and B =RB= -7.5°KN 

Bending ~oment 
B.M at A 

BMatC 

=Zero 
L W L WL 

=R x-=-x-=--
A 2 2 2 4 

= 15 : 2·6 = 9.75KN-m 

WL 
B. Mat B = RA x L - 2 

.j 26 = 7.5 X 2.6-15 X l = 0 

A Simply Supported Beam With A Point Load Not At The Centre ' w . 

t a Ll bf 
~~ ['~:;;:::::j 

r:::::1~a 
S. F. Diagram 
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~ 
B. M. Diagram 

Fig. 5.31 
Taking moments about A 

W R , 0 R. _ Wa 
X a- B X L = or B - L 

Taking moments about B 
Wb 

- W. b + RA x L = 0 · or R = -A L 
Shear Force 

Wb 
Shear force between A and C = RA = L 

Shear force between C and B = RA - W = - W a 
L 

Bending moment 
B. Mat A= 0 
B. M between A andC = Mx- x =RA. x 

Wb Wab 
B.M at C=L x a= -z:-
B.M betweenCandB=RA_x- W (x -a) 

Wb 
=L.x-W(x-a) 

B.M atB = :b(L)-W(L-a)= 0 

B. F and B. M. diagrams are shown in the figure. 
Example. 5.13 

131 

Draw the shear force and bending moment diagrams for the b'eam 
shown in fig 5.32 

4 KN x 3 KN 
I 

C I D 

RA 1.5m~3.5m~1m Rs 
3.5 KN 3.5 KN 

E::;J ·. ·_ •.. ·· . 
/·. . -e,;::7::zo3.5 KN 

$ .. F. Uiagram. 
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Solution 

Shearing Force And Bending Moment 

~~m 
~. / I' 

B. M. Diagram 

· Fig. 5.32 

Taking moments about A 
RBx6 = 3x 5+ 4x 1.5 

=15+6=21 
RB = 21/6 3.5 KN 

Taking moments about B 

Shear Force 

RA 6 = 4 X 4.5 + 3 X 1 
=18+3=21 

RA= ll_ = 3 5 KN 6 ·-

S. F.A = 3.5 KN 
SFA-c=3.5 
S Fe- D = 3.5 - 4 = - 0.5 KN 
S.FD-B =- 0.5 - 3 =- 3.5 KN 
S. FB =RB= 3.5.KN 

Bending moment 

B. MA= 0 

B.Mc=3.5x 1.5= 5.25 KN-m 

B.Mxx = RA. x - 4 (x - 1.5) 

B.Mo=3.5x 5- 4x 3.5 

= 17.5 -14 = 3.5 KN-m 

B MB= 3.5 X 6 - 4 X 4.5-3 X 1 KN-m 

=21-18-3=0 
Example 5.14 

A simply supported beam of span 4 metres is loaded as shown in figure 
5.33. Draw the S. F. and B. M. diagrams. 

4 KN 6 KN 4 KN 

1m i 1m . 1m 

C D 
I 

E 

1m 

------ 4 m -----'li>'i 

S.F. Diagram 1 
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Solution 
Taking moments about B 

Shear force 

RAX 4 - x 3 - 6x 2 - 4x 1 = 0 
RA= 7 Kl'>l" = RB 

S.FA= 7 KN 
S.F.A- c= 7 KN 
S.Fc - D = 7 - 4 = 3 KN 
S.FD-E = 7- 4 - 6 = - 3 KN 
S.F.E-B= 7-4-6-4 = -7 KN 
S.FB =-7 KN 

Bending moment 

B.MA= 0 
B. Mc= RA x 1 = 7 x 1 = 7 KN-m 
B. MD= 7 X 2 - 4 X 1 = 10 KN-m 
B.ME = 7 X 3 - 4 X 2 - 6 X 1 = 21 - 14 = 7 KN-m 
B.M B = 7 X 4 - 4 X 3 - 6 X 2 - 4 X l = Zero. 

Example 5.15 
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Draw the shear force and bending moment diagram for a simply 
supported beam shown in figure 5.34 

w 

t" l 
w[;:~ 

I 

I 
S.F. 
I 

w 

L:· .. J~=t 
I 

Ow 
I 

Diagram 

B. M. Diagram 

Fig. 5.34 
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Solution: 
Since the loading is symmetnical 

Hbnce RA= RB= W 
Shear Force 

S..FA'-c= W 
S .Fc-D= 0 
S.FD-B=W 

Bending moment 
B.MA=cO 
B.Mc,;1W x a=Wa 
B.Mo = Wx 31iz>-w' X 2 a= Wa 
B.MB = 0 

Simply supported beam with /a.I. on the whole span. 

B. M. Diagram Fig. 5.34 
Talcing moments about A 

RB X 1- (w.l). ~. = 0 
wl 

RB=-=RA 2 
• wl 

Shear force at A =RA = 2 
Shear force at section x - x at a distance x from A 
S.F. x-x = RA -w, X 

/A. • W[ 
When x = YL. S.F. X·f = RA - 2 

wl wl =2-2=Zero 
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i.e. 

When x = f, S.F.B = wl -
- wl = .:c__ - wl = -- == RE 2 . . 2 

BM at A ::: zero 
BM at x- x == x-wx 

Whenx 
ivl . 

== R A /12 - -=- (, 112 X l/2y" 
r\. L 

B. 
wl l wl l - -x-----x-----
2 2 2 '4 8 

l 
When x = !, MB = x l - Wl x -. 2 

wl l 
B.MB= 2 xl-wlx 2= Zero 

Since the general equation of B.M. is of second degree 

w H . . b1· _ 2 -, ence we obtarn a para o,ie curve. 

The maximum B.M. will occur at midspan. 

wz2 . . 
Mc = 8 and maximum shear force will occure at ends 

wl 
S.F.A =2 = S.Fs 

Example 5.16 
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A supported beam AB 4 metres carries a uniformly 
distributed load of 6 KN per metre run over half the Span from the left end 
support A. Calculate the shear force and bending moment and draw the 
diagrams.·· 

~ 
9KN~ I 

~;;;:;;,;~~7 :,q3 KN 
S.F. Diagram i 

I I 

~I 
8. M. Diagram 

Fig. 5.35 
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Solution:· .. 
Taking moirien.ts about B 

RA x 4 = 6 X 2 ( % + 2) 
RA=9 K~ 

Taking moments about A 

RBX 4 = 6 X 2 (%) 
Shear Force 

RB=3 KN · 

S.FA= 9 KN 
S.Fx-x = RA - w.x 
S.Fc = 9 - 6 x 2 = - 3 KN 
S.F&= - 3 KN 

Bending moment 
B.MA= 0 

X 
B.Mx-x = RA.X -'- W. x. 2 

. 2 
B.Mc= 9x2-6x2x 2 =18-12=6 KN-m 

B.MB = 9 X 4 -6 X 2 ( t + 2) = 36 - 36 = 0 

Example 5'.17 ·. . . . . . 
A]i-eely suppqrted f?eam of span 4 metres carries a u.d.l. of 2 KN per 

metre run over a length of 2 metres from the left end support and a point 
load of 4 KN at I metre from the right end. Draw the S. F. and B. M. 
diagrams. 

S.F. Diargam 

B. M, Diagram 

B. M Diagram Fig. 5.36 
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Solution : 
Taking moments about B 

(2 
RA X 4 - 2 X 2 l :2 + 1 + 

\ 
1) - 4 X l= 0 

RA= 4 KN 
Taking moments about A 

Shear force 

1-, \ 

- RB x 4 + 4 x 3 + 2 x 2 I J ! = 0 

RB= 4 KN l ) 
S.FA= 4 KN 
S.Fc = 4 - 2 x 2 = 0 KN 
S.FD = 4 - 2 x 2 = 0 
S. FB = 4 - 2 x 2 - 4 = - 4 KN 

Bending moment 

Example 5.18 

B.MA =0 
X 

B.Mx-x =RAX - w. X . 2 

B.Mc = 4x2-2x2(i) = 4KN-m 

RMo.=4x3- 2x2(t+ 1)= 4KN-m 

B.AfB = 4 X 4 - 2 X 2 (% + 2 )- 4x l =0 

137 

Draw shear force and bending moment diagrams for the beam shown 
in figure. 5.37 

5 KN 
2 KN/m· 4 KN 

,c 10 

4 KN/m 

4 m~5m-+-3m 
l 12 m I 

s. F. Diagram\ 
. I 
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B.M. Diagram 

Fig. 5.37 
Solution: 

Taking moments about B 

RAX 12::: 2 X 4 ( 1 + 8 J+ 5 X 8 + 4, :J + 4 X 3 (1.5) 

150 
RA = 80 + 40 + 12 + 18 - 12 

RA= 12.5 KN 
Taking moments about A 

(i ~ (4'\ RB X 12 = 4 X 3 l2 + 9 + 4 X 9 + 5 X 4 + 2X 4 l l) 
=126+36+-0 +16=198 

R8 = 16.5 K.i'\I 
Shear force 

S. FA= 12.5 KN 
S. F. just to left of C = 12.5 - 2 x 4 = 4.5 KN 
S. F. just to theright of C = 12.5 - 2 x 4 - 5 = - 0.5 KN 
S.F. just to the right of D = 12.5 - 2 x 4 - 5 - 4 = - 4.5 KN 
S.F8 = 12.5 - 8 - 5 - 4 - 12 = - 16.5 KN 

Bending moment 

B.MA = 0 

B.Mc= 12.5.x 4,.- 2 X 4 (f 1 = 54?- 16 = 3fKN-m 

~
4 '\ 

B.MD=I2.5x 9-2x4 2+5]-5x5 

= 112.5 - 56 - 25 = 1.5 ~-m 

B.M 8 = 12.5 x 12 - 2x 4 ( i + 8 )- 5 x 8 - 4x 3 - 4x 3( t) 
. = 150 - 80 - 40 - 12 - 18 = Zero 

Shear force and B.M. diagrams are shown in the figure. 

Example 5.19 

Moment 

A freely supported beam AB of span JO metres carries a u.d.l. of2 KN 
per metre run on portion CD over a length of 6 inetre as shown in figure 
5.38. Draw the shear force and Bending moment diagrams. Calculate the 
position and amount of maximum B.M. 
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Solution 

X 
I 

C ! /2 KN/m D 

S. F. Dia. 

RM.Diagram 
Fig. 5.38 

Calculations for support reactions, 

RAX l0"-2X6(6/2+ l )= 0 
48 

RA = 10 = 4.8 KN 

RA +R8 = 12 KN 
Hence, RB = 12 - 4.8 = 7.2 KN 
Shear fo:rces • 

Shear force at A = 4.8 KN 
Shear force at C = 4.8. KN 
Shear force at x - x, 

Fx - x = 4.8 - 2 x x 
Shear force at D 

FD= 4.8 - 2 X 6 = 4.8 - 12 = - 7.2 KN 
Fs=-7.2KN 

Bending moment at A = Zero 

Bending moment at C = 4.8 x 3 = 14.4 KN-m 

Bending moment at M= = RA (3 + x) - w.x. f 

139 

Bending moment at D MD= 4.8 (3 + 6) - 2 x 6 x 6/2 == 7 .2 K.i"l'-m 
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B.M.at B=Ms=4.8(3+6+ l)-2x 6(6/2+1) 
= 4.8 x 10 - 2 x 6 x 4 = Zero 

For maximum B.M :- It occur in the portion CD . To locate the point 
of Max B.M., the differential ofB.M. i.e. shear force must be zero. · 

F =4.8- 2x.x= 0 
xx 

or x = 4.8/2 = 2.4 m from C 

or 5.4 m from A. 

Put this value of x in the general equation of BM. 

X 
Mx-x=RA(3+ x) - w.x. 2 
B.M at x = 2.4, = 4.8 (3 + 2.4) - 2 x (2.4) (2.4/2) . 

= 4.8 (5.4) - 2 X 2.4 X 1.2 

= 25.92- 5.76 = 20.16 KN-m. 
Hence maximum B.M. 20.16 KN-m will occur at 5.4 m from A. 

Uniformly Varying triangular Load : 

S.F. Diagram I 

I 

l~J 
B.M. Diagram 

~ Fig. 5.39 
Taking moments about A, 

I 

l l 
-Rex l +w. 2 . 3 = 0 

RB= wl/6 
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Taking moments about B, 
RA X l - W l/2 X 2/3 X l = 0 
RA= wl/3 

Consider a section x - x at distance x from B. 

Intensity of loading at x-x = w. 7 
x·x 

Shear force ~t x-x .= - RB_+ w .. 1 .2 · 
= - wl/6 + w;212l 

wl 
Shear force at B = - 6 

Shear force = - RB + w(~4 I l/4 x 2 
atx= - J 

4 
wl wl 13 

=- - + - "" - -wl 
6 32 96 

2 l 
Shear Force at = - RB+ w. (l/2) x 21 

x=i ~ p I 
= - 6+ W.4 X 2[ 

_ _ wl + wl _ ( - 4 + 3) wl = _ J___ wl 
- 6 8- 24 24 

Shear force at x = l 
F = - wl + w (1)2= _ wl + wl == _ wl + 3wl 
x!I 6 2l 6 2 6 

l 
=-wl=RA 

3 
B.M. atB= 0 

Bending moment at x-x, 
WX X X 

Mx-x = RB X X - -l-. 2 X 3 
W[ WX X X 

Mxx = 6.x- -l-. 2. 3 

141 
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wl 2 

- 12 

Bending moment at A when x = l 

Shearing Force And Bending Moment 

wl w l l wl 2 wl 3 
B.M.A - 6 . l - l . l . 2 . 3 - 6 - 61 - Zero 

For calculating the maximum B.M., the differential of B.M. i.e. shear 
force must be zero. 

F W.X X Q 
xx = - RB . x + -l- . 2 = 

wl wx2 
=-6.x+ 21= 0 

wx2 wl .x 
or 21= -6-

or 
2 p [ 

x = 3 or x= T3 or x = 0.577/ 

w[ X X X 
Mmax= 6 .x- w. 1.2 .3 

= ~l (0.577[) _ w (0.5l77[) (0.5;7l) (0.5;7[) 

wP .2 = 9']3 = 0.128wr 

Exrunp.i.e 5.20 
A simply supported beam AB of span 6 metres carries a triangular 

load which varies from zero!m at A to 10 KN!m at the end B. Draw the shear 
force and bending moment diagrams. State the value of max. B.M. 

10 
KNi,:..,:.L.L...U...£~L.!..<,~""=77:r:n'77nl 

S. F. Diagram 

20 
KN 
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Solution: 

1171//I I 

1 9.97 KN-m · 0), I 
/ t It / I L.c C / / /t / ,r LL/ t:c ~' 

B.M. Diagram 

Fig. 5.40 

Taking moments about B 

RA X 6 = 1/2 X l O X 6 X ~ 
RA= lOKN 

+RB= 30KN 

RB= 30 - 10 = 20 KN. 
Consider a section x - x at a distance x from A 

wx2 10- 10x2 
S.F. xx= RA - 2l = 2 x 6 

When x= 0 
S. FA= 10 KN 
S. F8 = 20 KN 

atx = 6 m, 
Shear force will change sign 

5 2 -
When 6x = 10 orx='-112 

x = 3.46 m form A. 
Bending moment at x- x 

5 3 
Mx-x= lOx- 6 x, Whenx= O,MA = 0 

When x = 6 , M8 = 0 

143 

5 3 
When x = 3.46 M max = lOx 3.46 - 6 (3.46) = 9.97 KN - m. 

A triangular load with a maximum at the centre : 
w/unit length. 
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B.M. Diagram 

Fig. 5.41 

AB is a freely supportd beam of span I. It supports a triangular load 
zero per metre run at ends increasing to w per metre run at the centre. 

. O+ w w 
Average rate of loadmg = - 2- = 2 

Total load on the span; = ; . l 
. ~ I ~ 

Reactmn at the supports RA = R8 = - x - = -
- 2 2 4 

Consider a section x - x at a distance x from B. 
Shear force at B = RB = wl/4 
Shear force at x -x, Fxx = - R8 + 112 . w (xll/2). x 

. wl w 2x2 
Shear force at mid span Fe= - 4 + 2 . - 1-

at x = Vz L _ 
wx wL w ( V:z )2 = - wl/4 + = -- = - - + _,..__---'-

l 4 

wl wt2 
=-4+41= 0 

Shear force at A =+ RA =wl/4 

Bending moment at xx, Mxx 

wlx wx3 

- 4 3l 

Bending moment is maximum at mid span, 
2 2 

M = wl ( V:z ) _ w ( V:z )3 = ~ !!.!.__ 
. C 4 31 8 24 

whenx = l/2 
wt2 

Mc= 12 

Example 5.21 
A simply supported beam of span 4 metres carries a uniformly varying 

load whose intensity varies from Zerolm at each end to 20 KN/mat mid span. 
Calculate the maximum values of shear force and bending moment and draw 
the S.F. and B.M. diagrams. 
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S.F. Diagram 

~'\, L - 26.6 KN-m ' ' 1 
. '1 

/ //II I/J.r///////.L \ 

Solution:-

B.M. Diagram 

Fig. 5.42 

l 
Total load on the beam = - x 4 x 20 = 40 KN. 

2 

I-Ience reacti"on at each RA =RB= 20 KN. 

Consider a section;,- x at a distance x from A, 

x 2wx 
Rate of loading at the Section = w - = --. 1/2 l 

R _ 2wx ~ 
S.F. x-x = A - l . 2 

S.F. at A = 20 - 2 x 20 x (0)2 
2 XL 

S .F. at C when x = 1/2 

20 
S .F c = 20 - 2x 4 x 

1\-fxx = 

- 20- 20 = 0 

= -R8 = -20KN 

wx3 
RA.x - 3!' 

BMA=O, BMB=O 
Max B.M. will occur at c when x =l/2 

20 i<N 

4 
= 20x -

2 

"O (4/, )2 
\ 

7
~ = 26.6 KN -m _x 

/45 
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TABLE No. 5.2 
! 

S.F. And B.M. Diagrams I 
Standa,d CTs orn,ams -- -- ---~~ I 

(j)R: E, L l/2 £, • @) 
W/2 --I W/2 

w /2 c::::;1 
[:;;<·:;~ W/2 

S.FD. 

B.MD. 
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· Overhanging Be.ams 
A uniformly disributed load w per unit length on an overhanging 

beam: 

S.F. Diagram 

B.M. [)iagram. 

Fig. 5.43 

w 
= :2 (!2 + 211) 

Shear Forces -
S. F. at C = 0 
S. F. to the left of A= wt, (- ve) 
S.F. to the right of B = wl1 (+ ve) 

. w (12 + 211) 
S.F. at mid span= RA- 2 

(!2 + 211) (12 + 211) = w--2-- -w--2-- = 0 

Bending moment at C = 0 

· t1 w(lj}2 
Bending moment at A = ;.... wl I x - = - --

2 2 
Bending moment at mid span; 

lz ( lz ) 1 ( lz ) = RAX 2 - w fi + 2 x. 2 l1 + 2 

~ \2 
w lz lz I = + - ([ + 21 ) X - - l + -) 2 2 I 2 I 2 

~-,-,-·.~-----'"- - ~-·, 

\' ---
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[ l2 \ l2 w [ [') )
2 

= +w l1 + 2ix 2- 2 li + 2 
wl2 - wl1 

=-8-- -2-

Point of Contraflexure 
From the bending moment diagram we can see that bending moment 

changes sign at ~wo points. Point of contraflexure is the point where B.M. 
changes sign from positive to negative or Vice-Versa. 
Example 5.22 

An ove·rhanging beam of span 30 metres is supported on two points A 
and B 20 metres apart. The beam supports a uiformly distributed load of 2 
KN per metre on the por;fiOn AB and three point loads of 5 KN, 8 KN and 5 
KN at C, E and Das slyfwn in the Figure. Draw the S. F. and B.M. diagrams 
and locate the points of contraflexure . 

Solution 

5KN 
I 

X 5KN 

5_.! 
'I 
I 

5 
51TT?'T.>?1f,:'.u:.LL.1.:Lu.~777777~;,,f--~"-"KN 

KN 

B.M. Diagram 

Fig. 5.44 \ 

As the loading is symmrtrical, support reactions RA and RB will be 
equal 

Taking moments about B. 

8x 10- 2x 20x 20 -+5x5=0 
2 
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20 RA - 125 - sq- 400 + 25 = 0 

20 RA = 125 + 480 - 25 = 580 

RA= 29 KN. 

Hence, RB= 29 KN. 

Shear Force, 

S. Fe= 5 KN. 

Shear Force just to the left of A = - 5 KN. 

Shear force just to the right of A = -5 + 29 = + 24 KN. 

Shear force at section x- x, Fxx = - 5 + 29 - w. xl 
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Shear force just to the left of B = - 5 + 29 - 8 - 2 x 20 = - 24 KN 

Shear force just to the right of B = - 5 + 29 - 8 - 40 + 29 = 5 KN 

Shear force at D = 5 KN 

Bending moment at C = Zero 

Bending moment at A = - 5 x 5 = - 25 KN-m 

Bending moment at x-x 

x2 
Mx-x =RA.X -5 (5 +x)- 2 2 

Bending moment at E when x =- 10m. 

ME= 29 X 10- 5 (5+ 10)-

Bending moment at B, When x = 20 

- 2 (l0)2 = 115 KN-m 
2 

.. '") . 

MB = 29 x 20 - 5 (5 + 20).,;::- t (20) 2 = - 25 KN-m 

Bending moment at D = Zero 

Point of 0::mtraflexure 

x2 
Mxx = RAX X - 5 (5 + X ) - 2 2 = 0 

= 29 X - 25 - 5 X - x2 = 0 

x2 - 24 X + 25 = 0 

or x= 1.1 m from A. 

Example 5.23 

A beam 8 metres long rests on two supports 2 metres from each end. 
It carries concentrated loads of 4 KN. at C, D & E. Draw the shear force 
and bending moment diagrams. 
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4KN 4KN 4KN 

clc==:==;::===_j=·=o==~==~E 

4 KN 

I A I 

I RA 6 KN ' Rs 6 KN 
I 

i--2 m----- 2 m ~ 2 m--r--- 2m~ 

I I I 

~ 

4 KN 

~=~:'.L£b,-:;, 

"' I 
I 

S,F Diagram 

B.M. Diagram 

Fig. 5.45 
Solution 

Taking moments about B 
RA x 4 - 4x 6 - 4x 2 + 4x 2 = 0 

RA= 6KN= RB 
Shear Force 
Shear Force at C = - 4 KN. 
Shear Force just to the left of A = - 4 KN. 
Shear Force just to the right of A = - 4 + 6 = 2 KN. 

Shear Force to the left of D = + 2 KN. 
Shear Force to the right of D = - 2 KN. 
Shear Force just to the left of B = - 2 KN. 

Shear Force just to the right of B = - 4 + 6 - 4 + 6 = + 4 KN. 

S .F. at E = 4 KN 

Bendi11g moments 
Bending moment at C = 0 
Bending moment at A = - 4 x 2 = - 8 KN - m 
Bending moment at D = - 4 x 4 + 6 x 2 = - 4 KN - m 
Bending moment at B = -4 x 6 + 6 x 4-4 x 2 = - 8 KN-m 

Bending moment at E = zero 
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Example 5.24 
An overhanging beam of span 6 metres rests on two supports 5 metres 

apart. It carries au. d. l. of 8 KN per metre .ruiz on the w,hoie span: Construct 
the B.M and shear force diagrams. Also calculate the maximum B.M. and 
the point of cdntraflexure. 
Solution 

19.2 
KNu::.,::.~='-LL,l::......:,',T'T77777,ju-..,;..,..,c..Q, 

S.F. Diagram 

B.M. Diagram 

Fig. 5.46. 
Takingmioments about B, , 

1 
RA. 5 - ·. 8 x5x $12 + 8 X 1 X 2 = 0 

5 RA - 100 +4 = 0 
RA= 91>'t = 19.2 KN . 

. Taking moments about A;: 

- R8x 5 + 8 x 5x 512- ( 8x l)(lh + 5) 
- ;lR8 + roo + 44 = o 
R 8 'f 1443 = 28.8 KN -

Shear Force ; 
Shear Force at A=+ 19.2 KN 

S. F. just on the left of B = + 19'.2.::..sxs = 19.2-40 = -20.8 KN. 
S. F. justto the right of B = + 8 x 1 = 8 KN 
S. F. at C = Z.Cro 
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S. F. at xx Fxx= RA-w.x= 19.2- 8xx 
Bending moment at A = zero 
Bending moment at x-x Mxx = RA.X - w.x. ¥2 
Bending moment at B where x = 5 

. 52 -
= 19.2x 5 - 8 x 2 = 96 -100 = - 4 KN-m. 

Bending moment .at C = 0 
Maximum Bending momyn~ occ:urs·where S. F. is zero. 
F xx = RA - w.i = 0 ·•· or 192 - 8.x = 0 or x = 2.4 m. 
Now put this value of x in the general equation for B.M. 

X 
M.xx = RA . x - w.x. 2 

When x = 2.4 m. 

BM max= 19.2 (2.4)- 8 (2.4)(\ 4) 

=:= 46.08 - 23.04 = 23.04 KN-m 
For point of contraflexure, equate the general equation of B.M., M:X 

to zero · 

Example 5.25 

wx2 
Mxx =RA .x-2 =0 

8x2 
= 19.2.x- 2 =0 

= •19. 2 X - 4 x2 = 0 

x= 19 · 2 = 4.8 m from A. 
4 ' 

A beam ABC of span 10 metres is hinged at A and supported at a point 
B at a distance of 8 m. from the hinge. The beam supports a concentrated 
load of 4 KN at C and a uniformly distributed load of 112 KN per metre from 
A to B. Draw the bending moment andshearforce diagrams and locate the 
point of contraflexure, if any -

4KN 

~fc . . . , B 

· . am 2m~ 

S.F. Diagram 
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B.M. Diagram 

Fig. 5.47 
Solution 

Taking moments about B, 
8 

+ RA . 8 - 0.5 X 8 X l + 4 X 2 = 0 

8RA=l6-8=8 
RA= l KN. 

Taking moments about A, 
-R13x 8 +0.5>'. 8x 812+ 4x 10=0 
- 8R13 + 16+40=0 
Rs= 56/8 = 7 KN. 

Shear Forces-

Shear Force at A = l KN 
Shear Force just on the left hand side of B = 1 - 0.5 x 8 

= - 3 KN. 

Shear Force just on the right hand side of B = 4 KN. 
Shear Force at x 0x 

Bending moments -

Bending moment at A = zero. 
X 

Bending moment at x-x .. Mx-x = RA . x - w.x.2 
Bending moment at B, Ms= lx 8 - 0.5 x 8x &/2 

= Sx l - 16 = - 8 KN - m. 
Maximum bending moment occurs where. 

Shear Force is zero, 
Fl-X = RA - w.x = 0 

1 
1-0.5.x = 0 or x = 0 ~ 5 = 2 m. 
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Now put this value of x in the general equation of Bending moment 
X 

MXX = RA. x-w.x. 2 
= l X 2 - 0.5 X 2X :V2 

=2-l=lKN-m 
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Point of contraflexure -
For point of contraflexure, equate the general equation of B.M. to zero 

wx2 
Mx-x= RA .x---2-=0 

= r .' x- o.sf~J= o 
.. ·.J-··o 4 2 0 = x~ 4 = or x-x = 

x ( 4 - x ) = 0 or. x = 4m From A. 

Example 5.26 " 
A beam of 4 metres span rests on supports 3 metres apart attd over 

hangs one metre from support A.. the beam carries a uniformly distributed 
load of 4 KN per metre over a length of 2 .metres as shown in the figure. A 
concentrated load of 9 KN acts at one metre from support B. Calculate the 
S.F. and B.M. and draw the diagrams. 

i 

9KN 
.. ..,4 KN/m 

S. F. Diagram 

B. ~· Diagram · 

Fig. 5.48 
Taking moments about B 

RAX 3 - 4 X 2 (3) - 9 X 1 = 0 

B 

\ or RA=l.LKNandR8=17-11=6KN 
\ 
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Shear Force 

Shear Force at C == 0 

Shear Force just to ieft of A = + 4 KN 

Shear Force just to right of A = + 4 -11 = - 7 KN 

Shear Force at D = + 4 --1 l + 4 = - 3 KN 
Shear Force just to the right of D = -- 3 KN 

Shear Foce just to the left of E = - 3 KN 

Shear force just to the right of E = -- 3+ 9 = + 6 KN 

Shear Force just at B = + 6 KN 

Bending moment 
BMc=O 

l 
B.MA = 4 x Jx-;:; 

L 

== - 2 KN- m 

B.MD=RAx 1-4x21f1= 11 x-l-8=3KN-m 
\ J 

r
"'l / \ 

B.ME=RAx2-4x 2 2+ l r= !Ix 2-16 
= 22'-' 16 = 6 K~ '-- m / 

B.M8 = RAX 3 - 4 X 2 (3) - 9 X 

I""'~ - 24 - 9 = 0 
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Exam pl(..?_·}]) . 
An overhanging beam 9 metres long is supported on two supports 4 

metres apart .. A uniformly distributed load of 4 KN per metre run is applied 
over the portion AB. Determine the magnitude of the load W applied at C. 
So that the reactions at A is zero. 

w 

~. · fc 
-77 A- -~ 

~-- 4 m-+--- 5 m--. -:..+ 

32 KN-m --~ ~~: 
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Solution 
Let a load w act at c, so that·reaction at A is zero 
Taking moments about B, 

Wx 5 - 4 X 4 X 4/2 = 0 
32 

W= 5 =6.4KN. 

Reaction at B = 4 x 4 + 6.4 
= 16 + 6.4 
= 22.4 KN. 

Shear Force, 
S. F. at A = Zero since the reaction at A is zero. 
Shear force just to the left of B = 4x 4 = 16 KN 
Shear force just to the right of B = 6.4 KN. 
Bending rn~m1ent at A = zero 

Bending moment at B = 4 x 4 x ~ =32 KN - m 

Bending moment at C = zero. 
Example 5.28 

A beam 8 metres long is hinged at A and freely supported at B and 
supports a.u.d. l of 10 KN/mover the entire length. A point load of 30 KN 
acts at C as shown in fig. 5.50 Draw the S.F. and B.M diagrams. 

30 KN 

30 KN 

S. F. Diagram 

~ 
B. M. Diagram 

Fi_g. s.so_ .1 
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Taking moments about A 
8 

R 8 x 5 = 30 X 8+ ( l OX 8) X l 
R - 560 - . 1 2 KN B- 5 -!, , 

:. RA = 10 x 8 + 30- 112 = - 2 KN 

Reaction of hinge at A will be - 2 KN J, (down word) 
S.FA = _ _J, 2 KN 

S.F.justtotheleftofB =- (2+10x5) =-52KN 

S.F just to the right of B = - 52+112 = 60 KN 

S.F at c = + 60 - 30 = + 30 KN. 
Bending moment at A = 0 

B.M at B = 2x 5 +lOx 5x % = 10 + 125 = 135 KN -m 

B.Mc= 2x 8 + (10 x 8) (~)-112 x 3 

= 16 + 320 - 336 = zero 
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Shea;;.,furce and bending moment diagrams are shown in fig 5.50 
Example~_}j.J 

A beam AB 10 metres long overhangs 2 metre to the left of support A 
and carries a uniformly varying load shown in fig 5.51 Draw the B.M. 
and S.F. diagrams. 

I 
I 

~6.45m---l 

S.F. Diagram 

I ' 
I 

B. M. Diagram 

\ Fig. 5.51 

15 KN/m 
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Solution 
Taking moments about;.B _ 

R x8=_!.Sx!OxJ_Q 
A 2 3 

750 
R ,'\ = 24 = 3 p5 KN 

R 8 =.75-31.25 = 43 .. 75 KN 
Shear ~rce · · ·· ' / , · , 

Consider a s.ection x-x ata distance x from C The intensity of load is 
w =l.5 x KN!m '· 

S. F between C and A when 'x < 2 

S.Fx-x =- 1.5 xx 1 =- 0.75 x2 

S.Fc= 0 
S.F at x = 1 m, =-0.75 KN 

;2 
S. F. at x = 2 m, = 0.75 (2) = - 3 KN 
S. F. p.etween A and B When x > 2 

2 S.F.xx = RA -- 0.75x 
. ··= 31.25'i._ 0:7f:l .,.----. 

2 ' ', 
S. F. at x = 2 m, = 31.25 -0.75 (2) = 31.25 - 3 = 28.'25. KN 

''s:'F. at\= 4rh, = 31.25 -0.75'(4)2 = '31.25 - 12 = 19.25 KN 
.. .. '., . 2 
S. F. will qe Zero When Fxx = 31.25 - 0.75 (x) = 0 

2 31 2-5 
or x = O.IS = 41.66 or x = 6.45from C 

- ; . 2 
S. F. atx= 10 m.or S. F. at B = 3L25-0.75 (10) = 31.25-75 

=-4,3.75KN 
Bending mome~t 

B. Mc= 0 
Bending moment between C and A when x 5 2 

Mxx = 0.75;2 x i = 0.25 x3 

. 3 
B.Mx = lm, 0.25 (1\ = .25 KN -m 
B. M x= 2m = 0.25(2)3 = 2 KN - m 

Bending moment between A and B When x >2 
X 

Mxx = RA (x-2) - w. 3 
2 X 

= RA (x-2) - (0.75x ) 3 
= 31.25 {x-2) - 0.25x3 

B.M. at x = 3 m, = 31.25 (3-2)- 0.25 (3)3 = 31.25- 6.75= 24.50KN-m 

at x = 6m, = 31.25 (6 -2)-0.25 (6)3 = 125 - 54 = 71KN - rri 

at x = 8m, = 31.25 (8-2) 0'.25 (8)3 = 1875-128 = 59.5 KN -m 
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at x = 9m, · = 31.25 (9-2)-0.25 (9)3 = 218. 7 5-182.25 =36.50 KN-m 
3 

at x = 10 m, = 31.25 (10-2)- .75 fl~) = 250- 250 = 0 

Bending moment will be maximum where shear force is Zero i.e. at x 
= 6.45m from C 

B. M. at 3 
X = 6.45m = 31.25 (6.45-2)- 0.25 (6.45) 

= 139.0625 - 67.0840 = 71.97 KN m 
S. F. andB.M. diagrams are show in fig. 5.51 

B!~~5Subjected Tolnc:lh~~~ L5}ad!!!K 
Example 5.30 

A beam AB 10 metres long is loaded as shown in fig. 5.52. Draw the 
S.F and B. M. diagrams. 

Solution. 

20 KN 

60° 

~ 
B. M. Diagram 

Fig; 5.52 

Resolving the forces vertically and honizontally, the total horizontal 
force on the beam is 

~ ' (:--:-
+ '20 Cos60° - 30 tos 45° + 20 Cos 60° 

l l l 
20 X 2 - 30 X ~ 2 + 20 X ) 
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~ + IO - 21.2 + IO= ~12KN 
f-" 

:. RAH= 1.2 KN 
Taking moments about B 

RA v x lO = 20 sin 60°X 7 + 30 sin 45"x 5 + 20 sin 60°x 3 
.-ff·. 1· -ff 

= 2~>,< TX:7 + qO X f2 X 5+ 20 X 2 X 3 c:: 279.25 . 

RAV =27.925KN ,, 
R8 ,:;/(fl:32 +21.:i'f 11.32}'::. 27.925 = 27:~25 KN: 

Sh,ear force. ' · 

S.FA = 27.925 KN. 
S. Fe.= 27.925 - 17.32 = 10.605 KN. 
S.FD = 10.625 ;-21.21 = - 10.625 KN 
S.FEo= 10.625 -'17.32 =- 27.925 KN. 
S.F8 = 27.925 

Bending moment' 
B. MA =0 
B.Mc = 27.925 X 3 

= 83.77KN-m 
B.MD = 27.925 x 5-lJ.32x 2 = 104.5 KN 
B.ME = 27.925 x 7 - 17.32 x 4- 2L2 x 2 = 83''.77 KN 
B.M8 =27.925x 10-17.32x 7-21.2x5-17.32x2=0 

Example 5.31 
A beam AB of span 25 metres is resting on fixed support at A and on 

rollers at B. It carries a. u.d. L.of 2KN/m over the portit!h AC and a Point 
load of 20KN at D. A load of 1 Q,KN inclined at 60° to. the beam is applied 
at E. Calculate support reactions and draw the S. F. and B.M. diagrams. 

2 KN/m 
20 KN 

S. F., Diagram 
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Solution 

~~, 
£ / / / / / . / // // // ( / / / / /"?b. 

B. M. Diagram 

Fig. 5.53 

Calculation for support reactions RAh. RAv and RF 

Since EH= 0 
-~ t---
R Ah - 1 U cos 60° = 0 

RAh = 5 KN 
Since L v = 0 

RAv + RB-- 2 X 10- 20- JO sin 0° = 0 
:. RAV+ RB= 40 + 10 x 0.866 = 48.66 KN. 

Taking moments about A 

-R 8 x 25 + 10 sin 60° x 18 + 20 x 11 + 2 x 10 x 1Q = 0 
5 

25 R8 =476 or R8 = 19.04 

RAV+ RB= 48.66 
RAv+ 19.04 = 48.66 or RAv= 29.62 KN 

Shear J<'orce 
S.F. at A= 29.62 KN. 
S.F. at C = 29.62 - 2 x 10 = 9.62KN 
S.F. atD = 29.62 - 2 x 10 - 20 = - 10.38KN. 

S.F. at E = 29.62 _.:_ 2 x 10 - 20 - 10 sin 60 
= 29.62 - 20 - 20 - 10 X 0.866 

=-19.04 KN. 
Bending moments -
B.M. at A = zero 
B.,W. at C = RA x 10-wx.Yl 

= 29.62 x 10 - 2x liJx l()lz 

= 296.2- 100 = 196.2 KN.m 

B.M. at D = 29.62 x 11 - 2 x 10 (1()/z+ 1) 

= 205.82 KN-m 
B.M. at E = 29.62 (18)-2 x 10 (1()/z + 1+ 7)-20 x 7 

= 133.28 KN-m 
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B.M. at B. = 29.62 -2x 10 (l(Yz +1 + 7 + 7- 20 (14)-lOx 0.866 x 7 
= Zero 

Cantilevers Subjected to couples 
Example 5.32 

A moments of 30 KN -mm is applied at the free e"f3d of a cantilever of 
span 3 meters. Draw the shear force and _bending moments Diagrams. 
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MJA ~) 
{r:in????????/??????03'-' KN 
~I ~ 

~71/7/7),"77/l ,777/7////a 

1/ I/ It t / I t t < t tC t I / I t l:t~ 

S.F.D. 

B.M.D. 
Fig. 5.54 

Reactions at the fixed end of the cantilever are shown. It consists of 
an anticlockwise moments of 30 KN.m and an upward reaction RA= 0, 
Hence shear force will be a straight line and B.M.between Band A will be 
30 KN-m 

Exampi1c 5.33 
Draw RM. diagramfvr the cantilever shown in fig. 5.55 

30KN-m 

() 

RM.D. 

Fig. 5.55 

Bending moments between B and D = 0 

B.M. between C and D = - 30 KN - m 

B.M. between C and A = - 30 + 20 

=-10 KN-m 

Example 5.34 :. .. 

8 
J 

A cantilever AB of'span 6 m~ters is fixed at A and loaded as shown 
in the figure. Determine th\react!'on at A and draw the shear force and 
bending momerits diagrams. · · 
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Solution 

33 
KN 

~-

.:) .. 

B.M.D. 

Total load on the cantilever, = 4 + 4 = 8 KN 
Ta1dng moments about A, 

4>< 6-='3-4x3+6 

4 KN 

= :_ 24- 3 -12 + 6. = 33 KN - m (clockwise) 
Balancing reacting moments at A=+ 33 KN-m anticlockwise 

J.6J 

Hence the reaction at A will consist of an upward force of 8KN and 
an anticlockwise reacting moment of 33 KN - m 

Shear Force from A to C = 8 KN 
· Shear Force from C to B = 4 KN 
Bending moments at B = Zero 
Bending moment just on the right hand side. of E 

= - 4 x 1.5 = - 6 KN-m 
Bending moment just on the left hand side of E I 

= - 6 -3 = -9 KN - m 

Bending moment at C = - 4 x 3 - 3 = - 15 KN - m 

Bending moment just on the right hand side of D, 
= -r 4 x 4.5 - 3 - 4 x 1.5 = - 27 KN - m 
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Bending moment just on the left hand side of D. 
=-27+6= -21KN-m 

Bending moments at A = - 4 x 6 - 3 - 4 x 3 +6 = - 33 KN-m 
Beam with a couple at the centre : 

The figure shows a beam AB of span L hinged at A and Band subjected 
to a couple M KN - m at mid span. 

!..- a 
jl""'"11----- Lm----,'1!,,! 

A~8 

B.M.D. 

Fig. 5.57 
Taking moments of all the forces about A 

-Rsx L +M= 0 
M 

RB = L KN (upwards) 

Taking moments about B 

RAX L+M=O 
M 

or RA =-L. (downwards) 

-M 
Shear Force at A= L. As there is no load between A & B, the S.F. 

between A & B is constant throughout and is equal to ~ MIL 

B.M. at A= 0 

B.M. just on the left hand side of C = -1.a 
B.M. just on the right hand side of C = + 1· b 

B.M. at B = 0 
Shear Force and Bending moment diagrams are shown in the figure. 



Shearing Force And Bending Momer.! 

Simply supported. beam susbjeded to a couple at one end. 

BMD 

Fig. 5.58 

Taking moments of all the forces about A, 

.-

M -RBX L = 0 

M 
Rs=

L 
(upwards) 

Taking moments of all forces about B, 

M +RAX L= 0 

M 
RA =-L (downward) 

/~ 

I 

Shear force in the beam is constant throughqut = T; 
Bending moments at any section x-x from A, 

M =-T.x 

Shear force and B.M. diagrams are shown in the figure. 

Example 5.35 
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Draw the shear force and bending moment diagrams for a beam of 
span 8 meters simply supported at A and B. The beam carries a uniformly 
distributed load 10 KN!mfromA to C. An anticlockwise couple of 120 KN
m ·is also acting at 2 meters from end B. 



Solution 

· 10 KN-m 

B. M. Diagram 
Fig. 5:59 

Taking moments of all Forces ahout A 
. 4 

RB X 8 = 120 - 10 X 4 X 2' 

RB= 120- 80 = 5 KN .i (downwards) 
8 

RA = 10 X 4 + 5 = 4.5 (upwards) 

Shear force between C and,B = + 5 KN 

Shear force at A= 45 KN 

From A to C shear force will change from 45 KN to 5 KN 
B.M. at.A . = Zero 

4 
B.M. at C = 45 X 4 - 10 X 4 X l 

= 180-80=+ lOOKN-m 

B.M. just on the right side ofD = - .5 x 2 = - 10 kN-m 

B.M. just on the left side of D = - 1 O+ f20 = + 110 KN-m 
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Example 5.36 
-Draw the shear force and bending moment diagrams for the beam 

shown in figure 5. 60 

A r;===.:::_:;:j, c=========:::;:i,. 
~1 m-.--+-. --3m--

t i 

B. M. Diagram 

Fig. 5.60 B.M.Diagram 
Solution 

The load on the bracket will produce an anticlockwise moment of 40 
x 0.25 = 10 KN at C and a ¥ertical load of 40 KN at C. 

Taking moments about B. 

RAX 4 = 40 X 3 + 10 = 130 
RA = 325 KN 
R8 = 40- 32.5 = 7.5 KN 
Shear force at A = 32.5 KN 

Shear force between A and C = 32.5KN 

Shear force between C and B will be 7.5 KN 

Bending moment at A = Zero 

Bending moment at C = 32.5 x r = 32.5 KN-m 

Bending moment at C will.drop from 32.5 KN-m to-(32.5 - 10 KN-m 
due to the couple) = 22.5 KN-m 
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Bending moment at B = 32.5 x 4 - 40 x 3 - 40 x 0.25 
= 130 .0 '- 120 - IO 
= Zero 

Example 5.37 
Draw the shear force and bending moment diagrams for the beam 

shown in figure 5.61 · · 

?KN 

7KN 

S.F Diagram 

v~ ' '- . 16 
KN~~~KN~ 

8. M. Diagram 

Fig. 5.61 

Solution 
Taking moments of all forces about B · 

RAX 8-12~2x 4 r1+4 )-6x 2+ 16 =0 

RA= 12+ 48; 12_-1} = ~6 = ?KN. 

Rs = 6 + 2 x 4 - 7 = 7 KN 

Shear force -
S. F. at A = + 7 KN. 
S. F. at x-x = 7 - 2 x x 
S. F. is zero at x = 3.5 m from A. 
S. F. at C = 7 - 4 x 2 = 1 KN 
S. F. between C and D 

=-lKN 
S. F. at D =- 1 - 6 = 7 KN 
S. F. atB = 7 KN. 
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Bending moment : -
B. M. at A = - 12 KN - m 

4 
B. M. at C = + 7x 4 - 12 - 2 X 4 X 2 = 0 

8. M. at D = 7 X 6 - 12-2 X 4 (42+ 2) 
= 42 - 12 - 32 = - 2 KN - m. 

B. M: at B = 7 x 8 - 2 x 4 (4/2+ 4) -12- 6 x 2 
=56:..:'.48-12-12=56-72 
= ...: 16 KN-m. 

SUMMARY 
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l. A beam remains in stable equilibrium under the following conditions. 
· (a) Algebraic sum of all forces in any direction is Zero 
(b) Algebraic sum of the moments of all forces about any point is zero. 

LH = 0, LV = 0 and LM = 0 
2. Shear force at. a section of a beam is the algebraic sum of all vertical 

forces to any one side of the sectiqn., 
3. Bending momentat a section of a beam i's the algebraic sum of the 

moments of all forces to one side of the Section. 
4. When external forces acting on the portion of a beam to the left of the 

section tend to pus11tth,at part up, the sh.ear forces is positive or when 
the external forces acting on the· portion of a beam to the right of the 
scfion tend tqpush th.at part down the shear forces is positive. 

5. Moments producing compression in the top fibre and tension in the 
bottom fibre are positive. 

6. Moments which try to bend the beam upwards and cause compression 
in the bottom and tension in the top fibres are taken negative 

7. B. M. at a section is positive if it is sagging and negative if it is hogging 
8. B. M. is maximum at the point where S.F. is zero or where it changes 

direction from + Ve to -Ve or Vice -Versa. 
9. The point of contra flexure or the point of inflexion is the point where 

B. M. Change its sign from positive to negative or Vice - Versa B.M. at 
the point of Contra flexure is zero. 

10 .. dF = w, and dM = F 
dx dx 

QUESTIONS 
l. How are beams classified? show by drav,'ing sketch various types of 

beams you know. 
2. Show by sketches no. of reactions offered by. 

(a) Simple or Roller support 
(b) Hinged support 
( c) Fixed support 
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3. Define the following. 

Shear force at a section of a beam 

(b) Bending moment at a section of a beam. 

4. Establish the relationship between S. F. and B. M. at a section of a beam. 

5. Define point of Contraflexure. What is the maximum value of B. M. at 
this point ? 

EXERCISES 
6. A cantilever of span 4 meters, supports concentrated loads of 5 KN at the free 

end and point loads of 4 KN and 3 KN at l metre and 2 metres from the fixed 
end. DrawtheS F. andB. M. diagrams. (S. F.max= 12 KN,Mmax=30KN-m) 

7. A cantilever 3 metre long carries a uniformly distributed load of 10 KN over a 
length of 2 metres from the fixed end A ahd a point load of l O KN at" the free 
end. Draw the S. F. & B. M. diagrams. (SF.A= 30 KN, BM A= 130 KN-m) 

8. A simply supported beam of span 4 metres carries two point load of 4 KN each 
at 1 metre and 3 metres from the left end support. It also carries a u.d. l. of 2 KN/m 
over a central length of 2 metres. Calculate the maximum shear force and 
bending moment and draw the S. F. & B. M. diagrams. 

S.F.max at A & B = 6 KN, (B.M. max at mid span= !4 KN-m) 
9. Draw the shear force and bending moment diagrams for the beam shown in 

figure 5.62. Calculate the Value of S.F. & B. M. at C, D & E. 

4 KN 3 KN/m 4 KN 4 \N 

~ 
Fig. 5.62 

S.F.A = B = 15 KN 
S.F.o = E = 8 KN 
S.F.c= 2 KN 
B.M.c = 25.5 KN-m 

BMo=BME 

= 13.5 KN-m 
l O Draw the shear force and bending moment diagrams and calculate the maximum 

and minimum value of S. F. and B. M. for the beam shown in figure 5. 63. 

10 KN-m 

Fig. 5.62 

(S.F. A= 5 KN , S.F.s = 10 KN 
BMmax = 5.77 KN-mat 1.268m from A) 
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l l. A timber beam of span 10 metres 120 mm x 120 mm section floats horizontally 
in sea water. Two equal weights sufficient to frnmerse it are placed on the beam 
2.8 m from each exid. If the weight of timber per cubic metre is 7 KN and that of 
water l O KN/. m", calculate the value of each load. Draw the S. F. and B. M. 
diagrams and state the value of max m B. M. (216 N and 169.3 N-m) 

J 2. /\. beam 8 metres long is simply supported at A and B 5 metres apart overhangs 
3 metres beyond support B. It carries a u.d.l. of 10 KN/m. over the entire 
and a concentrated load of 30 KN at the free end. Draw the shear force and 
bending moment diagrams. 

13. Draw the shear force and bending moment diagrams for the beam shown in 
figure-5.64 

[ 
l I .· I 

1,o: ---2 rn-/-. --""t'·-0.5--1 

Fig. 5,64 
14. A beam 9 metres long is supported at A and B 6 metres apart. It overhangs 3 

metres beyond support B and carries a uniformly varying load of 3KN/m as 
shown in figure 5.65. Draw the shear force and bending moment diagrams and 
state the values of max S.F. and B.M. 

I 

....---- 6 m-----3 m---,,, 

Max m SF.B 6.75 KN 
Max BM.B = l 1.25KN 

Fig. 5.65 

3 KN/m 

15. A simply supported ber,m AB of span 6 metres carries a concentrated load of 4 
KN at C, a distance of l metre from A. An anticlockwise couple of 8 KN is also 
acting at C. Draw the shear force and bending moment diagrams. 

16. A beam of span 6 metres is loaded as shown in figure 5.66. Draw the B.M. and 
S.F diagrams. 

4 KN-m B KN-m 

t ~ 0~ 
~2m ~ 2m-+1-<1 

- 1m 

Fig. 5.66 
17. A simply supported beam AB of span 5.5 metres carries a udl of 10 KN/mover 

a length of 4 metres from end A. It is subjected to a clockwise couple of 10 KN 
- mat a distance of l metre from end B. Construct the B.M. and S.F. diagrams. 
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18 Draw the S.F. and B.M. diagrams for the cantilever shown in figure 5.67 

(10 KN/m 
d . Ae:::: 

Fig. 5.67 

2 KN-m 

SB m--, 
19. A number of persons are standing in a queue on a narrow cantilever 4 metres 

long. Assuming that the average wf of a person is 600 N and he takes about 300 
mm space while standing, calculate the maximum S.F. and B.M. 

20. A shaft is fixed at one end on a lathe machine. While thread cutting was 
performed if the movement of the chisel put a load equivaient of 40 KN at the 
end. Calculate the S.F. and B.M. produced at the fixed end. TI1e length of the 
shaft is 4 metres. 

2L A chajja is loaded with triangular loading in such a manner that the intensity 
of loading is zero at the free end and 40 KN/m at the free fixed end. Construct 
the S.F. and B.M. if the span of the chajja is 2.5 m. 

22. Calculate the reactions in the case of a bean1 shown in fig. and construct the S.F. 
and B.M. diagrams. 

Total 8 KN 1.5 KN 

Fig.5.68 
RA =5.5KN, 

DOD 



Moment Of Inertia 

First Moment Of An Elemental Area 
The first moment of an 

elementary area about any axis in the 
plane of the area is the product of the 
area and the perpendicular distance 
between the elementary area and the 
axis. 

If Sa is the area of the small 
elemental area and x and y are the 
distances from OY and OX then. 

Ist moment about OX= 8a.y 

Ist moment about OY = oa.x. 

Second Moment Of An Elemental Area 

)( 

Fig. 6.1 

The second moment of an elementary area about any axis in the plane 
of the area is the product of the area and square of the perpendicular distance 
between the elementary area and the axis. This is also called ''MOMENT 
OF INERTIA" 

Refering to figure 6. 1 the moment of inertia about X - axis is ba /and 
Moment of inertia about y-axis = oa. i 
If the whole body has an area A which consists of such elementary 

areas like 8a, then the moment of inertia of the area A about any axis in the 
plane of the area is given by the summation of the second momenJ of area 
abouJ the same axis of all the elements of areas contained in the total 
area A. 

Moment of inertia about OX - axis 

!xx = L ba.l 
Moment of inertia about OY - axis 

lyy = 1: 8a.x2 

Units. . 
The units of moment of inertia are mm4 and m 4. 

Radius Of Gyration 
It is defined as the distance at wpich the area may be supposed to be 

concentrated to produce the same moment of inertia about the given axis. 

If the moment of inertia of area A · about the x-axis is denoted by f:,a 
then the radius of gyration is defined b1 ' 

173 
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r;:-:-
K _ "'.I lx--x 

xx- 'v A 

Similarly the radius of Gyration with respect to Y - axis is given by 

- - '\[!;;; 
K\'" - V I 

,Y h 

The Units of radius of gyration is mm. 
Theo:rem Of' ParnHd Axes 

The moment of inertia of an area about any axis is equal to the moment 
of inertia of the area about a pc:rallel axis 
passing through !he centroid of the area 
and the square of the perpendicular 
distance between the two axes. 

Refering to figure 6.2 Let fxc be 
the moment of inertia about an axis 
passing through the centroid G. Let y be 
its perpendicular 1istance from the axis 
OX which is.parallel to GX, then 

' 4 2 = 1xc+. y 

and fy-y == lye + 
Theorem Of Perpendicular Axes 

Moment of inertia of a plane area 
about an axis perpendicular to the area 

•v ~G r-x 
I r. 
I )\ GI \ XG 
I ) 1 I~: 

ol I 
)( 

Fig.6.2 

and passing through its centroid is equal to the sum of the moment of inertia 
of the area about two mutually perpendicular axes passing through the 
centroid and in the plane of tne area. 

fz2 = !xx+ IY·Y 
Polar Moment Of Inertia 

y 

X 

Fig. 6.3 

the letter Z, 

The moment of inertia of a plane area 
with respect to an axis perpendicular to the 
plane of the area is called polar moment of 
inertia 

lzz=lxx+lyy 

Section Modulus 
It is the property of a section and is 

determined by dividing moment of inertia 
or the second moment of the area about an 
axis passing through the centroid of the 
section by the distance of extreme fibre of 
the section from the axis. It is denoted by 

z = . MJ about centroidal axis 
Distance of extreme fibre of Section from the axis through the centroid. 

Unit of section modulus is mm3 
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Moment Of Inertia Of Standard Sections 
fh.Rectangular section : A rectangular section of width b and depth 

,J · d is shown in figure 6A. Consider a 

Fig. 6.4 

1~H0How rectangular section 
j BD3 bd3 

lxx=u-12 

DB3 db3 
1YY =12-12 

strip of width b and thickness dy at a 
distance y from the x-x axis · 

Area of the strip= b.dy. 
Second moment of area of this 

strip aboutx-.x-axis = b.dy.y2 
Total moment of inertia of all the 

strips about x-x axis 

f 4"2 , . bi 
lxx = 2 0 b.y"' . dy = 12 

Similarly moment 
about y-y axis 

db3 

Iyy = 12 

of inertia 

I . I IT 
I Ffib1 ~ +-+---+tt-Y y I I d ; I 
. I I I I 
I I * I I 
I : I J_ 
. I 
,.. 8--....; 

3. O:rcular section of radius R. Fig. 6.5 
":'"_,,£ 

y 

X 

Fig. 6.6 

Consider an elementary ring of radius r 
and thickness dr. 

Area of the ring = 2rc r.dr 
Polar moment of inertia of the ring 

about an axis passing through 0 

= 21t r . dr . r2 
Polar moment of inertia of the whole 

circle 
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j;- Hollow Circular Section. 

IC , 4 4 
!xx = f_n- = 4 ( R - r ) 

rr_ (D4 _ 
64 

Moment Of Inertia Of A Triangular Lamina 
f" Let ABC be a triangle of base b and height h 

Fig. 6.7 

A 1 ----r--

----x 

Fig. 6.8 

(j?' ;'foment of inertia abo,n axis 1- l through the vertex and parallel to the 
oase 

Consider an element of thickness dy at a distance y from the vertex A 

Width of the element b' = bi-

Area of the Element b = b', dy = h , y , dy 

Moment of inertia of the element about 

, dy 

:. Moment of inertia of the whole lamina about axis 1-1 

b (' 3 bh3 
11-1 = h JO y , dy = 4 

LJ,-7 Moment of inertia of the lamina about the centroidal axis parallel 

to the base, The centroial axis passes at a distance of i h from the vertex. 

(? ,2 
I- l 

=!1 ,+A.-3h)1 
--, 3 l , 

= b h + J_ b h i h2 b h3 
4 2 ' 9 =36 
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S. No. 

7. 

8. 

9. 

Centres Of Gravity Of Important Figures 
TABLE 6.1 

Figure Area/Volume 

A =rt/ 

A= a2 

A =ab 

A =ab 

A= bh 
2 

2 
A=~ (2 R/ = nR 

8 2 

2 
A= rt r 

. 4 

2 
A=-bh 

3 

Distance of C.G. 

or Centroid 

-
x=r 

x =a/2 

y= a/2 

x = b/2 
y = a/2 

y =a/2 

x = b/3 

y= h/3 

h 
y =-

3 

4R 
y =-

3n 

4r 
x=y =-

3n 

i=b/2 

y =h/2 
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S. No. 

10. 

11. 

12. 

13. 

14. 

Figure 

I§tf. b ii 

"'= -h X 
tw _ 

2s} 

Area/Volume 

l 
A =-bh 

2 

l 
A= - (a+ b) h 

2 

A= 2bt + (h - 2t) tw 

1 2 V=-nrh 
3 

2 3 V=-rcr 
3 

·. 

~ample6.1 _ 
/ Determine, for the plane area shown in fig 6. 9 

Moment of Inertia 

Distance of C.G. 

or Centroid 

x= 2 b 
8 

v = 2 h - 8 

- a2 + ab +b2 
X= 

3 (a+ b) 

- h (2a + b) 
Y =-x 
· 3 (a+b) 

- b 
x=2 

h 
y=2 

h 
y=-

4 

- 3r y=-
8 

i).) Moment of inertia about x -x axis and about the base AB· 
(J/) Moment of inertia about Y-Y axis and about side AD 

(c.)!Least radius of gyration 

(c[J Section modulus 
Solution 

(.a) Moment of inertia about 
J x-:-x axis 

bd3 

lxx=u 

= 60(100)3 = 5 x 106 mm4 
12 
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Moment of inertia about the base AB 

I 1ur= lxx + A/ , 
= 5 X 106 + (60) (100)' (50)2 
:::: 20 X 106 mrrt4 

~ oo mm .)P'.~oment,of inertia about ·y"" y axis 

X db3 10(X60)3 . 
--x 

1YY =u= 12 

= 18x)05mm4 

Moment ofinerti~·aboutside AD 

Fig.6.9 

', . 2 
!AD=lyy+Ax l .. 

'= 18~ 105 + (60) (100) (30)2 

== nx .105 mm:4i 

JcJRaoi.us 0fg5'ration ' . ' 

·· ·· Kx!t = :Y1xxfo A= "1:0: 1
1~~ = 28.8 miri' 

• Kyy .= "1 ffy/ A = "1 (~~~~ ~~; .. = l7.32 iiu~ -
Least ritd,ius of gyration = 17. 3 2 
(d).Section Modulus 

.· /' rxix 5 ?<; 1:06 105 3 ZL-----·-- mm xx.-: y - 50 -

~= ?j = 18xli;mm3 jQ x 1 fo3mm~ 

K1mple 6.2, · 
· . .Determine the moment of :inertia of the rectangular hollow section . 

shown in fig- 6;io about its centroifi.al axes: · 
Solution · · · 

Moment df inertia about x- axis 

B D3 . b.d3 

1xx= 12 -12 
- (80)(120)3 40 (40)3 

- 12 12 

= 1152 X 104 - 21.33 X 104 

= (1152- 21.33)x 104 mm4 
. 4 

=: 1130.67 mm 

viP db3 
fyy = fl- u 

T 
~---------1-
~aolm-:j 1 

Fig; 6.10 
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= 120 (80)3 40 ( 40)3 

12 12 
= 512 X 104 - 21.33 X 104 

= 490.67 X 104 min.4 Answer. 
Example .3 

D · e,:rnin.e the.moment of.inertia of the rectangular section in which 
a circul r holeof 20 mm dia has been drilled as shown in figure 6 .11 
Solution 

M.l of the given S:ection will 

y be 
M.l of the rectangular section 

- Ml of the circular hole 

~o~~,//-1· 
Fig. 6.11 

]xx = b1~3 - ;4 (D)4 

3 
= 80 (120) 2!_ (20)4 

12 64 
::: 1152 X 104- 785 X 104 

= 1151.215 x 104 mm4 

lyy = dlt3 - :4 (D)4 

. . ,, 3 
= 120 (80) . 2!_ (20)4 

12 64 
=512x 1040-.785x 104 

= 511.215 x 104 mm4 

Ex~_?J:p~e 6.4 
· · Determine the moment of inertia of the I-Section shown in fig 6.12 

Solution 
, Moment of inertia of the given section 

will be the sum of the M. J .. of the rectangular 
· section (1), (2) and (3) as shown in the 

figure. 
For rectang~far sections (1) and (3) 

lxxt ::: 1-xG + Ayi2 

3 
= 60 i~O) + 60 X 10 (105)2 

= 5000: + 6615000 
. 4 6 

= 6.620000 mm = 6.62 x 10 

.·. Iix1;= Ixx3= 6.62x 106 mm4 

For rectangular section (2)' 

ixx2·= Ixa 
y 

60mm 
Fig.6.12 
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3 
= 20 (200) = 13 3x 106 mm4 

12 . 

Moment of inertia of the given section about x-axis 

fxx = lxx1+ lxx3+ lxx2 

lxx = 6.62 X 106 + 6.62 X 106 + 13.3 X 106 26.54 x 106 mm4 

Moment of inertia about Y - axis 
Section ( 1) and (3) 

lyy1 = lyy3 =lc+Ax2 

_ db3 _ 10(60)3 O 
- 12 - 12 + 

= /8 x l04 mm4 

M.l of Section (2) about Y-axis 

= d b3 ;, 200 (20)3 +,O 
12 12 

' 

= jx 105 x 13.3 x 104 mm4 

Moment of inertia of the given section about Y-axis 

I yy = lyy1 + lyy2 + lyy3 
= 18 X 104 + 18 X 104 + 13.3 X 104 

= 49.3 x 104 mm4 Answer. 
Example 6.5 

1. Determine the moment of inertia of the Unsymmetrical I section 
shown in fig. 6.13 about its centroidal axes. 

1Y 
f--80mm-, 

I 

! 
... =J 

I 
I 

20mm 

2 x . x ••.. · 
,·-·.-·- I ·-~-. 

300mm 

109mm · · I '1 
Al I i.,,(D,,.-..,......-""11 20 l'M'I B 

""1,m---200 mm-----811; 
ly 

Fig.6.D 



182 Moment Of inertia 

Solution:-
Let y be the distance of X-axis from the axis of reference AB, 

_ a1Y1+azJi+G3Y3 
y = 

(a1 + az + a3) 

_ (200) (20) (10) + (260) (10) (150) + (80) (20) (290) 
- 4000 + 2600 + 1600 
= 109 mm from AB. 

Moment of inertia of the given section will be the sum of the M.I of 
the rectangular sections (l), (2) and (3) as shown in fig. 6.13 

For rectangular section ( 1) 

/xx = /xG + AYl 
2 

2 
= 200l~O) + (200) (20) (109 - 10 )2 

= 13.3 >; 104 + 3920.4 x 104 = 3933.7 x 104 mm4 

For the 2nd rectangular section 
. 2 

I XXz = lxG + A Yz 
3 

= lO <t;O) + (10) (260) (41)2 

= 1464.6 x 104 = 437.06 x !04 = 1901 x.104 mm4 

For the third section. 
. 2 

lxx3 = l xG + A.y3 
3 

= SO i~O) + (80) (20) c;J01"),2, 

= 5.33 x 104 + 5241.76 x 104 = 5247 x 104 mm4 

Moment of inertia of the whole section about X-axis 

lxx = lxxl + lxxz + lxx3 

= (3938.7 + 1901 +5247)x 104 = 11082 .52x 104 mm4 

The section is symmetrical about Y-axis 

Example 6.6 

Hence lyy = Iyy1 + lyy2 + lyy3 

_ 20 (200)3 260 (10)3 (20) (80)3 

- 12 + 12 + 12 

= 1333.3 X 104 + 2.16 X 104 + 85.5 X 104 

I YY = 1420.96x 104 mm4 

Determine the moment of inertia of an equal angle section IO mm x 
100mm x 12m about both the principal axes. 

- _ (100) (12) 6 + (88 X 12) (56) 
Y- (100x12)+(88x12) 
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Q 

I I y 

f-fL+ .. 
100mm~ 1 

;-t-:-r=2 -+.--. --. rx 
_ I 29.4 mm 

A • \GJ i1Tum Ls 
P l---1 oo mm ---i 
: ly 

Fig. 6.14 
= 7200+59136 = 66336 = 29 40 f AB 

l 200 + l 056 2256 · mm ram 

_ = ( ! 00) (l 2) (50) + (88) ( 12) (6) = 60000 + 66336 _ 29 40 f PQ 
x (l00xl2)+(88xl2) 2256 · rom 

Moment of inertia of the secrion about x - axis 

I xx = fxx 1 + fxx2 

fxx 1 = IOO/i2)3 +(]00)(12)(29.4-6/ 

= 14400 + 657072 = 671472 mm4 

fxx2 = 12i~S)3 +(88)(12)(56-29.4)2 

= 681472 + 747183.36 = 1428655.36 mm4 

/xx = 671472 + 1428655.36 = 2100127.36 mm4 

Moment of inertia about Y - axis 

fyy = fyy! + fyy2 

3 
fyy 1 

12 (/iO) +(!00)(12)(50-29.4)2 = 

= 106 +509232 = 1509232mm4 

88(12)3 2 
fyy2 = 12 + (88 X 12) (29.4 - 6) = 12672 

= 12672+578223.36 = 590895.36 
, /n = 1509232+590895.36 = 11100127.36 mm4 

Ex~mple ,6. 7 
Answer. 

An Unequal angle section 100 mm x 80 mm x JO mm stands with· JOO 
mm side vertical Fig. 6.15 Determine the moment of inertia about horizantal 
and vertical axis passing through the centroid of the _section. 
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Fig. 6.15 

al +a2 

_ 900 (55) + 800x 5 
- 900+ 800 

49500+ 4000 = 1700 
= 3 J .4 7 mm from AB 

x = 0 1x1 +a2x2 900x5+800x40 
a1 +a2 - 1700 

= 21.47 mm from AC 

lxx = lxx:1 + lxx2 
3 3 

= lO ~~O) + 900 (55 - 31.41)2 + 80 i~O) + 80 x 10 (31.47 - 5 )2 

= 60.75 X 104 + 49.82 X 104 + .66 X 104 + 56.05 X 104 

= 167.28 x 104 mm4 

3 3 
lyy= 90i~O) +900(21.47-5)2 + 10 ~~0) +800(40-21.47)2 

= 75 x 104 + 24.41x 104 + 42.66x 104 + 27.46 x 104 

= 195.28 x 104 mm4 Answer. 

Exuapie6.8 
Determine the momet of inertia of the T- Section shown in figure 6.16 

Solution 
al Y1 + ~Y2 _ (120 X 16)(128) + (120 X 16) (60) 

y a1+az - (120xl6)+(120xl6) 
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IY J 
120 mm----, l 

Fig. 6.16 

I yy = lyy1 + lyy2 

245760 + 115200 
= 3840 I 
= 94 mm from AB 

3 
lxxi = l20li6) + (120) (16) (34)2 

=.40960 + 2219520 
= 2260480 mm 4 

lxx2 = 16 \1;0)3 + (120) (16) (34)2 

= 2304000 + 2219520 
r 

= 4523520 

lxx = lxx1 + fxx2 

= 2260480 + 4523520 
= 6784000 
= 678.4 x 104 mm4 

16(120)3 120(16)3 

12 + 12 , 

= 2304000 + 40960 = 2344960 mm4 

= 234.496 x 104 mm4 Answer. 
Example 6.9 . . . 

Locate the position of centroidal axis and calculate the monient o/ 
inertia of the section shown irtfigure 6.17 

!Y 

100mm 

I ----1--i-x 
y=40.3mm 

---
x 

A · CD 2sm~ r B 
~"'9---125 mm~--, 

ly, 

Solution 
Fig;'6;17 

Let y be the vertical distance ofx.- axis from the axis of reference AB 

-: _ (;126)(25~(125)+(100){25) (7,5) -40 3 . 
) - (125) (25) + (100) (25) - · mm 
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y = 40.3 mm from AB. 

Moment of inertia of the section will be the summation of M.I of 
sections ( l) and (2) 

!xx= IXXJ + lxx2 
7 

Now lxxi = (-c + Ay-

= .\1 02s) (25t' + (!25) (25) (40.3 - 12.s/ 
J_ 

= 162760.42 +2415125 
= 2.58 x 106 mm4 

lu2 = c25) goo?+ (25) (100) (75 - 40.3)2 

= 2.08 X 106 + 3.0JX 106 

= 5.09 x 106 mm4 

lxx = /_0 , 1 + lxx2 = (2.58 + 5.09) X 106 = 7.67 106 mm4 

I yy = lyyl + l."Y2 

( 100) (25)3 (25) ( 125)3 
= 12 + 12 

= 4.19 x 106 mm4 

Example 6.10. 
Determine the moment of inertia about the centroidal axes of the 

section shown in fig. 6.18 I y 
--100 rnrn----"1 1 

@ 1 O rr-;;; -,-
T 

~ c-10 rnrn 

/ 200 rnrn 

------- ~ --- I 
rn-dT;~ ,--_ -x ~G)c---~ ~ -x - _J 

IY 

Fig. 6.18 

Moment of inertia of the sectional will be the sum of the M. I. of the 
rectangular sections l, 2 and 3: 
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fxx = fxx l + fxx2 + fxx 3 

For rectangular section (l) applying theorem of parallel axis. 
fxx 1 = lxG + Ay2 

= /2 (90) (10)3 + (90x 10) (95)2 

fxx2 = /2 (l 0) (200 3 

l 
fxx1 = lxG + Ay2 = 12 (90) (l0)3+ (90 X 10) (95)2 

fu = 2[ / 2 (90) ( l 0)3 + (90) ( 10) (95)2 }[ / 2 ( 10) (200)3] 

6 4 
lxx = 22.92 X 10 mm 

Iyy = 2 [ Cl 0~io)\ (90) (10) (50)2] + [/2 c200) o 0)3] 

= 5.72 x 106 mm4 Answer 
Example 6.11 

Determine the moment of inertia of the section shown in fig 6.19 
Solution 

!Y 

n I I 100mm 

I I 1201mm I 

X 
-<D---@---® 

~1 i 
20 I I 

LJ I 

--\ 20 \- ly 4 20 t-

Fig. 6.19 

Moment of inertia about X-X axis 
lxx = fxx 1 + lxx2 + lxx3 

_ 20( 120)3 100(20)3 , 20( 120)3 

- 12 + 12 T 12 

= 288 X 104 + 6.66X 104 + 288 X 104 

lxx = 582.66 X 104 mm4 

120 (20)3 2 /}"' = Iv}' = + 120 (20) (60) 
Yj , } 12 -

= 8 X 104 + 864 X 104 = 872 X 104 
3 

fn12= 20(~~Q) = 166.6 X 104 

187 · 
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/)')' = f)')'. + /}'V + fn 
j • 2 Cc 3 

= 872 X 104+ 166.6 X 104 + 872 X 104 

= 1910.6 x 104 mm4 

Example 6.12 
Locate the 'Centroidal axes of the channel section shown in figure 6.20 

and calculate the moment of inertia about the axis of X and axis of Y of the 
section 

jY 
I 

I 
25mm 25mm 

I 

I 200mm 
I 

x--t---i------j_____ _x T 

,_~'--~-.--~----.I~~..;._~--'--' 48i°7l8 _ 25 mm G) __j_ 

A-, y I 
-----300 mm-----....i 

Fig. 6.20 

Let y be the distance of x - axis from the axis of reference AB 
__ a1y1+ a2Y2+ a3 Y3 
Y - a1+a3+ a3 

[(2S0) (2?) (12.5)] + [(200) (25) (100)] + [ (200) (25) (100) J 
= [(250) (25) + 2(200) (25) ] 

'j s 41W7 mm from AB 
Tcul M. I. of the section will be summation of M. I. of rectangular 

M!Ctiom (1) + (2) + (3) as shown in figure 6.20 
For rectangular section (1) 
Applying theorem of parallel axis 

lu =l:cG+A_y2 

= <250ff523 + (250) (25) (48.07 -12.5) 2 

= 023.3 x 104 mm4 

For rectangular section 2 and 3 

l,a = 2 [l:cG + Ay2 J 

::: 2 [ (25)i~00)3 + (25)(200)(100 - 48.07)2] 

:::2(3001.46 X 104) 

> Total l;a of the channel section 
/;a::: 823.3 X 104 + 2 (3001.46 X 104) 

= 6825.52 x lif mm4 
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The section is symmetrical about Y-axis 

Hence IYY = IYY of (1) + lyy of (2) + IYY of (3) 
For rectangular Section (1) 

lyy = ly G + Ax2 

= C25)i~50)3 + O = 3255.2 x 104 mm4 

For rectangular sectio (2) and (3) 

I yy = 2 Uy G + A x2] 

= 2[ (200i J25)3 + 200 (25) (250 - 125)2] 

= 2 [26.04 X 10 4 + 9453. l X 104] 

= 18958.2 x 104 mm4 

Total lyy = 3255.2 x 104 + 18958.2 x 104 

= 22213.4 x 104 mm4 

Example 6.13 
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Determine the polar moment of inertia of a hollow circular section 
shown in fig 6.2 l 
Solution 

Moment of inertis of the hollow section about x-axis and y-axis 

X 

Fig. 6.21 

Example 6.14 

I _ j _ !£ (D4- A4) 
xx- yy- 64 -u 

= !£ (604 - 50 4) 
64 

= _!£ (1296 X 10 4 - 625 X 104) 
64 
1t 

= 64 (671 x 104) = 32.93 x 104mm4 

Polar moment of inertia of the given 
section 

lzz =[xx+ 1n 
= 32.93. X 104 + 32.93 X 104 

= 65.86 x 104 mm4 Answer 

Determine the moment of inertia of the section shown in fig 6.22 about 
the edge AB 
Solution 

Moment of inertia of the square about AB 

bd' JAB = lx0+ Ay2 = - + A,.2 
12 · 

IAB = 675 x 106 + 2025x 106 = 2700 x 106 mm4 

= 3m;32o0)3 + (300)(300)(150)2 
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o.--~~-.,--~~--.c-r 

I 
300mm 

A~Bl 
F:ig. 6.22 

Moment of inertia of the sernicircuiar portion which has been 
removed 

lAB = lxG + A y 2 

= { ~ (150)4 + ~ (150) 2 . [300- 2 ~ ~50r 
= 1242.52 X 104 + 176.625 X 102 (300- 31.83)2 
= 1242.52 X 104 + 127020.13 X 104 

= 128262.65 X 104 = 1282.65 X 106 

Moment of inertia of the given section about AB 
= 2700 X 106 - 1282 .65 X 106 

= 1417.35 x 106 mm4 Answer. 
Example 6.15 · 

- Determine th;;: moment of inertia of a sauare section 120 mm x 120 
mm aboµ.Utsdiagonalfrom which a hole of 50 mm has been punched out. 
Solution 

The square is made up of two triangles, so the moment of inertia of 

I 
l 
I 
I 

I 

y . 

X -------r---- / )( 
I . 

I 

'I 
Fig. 6.23 

the square is the sum of the M.I. of the triangles about the base 
bh3 _r---

lxx = 2. 12 where b = ·'V(120)2+ (120)2 = 169.7 mm 
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fxx 

120 
and h = T2 = 

2(169. 7)(84.86)3 

84.86 mm 

12 , 
lxx= l728.61x 10 4 rnm4 

Moment of inertia of the circular hole 

1 rr 4 . 4 4 
,xx = 64 (50) = 30.67 x 10 mm 

Moment of inertia of the given section about its diagonal is 
4 4 

lxx =ln=1728.6lx 10 -30.67xl0 
· · 4 4 

= 1697.94 x 10 mm Answer. 
Example 6.16 
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Determine the moment of inertia of the shaded portion about AB axis 
as shown in figure. 6.24 

A--

Fig. 6.24 

Solution 
Moment of inertia of the triangle about AB 

b h3 100 (120)3 

11 =Q = 12 
= 1440 x 104 mm4 

Moment of inertia of the semicircle of 100 mm diameter about AB 

11n:J4] 
12 =2l64 

= 245.43 X 

re 4 =-x (100) 
128 

4 4 10 mm 
Moment of inertia of the circular hole of 50 mm diameter 

71: 4 . 4 4 
! 3 = 64 (50) = 30.67 x 10 mm 

Moment of inertia of the composite section 
I =I +l,-l, 

= f44Cfx 104 +245.43x 104 -30.67x l04 

= 1654.76 x 104 mm4 
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Example 6.17 
. Locate the centroid of the shaded area shown in figure 6.25 and 

calculate the moment of inertia of the section about x-x and y-y axes. 

- - _ __,,,....., _,.,_ ..... ~..........,- ,._ '--'"-->-'-
x 

I" J 

Fig. 6.25 

Solution 
Let y be the distance. of x-axis from the axis of reference AB. 

a1 YI c-:.a2 Y2 
= 

(a1. -a2) 
y 

(250) (200)(100) - i (100)2 X (75) 
=-------------

(250){;()0)- ~ (100)2 
. 4 

5 X 106 - 58 X 106 4.42 X 106 
= = 104.86 mm 

5 X 104 - .785 X 104 - 4.215 X 104 

Y = 104.86mmftomAB 
Moment of inertia of the given section will be M.I. of rectangular 

section (1)-M.I. of the circle for rectangular portion (1) shown in the figure 

lxx; = ~xG + Ay2 
•. . 3 

= <250)1~200) + (250) (200) (104.86 - 100)2 

lxx1 = 16677 x 104:mm4 

lxx of the circular portion 

lxx2 = lxG + Ay2 

lxx. = : 4 (100)4 + ~ (100)2 (104.86 -75)2 

= 1195 X 104 
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Net I u of the given section 
. . [xx = /xx1 - lxx2 

= 16677 x 104 - 1195 x 104 = 15481 x 104 mm4 

Moment of inertia about Y - axis 

Example 6.18 

lyy = IYY of rectangle - IYY2 of circle 

I _ (I A. . 2) (200) (250)3 
YYI - YG + .X = 12 

= 26041 X 104 

7t 4 4 
fyy2 = 64 (100) = 490.8 X 10 

Zu = 1JY1 - IYY2 

= 26041 X 10 4 -490.8 X 10 4 

= 25540 x 10 4 mm 4 
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Determine the moment of inertia of the compound section shown in 
fig. 6.26 

y 

T 
I 

20mm 

300mm -----

1 ~ 
I ~ 20.0ymm~ : 

I• 300 mm -----I 

Fig.6.26 

Sofution 
200(300)3 

1JAm-ithe joisf= 12 
,. 

IX:( for the plates ._ 

· = 2 [ 3oogo)3] 

= 0.4 X 106 mm4 

±20mm 
+2omm 

±2omm 
~20mm 



Jf)4 

lxx for the compound section 

= 186.36x 106 + 0.4x 106 

= 186.76 X 106 mni4-. 

lyy for the joist 

300(200)3 

= 12 
lyy for the plates 

= 2[ 20 ?io)3
] 

= 90 x 106 mm4 

lyy for the compound section = (126.23 + 90) x 106 

lyy = 216.23 x 106 Answer 

Moment Of Inertia 

Example 6.19 
Determine the lxx and lyy of the compound section shown itz'figure 

6.27. Also calculate the leas,t radius of gyration. 

5mm 
I 5mm 

---'--120 mm -
X 

-
X 

Solution. 

I , 'f''s,• ', -',2 [6('}'x iz63 _ 55>< l H'r]- 508 , 'X04; , 4, xx o Joists - , 12 12 - x 1 mm 

I f I = [ 160 X 1353 _ 16Qx,U03] = 976 104 4 xx o p ates 12 12 , x mm 

lxx for the compound section= 1484 x 104 mm4 
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lyy of plates = 15 X 1603 S , :2 1 04 4 
12 = 1 x, mm 

lyy for Joists = 2[ 10 : 2
603 - l l~; 53 + l 150 X 5if] = 612X 104 mm 

lyy of the section= (512 + 612) x 104 = 1124 x 104 mm4 

Area of the compound section= (1200 + 1200 + 1150 + 1150) 

= 4700 mm2 

Least radius of gyration K = "1112 X 104 = '12400 
4700 

K = 48.98 mm. Answer. 

SUMMARY 
1. Moment of inertia of a body about an axis is the sum of the product of 

the areas of all the elements constituting the body and the square of their 
respective distances of centre cf gravity from the axis of reference 

, lx-x = I: oa.y2 and ly-y = I: 8a.x2 

2. Radius of gyration is the distance from the axis of rotation where the 
total mass or area of the body is supposed to be concentrated , so that 
its moment of inertia about the axis is the same as that with the actual 
distribution of mass. 

Kxx= ~ orKyy= ~ 
3. Theorem of parallel axes states that the moment of inertia of a plane 

figure about an axis is equal to its M.I. about a parallel axis through its 
C.G. plus the product of its area and the square of the perpendicular 
distance between the fwo axis 

2 
lx-x =lxa+Ay 
ly-y = lyG + Ax2 

4. Theorem of perpendicular axes states that the moment of inerti~ of a 
plane figure is equal to the sum of the M.I. of figure about the axes at 
right angles to each other in its plane and intersecting each other at the 
point where the perpendicular axis passes through it 

lzz= I~+ lyy 
5. Section modulus is defined as the moment of inertia divided by the 

distance of the extreme fibre of the section from the axis through the 
centroid of the section. 

, I 
Z=

y 
6. Polar moment of inertia of a plane area with respect to an axis 

perpendicular to the plane of the area is called polar moment of inertia 
lzz = lxx + lyy 
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Moment of inertia of standard sections. 
7. Rectangular section. 

b d3 . 
!xx= 12 about x - axis 

d b3 . 
lyy = 12 about y - axis 

8. Hollow rectangular section 

9. 

B D3 bd3 
lxx=u 12 

D B3 d b3 
1yy=12 12 

Circular section 

I -I -~D4 
xx - yy- 64 

10. Hollow circular section 

11. Triangle 

b h3 
lxx=36 

QUESTIONS 

Moment Of Inertia 

i..-b---1 

h~ x+-+-+x d 4-J_l_ 

-1-~h!: xJ_~--~3 

~ b ~ 

l. Explain what do you understand by the terms moment of inertia and 
radius of gyration ? 
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2. 

3. 

4. 

5. 

6. 

State the theorem of parallel axes. Derive an expression for the moment 
of inertia of a tringle about an axis passing through the C.G and parallel 
to the base. 
State the theorem of perpendicular axes. Derive an expression for the 
polar moment of inertia of a solid circular plate about an axis 
perpendicular to both the axis of X and Y. 
What is section modulus ? Derive expressions for the section modulus 
in the following cases 

(a) A square Section (b) Rectangular section ( c) Circular section 
EXERCISES 

Locate the centroidal axes and 
determine the moment of inertia about 
horizontal axis passing through the 
centroid of the section. fig 6.28 

Determine the moment of 
inertia of an equal angle 
section 1 oornmx 1 oornmx r 

100 mm 

160 mm 

,,,~ I 
====~~-1-5_0_m_m __ ---_-___ __,..,~/ T 

Fig. 6.28 

20mm 

20 mm about both the 
horizontal and vertical axis 
passing through the 
centroid. fig 6.29 l ____ ~!mm 

---100mm---~~[ T 

7. Calculate the moment of inertia of a 
T-section about both the vertical and 
horizontal axis. fig 6.30 

Fig. 6.29 

r--150 mm---j 

~T 
150mm 

50mm l 
Fig. 6.30 
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8. Determine the moment of 
inertia of the channel section 
about a horizontal axis passing 
through the centroid. fig 6.31 

Moment Of inertia 

T-r-}-2smm 
I I 

125 m
1

1 ml 1 
1 25mm l '--'"~--

25mm 

----- 300 mm -----

9. Determinethelxxandlyy ofthe 
compound section shown in 
figure. 6.32 T 
lxx = 13686.66 x 104 mm4 and I 
Iyy = 12836.66 x 104 mm4 

2_00 mm. 

l 10 

l 0. Determine the moement of 
inertia of the compound section along 
the axis ofX only passing through the 
centroid also find the radius of 
gyration. Fig 6.33 

11. A composite section is made of 300 
mm x 100 mm channel and two plates 
300 mmx 18.75mm. Determine the 
Ixx and Iyy through the centroidal 
axes given that Ixx for channel 
section = 2775 x 104 rnm4, Iyy = 
473.43 x 104 mm 4. Area of channel 
section = 5756 mm2 position of C.G 
from back of channel = 25. i mm. fig 
6.34 

ODO 

10 f,.- 100--, --., 
Fig. 6.32 

T 
12 mm 

12 mm 

300mm 

1 12 mm 

l---400 mm-~ 

Fig. 6.33 

~~--1------'-----,l---,..i.._ 1 t=:::::::i :::;i
1
---r;:=t==18Ts mm 

300 mm ! I I 
I / ~~o~~\ 

1...-;....-., I ..____.1 ---. 

i l--25.1 
.. 1 .. --- 300 mm-----i 

Fig. 6.34 



7 
Stresses In Beams 

I. BendingStre.sses 
When a freely supported bec,trn, i.s. subj~~ted t9, fo~c:es, ac:ting at. right 

angles to its horizontal ,axis! the bealll b~nd~ a'.s shown .in figur:e. 7 .1 (b) . 

(b) 

Fig. 7.1. 

• . Thest!forc:es ::,tc:tiQ~c?n.the beam produc:e tpe followihg effJc:ts 
. .v(. At any c:ross sect;on pf the bealll p~endjcular to the longitudinal 

a~endi~g .stress~s as wen. as shearing srress~s are tnduced. 
~ J'~fl beam undergoes defleoticm•perpendicular to its longitudinal 

axis. 
Pure Bending , . 

When a couple is eQplied to the ends, .of.a beam the. bending produc:ed 
is known as pure bending. O,!!!y bending stresses,ar~ setup .and no shearing 
stresses are induced. 
O~ry Bending Or Simple Bending 

When a number of vertic:al forc:es act on a beam not forming a couple, 
the bending action'is call~fl simple bending. Both bending stresses and 
shearing stresses are set up . at an)( cross-sectiort perpendicular to the 
longitudinal axis of.the beam... -
Bending Stresses 

When a beam bends the upper layers are shortened and lower layers 
are elongated. Since the u.i;112er layersare compressed, therefore co.mpres~_ive 
st~sses .are induced in these fibres: In thelom layers. which are elongated 
terig'le. stres~~' are Set up:· Because· bendihgJ adion produces these tensile 
arid \;ofupressiveLs'.tf-esses; tli~refore 'these,•stresses are Calleo tie'ncling 
sH-8ses!·. .i i.l:t', • • . •. ..• :; , . , : 

ke'otrlWsurrace:>''1 

· 'In hetween t~e uppdand lower layers there exists a layer in1fJ-ie behm 
'] ; , ' . ,< . ' ~" :j -

199 
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containing fibres which do not undergo any elongation or shortening. This 
surface is not subjected to either tension or commpression and remains un 
affected. It remains neutral. Hence this surface is known as neutral surface 
ofthe beam; 
Neutral axis 

The inter0 section of the neutral surface with any .Cross-section of the 
beam perpendicular to its longitudinal axis is called neutral axis. All fibxfs 
abQ.YecJ_PJ!J)eJ1g:<1_!~\i~_ar:e iQ_ ~()l!lJ?f~S_s_iQn and al_lfib,r~~ l:l_elowJh.e 11.euti:al 
axis are m a state of tension. 
Assumptions in theoryof simple bending 

The material of the beam is uniform throughout 

z.,·Each cross-section of the beam is symmetrical about the plane of 
• bending. 

·>J(The radius of curvature of the beam before bending is very large in 
· comparision to the transverse dimensions of the beam. 

The loads are applied to the beam in the plane of bending . 
... 5 ... Transverse cross-sections of the beam remain plane before and after 
,,_. bending. 
Ji'Young's modulus has the same value in compression and tension. 

,,".Jf Hook's law applies to each longitudinal layer. 
~:-The resultant pullor thrust across a transverse section of the beam 

v is zero. 
Bending Equation. 

When a beam is loaded it bends and bending stresses are induced. The 
relation ship between the bending moment, bending stress, radius of 
curvature inwhich the beam bends, modulus of elasticity and moment of 
inertia of the cross-section of the beam is given by the following equation, 
known as bending equation 

M a 
l y 

Proof of Equation 
Consider a portion of a uniform beam subjected to simple bending as 

shown in figure 7.2 (a). 

A I C 

Fig. 7.2 (a) 

Consider a portion of the beam between paralled sections AB and C 
D. Let y be the distance of the fibre FQ From the neutial surface. After 
bending the planes assume the position Ai B1 and cl D, and the fibreP Q 
elongates to P 1 Q 1 as shown in figure 7.2(b). Let El be the angle subtended 
at the intersection of A 1 B 1 and C I D 1. Let. R be the rndius of curvature of 
neutral surface. Then the radius of curvature of the fibre P 1 Q I will be (R + 
y) 
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Fig. 7,2,(b) 
. _ P1Q1 - PQ _ P1Q1 - KM_ P!Q1 _ l 

Stram - PQ - KM · - · KM 

Strain= (R+y)e.~l=R+y_ l=.I_ 
·· R(f ·.· R R 

S . av aE E.k tram= - = .L or - = - or a= - . y.::::; .y 
E R y R R 

Since E and Rare constants therefore a is directly proportional toy. 
Hence we can conclude that bending stresses at any layer varies directly with 
its distance from the neutral axis. It is zero at the neutra.l axis and maximum 
at the top most and bottom most fibres of the beam. The maximum stresses 
in the outermost fibres of the beam are called SKIN STRESS~ 
Position of Neutral Axis ~ 

The position of neutral axis and radius,of curvature can be determined 
from the condition. 

That the forces distributed over any given .cross-section of the beam 
must give rise to a resisting couple which balances the external couple M. 

axis. 
Consider a small elemental area dA at a distance y from the neutral 

-E 
Force on the elemental area= ax d A = R. y.dA 

:. Sum of the forces acting on th~ section of the beam= J ~. y. dA 

Now all such forces which are distributed over the cross-section, 
represent a system equivalent to a couple. Therefore, the resultant of these 
forces must be equal to Zero. 

N 

Fig. 7.2 (c) 
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or ! J y.dA = 0 

Which means that moment of the area of the cross-section about the 
neutral axis is Zero. Hence neutral axis passes through C. G: of the section. 

Moment of Resistance 

h f . E Moment oft e orce actmg on the elemental area about N.A =R .y . 

dA.y 
. E 
= - )'2· dA. R . . 

Adding all such. moments over the cross-section and equating the 
resultant moment to the applied moment 

M = f J. y2. dA 

or M = E:. f y2 dA R . 

Now f y2. dA = Moment of inertia of the cross section about the N. A 

E 
Hence M = R . I 

M E 
or 

I R 
We have already established that 

cr E 
y R 

M cr E • . -- -- -
.. I y R 

This equation is known as bending equation where 
M = Bending moment or Moment of resistance in N-mm 
I= Moment of inertia in mm 4. 

cr = Bending stress in MPa 
y = Maximum distance of the fil:ire from the N. A. in mm 
E = Modulus of elasticity i; N/mm2 

R = Radius of curvature in mm. 
Example 7.1 

A Cantilever 4 metres long is subjected to a uniformly distributed load 
of I KN per metre run over the entire span. The section of the Cantilever is 
40 mm wide and 60 mm deep. Determine the bending stresses produced. 
what point load may be placed at the free end to produc£J..he same bending 
stress. 
Solution 

Moment of inertia of the 
. bd3 

section I= 12 
(40) (60)3 

!xx= 12 

= 72 x 104 mm4 
Fig. 7.3 
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2 

Max. B.M will occur at the fixed end of the cantilever M = _i,v; 

2 
M = l X lOQO ( 4) = 8 x 103 N-m = 8 X 106 N-rnm 

2 . . 

Appling bending equation 
M CT M 
I y 

or CT= .y 

203 

Maximum stress will be induced at the extreme fibre from the neutral 
. . 60 30 axis 1.e. at y = 2 = mm 

8 X 106 
CT = • 4 X 30 = 333.3 MPa 

72x 10 
When the u.d.l.is replaced by a point load Wat the free end then stress 

produced is 333.3 MPa 
4 

Hence M = ~ . I= 333·3 x3~2 x lO = 8 x 106 N-mm 

Maxm. bending moment at the fixed end= W.l 
6 

W.l = 8 x 106 or W = 8 x 10 = 2 103 N = 2 KN Answer 
4xl000 X 

Example 7.2 
A cantilever of rectangular section is.4 metres long and subjected to 

a uniformly distributed load of 20 KN per metre run over the entire span. If 
the allowable bending stress is limited to 160 MP a determine the dimensions 
of the beam taking depth equal to twice the width. · 
Solution 

Maximum B.M. will occur at the fixed end 

wz2 20 (4)2 
Mm.ax=-=--= 160KN-m= 160x 106 N-mm 

2 Z 
Moment of inertia of the section 

bi d 
I= 12 and Ymax = 2 

:. Section modulus Z = f = bt 
Mr=crxZ 

Mr 160x 106 _ 106 3 
or Z = _ cr - 160 - mm 

bd2 . . 6 
- = 10 Now d = 2b 

6 
2 

or b (2b) = 106 or b3 = _§_ x 106 
6 4 

or b = 114.47 mm= 114.5 mm 
d= 229 mm Answer 



204 Stresses In Beams 

Example 7.3 
A mild steel cantilever 100mm wide and 40 mm deep is fixed at one 

end in a wall. The over hang length is 1.25 metres. If a clockwise rnrning 
moment 3000 N-m is applied atthe free end, determine the radius to which 
the cantilever will be bent. Also Calculate the vertical displacement of the 
free end. Take E = 200 KN!mm2 . 

Solution 
Moment of inertia of the Section 

. bcP 
l= 12 

1 = (100) (40)3 = 160 x 104 mm4 
12 3 

Applyi11g be.nding equation 
M <l E 
I y R 

R = El·= 200 x I03 x 160 x Ia4 mm 
or . M 3000 >< 103 x 3 

.:= 35.5 x,103 mm 
or R = 35.5 metres 

For displacement 
, . From the properti, of a circle we know ~hat the tangent. from a point is 
equal to the product of segments of any secant from that pomt. 

I 2 = o (2 R + o) ,. Neglecting o2 

12 (l.25)2 
we have o = 2R = 2 x 35_5 or o = 21.8 mm Answer 

Example 7.4 ... 
In a CantUefer two strain gauges are placed at a distance 65 mm and 

the stresses observed had a difference .of 2 7 MPa when .a concentrated load 
W acts to the right of the strain gauges. //the section modulus is 150 x 1()3 
mm3• determine the value of load \V; (ENGG. Services) 

Moment of resistance of the section 
Mr=axz · 

= 27 x 150 x 103 N - mm (i) 
Bending moment due to the applied 

.· toad W 

M =W x 65N-mm 
Equating (i) and (ii) we get 

(ii) 

Fig. 7.5 
W X 65 = 27 X 150 X 103 

or W = 27 x lSOx 1C>3 Newtons 
65 

= 62.30 KN 
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Example 7.5 
A beam of circular section 7 metres long is supported at C and 

attached to the foundation at A as shown in figure 7. 6. The beam supports 
a u.d.l. of 6 KN/mover theportion BC. If the permissible bending stress is 
250 MPaf{nd the diameter of the beam . 
. Solution 

wt2 
Max.RM. atC,M= 2 

2 
M = 6000(5) = 75000N-m 

2 
Section modulus 

I :i d4· 
z = y= 4-'2 .· 

z = :E._ d3 
32 

6KN/m 
.......:-~~cpcc.::::c:ic:,c:,,:::ic.~e 

I 
5 m :-;--, 

A 

Fig. 7.6 

Bending str~ss.aflow:~d= 250 MPa 
Now Mr= a.Z 

or 75000 x 103 = 250 x ; 2 (d)3 

.1= 75000x103x32 
or a- 250x 1t 

or d= 145,1 mm Answer 
Example7.6 

A. beam is loaded by a couple of magnitude 1.5 KN-mat each end as 
shown in figure 7.7. The beam is 30 mm wide and.60 mm deep. Determine 
the maximum compressive and tensile stresses produced and draw the stress 
diagram. · 
Solution 

60 - - _l: 
15 KN-f) 308mm 1. crc Ty 

. . . : mm _ •, 30 mm 

Fig. 7.7 

Maximum bending stress will occur at the extreme fibre of the section. 
Moment of inertia of the section about x - axis 

I - bt:f - (30) (60)3 54 x 104 mm4 
xx- 12 - 12 

6 . C 

Mr= 1.5 x 10 N - mm. 
Applying bending equation 

M CJ 
I - y 
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or 
1.5 X 1(1l X 30 

= 83.3 MPa 
54 X lif 

Stresses In Beams 

Maximum (;qmpressive stress qc = 83.3 MPa 

Maximu~ te~s1ile stress '!t · ; '~ 83.3 MPa. Ans'fe~ 
Example7.7 

A cantilever 3 metres long carries a uniformly distributed load of 1 · 
I§N, ,Qer nJ-.f!fre. rup over the whole span. The cross-section oj the f beam is 
rectangular 60 mm wide and 100 mm deep with a hole of 20 mm diameter 
at,t,be. cent,:e. Deten;nine themaximum ben,ding stress induced in the beam. 
Solution · · -

I 

A~ .. 3m B 

I 
o -$ T 
~ I y-50mm _l . j_ 

-ol. 60 frrm -~ 

Fig. 7.8 
. 2 

M . b d' .. wl ax1mum en mg moment= 2 
2 . 

M = l X lO~X (3) X 1000= 4.5 X 106 N-'mm 

Moment of1ine;rtia of the se.cti9n 
. :.. bd~_ ~, 4 
l - 12 \( 64(d) 

. 3 . 

= 60 \110)-'- ~(20)4= 499.21>< 1.04 mm4 

-y= lOO = 50mm .. 2 

Applying bending equation 
M cr 
I y 

6 
or O'= M.y = 4.5 x 10 x 50 = 45.07N/mm2 

1 499.2x 104 

Maximum bending stress will occur at the ,extreme fibre 
cr = 45.07 MPa Answer 

#Example 7.8 
1 

. • , 

A simp. ly supported beam_ 5 metres long ofT{Jlle.dsteel se'ttion carries 
two point loads 120 KN each at 300 mm from ends as shown '.nflgure 7.9 
(a). Determine the maximum bending stresses in tension and o mpression. 
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120 KN 120 KN 

,--1,f _______ __.i--.. . ; j_ Fiobamm--1 
. t.i.---sm ·~ T -j .. t-'300 mm 300 mm-i · 

.. · . ·1 · 10mm 10mm 

(J~ = 192.22 

lMPa 

Ye= 97.5 

150mm + Yt 72.5 

_1 
10mm 

J_ a1 
A 8 

T f+--150 mm--,. cr1 = 141.4 MPa 

Solution 
a1yi+ a2y2+ a3y3' 

y= 
a1+ a2+ a3 

Fig. 7.9 

= (150) (10) x 5 + (150 x 10) (85) + (100 x 10) (165) = 72.5 mm 
(150x 10)+ (150x 10)+ (lOOx 10) 

from AB 
3 3 

lxx= (lSO~?O) + (150)(10)(67.5)2+ (lO) g5o) + (10)(150)(12.5)2 

+ (l00~?0)3
! + (100) (10) (92.5)2 

lxx=l}Sx 104+683.43xl04+281.25 x 10~+ 23'.43x 104 +0.83 
X ·. 1Q4 + 855.62 X 104 

· = (1845.81) x 104 mm4 
Maximum bending moment will occur under each l9ad 

Mmax = 120 X 103 X 300 = 36 X 106 N -mm 

M m ·1 ; M 36 X 106 72 5 ax tens1 e stress cr1 = -1 x Yt = . x . 
1845.8lx 104 

= 141.4 MPa 
6 

Maxm Compressible1 .. strees O'c = Ml . Ye= 36 x 10 x 97.5 
1845.81 X 104 

= 192. 22 MPa Answer. 
Example 7.9 

A beam o/T - section is subjected to a Couple of 6000 N -111 at each 
end. Determine the maximum tensile and Compressive stresses induced in 

. the beam. The flange is 120 mm x 20 mm ahil the web in JOO mm x 20 mm 
as shown in figure 7.10 
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Cr=N=-m=====6::00=0 ~ - __ I~;,~Q mm 

3727 +t- i 
(a) mm c=:= ~ ··· · 20 mm 

A f+-so-, f.--50-+! P 
I 

Fig. 7.10 

Let y be the distance of the centroid of the section from the reference 
axis A - ;f as shown 

-
\' == 

-
y == 

120 X 20 X 10 + (100) (20)(70) 
( J 20) (20) + ( JOO) (JO) 

_ 24000+ 140000 _ 16400 _ 37 27 f A -A 
- 2400 + 2000 - 4400 - · mm rom 

or Yr == 37.27 mm and Ye== (120- 37.27) = 82.73 mm 
Now the moment of inertia of the section will be 

~ bd3 ~ 
rr:x == fgg + A/= l2 + Ay~ 

== 1~ (120) (20)3 + (120) (20) (37.27 - 10)2 

+ l~ (20) {100)3 + (JOO) (20) (70- 37.27)2 

lu == [8 x 104 + 12995.83x 102 + .166 x 107 + 2142.52 x 103] 

= (8 X 104 + 129.% X 104 + 166.6 X 104 + 214.25 X J04) 

= 518.87 x 104 mm4 

Now Appling bending equation 

M,. crt 
- == - Where M,. == M = 6000 x 

l Yr 

Myt 6000x la3 X 37.27 
on.Jr= l - 518.87x104 

= 43.09 MPa 

6000 X 103 X 82.73 
<Jc= ------· 

518.87x 104 

== 1.15 x 82.73 == 95.13 MPa 

103 N-mm 

l.15x 37.27 

Hence bending stress intension == 43.09 MPa 

Bending stress in Compression = 95 .13 MP a 
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Example 7.10 
A simply supported horizontal beam of span 4 metres has a section as 

shown in figure. 7.11 ( a) Calculate the maximum uniformly distributed load 
the beam can carry if the maximum permissible stress in tension is 50 MPa 
and 70 MPa in compressions. 

-j3of,.-140mm--j3or:- ac=70 

I 7:r mm iJ..6 mm 
1201mm ---- -t _ _ -f-

30 mm y 43.4 mm = 43.4 mm 
..._~~-L-~~~~~ ~ . 

0"1=50 

Fig. 7.11 
__ 2 (120 X 30) 60+ (140 X 30)15 _ 43 4 
y - 2 (120 x 30) + 140 x 30 - · mm 

I =1 /2 (30) (120)3+120x30 (16.6)2] +[ /2 (140) (30)3 + 140 x 30 (28.4)2] 

= 1434.5 x 1 04 mm4. 

Moment of resistance when a tensile stress of50 MPa develops in the 
bottom most fibre 

M =CJ.I= 50 X 1434.5 X lif = 165 26 105 N-
r Yt 43.4 . . x mm 

Moment of resistance wh.en compressive stress of 70 MPa develops 
in the top most fibre at 

Ye = 76.6 from the neutral axis 

M _ .!__ 70x 1434.5x 104 131 l"' N r - ax - - x lr -mm 
Ye 76.6 

Hence if both conditions are to be satisfied then bending ~oment must 
not exceed 131 x 105 N - mm 

wf- ', 
or 8 = 131 x 105 N...:.mm = 131 x 102 N-m 

2 ' 
or w = 131 x 1~ x 8 = 65.5 x 102 Nim 

(4) 

= 6.55 KN/m 
Example 7.11 

Answer 

A rectangular beam 100 mm wide 200 mm deep and 4 metres long is 
simply suppord at ends. lt Carries a u.d.L. of 5 KN per metre run over the 
entire span. If this load is removed and two loads W KN each are placed at 
one metre from each end, calculate the greatest value which may be 
assigned to W So that the maximum bending stress remains same as before. 
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~ A C .,a 
~i 

4m I 

Solution Fig. 7.12 (a) 

. bd2 (1 om (200)2 3 
Section modulus Z = 6 = '6 mm 

M o M ·11 'd wf2 5 (4)2 ax- ,c·. • w1 occur at m1 span = 8 = 8 

= 10 K..l\l'- m = 10 x 106 N -mm 
From b:nding equation Mr= cr x Z 

6 
a= Mr= 10 x 10 60 = lS MPa or 

Z ix106 4 
6 

Maximum stress produced is 15 MPa. When the u.d.l is replaced by 
two point roads W KN each, then Maximum B. M will be= W x 1 KN -m 

w w 
1m t 2m j 1m B 

l 
Fig. 7.12 (b) 

6 . 4 6 3 
Mm== W X 10 N -m, o = 15 MPa, Z = 6 x 10 mm 

or M = cr x Z = 15 x 4 6 
6 x 10 N -mm = 10 KN -m 

Equating Mr to Maximum B. M. we get W x 1 KN-m == 10 KN-m 
or W = 10 K...N 

Example 7.12 
A floor has to carry a load of 300 KN/sq. m. If the span of each joist 

which is 120 mm wide and 300 mm deep is 4 metres, calculate their spacing 
centre to centre. The maximum permissible bending stress is not to exceed 
120 MPa.(JMI) 
Solution 
Moment of inertia of each joist 

I = bd3 = (120)(300)3 

12 · 12 
= 270 x 106 mm4 

Section modulus Z = !_ 
y 

6 = 270x 10 =l 8 
150 . X 106 mm3 
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Moment of resistance Mr = cr x z 

= 120x l.8x 106 

= 216 x 106 N -mm 

= 216 X 103 N-m 
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Let the spacing of the joists be x metres then rate of loading on the 
joist q 

w = (300 x x x 1) KN/metre. 

. wt2 (300x) (4)2 3 
Maximum B. M = 8 = 8 ·- 600x KN -m = 600 x 10 x N-m 

Equating Mr to maximum bending moment. 
600 X 103x = 216 X 103 

216 103 
x = 600 x 103 = .360 metres 

Spacing of joists = 0.36 metre c/c = 360 mm Answer 
Example 7.13 

A rolled steel joist with simply supported endsspans JO metres. It is 
required to carry a load of 16 KN at its mid span. If the maximum fibre stress 
due to bending is not to exceed 120 MPa and the central deflection is not to 

exceed 1~0 of the span, find a suitable depth of the joist. Take E = 200 

KN/mm 
Solution 

· Central deflection = 3~0 x l 

wz3 l 
or O = 48El = 320 

or I= wz2 X 320 = 
48 X 200x 103 

l = 5.33 x 107 mm4 

Applying bending equation 

16x 103 x (lOx 103 )2 x 320 

48 X 200X 103 

~ = ~ , B.M. at mid span 
WL 16x 10 

- - - = 40KN-m - 4 - 4 

crx/ 120x5.33x107 
or y= -- = 

M 40x 106 

y = (30 x 5.33) = 160 mm 
depth of the joist = 320 mm Answer 

Example 7.14 
A ·cast iron pipe 540 mm internal diameter and 30 mm wall thicknesj 

is running full of water and suppo,;:ted over a length of 8 metres. Determine 
thJ maximum stress intensity i~ the metal if the density of cast iron is 72 KN! 
m and that of water JO KN!m, . (Patna Univ.) 
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Solution 
n ? ? 

Internal area of the ripe = 4 (540t = 229022.mm-

Cross-sectional area of the metal = ~ (6002 - 5402) 

= 53721.23 mm2 

Moment of inertia of the section = ~ ( 6004 - 5404 ) 

= 21.387 x 108 mm4 

. I 21.387xl08 6 3 
Sect!fm modules Z = y = · 300 = 7.129 x 10 mm 

Weigh~ of pipe per meter length 
53721 .23 3 = 2 x 1 x 72 x 10 = 3867.92 Newton 
(1000) 

Weight of water in the pipe of one meter length 
229022.l 3 = 2 x 1 x 10 x 10 = 2290.22 Newton 
(1000) 

Total weight of pipe when full of water 
= (3867.92 + 2290.22) = 6058.14 Nim 

. . wz2 
Maximum bendmg moment = 8 

2 
B.M. = 6058 ·t (S) = 484665.12 N-in. 

From bending equation we know 

Mr= cr.Z 

O" = Mr = 48465 .12 x 1 Cf = 6_798N/mm2 
z 7 .129 X 106 

Maximum stress intensity = 6.798 MPa Answer 

Flexural strength of a section 
The moment of resistance offered by a beam is called its flexura1 

strength or the strength of the beam. The strength of a beam section depends 

upon its section modulus Z = !__ . It is therefore necessary to know the value 
y 

of section modulus for various sections. 
Section modulus 

Z= 
M.O.I about the axis passing through C. G. of the section 

Maximum distance of the layer of the cross-section of the 
beam from the neutral axis 

l Z _::.. 
. -

y 
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Now from the bending equation 
M a -- -
I y 

I 
or M = a x - = a x Z 

y 
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From the above equation it is obvious that the moment of resistance 
of a beam is proportional to the section modulus since the stress will be same 
for a homogenous material of the beam section 
Section modulus for various sections 
(i) Rectangular section • 

Let b and d the width and depth of the section 
(a) When N. A. is parallel to the width of the section 

fx-x 
Z=

y 

1 3 1 
= 12bd X d/ ~ 

2 

bd2 
V - 6 

Y=1: 1 
x.l --·-· d-x 

..._____.l 
. Fig. 7.14 

(b) when N.A. is parallel to the depth of the section 
I 1--b 

z = .::r::r. 
X 

= _!_ db 3 X 
12 bf2 

db2 

- 6 

(ii) Square section 
LeL 'b 'be the side of the square. The section 

modulus will be same 

lx-x 
Z=-· = 

y 

(iii) Circular section 

Iy-y 

X 

Let 'd' be the diameter of a solid circular section 

Z = lx-x =b:1 
y X 

1t' ,4 1 1t J 
:::: 64 a X ~ = 32 lT 

y 
X = b/2 

Fig. 7.15 
. y 

x-rr -! l 
l-b~ 

Fig. 7.16 

x©; .. x ., i 
' . 

y 

Fig. 7.17 
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Example 7.15 
Three beams each of length L, same allowable bending stress a are 

subjected to equal bending moment M. 
If the cross-sections of the beams are a square, a rectangle with depth 

twice the width and a circle, determine the ratio of the weights of circular 
and rectangular beams with respect to the square beam. (Oxford univ.) 
Solution 

l--x--l I,..- b--1 

$ 1T r-lT 
I X I dLb 11 l 

(a) (b) (c) 

Fig. 7.18 

Since all the beams have the same allowable stress a and bending 
moment M hence the section modulus Z of all the 1'eams must be equal 

(a) Square section - Let the side of the square be x then 

Zi = bi = x3 
6 6 

(b) Rectangular section - Let the breadth of the beam be 'b' and 
depth= 2b 

Section modulus z = bd2 = b(2b)2 = I b3 
2 6 6 3 

(c) Circular section· 
Let 'd ' be the diameter of the circular section 
Section modulus 

I n I' n 3 
23 = y = 64 42 = 32 d 

Now Z=Z1 =Z 2 =Z 3 

· x3 2 3 n d 3 
Z=6 = 3 b = 32 

or d = 1.193 x and b = 0.6299 x 

/,The weights of the beams are proportional to their sectional areas 
/ - ,, . Wt of rectangular beam _ Area of rectangular beam 

Wt of square beam - Area of square beam 

b2 2 
- ~ - 2 (0.629<.k) - 0 7936 
-2- ·2 -. 

X- X 

Wt of circular beam Area of circular bea..m 
= Wt of square beam Area of square beam 
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TC 2 
4 (1.l93x) 

1.118 Answer = -x-2 - = __ x_2_ 

Example 7.16 
Calculate the dimensions of the strongest section that can be cut out 

of a circular log of wood 240 mm in diameter 
Solution 

The beam which offers maximum moment of 
resistance is considered as the strongest beam 

Mr=<JXZ 
So for beams of same material cr, being common 

z should be maximum for maximum strength 
Let b = breadth and d = depth of the section 
For maximum utility of the log of wood the 

corners of the section must lie on the circumference. 
Fig. 7.19 Hence t!-,e diagonal ofthe section must be equal to the 

diameter of the log of wood for least wastage 

b2 + d2 = (diameter/ = (240)2 
or d2 = (2402 - b 2) 

2 
Z = !_ = bd = !!_ (2402 - b2) 

· y 6 6 

For Z to be maximum bddz should be equal to zero dz = O 
db 

~- (576006b - b3) or 3b2 = 57600 

or b2 = 57600 = 19200 or b = 138.5 mm 
3 

d2 = ..J57600- 19200 = -,J3g400 

d= 195.5 mm Answer 

Example 1.17 
A beam of I - section is shown in figure 7.20 compare its flexural 

strength with 

( a) A rectangular section of the same area and same~ ratio 

( b) A solid circular section of the same area 
Solution 

The moment- of inertia of the I -
section 

BD3 bd' 
(a= 12 12 

80 (100)3 70 (80)3 

= 12 - 12 

:: 368.0 X 104 mm 4 

T-+3E, 80mm+J_10mm 
. T 
100mm 10mm 

l . ~10mm 

Fig. 7.2Q 
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. . I 368x 104 
Sect10n modulus Z1 = y = 50 

= 73.6 x 103 mrri3 
Area of the I - section 

A = 80 X 10 + 80 X 10 + 80 X 10 

= 2400 mm2 

(ii) For rectangular section 

or 
and 

b 80 d = 100 or b = . 8d 

Area= bx d = .8d x d = 2400 
.8d2 = 2400 or d = 54.77 m 

b = .8 x 54,77 = 43.81 mm 

Zz= bd2 = 43.Slx (54.77)2 

6 6 
= 21.90 x 103 mm3 

Circular section 

or 

Area = 2!. d2 = 2400 
4 

d = '1.-2-40_0_x_4_= 55.27 mm 
1t 
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1t3 1t 3. 3 3 
Z3 = 32 d = 32 (55.27) = 16.58 x 10 mm 

The ratio of flexural strength of the 
I, Rectangular and circular section Z~ : Z2 :Z3 

is 73.6 X 103 : 21.9 X 103 : 16.58 X 10 
4.43 : 1.32 : 1 

Hence I - section is 4.43 times stronger than the circular section and 
rectangular is 1.32 times stronger than the circular section 
Example 7.18 

Compare the weights of two equally strong beams of circular section 
made of the same material, one being of solid section and the other of hollow 
section with internal dia_meter being 40% of the external diameter. 

(Calcutta Univ.) 
Solution 

Since the beams a~e equally strong therefore moment of resistance of 
both the beams must be equal 

Mr (solid)= Mr (hollow) :. CTs X Zs= O"h X Zh 
or Z8 =Zh 

Section modulus of solid section 
1t 4 

I 64 ds 1t 3 
Zs = y = ~ = 32 ds 
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Section modulus of hollow section 

z ~ = ii(nh- 4) = *[(nh)-(4nhJ] 
h:= y D¥2 Dh 

1t (Dh-:- 0.0256Dh) 1t 3 
Zh = 32 Dh. =32 X 0.9744 Dh 

1t 3 
0. 9744Di zh 32 x 0.9744Dh 

= = 
d3 Zs 1t 3 

32. ds s 

D3 

O: ~744 = 1.0262 
h 

or 
d3 s 

As the material is same, the ratio of their weights 

Ws = Volume x densityof solid section 
Wh Volume x density of hollow section 

_ Area x lengthx density of solid section 
- Area x length x density of hollow section 

Area of solid section = ~ d; 

Area of hollow section = ~ [ ni- ( .4Dh)2 J = ~ x 0.84 ni 

ws 
'!!:.. d2 dz 4 s s - = = 2 wh 1t . 2 

4 x 0.84Dh 0.84Dh 

Since Dh == 1.008,6 ds 
2 

Ws ds 2 = 1.1? 
:. Wh = 0.84 (1.0086 ds) 
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\ 

Hence the weight of the solid beam is 1.17 times the weight of the 
hollow beam 
Flitched beams (Transformed section method) 

In order to increase the strength of timber beams steel plates are sand 
witched between two timber cross-sections. Such beams are called Flitched 
beams. Steel plates act as reinforcement for timuer. The timber and steel 
sections are bolted together very tightly so that there is no slip between the 
two materials. The stresses induced in the two materials are m the ratio of 
their modulii of elasticity. The moment of resistance of flitched beams can 
be calculated by convertmg the area of one material into an equivalent area 
in terms oftht other material. This method is known·as transformed section 
method. The important point to be kept in mind is that the distance \of various 

/ 
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sections of the transformed material with respect to the neutral axis should 
remain the same as in the original beam. Following examples will explain 
the transformed section method. 
Example 7.19 

A fiitched beam consists of a timber joist 150 mm x 250 mm 
strengthened by steel plates 10 mm x 200 mm on either side of the joist. If 
the stresses in steel and timber are not to exceed 120 MPa and 7 MPa, then 
find the moment of resistance of the flitched beam. Take m = 20 
Solution 

·The equivalent moment of inertia of the 
cross-section as if the entire beam is made of timber 

lxx = (It+ mis) 

I _ 150 (250)3 20 2 ( 10) (200)3 

xx - 12 + X 12 

= / 2 (234375 + 320000) x 104 mm4 

= 46197.9 x 104 mm4 

Moment of resistance of the flitched beam Fig. 7.21 

I 
M = cr x -r I }' 

- 7 46197·9 x 104 = 2587.08 x 104 N-mm 
- X 125 

Mr= 25.87 KN-m Answer. 
Example 7.20 

A fiitched beam consists of two wooden joists 100 mm x 200 mm with 
a steel plate 10 mm x 140 mm !jlaced symmetrically bepveen them. If l'.Jw = 
7 MPa and Es = 200 KN/mm and Ew = 10 KN/mm . Determine corre -
sponding stress in steel plate and the moment of resistance of the fiitched 
beam. 
Solution 

From the symmetry of the 
cross-section it can be said that the 
neutral axis lies at 100 mm from the top 
fibre of the wooden joist. 

Stress in top fibre of the joist at A 
=7MPa 

. . b B 70 7 Stress m tim er at = 100 x 

= 4.9 MPa 

. Es 200x 103 
Modular rat10 -E = 3 = 20 

w lOx 10 

--l l--10 mm 

Fig. 7.22 

Moment of inertia of the transformed cross-section about x - x 

Ixx = (Iw + ml5) 
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I = [ 2 (100) (200}5 + 20 (10) (l40)3J1. 
xx 12 · 12 

I = (l 3333. + 4573) x 104 = 17906 x !04 mm4 

y = 100 mm and cr = 7MPa 

Applying bending equation 
4 

M I 7 x 17906 x 10 ~ 125·3•·4·6 N. _ 
r = O"w X y = lOO . . mm 

= 125.346 N-m Answer. 
Example 7.21 
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A wooden beam 150 mm x 200 mm is reinforced at the bottmn by a 
steel plate 10 mm x 150 mm. ff the allowable stress in timber is B MP a, 
calculate the moment of resistance of the becim. 

Take m = 15. 
Solution 
_ (l50x 200)(110)+ m(10)(150)(5) 
y = (150) (200) + m (10)(150) 

Where m = 15 

y = 65 mm from AB 

Equivalent moment of inertia of the 
section 

= (It +m ls) 
3 

/xx (lSO\f OO) +(150) (200) 

3 
(45)2 + 15 (15i°J (10) +(150)(10) (60)2 

= 24193.13 x 104 mm4 

y maximum= (210 - 65) = 145 mm 1 

Stress in timber = aw = 8 MPa 

Moment of resistance = crx !.. 
y 

L1omm 

Fig. 7.23 

4 
Mr= 8 x 241~!;3 x 10 = 13.348 KN-m Answer 

Example 7.22 

145 mm 

I 
"' 

A wooden beam 150 mm x 250 mm is to be reinforced with two steel 
flitches JO mm x 150 mm in section. Compare the strengths of the beams for 
the following cases 

( i) Flitche s are attached to top and bottom 

( ii) Fl itches are a,tached symmetrically on the sides. 

Take m = 20 
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~10~ 

·TI 
150 250 mm 

~!-_L ,____...... ____ -
150 mm I- -J 150 mm 1.--

(a) (la) 

Fig. 7.24 
Solution 

Case (i) The equivaient moment of inertia as if the entire beam is made 
of timber 

II=lw+mls 3 [ . 3 ] 

f = (150) (250) + 20 x 2 _!_?0 (10) + (150) (10) (130)2 
I 12 12 

= 120981.25 x 104 mm4 
', 

Let crw be the stress in timber 

Moment of resistance1 
i 

4 

lO - 967.85 X 104 O'w 
. I CTwX 120981.25x 
M 1 = crw . y = . 125 

Mt= 967.85 x 104 crw 

Case (ii) The equivalent moment of inertia of the entire beam in terms 
of timber 

h = (/w+ m ls) 

f2 = 150~;50)3 + 20 X 2 { /2 (10) (150)3} 

= (19531.25 + 11250) x 104 = 30781.25 x 104 mm4 

Moment of resistance 
4 

M _ h -"'(30781.25 X 10) _ 246 25 l04 l'Tco 
, 2 - crw . y - 125 crco - . x v 

= 246.25 X 104 cr~ 

Thus the ratio of moment of resistance 
4 

M2 = 246.25 x 10 crco = 0_254 
M1 · 967.85 x 104crco 

Answer. 
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II. Shearing Stresses In Beams 

The stress caused by the shearing force at a section of a beam is called 
shear stress. When a beam is loaded not only bending stresses are induced 
but shearing stresses are also induced. The effect of vertical shearing stress 
on a beam is to cause siiding on a vertical section. The vertical shear stress 
is always accompanied by a horizontal shear stress. Shear stress varies along 
the depth of the section shearing stress is maximum at the neutrai axis and 
diminishes to zero at the outermost fibre on either side of the neutral axis. 
These stresses cause diagonal tension and compression inclined at 45 
degrees to the horizontal. The variation in intensity of vertical shearing 
force may be analysed as follows. 
Distribution of Shear Stress 

Consider an element of length dx cut from a beam as shown in figu, e 
7.25 

Let M be the bending moment at the left side of the element and 

MrA .9 M+dM 

Fig. 7.25 

M +dM be the bending moment at the right side of the element. If y 
is measured upwards from the neutral axis, then the bending stress at the left 
section A A 

M 
a= T .y 

Where I denotes the moment of inertia of the entire cross-section about 
the neutral axis. Similarly the bending stress at the right section B B is 

cr' = (M + dM) . y 
I 

Now consider the equilibrium of the shaded element ACDB. The force 
acting on an area dA of the face AC is the product of area and the stress. 

M 
CT. dA = T ·Y .dA. 

The sum of al! such forces over the left face AC 1s found by 
integration 

y, M f - -----1". f A 
.\"1 I . ( . 
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Similarly the sum of all normal forces over the right face BD is given 

vz 

t (M+dM)y dA 
I . 

Since these two integrals are unequal, some horizontal force must act 
on the shaded element to keep it in equilibrium. This horizontal shearing 
force acts on the lower face CD. 

Let 't be the shearing stress and b, be the width of the beam at the 
position where 't acts then horizontal shearing force along the face C D = 
't.b. dx . For equilibrium of the element ABCD, we have 

fy2 M.y fy2 (M + dM) _ 
L Fh = I . dA - . I . y . dA + 'tb . Jx - 0 

YI YI 

Solving we get 

,.. = .l_ dM JY2 
• b dx y .dA 

I YI 

The term ~~ represent the shear force Vat the section A-A 

vr 't = lb YI y. dA 

rY2 
The term J y. dA is the first moment of the shaded area about N-A. 

YI 
Let it be equal to Ay. 

't = V.,ti 
lb 

Where 't = Shear stress at any section 
A. y = Moment of area (between the section and extreme end on the 

same side of the neutral axis) about the N - A .. 

I = Moment of inertia about C.G. 

b = Width of the section. 

V = Total shear force at the section. 

Variation Of Shear Stress 
(1) Rectangular Section 

Consider a rectangular section of width b 
and depth d 

Area of the shaded portion= b . ( 1- y) 

Distance of C.O. of this area from N-A. 

- l(d 1 l(d ) y= 2 l2-y)+y=2 2+y 

Fig. 7.26 
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. (d 1 (d l 
Moment of this area about N-A = b ! 2- x 2 t2 + y) 

_ b td2 z) . A.y =z 4-y 

Intensity of Shear Stress ,: = V; .~ y 

<= ~.~ (~ ->')= ~ [~'-,,D 
The intensity of shear stress depends upon the variable y. It decreases 

with increase in the value of y and Vice - Versa 

d 
't at the top _when y = 2 

'tmin = ~ [~2 
- !2)=Zero 

1: at the neutral axis, when y = 0 

V(d2 
) Vd2 

'tmax = 21 4 - 0 = 81 
Vd2 Vd2 1 Vd2 l2 

'tmax = 81 = -8- X 1 3 = -8- X b d3 

12 bd 

3 V V 
=2bd=l.5.bd 

V 
'tmax = 1.5 . b d = 1.5 . Average shear stress 

The above equation shows that the variation in shear stress is parabolic 
and that in a rectangular section, maximum shear stress at mid depth is 1.5 
times the average shear stress. 
Circular Section 

A beam of solid circular section is shown in figure. 7 .27 Consider an 
elementary strip at a distance y from the N.A. 

Let b = breadth of the strip 
dy = thickness of the strip 

Area of the strip= b.dy 
Moment of area of the strip about N.A = b.dy.y 

Moment of the shaded area about the N.A = A.y 
~-=R 

A .. y,. = f'. b.y . dy --" (i) 
-, ' -y=y 

Now referring toJhe figure, width of the section 

b = 2-..JRi-y2 
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or b2 = 4 (R2 - i) 
Differentiating we get 

Fig. 7.27 

2b.db = 4 (- 2y) dy, Since R is constant 
= -8y.dy 

b 
or y .dy = - 4 , db 

. I 
Stresses In Beams 

The value_ of b will be zero at the top and maximum at Neutral axis 

:. When y = R b = o 
and when . y =Y b = b 

Therefore by substituting these values in equation (i) we get 

A - = ..!.f -Ii. db .y 4 b 

=H-n =± [ 0 -(-~] 

Now't= /b. A.y 

or 

, V b3 V b2 2 2 2 
= lb . 12 = 12/ put b = 4(R - y ) 

_ V 4 ( R2 2) _ V (R2 -y2) 
't - 12/ . - y - 3/ 

Shear stress has a parabolic variation and wiU be maximum when y 
. will be zero. 

VR2 
'trnax = 3/ · 

VR2 4 V 

= 3x ~R4 =31tR2 
4 

or 'trnax = 1.33 't average 

- I 
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Example 7.23 
A laminated timber beam 120 mm x 150 mm is made of three 50 mm 

x 120 mm wide planks glued to-gether as shown in figure 7.28, to resist 
longitudinal shear. The beam is simply supported over a span of 3 metres. 
If the allowable shear stress in the glued joint is 5 MP a, determine the safe 
point load the beam can carry at the centre. 

Solution. 
Let W be the point load at the centre. 

Then the maximum shear force = ; 

1 3 l 3 4 4 
INA= - bd = - x 120 (150) = 3375 x 10 mm . 12 12 

Shear stress at the glued 
Jomt where the permissible 
shear stress is 5 MPa 

A= Area of ABCD, the 
area above the glued joint C- D 

= 120 X 50 

= 6000 rnm2 

->, =(so+ 50J= 50.mm 
_ ~ 2 2 · Fig. 7.28 

Ay = 6000 X 50 
= 300 X 103 

V . A y _ W · 300 x 103 
'CN-A = -x 

l.b - 2. 3375x 104 x 120 

5 = W X 300 X 103 

2 3375 X 104 X 120 

or W= 5x2x3375xl04 x120=3375xl20xl0 
300x 103 300 

= 3375 x 4 = 13500 Newton 
= 135 KN 

Example. 7.24 
A simply supported steel beam of /-section l 20mmx 50mm with 5mm 

thick flanges and web carries a uniformly distributed load of 2KN/m on .a 
span of 16 metres. Determine the maximum intensity of shear stress on a 
vertical section 5 metres from one end. What is the ratio to the average shear 
intensity at the section ? 

Moment of inertia of the section 

1 3 _.lbd3 lxx= 12 BD 12 



226 Stresses In Beams 

-oi50mm~ 
'--, ,-,, f . ' 

(a) 

l .--'--1..i.,,,. 

1h mm, , Ti-· -t-2<?: 17 

Fig. 7.29 

= :2 (50)(120)3 - /2 (45)(110)3 

= 7200000 - 499125 
= 690.08 xlo4 mm4 

(b) 

Area of the section = 2(50) (5) + (110) x (5) 

= 500 + 550 = 1050 mm2 

. . wl 2 X 16 
Reactions RA = Rs = 2 = - 2- = 16 KN 

Shear force at 5 metres from A= RA - w.x 

(c) 

= 16 - 2 x 5 = 6 KN = 6000N 
Shear force . 

Average shear stress 'tav = A f C . 
rea o ross-sect10n 

6 X 103 
'tav = lOSO = 5.71 MPa 

V.A.J d "llb NA 'tmax = I b an .. w1 e at . 

A y = Moment of the area above N.A about N.A 
::: (50X 5) (55 + 2.5) + (5 X 55) (55/2) 
= (250 X 57.5) + (275 X 27.5) 
= 14375 + 7562.5 = 21937.5 mm2 

b is the width of the section at which shear stress is to be determined. 

_ 16 x 21937.5 X 1000 _ lO 71 MP 
'tmax - - . a 

690.08 X 104 X 5 

R . f'tmax_ 10.17 _ 1 78 at10 o - 5 71 - . 
'tav . 

Example 7.25 . 
A T-Section 200mm20mm is used as beam with 200mm side horizontal. 

The beam has to resist a shear force of 15 KN. Find the maximum intensity 
of shear stress across the section and sketch the distribution of shear stress 
across the section. 



Stresses ln Beams 

Solution 

f--200 mm.--j j_ 
"Tl f ... • . I I 

I N30mmI.' s!.· .. ··2omm 'f -1-- · --A 
120 mm 

J__ 
-i,.--20 mm 

. b 

Fig. 7.30 

- (200 X 20){10) + (100 X 20)(50 + 20), 
)Y = (200 X 20) + (100 X 20) 

4000+ 140,000 180,000 
= 

4000 + 2000 6000 
= 30mm. 
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.909 

[ 
3 1 [ 3 ·1 Ixx = 200l(~O) +(200x20) (30 - 10)2 J + (20) i ! OO) + ( l 00 X 20) ( 40)2 J 

= 660,0000 mm4 = 660 X 104mm4 

Area of the flange= 200 x 20 = 4000 mm2 

Distance of C.G from N.A = (30 - 10) = 20 mm, b = 200 mm 

VAy 
Intensity of shear stress ,: = l.b 

= 15 X 103 X (4000) (20) = 60 = 909 MP 
'taa 6600000 X 200 66 ~ a 

Shear stress at the junction of flange and Web 
200 

=.909 x 20 = 9.09 MPa 

Maximum shear stress will occur at the neutral axis 
Area of the section above the neutral axis 

= (200 X 20) + (20) (30 - 10) 
= 4000 + 400 

Ay = 4000 x 20 + 400 x 5 = 80,000 +2,000 = 82000 mm3 

·· V.Ay ljx 103 x82,000 
't ----

- f X b - 660 X 104 X 20 

= 15 x 82 = 9 318 MPa Answer. 66 X 2 . •• 

Example. 7.26 
A channel section as shown in the figure is used as a beam with 200 

mm base vertical. At a certain cross-section it has to rtsist a shea{forrn of 
120 KN. calculate the maximum intensity of shear stress induced i/1 the 
section and sketch the distribution of stress across the section. 
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73.25 

Fig. 7.31 

Solution 
1 3 1 , 3 

lxx = ii (60) (200) - ii (60 - 10) (200 - 40) 

= 40 x 106 - 17.06 x 106 = 22.94 x 106 mm4 

Intensity of shear stress at the top is Zero 

Stresses In Beams 

(ii) For intensity of shear stress in the flange at the junction of flange 
and Web 

A= 60 x 20 = 1200 mm2 

y= 90mm 
A j, = 1200 x QP = l08x 103 mm3 

V. Ay 120000 x 108 X 103 
,:;- ----

- J · b - 22.93 X 106 X 60 
= 9.4 MPa 

(iii) Intensity of shear stress in the web at the junction of web and the 
flange. 

. . B width offlano-e 
Shear stress will increase by -b h' k f 12 b 

t 1c ness o_ we 
9.4 X 60 

1:aa for Web= 10 = 56.4 MPa 

(iv) Intensity of shear stress at the neutral axis 
Area of the portion above the N.A 

A=(60x20)+ !Ox 80 
A y = 1200 X 90 + 800 X 40 

= 108000 + 32000 = 140 x 103 mm3 

b = 10 mm (thickness of web) 

_ V.A )' _ 120 X J 03 X 140 X l 03 
'txx -

- l.b 22.93 X 106 X I 0 
= 73.25 MPa Answer. 

Example 7.27 
· The section of a beam is a triangle with base b and height h, the ·base 

being placed horizantally. At a certain cross-section the shear force is V. 
h . 

Prove that the maximum intensity <>{ shear stress occ1trs at 2 and Ifs 



Stresses In Beams 229 

magnitude is i.~ and that the shear stress intensity at the neutral axis is 

8V 
3bh. 

Solution 
Let the intensity of shear stress 

maximum at a distance x from the top. 
V.Ay 

'tx = -u;--

i( XJ {2 . 2x) V x ~b°h . 3h- 3 'tx = 
bh b 

_ 12V ( _ ;~. h x 

- bh2 X h-) 
Fig. 7.32 

For maximum shear stress its derivative must be equal to zero 

d('tx) = 12V (1- 2x)= 0 or x = !!:_ 
dx bh2 h 2 

:. 'tmax= ::~(1-J;. f)= !: 

108 

8V 
Answer. - 3bh 

Example 7 .28 
Find the ratio of the maximum shear stress to the mean shear stress 

of the beam section shown in figure 7.33 
Solution ·. 

For analysing the shear stress 
distribution let us consider the two 
semi circular grooves as a hole of 
60 mm diameter. 

Moment of inertia of the 
section about x - x axis 

fxx = [ /2 (90) (90)3 - ; (60)4] 

= 483.14x I04 mm4 

Shear stress at the edges will 
be Zero 

I 
i,---90 mm ---I _J_ 

15mm 

~ T 
:\. 60 mm 

T 
90mm--

l 1 15mm. 

T· 
~ 

Fig. 7.33 
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Shear stress at B - B 
A = Area of the section above B - B = 90 x 15 = 1350 mm2 

y = Distance of its C.G from N. A= 30 + 7.5 = 37.5 mm and width 
h = 90 mm. 

Hence 'tB-B = V.A y = Vx 1350 x 37.5 = 1.16 x 104 V MPa. 
Ix b 483.14 x 104 x 90 

Intensity of shear stress at N.A 

Ay =[ (90 X 45) ( ~)-~ (30)2. 3\ X 30] = 73125 

b = (90 - 60) = 30 mm 
Vx Ay 

'tmax = 
l.b 

= __ v_x_7- 3-1-25-- = 5.045 x 10-4V MPa 
483.14X 104 X 30 

Shear Force 
1:mean = 

Area of Cross-section 

'tmax 

'tmean 
.;g( 

V V = -------= ------
[90 X 90 - ~ (60)2 ] 

8100- 2827.43 

V 
= 5272 .57 MPa 

-4 
= 5·045 :lO V = 5.045 X 5272.57 X 10-4 

5272.57 
= 2.66 Answer. 

Example 7.29 
A beam section as shown in fig. 7.34 is subjected to a shear force V. 

Find the ratio of the shear stresses at the section and at the neutral axis. The 

section is at a distance i from the neutral axis. (Roorkee Univ.) 

h 

lJ .· 
14__,_ B 

f~) 

I 
-I 

N-

,__ __ s--j 
(bl I 

Fig. 7.34 
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Solution: 
The horizontal diagonal is the N. A of the Section. Now consider a 

horizontal strip of thickness dy at a distance y from the top. 

Width ofthe strip = Z%B 

Distance of the strip from N. A = ( 1....: y) 
. Moment of the strip about N. A 

=(¥-dy)(~-y) 
= (By- 2~y2Jdy 

A-y = f hh ( _ 2By2) = [By2 _ 2By~rlvl. o By h dy 2 3h . 

(Bh2 Bh2) Bh2 

= 8-12 = 24 

N = I = 2 B (¥2 )3 Bh3, 
OW 12 48 

She~ stress at the section is 
V A-

1: = 1B· y 

Vx 48 Bh2 2V 
= x-=-

Bh3x b 24 hb 

2V.h V =--=-
.I h. 2yB yB 

At the given Section 

h h 3h 
y =-- -= -

2 8 \8 
V Vx 8 8V 

'tPQ = By = B x 3h = 3Bh 

A al . V V 
t neutr axis 'tN A = - = -.. By B.¥2 

2V 
-

Bh 

'tNA 2V I 8V 3 
'tPQ = B.h 3B.h = 4 

And ~~~ = 1.33 Answer. 

/ 
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SUMMARY 
1. Bending equation is 

M O' E 
I y R 

Where M = Moment of resistance which i~ equal to th.:: applied 
bending moment on the beam 

2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

I = Moment of inertia of the beam sec.ion about N . A. 

O' = Bending stress at a distance y from the neutral axis. 

E = Modulus of elasticity of beam material 

R = Radius of curvature of the beam 

Neutral axis is the axis accross a section which divides the section into 
tension Zone and compression Zone. 
Neutral axis passes through the centroid of the section under simple 
bending. 
Neutral axis remains unaffected and the stress at N. A. is Zero. 
Maximum bending stresses are induced in the extreme fibres of the 
section. This stress is called skin stress. · 
Moment of resistance is the sum of moments due to internal stresses 
and is numerically equal to. the applied moment. 

Section modulus Z = -f; 
The flexural strength of a section means the moment of resistance 
offered by it. 
In Composite section, the total moment of resistance is the sum of the 
moments of resistance of individual sections. 

Mr =M1+M2 
Shear stress is the stress caused by the shear force at a section of a beam. 

V -
't= lb.Ay 

In case of rectangular section. 

't = .£ (ti- - i) 
2[ 4 

't max = 1.5 't A warage .. 
13. For circular section 

't = V (K - y2 ) 
3/ 

'tmax= 1.33 't Average 
14. In T ·- section, maximum shear stress will occur at neutral axis 
15. Maximum shear stress at the top of a rectangular section is zero. 
16. Transverse shear is always accompanied by a complementary shear. 

'I \ 
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QUESTIONS 
(1) How bending stresses are induced in a beam? Explain. What is the 

nature of stress in top most fibre and bottom most fibre of a beam 
subjected to simple bending? 

(2) State the assumptions made in the theory of simply bending; 
(3) What is the difference between neutral axis and neutral surface of a 

beam? Why should the bending stress be zero at the neutral axis 
(4) Prove the bending equation for beams subjected to pure bending. 
(5) What is section modulus ? How it is related to the flexural strength of 

a section. 
(6) What is shear stress ? Explain. 
(7) Derive an expression for shear stress 1: at any point in the transverse 

section of a beam subjected to a shear force V. 
(8) Prove that in case of rectangular section, the maximum shear stress is 

1.5 times the average shear stress. 
EXERCISES 

(9) The moment of inertia of a beam section 300 mm deep is 60 x 106 mm 4. 

Determine the largest simply supported span over which a beam of this sectiori 
can be used for carrying a u.d. l. of 5 KN per metre run. The maximum fibre stre:, s 
is limited to 80 MPa. Also calculate the value of a concentrated load W that th,. 
beam can carry at its centre on a span of 8 metres . 

' (l =7.l metres, W= 16KN) 
'(10) A simply supported beam of rolled steel section 

carries two point loads 100 KN each at 250 mm from 
the supports. Determine the maximum bending 
stresses. (Ge= GE= 161.6 MPa) 

r100 mm-1-1 
c::;.? 10mm 

-.j r,so: 10 mm 

db 
"""""1 100 mm 14--

Fig. 7.35 

r-100 mm-J _L 
20mm 

T T 

(11) A T - section beam having flange! l 00 mm x 
20 mm and web 20 x 100 mm is simply 
supported over a spanof6-metres. It carries au.d.l 
of 300 Nim ruir1nchi"ding its own weight over the 
entire span together with a load of 250 Nat mid 
span. Calculate the maximum tensile and 
Compression stresses induced in the beam. 

100mm 

(Gt= 2.5.87 MPa and Ge= 12.93 MPa) l 
-4 f-2omm 

Fig. 7.36 
(12) A horizontal girder 10 metres long rests on supports at ends. Form one of its 

ends. A up to the centre it carries a load of 15 Nim run and from the centre to 
the end B a load of 30 Nim. Determine the maximum bending moment acting 
on the beam. If the depth of the beam is 400 mm, find the moment of inertia of 
the beam so that the maximum stress produced may not exceed 140 MPa. 
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(Mmax = 227.4! N -m, l = 32.488 X mm4) 

(13) A timber beam 160 mm wide and 300 mm deep is simply supported on a span 
of 5 metres. It carries a u.d.l. of 3000 N per metre run over the whole span and 
three equal loads W Newton each placed at mid span and quarter span points. If 
the stress in timber is not to exceed 8 MPa, determine the maximum value of W. 
(3970 Newtons) 

(14) A simply supported timber beam of 4 metres span carries a u.d.l. of 200 N/m run 
over its entire span and a point load of 500 N at its mid span. Calculate the 
dimensions of beam if depth is 2 times the breadth working bending stress in 
timber is not to exceed 15 MPa. (b = 121.6 mm, d = 243.2 mm 

(15) A beam is of square section of side 100 mm. If the permissible bending stress 
is 60 MPa find the moment of resistance when the beam is placed such that (a) 
two sides are horizontal (b) one diagonal is vertical. Also determine the ratio of 
the flexural strengths of the section in the two positions. 

M1 
(Mi = !OKN-m, M2 = 7.07KN--m, Mz = 1.414) 

(16) A flitched beam consists of two T 
timber sections l 00 mmx 150 mm 
each strengthened by a steel plate 30 
mmx l 00 mm as shown in the figure. 
It the beam is simply supported over 150 mm 

uniformly distributed load the beam 
can carry if the stress in timber is not 

a span of 8 metres, determine the l '\. 
to exceed 7.5 MPa. Obtain the ....__._......__ ....... _,__,__...___,;...., 
corresponding stress in steel also. 1 ......i.... _J 
Take modular ratio m = 20. r 100 mm I 100 mm 1 

(w = 7.344 KN/m, as= 100 MPa) Fig. 7.37 
(17) A wooden beam l 60 mm wide and 300 mm deep is reinforced with two steel 

plates 160 mm wide and l O mm deep one each at the top and bottom of the 
section. Calculate the moment of resistance of composite sectic;m if the working 
bending stress in timber is not to exceed lO MPa. (Take Es= 200 KN/mm2, Ew 
= 10 KN/mm2 (M .R 126.542 KN -m) 

(18) A steel beam of rectangular section 120 mm w~de and 200 mm deep is subjected 
to a shear force of 240 KN. Determine the maximum shear stress at the neutral 
axis and sketch the shear distribution diagram. (tmax = 9 MPa Answer) 

( 19) A rectangular beam of span 8 metres is simply supported at.ends. The beam has 
a section 60 mm x 120 mm deep. Determine the uniformly distributed load per 
metre run the be11m can support if the maximum permissible shear stress is not 
to exceed 4 MPa. (w = 4.8 KN/m I Answer) 

(20) A simply supported beam of span 4 metres carries , 
a uniformly distributed load of 9 KN/m over its ~lOO mm'4 _L 
entire span. The cross section of the beam is a T ~ 20 mm 
- section with flange and web both 100 mm x 20 - 8 35 ~ 
mm. Determine the average shear stress and the -- B 
maximum shear stress. Also calculate the 100 mm 8 intensity of shear stress at sections A -A and B - I A-_ _

20 
m"'m 

Bas shown in the figure. (tav= 4.50 MPa, 'tmax= ~ 
10.8 MPa tA-A = 4.725 MPa, '!B-B= 10.41 MPa) -I f-20 mm 
Fig. 7.38 

Fig. 7.38 
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(21) A beam of span 3 metres supports a uniformly distributed load w Nim. The beam 
has an I - section 80 mm deep and 60 mm wide. The flanges are 5 mm thick and 
the web is 3.5 mm thick. If the shear stress is limited to 5 MPa. determine the 
value of w. Ans. w = 8.22 KN/m. 

(22) A beam of square section is placed horizontally with one diagonal placed 
horizontally. If the shear force at a section of the beam is V, determine the 
maximum shear stress and draw the stress distribution diagram for the section. 

9 
('tmax = 8 'tav.) 

(23) A beam of circular section has 160 mm diameter. If the beam is subjected to a 
maximum shear force of 150 KN, determine the maximum shearing stress (31.25 
MPa) 

DOD 



Elastic Deflection Of Beams 

When a beam is laterally loaded not only bending and shear stresses 
are induced but the beam also deflects at right angles to its longitudinal axis. 

iw 
f 1 (a) 

Fig. 8.1 (a) 
Definition 

Deflection at any point in a loaded beam is the amount of deviation of 
its neutral surface from its original position before loading. It is represented 
by the letter 'y' Downward deflection is negative. 
Elastic Curve 

When a beam is laterally loaded every point on the neutral surface is 
subjected to some vertical displacement or deflection. The line joining these 
deflected positions at various points is called elastic curve as shown in figure 
8.1 (b) 

t-- X --..j W 

rz:=== 1J=;;i 
(b) 

Fig. 8.1 (b) 
In the design of beams care should be taken to see that the beam does 

not deflect more than the permissible values under a given loading condition. 
The indianstandard specification for steel beams and plate girders restricts 

the maximum deflection to 3~5 of span. , 

Slope 
The slope of a point on abeam is the angle which the tangent on it, in 

its deflected position makes with the x - axis. It is also called inclination 
and represented by the lett'er "i"or "0" 
Methods of Determining beam deflections :-

The following are the common methods for the determination of slope 
and deflection. 

(i) Double· Integration method. 
(ii) Moment - area method. 
(iii) Macaulay's method. 

236 
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DOUBLE-- INTEGRATION METHOD 
The differential equation of the elastic curve of a bent up beam is given 

by. 
d2 

El -1.!...I.== M 
dx.2 

(i) 

Where x and y are the coordinates_ as shown in fig. 8.2, y represents 
the deflection of the beam, E is the modulus of elasticity and I is the 
moment of inertia of the beam section. M represents the bending moment at 
a distance x from one end of the beam. The bending moment M is a function 
of x. and if the above equation (i) is integrated twice we obtain the deflection 
y as a function of x .. 

An expression for the curvature at any point along the deflection curve 
of the beam is 

I d2Yfdx" 
-::: ' 
R. [l + (dYidx)2 rY2 

Generally the slope of the neutral surface of the beam is very small ie 

the term ( !~ J is very small h~nce (!~ J is still smaller and therefore can be 

neglectel Hence we may wnte. . 

.!__ d\· 
R dx.2 

Now from bending equation we have 
M E 1 M 
I - R or R- EI 

d2y - M or El d2y == M 
d.x2 El dx.2 

Hence 

Slope 2 == 11 J M ~x. and Deflection y == ; 1 J f M dx 

Relation between slope, deflection and radius of curvature :-
The elastic curve of a loaded beam is shown in figure 8.2. Consirler a 

short length 5s on the elastic curve. let (x, y) be the cordinates of A and (x + 
8x y + Sy) be the co-ordinates of point Bon the curve. Let the tangents at 
A and B make angles of.0 and (0 + SB) with the x-axis. The angles between 
the normal As and Be at A and B respectively will be 89. Let R be the radius 
of curvature. 

Now 8s == Ro e and in the limiting case 

5s == ds ==-R 
88 de 

1 de 
or, 

R ds 
Again in the approx triangle ABD 
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y 

s-T 
6s I oy 

Jo-1 
xi 

I 
I· 
I 
I 
I 

I I 
<EH-;oe> I 

·o 
•l&x~ 

X ,. X 

Fig. 8.2 

dx = cos 0 and ddxy = tan 0 
ds 

1 1erent1atmg - = - =:L = - tan = sec -D. "f~ . . d2y d (dvJ d ( S) 28 d0 
dx2 dx dx dx dx 

d2y = sec2 0 d0 . ds 
dx2 ds dx 

2 1 3 
=sec 0 R. sec0= sec 0 .R 

d2 312 l 
~= (sec20) X -
dx2 R 

d2' 3h 
~ = (1 + tan2 0) X -
dx2 R 

S:[i+(~)'r xf 
I d2Yfdx2 

or, R= [1 + (d)/dx>213,1 

Generally the slope of the neutral axis of the beam is very small ie the 
2 ' 

term ~ is small hence ( ~ J is still smaller and therefore negligible. Hence 

1 d2 ' 
we may write that R= d.2- · -

Again from the bending equation 
M cr E 
1=y==R 
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or, 

or, 

1 M 
R EI 
M d2y 
EI= dx2 

Hence slope = !:!l._ = J M 
dx EI 

or, 

.dx 

and Deflection y = J J ; .dx 

d2, 
M =El.-) 

dx2 

DEFLECTION OF CANTibEVERS 
Standard Cases 
Cantilever with a concentrated ioad at the free end :-

239 

A cantilever AB of span L is fixed at end A and a point load W acts at 
the free end B. consider a section x - x at distance x from the free end. 
Let M x be the bending moment at the section x - x . Let y B be the deflection 
under the load. Let i8 be the angle of slope. 

\ 

2 . 

El.~ =:.M =-W.x 

Integrating 
!!1_ _ x2 

ELdx - - w 2 + C1 

Since 11.. = 0 
dx 

when x =L 

WL2 
0=- - 2-+ Ct or, 

Fig.8.3 

WL2 
C1 = +--

2 
dv Wx2 WL2 

Hence EI.=:!;= - 2 + T 
The maximum slope will be at the free end when x = 0 . 
Therefore slope at B. 

WL2 . WL2 · . 
EI . iB = T or, IB = 2EI radians 

· . Wx3 WL2x 
Integrating further , EI .y = - 6 + - 2- + C2 

Since the deflection is zero at the fixed end when X = l 
WL3 WL3 

o =- 6 + - 2-+·c2 

WL3 
or, C2 = --3-

Wx3 WL2x WL3 
or, Ely= - 6 + - 2---3-

- - - (i) 

- - - (ii) 
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In order to determine deflection at the free end B put x = 0 in the 
above equation. -

-WL3 
El ys=--. 3 

Therefore maximum deflection will occur at the free end 

-WL3 

YB= 3£/ 

Negative sign shows that the deflection is downward 

-WL3 

Ymax= 3El 

Example ~.1 , 
A Cantile~er 4 m long supports a load of 50 KN at its free end. If the 

moment of inertia of the section is 300 x 106 mm 4. Determine the maximum 
deflection. Take E = 200 GN!m2 . Also calculate the slope at the fre end. 

50 KN 

•!_. -4m-*8 
I 

WL3 

YB= 3£/ 

50 X 103 X (4 X 1000)3 

109 
3x 200x - x 300x 106 

106 
= 17.77 mm Fig. 8.4 

WL2 3 2 
50 X 10 X (4 X 1000) = 0.0066 

2£/ 2 X 200 X 103 X 300 X 106 
rad ans 

Cantilever with a C9.ncentrated Load not at the free end :-, ~ 
A cantilever AB o'lspan L is fixed at A and a point load W acts at C at 

distance L1, from the fix~d end A. Since the portion CB is unloaded it will 
remain straight. 

WL2 
The slope at C will be ic = · 2E) 

WL3 
Deflection at C ye= 3E; 

Slope at B will be same as slope at C. 

WL 2 

Therefore i B = ic = 2l1 

And deflection at B 

YB= Ye+ ic(L - L1) 

WL1 3 WL1 2 

YB= 3EI "1:" 2El (L - LI) 

Cantilevet" with several point Loads 

Fig. 8.5 

WJ1en several point loads are acting simultaneously the deflection at· 
any point will be the algebraic sum of the deflections at the point due to the 
point loads acting individually. 
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Example 
A cantilever beam is loaded as shmvn befall'. Determine the qefiection 

at the free end. 

Take I = 1500 x 104 mm4 

and E = 200 KN/mm2 . 

Solution 
The Maximum deflection 

will be the sum of the deflections 
due to W1 and W2 

§ 0.8 f-1 m----,,.f,.-.. 1.2 m --I 
' F"---- 3 m -----

Fig. 8.6 

60 X 103 X ( .8 X J000)3 = ..j.. 
60 >< 103 

3£1 . 2EI 
(.8 X 1000)2 (3 - 0.8' X 1000 

' ~ i [ ] 60 X JO· X (.8t X (1000)· ] 
V = . - - X .8 + 2.2 
, m ! i 500 X 104 X 200 >< 105 3 :t. 

60 x W' x (.8)2 x (2.466) x 109 1'1· 4-"'"H'll'll"fi. 
= '1 - 3 =~mm 

1500x 10· x 200x 10 

W, !~ W,f~ 
Ym2= 3£1 + 2F,'; (l 12 ) 

= Wi/ 14·+ (l- l2il 
El L 3 2 J 

60 X 103 X (J.8)2 X (1000)2 

1500 X 104 X 200 X 103 

i 1.8 X 1000 (3 - 1.8) X 10001 
' + J l 3 2 

= ':i-:;:EtfJ "'Tl • , '-

Ynwx = Ym 1 + Ynn = 20.2 + 7.77 = 29.97 mm 
- - ,~.;!.~;1'!nj 

Answer 

Example : 8.3/\ ;,:--= 
A cantilev'e r has a span of 3 

metres and carries, two point loads 
W1 and W2 at a distance of a and 2 
a from the fixed end. obtain an 
expression for the maximum 
deflection at the free end. 

Consider this as two 
cantilevers 

~iim!!iii!!i!l§!Uilliiii!:llilil~ii1'&!1!~•B 
a--,,, i I 

,;.i..,.---· 2a ---J I 
,,..,._ ____ 3a-----

Fig. 8.7 (a) 

Maximum deflection due to W 1 at B , . ~ 

A~3a-~ 

W1 a·' W1 a-
), = --+ ·--(3a-a1 

Bi 3E/ 2E! · L ' 

Fig. 8.7 (b) 
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Maximum deflection due to 
at B 

Fig. 8.7 (c) 

8w 3 4u, 3 8W' 3 2\V 3 ·2a "2a za . 2a 
= 3EI + ~ = 3Ef + -El 

W2 a3 8 14W2 a3 

= El- ( 3 + Z) = 3El -

Total deflection YBJ + Ys2 

4W1 a3 14 Wz a3 
YB1 +Ys2= ~+ 3-~ 

2 a3 
Ymax= 3EI (2 W1 + 7 Answer 

Example J\. 
A hbrizbntal cantilever of uniform section and length l carries two 

vertical point hi,ads W1 and W2 as shown below find the deflection at the 
free end in term/of E and l · 
Solution 

end 
Consider the cantilever wit,hOut the load W2 then the deflection at free 

W1 l3 / I a ' r\12 
Yi = '."lEI : ------ ] -' ::r -----1w1 

If now }VJ i;; removed then Fig, 8.8 
deflection due to W2 alone 

3 ') 
W2a W2a-

Y2 = - 3El + 2El (l - a) 

:. Net deflection of the free end 

Y = YI- Y2 

W1 ti W2a3 
---

3EI 3EI 

a2 
~Er (l - a) 
L , 

::: --1- {'J nr,L31 -· 2tV~ a 3 - lw~ a2(l - 11)i 6El t"" ,r ' . L. - . ·" " J 

Answer 
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kJ,~-.,,,,, .. - : 8.5 
, elertric stands 4 metres abm·e ground level. A force W1 acting 

at 2 1i1etres above the ground level pulls it tmvards left where us a force W2 
at 3 fnetres above the ground level pulls it tmrnrds right as shown in figure 
8.9" Cairn/ate the W 1 and and find its ratio so that the pole 
remains vertical and defiection at the top rhc pole is zero. 
Solution :-

The will remain vertical with no deflection at the top only when 
deflection due to towards left and deflection (~ue to towards right are 
equal. 

Hence y1 == Y2 
1!/ [ 3 
"1~1 ,. - ·---+ 

., 1 - 3£1 
' 7 . 

W1 (2)°' 'vV1 (2)- (4 -· 2) 
--- +- ---·---

3£1 . 2El 

(g 8 '\ 20 W1 
= 'iY I, 3 + ·2 j== 3- El 

• 3 W- L~ 2 

Y2 :::: 3El + ·-1£; (L ~ 
H'2 i (3)3 9 . l 27W2 
-··· -+::; (4-3)jl::: 
Ell 3 L 2£! 

'-

Equating y1 and Y2 

20 W1 27 W2 
·-·---~-
3 El 2 El 

-i--n 
I ! I l!Tw , I 2 

i ',Al 11 
•1 ' I 4m-r11' ·I, Li L,=3m 

I '-2: 2 1 ! I 

l ! Ii I 
_J__~ 

27 3 81 ~x-= 
2 20 .1() 

W1 81 
·-· = - = 2.075 
W2 40 -

Answer. 

Cantifovtr with uniformly d.istril:mted Load w over the whole span 
A cantilever AB of span Lis fixed at end A and u.d.!. of w per unit 

length acts from A to B. consider a section X - X at distance x from the free 
end. 

Fig. 8.10 

El. 



244 Elastic Deflection of Beams 

d· wx3 
Integrating El d: = - 6 + C1 

~ Since = 0 When x = L 
dx 

or 

3 
0= -- wL +CJ or 

6 

El ~= wx3 wL3 

·dx -6+6 

wL3 
C1=-

6 

- - - (i) 

The maximum slope will occur at the free end when x = 0 therefore 
slope at B. 

wL3 
El. iB = 6 

wL3 . 
i8 = 6EI radians 

Integrating again we get 

· wx4 wL3x 
El. y = - 24 + -6- + Cz 

Since the deflection is zero at the fixed end.when x = L 

or, 

or, 

wL4 wL3 

0 = - 24 + 6 L + C2 

C2= _ l. wI/ 
8 

wx4 wL3 wL4 
Ely= - 24 + 6.x- -8- (ii) 

In order to determine deflection at the free end put x. = 0 in the above 
equation. 

-wL4 
El .yB=-8-

-wL4 
YB= 8EI 

Therefore maximum deflection will occur at the free end . 

. wL4 

Ymax= - 8EI 

Example:sA 
A cantilever AB of span 3 metres is 300 mm deep. A uniformly 

distributed load of wN/metre induces a maximum bending stress of90 MP a. 
Determine the maximusm slope and deflection produced if the moment of 
inertia of the section i/ 700 x Ja5 mm4 and the modulus of elasticity of the 
material is 200 GN!m2 · · 
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Solution: 
Using bending equation 

M O' ~=- ........ 
I y 

·M=.cr_r 

~--
A~s 

-- B or, ' ----. y 
. - Fig.8.11 

. 90 x iOOx 1-05 N _ _ 42 l06 N .. :A2 ·~tL~Q~-rn • > ~m_m = x - -· -mm. 

• -·. __ , ----•--- wL~ 
Maximum ben_ding;r,tiJ~t/;l~}"' · i i 

or, 

42x tif.;x 2 9 33 -N--/,._: 
or, w = · - (3)2 . = , . . m 

Maximum deflection dtt~ft:o w Nim ~t B . . 

_ wL4 9.33X(3 X ltioQ)4 -- __ 

~ = SE/= S x 200x 103 x 700x 105 = 6"74 mm 
Slope at the free end 

wL3 933x (3 X 1000)3 

viB =_6EI= 6x 200:i103 x 700x .id> 
= .0029 radian - Answer 

Example 8.7 . ___ . . 
.·.A•·- uniform €an_tileYe,w4 m_e!keS' long i~ subjected, to, a uniformly 

distribute"4 load 10 ~lrn~vver,iits~ntir;e_:span. Detern:iine- the dimensions of 
the beam if the maximumdeflectronatthe:free end zsd2mm. · 

~ (fo.2• 
Fig.8.12. -- .... 

Take E = 200 KN/mm2 and width tode_pth ratio as l :2 
Solution · · ··--

Deflection at the free end 
wf 

y = SE/ 

- . IOx (4)4 (1000)4 
12 = - . -

S X 200 X 103 X / _ 
J'.I . 

lOx 16x 16x lO - . 4 :t1.-0s _<"' 4 
I= . - - =-x · -mm. 

8x ?OOx Hi3 3 j;:" 
d = 2b r 

or 

· Now 
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- b(2b)3 - 2 
I - 12 - 3 

or ]:_b4 = _Li_ 108 mm4 
3 3 . 

or 
4 4 3 8 8 

b = 3 x 2 x 10 =2x 10 mm 

b = 118.92 mm 

d = 2 x 118.92 = 237.84 mm Answer. 
Cantilever partially Loaded with u.d.l. over a length L1 from the fixed 
end 

' cantilever AB of span Lis fixed at A and a u.d. l. of wper unit length 
acts over a length AC. The portion AC may be treated as a cantilever with 
u.d. l .. Hence slope and deflection at C may be written as. 

Fig. 8.13 

4 3 wL1 wL1 
YB= 8EI + 6EI (L-!,,i) 

wL1 
and Ye= 8El 

Examphy: 8.8 
A cantilever AB is 5 metres long. A u d l of 12 KN!m acts over a 

portion 3 metres from the fixed end and a concentrated load of 30 KN acts 
at the free end B. Determine the value of the maximum vertical displacement 
of the elastic cun1e in terms of the flexural rigidity El. 
Solution: 

Maximum deflection due to point load at B 

. _ wL3 _ 30 (5)3 _ 1250 12 KN/m 3o tN 
)1 - 3El - 3El - El ~ ~ 

Deflection at B due to u. d. l. on portion AC. ~ J 

4 3 
- wL1 . wL1 f,- 5 m--<>1,>,1 

Y2 - 8El T 6El (L - Li) I 
4 3 , = 12(3) 12(3) (5 _ 3) 

)z 8El + 6El 

Fig. 8.14 

121.5 108 229.5 
= EI+ El= JiJ 

Therefore total deflection 
1250 229.5 1479.5 

Ymax= fil+ El = El- Answer. 
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Cantilever partially loaded with u.d. L from the free end 
A cantilever AB of span Lis fixed at A and au. d. l of w per unit length 

acts over the portion CB. This case mav be treated as the difference of a 
cantilever with u.d.l. over the entire span and a cantilever with u.d.l. acting 
over the portion AC. 

t 3 '] w/unit length 

Siop is=1wL - w~1. A~{·······~s L 6El 6El .·· '· 'L·. - . - _ 
1---..:..i -- y 

4 r 4 3 ] · --........._,s 
. wL · lwLi wL1 I 1 '-.J 

Deflection YB= SE! - 8El + 6El (L- L1) ~, 

Fig. 8.15 

Example) 8.9 
.. ·A. Cantilever beam is subjected to a uniformly distributed load 

extending from the mid point of the beam to the free end. Determine the slope 
and deflection·ofthefree end. 

Slope at the free end 

w/unit length 

~ -----1 

Fig. 8.16 

wt4 
YB= 8El -

Example : Jt,{O 
A hdllo~ circular cantiiever has internal diameter 125 mm, and 

thickness of me'tal 30 mm, and is loaded with 200 KN!m run for a distance 
of one metre from the free end. Determine the deflection at the free end if 
the length of t~e cantilever is 3 metres. take E 
. = 120 KN/mm~·. 
Solution: 

:::N/rn \j L, ~ 
l = ..!E_ (D4 -cf)= ..!E_ (1854 - P54) ..,._ __ 3 m _. ----<-!""' 

Moment of inertia of the section 

64 64 ~ 

= 445 l.43x 104 mm 4 

Deflection at the free end 

y = .!::'._ [L4 -ir (L1)4 .... (LfJ (L- L )}] 
B El 8 8 . 6 1 

:.\fig. 8.17 

= .!::'._ rl(3ooo)4 _ {<2000)4 + s2000)3 <3000_ woo)}] 
El 8 e 6 
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= ~ fnx 1 0 12 - {_:!_&_x 1012 + !!x !09 x lOOOljl 
El l 8 . ' 8 6 J 

ys= ~x 1012f 1!._ {_!_£+ !~]= ~x 1012x 163 
El L 8 8 6 J El 24 

_ 200>< 1012 x 163 _ l63x 2x 106 

- 120X 103 X 4451.43 X 104 >< 24 - 12 X 24 ).( 4451.43 

y~',= 25.4 mm Answer. 
Example8.H 

A Cantilever 2 metre long is loaded as shown. Calculate the deflection 
at the free end if the section is 120 mm x 200 mm. Take E = JOO KN!mm2 

Solution 

40 KN 

Moment of inertia of the section 

1 = 120 (200)3 = 8 x 106 mm4 
12 

.· y 81 due to point load 
./ wP 

YB1= 3EI 
Fig. 8.18 

= 40x 103 x (2)3 x (1000)3 = l3.3 mm 
3 X 80 X 106 X 100 X 103 

y82 due to u.d.L 

wt' {wrl wli } 
YB2= 8£/- 8£/ + 6El (l- [j~/ 

YB= 20x lOTJ.£- l_ l]x (W00)3 
. 2 El 8 8 6 

= . 20 x 103 x 41(1000)3 = 4.27 mm 
100 X l if X 80 X .106 X 24 

Y = YB1 + YB2 
= 13.3 + 4.27 = 17.57 mm Answer. 

Example 8.12 
,~ ·cantilever beam of length L carries a point load Wat itsfree end. 

Thebeahi for the first half of its length (from fixed end to mid point) is made 

of diameter D and for remaining length is ~ . Show that the deflection at 

the free end is. 

23 WL3 

y= 384£/2 

Where Ii is the moment of 
inertia of the smaller section 

(AMIE) 

Fig. 8.19 
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8ohltion 

lt 4 _ ~ D 7 4:_ 1t D4 
11 = 64 D and 12 - 64 ( V:..) - 64 x 16 

or / 1=16/2 

Consider a section at a distance x from the free end. 
7 

M W El d-y = - W.x 
X = - .X, ') 

dx-

Integrating twice we get 

f 1./2 f 1./2 Wx f L f L Wr: 
Y = EI dx dx + lh 1./., El dx dr: 

o o 2 - - I 

f 1./2 Wx f L Wx 
Y = El.xdx+ 1./., El.xdx 

o 2 - I 

[ Wx3] l/2 [ Wx3]L 
= 3El2 0 + 3£/1 l./2 

WL3 WL3 WL3 
=--+-----· 

24£/2 3EI1 24 E/1 

Put 11 = 16 /2 , then 

WL3 WL3 WL3 

y= 24£/z + 48E/z - 384E/z 

WL3 [ I · I I ] 
= Eh 24 + 48 - 384 

= WL3 r16+8-l]= WL3 (23) 
Eh 384 Eh 384 

23 WL3 
or y= 

384£12 
Cantilever with a gra ually varymg load 

249 

A cantilever of span L carrying a uniformly varying load whose 
intensity varies from zerc at B to w per unit run at the fixed end A is shown 
in figure 8.20 

T 
,w 

Fig.8.20 
Consider a section x-x at a distance x from the free end B. 

\ Intensity of loading at distance x = w ~) \ 
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Mxx = ~ •{ t) X · f = - ~ ~, 
2 \ 3 

d y wx 
El.-2 =- 6L 

dx 
Integrating we get 

L1 
dy wx· 

El. d x = - 24 L + C 1 

Slope 
dy 
d x is zero at x = L 

wx4 
0 = - 24L + C1 or, 

wL3 
Ci=--

24 

Putting the value of a C1 in equation 

1:1._ wx4 wL3 

El . dx = - 24L + 24 

Slope is maximum when x = 0 

. wL3 
El. IB = 24 or, 

. wL3 . 
tB = 24El radian 

Integrating equation no (ii) we get 

-wx5 w L3x 
El.y= 120L +~+C2 

Deflection y is zero when x = L 

-wL4 wL4 
0= 120 + 24 + C2 or, 

-wx5 wL3x wL4 

El .y = 120L + ~-30 
Maximum deflection occurs at the free end when x = 0 

-wL4 -w 
:. El. YB= 30 or, Ys = 30E l 

Example 8.13. 

(i) 

(ii) 

A cantilever 3 metres long carries a uniformly varying load whose 
intensity varies from zero at the free end to 6 KN/m at the fixed end. 
Determine the slope and deflection at the free end. Take l = 400 x 104 mm 4 

and E = 120 KN!mm2 

Solution: 
Slope at the free end 

. w L3 6 X (3000)3 
IB = --= --------'~---'----

24£ f 24 X 120 X 103 X 400 X 104 

=. 014 radian 
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Maximum deflection 

. w L3 6 X (3000t' 
VB=~·-=. ------
, 30£ I 30 X ! 20 x i 0> X 400 X I 04 

y 8 = 33.75 mm Answer. 

TABLE No. -8.1 
Standard Cases Of Slope And Deflection For Cantilevers 

S.No. Type of Loading 

a w/unit length 7 

(5) Ar--~~ls tB 
A I -.... --. Ys 
I 
-----1~---

Max- Slope 

. . WLT 
is= 1c = 2E l 

Max- Deflection. 

WLj WLf 
ys= 3El+ 2E l 

(L-L1) 

wd 
ye= 3El 

wL4 

YB= 8£ l 
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DEFLECTION OF BEAMS 
Simply supported ~!Im with a.concentrated load at mid span 

1-- L/2 

Fig. 8.21 
AB is a simply supported beam of span L and carries a point load Wat 

the centre. Consider a section x-x in the portion AC at a distance x from A. 
Support reactions RA = RB 

w 
=2 

Bending moment ~t x-x ,, w·· 
Afx=+ 2 .x 

Jly w 
EI.-2 =+-2 .x 

dx 
Integrating we get 

!!Y.__ w ; . 
EI. dx - + 2 . 2 + Ct 

"' 
At the centre the slope is zero i.e. i. = 0 when x = f 

W 1 (LI· 0=2·2 2 +Ct 

!!Y._ _ Wx "WL 2 
EI. dx - 4 - 16 or, 

or, 
M.,2 

C1 =---
16 

(i) 

Slope w11I be maximum at the supports therefore, slope at A when 
x=O 

2 

EI. iA = - ~· radians 

: . M.,2 d' 
lA = tB = - 16EI ra tans 

Integrating again, we get 
Wx3 "WL2 . 

Eiy=+ 12-~ .x+C2 

Since deflection is zero at ends 
., i.e. y = 0 at x = 0 .\ C2 = 0 

3 2 
El = Wx. _ "WL x . 

or, Y · 12 · 16 (ii) 
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W/,3 
El. Yc=- 48 or, 

WL:i 

48 

Negative value shows that the deflection is downward. 

Example: 8.14 

WL3 
Ymax = 48£/. 

253 

A rolled steel joist rests freely on supports 8 metres apart withapoint 
load of 1200 Newton acting at its mid span. If the maximum permissible 
bending stress is not to exceed J 20 M Pa and the central deflection not to 
exceed 11320 of span, determine the depth of the joist. Take E = 200 
KN!;:_m2. 

Solution: 

Maximum permissible deflection = 3~0 x 8 x I 000 = 25 mm 

Deflection at mid span )'max = !~ = 25 mm 

WL3 WL3 

I= 48 x 25E = 1200£ 
Permissible bending stress cr = 120 MPa 
Applying bending equation 

M a al 120 WL3 l 120L2 x 4 
J - y or, y = M = 1200£ x W L = 12000 

Y = 120(~ x 1000)2 x 4 = 128 mm 

1200 X 200 X 103 

:. Depth of the Joist= 128 x 2 = 256 mm. 
Example 8.15 

4 

Answer 

A simply supported steel beam 5 metres long is circular in 
cross-section of 120 mm diameter. What heaviest central point load can be 
placed on it so that the maximum deflcetion of the beam does not exceeq 
J 3.245 mm. Calculate the slope at supports then. Take E = 200 x UY N/mm 
Solution w 

.A~B 

-1, 1-- 5m I 

Moment of inertia of the beam 

Fig. 8.22 
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wt3 
}'max= 48El 

13.245= W(5)3(i000)3 . 
48 X 200 X 103 X 1017.87 X !04 

Slope 

W = 13.245 X 48 X 200 X 103 X 1017.27 X 1()4 

(5)3 X (1000)3 
= !0.347 KN 

. wz2 
= IB = 16El 

10.347 (5/ X (1000)2 

16 X 200X 1017.27 X 104 

.00746 radians Answer. 
Example 8.16 

A simply supported beam AB of span 6 metres crosses an other beam 
CD of9 metres span simply supported at ends as shown figure 8.23. The two 
beams are of same material and have equal cross-sectional area. If a 
concentrated load of 8 KN is applied at the Junction the two beams, 
determine the support reactions of the two beams. ( J. AI I) 

Solution 

Fig. 8.23 
Since both the beams are of same material and e~ual cross-section, 

therefore El for both the beams will be same. Deflection at the centre in both 
directions will be equal. 

Let IVAB be the load taken by beam AB and WcD be the load taken by 
beam CD. 

WAB + W CD = W = 8KN 
Deflection at the centre 

W4B(6)3 WCD (9)3 

48£1 48E/ 
n:,rn x 216 Wm x 729 

48£/ 48EI 
729 

WAR= 216 Wm 
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Now WAB + WcD = 8 KN 
729 . 
216 Wm+ WCD = 8 KN 

216 
WCD = 8x 945 = 1.82 KN 

Hence WAB = (8 - 1.82) = 6.18 KN 

255 

Since the load is placed at the centre the support reactions will be 
equal. Hence the reaction in case of the beam AB 

= WAB = 6.18 = 3 09 KN 
2 2 . 

Reaction in case of beam CD will be 

WcD = 1.82 = 91 KN Answer. 
2 2 . 

1 .,~ifuply supported beam with a uniformly distributed load w per 
unit'length, 

t6- X ~ Xrw/unit length 

A~y· ~B 

I '...J....X [C // ....__ _.,.. I 
------ L 

Fig. 8.24 
AB is a simply supported beam of span L and carries a uniformly 

distributed load w per unit length over the whole span. Consider a section 
x-x at a distance x from A. 

Support reaction RA = Rs 
wl 

- 2 

Bending moment at x-x, 
wL wx2 

Mx= 2 .x- 2 
El i2y = wL _ wx2 

.di 2·x 2 

Integrating we get, 

El !!Y_ = wL x2 _ wx3 C 
.dx 2·2 6+ 1 

A,., r 

At mid span the slope is zero ie ~ = 0 at x = ~ 
ax ,., 

,vL l (L l,2 w 3 0=2·2·2J-6(L/2) +C1 

wL3 
or, C1 =- 24 
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(i) 

Slope wili be maximum at the supports therefore slope at A, when x=O 

wL3 . wL3 . 
El . iA = - 24 or. lA = - 24El = 1B 

Integrating again, 

wL 3 wx4 wL3 
Ely= 12 X - 24 - 24 X + C2 

Since the deflection is zero at A, we have 
y = 0 at x = 0 :. C2 = 0 

wL 3 w 4 wL3 
or, El. v = 12 x - 24 x - .24 x 

Maximum deflection will occur at mid span when x = L/2 

_ wL f:.. _ ~'_ f:.. _ wL r ( 13 ( \4 3 · · . 

El -Ye-- 12 (2 4 24 2 j 24 V 2) 

-5wL 
384 

5wL4 
and Y max = 384E/ 

Negative value shows that the deflection is downward. 
Example 8.17. 

(i) 

A simply supported beam of span 2.5 metres and rectangular section 
25 x 75mm carries a uniformly distributed load of 3 KN/metre. Determine 
the maximum siope and deflection of the beam. E = I 00 GN!m2 

Solution: 
Moment of inertia of the section 

3KN/m 

r=::=J 
_J__ 3_J__ 7 3. 4 !xx- 12 bd - 12 (25) (,5) mm 

= 878906.25 mm 4 

Fig. 8.25 
. .· . 1 wL3 

Maximum slope I A = 18 = 24 El 

iA = = 0.022 radian 
l X 3 X (2.5 X 1000)3 

109 
24 X 100 X 6 X 878906.25 

10 

Maximum deflection 

v _ 5wL 4 _ 5 X 3 X (2.5 X 1000)4 

.,c - 384El - 109 
384X 100 X - 6, X 878906.25 

""!"lb 10 

= 17.36 mm. Answer. 
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Example 8.18 
A beam of uniform rectang11lar section is supported m ends and 

carries a uniformly distributed load over the entire span. colculute the 
minimum depth of tfie section if the mcu::imwn permissible stress in the 
material is IO Nlmm~ and the central deflection is not to exceed 12.5 mm in 
a span of 5 metres. Take E == 12 KN/mm~ 
Solution 

M a 
I y 

I wz2 
or M =CT.-=-

y 8 

Swr 5 t2 w/2 

)'max= 384£/ = 48£/ · 8 

5 t2 l 5 12 l . 2 d 
or Ymax = 48£1 ·Ci· y 48£/ ·CT· d C-: y-= 2) 
or 12.5 = 5 x (5)2 (1000)2 x 10 x 2 

48 X 12 X 103 X d 

d = 5 X 25 X l 06 X 10 X 2 = 347 1 or ·- mm 
48x 12x J03 x 12.5 

depth of plank= 347.2 mm Answer. 
Example. 8.19 

A rectangular beam 30 mm wide and 60 mm deep is freely supported 
at ends. lfthe beam is 4 metres long and carries a u.d.l of 4 KN!m over the 
whole span, determine the magnitude of a concentrated luad that may be 
placed at the mid spa'i so that the defleclion at the centre nwy be doubled. 
Take E = 200 KN/mm 
Solution 

swt 
Maximum deflection at the centre due to u.d.l. Ymaxl = 384E/ 

Maximum deflection at the centre due to point load W, Ymax2 = 4~~/ 

Since maxm. deflection due 'o point load should be double the 
maximum deflection due to u.d.l 

}'m2 = 2)'mi 

Wl3 5wf 
or 48E/ = 2 x 384£/ 

2 X 5wl 2 X 5 X 4 X 4 
or W =--8-= 8 

= 20 KN Answer. 
Example 8.20 

A simply supported beam of span 4 merres carries a u.d.l. of 2 KN/m 
on the whole span in addition to a conceutrated load of JO KN al its m.id 
span. Calc'4late the maxjmurr4 deflection at the crn/;f'e and the siooe at the 
ends. Take I = 400 x JO mm and E = 200 KN/mm,.. ' 
Solution. 

Maxm. slope= slope due to point load+ slope due to u.d.l 
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Maximum slope = 8 1 + 82 

W i2 w/3 

emax = 16El + 24El 

P IW w.lj 16 X (1000)2 
=-1-+-·= 
sn L 2 3 J 8 X 200 X l 03 X 400 X J04 

[ IO X l 03 . 2 X 4 X J 03j' + ---;-
2 3 

16 X ( 1 000)2 X 1 03 (7 fi') 
Elmax = ' , ' ,, .. oo =. 01915 radian. 

8 X 200x 103 X 400 X 104 

Maximum deflection= Deflection due to point load+ Deflection due 
to u.d. l. 

Wl3 Swf 
Ynwx = 48£/ + 384£1 

3 ' 5 3 I3 I " l ( 4 )' ( I ooof' (l O + 8 X 8) X 10 

::: 48£/ l W + 8w.l J = 48 X 200 X l a3 X 400 X l 04 

64 X 109 X 15 X 103 

= 48 x 200 x 103 x 400 x 104 = 25 mm 
Examle 8.21 

Answer. 

A simply supported beam of span l with uniforly varying load. is 
shown in fig 8.26.Determine slope at A and Band the maxm. defleetion. 

_____ ,..RB 

Solution 
Fig. 8.26 

Taking moments about B 

wl 
RA .I= 2-. 3 

and 
wl 

Re=~ 
.) 

or 
wl 

RA=-
6 

Consider a section x-x at a distance x from A 

R rj d. W:X ate or .oa mg at x-x = l 
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But 
,2 

El a y = M == wlx - --
dx2 6 6! 

Integrating, we get 
,., 

dy w {;C 
El- =------+ 1 · 

dx 12 24/ .._, t 

Where CI is the first constant of integration 
Integrating again 

' ', 

El w L,/ w )C . C , 
.y 36-120/+ 1x+C2 

Where C2 is a constant of integration 

Appling conditions of zero deflection at ends 
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(ii) 

(iii) 

ie }' = 0, When x = 0 and x = l, we have C2 = 0 and When x == /, r = 0 
substituting these values in (iii) · 

w z4 w l5 7w /• 
0 = 375- 120! + C1 l or Ci =- 360 

Substituting this value of Ci in equation 

dv wli wx4 7wt3 
El · '- -- --- --

dx 12 24/ 360 
(iv) 

Slope will be maximum at -A or B 

Putting x = !, we get slope at B 

1:1_ wl 2 w.z4 7w !3 H'/3 
El dx = 12. l - 12[ - -360 = 45 

. w/3 
or 18 = 45EI 

and by putting x = 0 in equation (iv) we get slope at A 

. 7wi3 7wz3 
IA= 360£/ :::: 360£1 radians 

Now substituting the value of' C 1 in equation (iii) 
3 5 ' wlx wx 7wt., 

Ely= 36 120/ 360 

or 
. 1 l 3 5 1 ,1 1 
l W X WX w;· X ·1 y-- - - --· 

- El L 36 - 120[ - 360 J (v) 

Maximum deflection will occur, where the slope is zero 
r ~ ·4 31 I wlxL, wx 7wl 

... put I_ 12 - 24f-36o J = 0 

or x = 0.519! 
Substituting this value of x in e4uation (v) we get 

Ymax = 1J ft (0.519!)3 - 1;)i0.59Jl)5 ··· 
L 

1 

rn I 
, ' 
j 

0.0065wf 
Yma.x = El 
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Example 8.22 
A simply supported beam of span l with a ,!fniformly distributed 

triangular load, is-shown in fig 8.27. Determine max slope and deflection. 

C 

A ,,a,_JLL..L.JL....J.:..l-'-'c_....,_i....,.-'"-'-~·,_, B 

RA Rs 

Fig. 8.27 

Solution 
Since the beam is symmetrically loaded 

l r l J . wl :. RA = RB = 2, 2, wl =;: 4 
Consider a secti~n x- x at a distance x from A 

Rate of loading y at the section 
2wx 

B d. M R x.y x en mg moment xx = A.x - 2 . -3 
M wl x2 2w.x wlx wx3 

xx= 4 . X - 6'_[ _ = 4 - 3/ 
a i 3 

Now El~= M=~- wx 
dx2 4 3l 

Integrating we get 

dy wlx2 wx4 
El d; = - 8- 121 + C1 

wlx3 wx5 
Ely= 2Ji: + 601 + Cil + C2 

( . \ 
1, 

(ii) 

Where C1 and C2 are constants of integration. Deflection is zero at A, 

ie y = 0, when x = 0 and 2 = 0 When x =·fr, on applying the first condition 

we get C2 = 0 and on applying the second condition, we have 

wl (j_ 12 _ ~ (_L ]4 + _ _ _ 5wlx3 
8 2 I 12z I 2 I · C 1 - O or C 1 - 192 

) .\) d" b . Therefor~ equatms (1) an (11) can , e wntten as 

dy wlx2 wx 4 5wl3 

El dx = -8- 12l 192 

and 
wlx3 wx5 5wf3 

Ely = 24- - 60! ,-- 192 . x 

By symmetry the above equations are equally valid for portion BC of 
the beam as for AC. 

Deflection will be maximum at the mid span, put x = { 
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·:ws _ wl J_ 3 • 5wz3 j_ I 
El ymax- 24 (2)- - 192 · (2) 

wz4 
Ymax = 120E/· 

Slope at A When x = 0 i;, '= 

Table No. - 8.2 

5wl3 · . 
192E/ = IB 

Standard Cases Of Slope And Deflections For Beams 

S. No. Type of Loading Max, Slope Max· Deflection 

(1) 

w 

(2) '""' a--.._-
A ,r,r,--..-:-~--~.--T?l 

(4) 

A 8 
, I 

I - .,. - -.- . 

--1 r- 1. 

(5) 

A B 

, ........ 

. . wt2 wz3 
IA= IB = !6£/ Ye= Ymax = 48£/ 

• - Wb(/2 - b2) 
IA - 6£1/ 

. _ Wb(t2 - a2) 

IB - 6£1/ -

7 wz3 
iA = 360EJ 

w/3 
iB= 45EJ 

iA = iB = 
5wl3. 

192E/ 

, _ Wb (12 - b2)3/i 
)max - 9f3Ell 

- r:;-:; 
at X= -\J~ 

3 
Wa2b2 

Ye= 3Ell 

Sw/4 

Ye= Ymax = 384 £/ 

2.5w[4 
Ymax = 384 EI. 

at x = 0.591 from 

w[4 
Ye= Ymax = 120 EI 
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Example 8.23 
A simply supported beam 240 mm deep supports a load of w KN!m 

over the entire span. If the allowable central deflection is 3~0 of the span 

and the maximum fibre stress is not to exceed UO MPa, dete.~mine the span 
~ 

of the beam and the intensity of loading per metre run. Take E = 200 KN/mm~ 
and l = 600 x 104 mm 4 . 

Solution 

wt2 
Maximum B. M. due to u.d.l = 8 

Using bendiftg equation 
M CJ 
l - y 

M wt2 d wP 
CJ = I . y - 8/ . 2 - 16 l . d 

M . I d fl . 5 wf ax1mum centra e ect10n Ymax = 384 EI 

~= \1,.Pd j s wt4 = 24d.E 
Yrnax 16 I 384 El 5 z2 
120 24d.E d 5 x 320x 120 4 

- or - -
l 5 z2 24 X 200 X 103 l 00 

320 
100 

:. I = 4 x d and depth of the beam is 240 mm 

100 
:. l = 4 x 240mm=6000mm 

Hence length of the beam= 6000 mm= 6 metres 
From equation (i) we have 

wt2.d 
CJ=w 

w =·16/x CJ= 16 x 600 x 104 x 120 = L:3-3, N/mm 
d.z2 240 X (6000)2 

w = 1.33 KN/metre Answer. 
Example 8.24 

(i) 

(ii) 

A wooden plank 400 mm wide and 100 mm deep in section rests freely 
on two supports at the same horizontal level, which are 4 m apart. A man 
weighting 660 N stands in the middle of the plank carrying on his shoulders 
a load of bricks weighing 240 N Find 

( aj Maximum bending stress developed in the plank 
(b) Maximum deflection of plank · 

Take weight of timber 8 KN!m3 and E = JO KN/mm2 

(PUNJAB) 



Efastic Deflection of Beams 263 

Solution 
The self weight of the plank will act as a u.d.l. over the whole span of 

the plank 
. . . 400 100 · 

Self weight of the plank = 1000 x 1 OOO x 4000X 8= 1280 N 

400 (100)3 4 
Moment of inertia ofthe plank = 12 mm 

= 33.33 x 106 mm4 

Maximum bending moment 

M = wP + Wl 
8 4 

1280x 4¥ 4 i<-. · 
= 8 + (660 + 240)j/X 4 = 1540 N-m _ - 3,4bo N~('{ 

= 1540 x 103 N-mm 
Appling bending equation 

M 
<J=1·Y 

3 
<J = 1540 X 10 X 100 = 2_31 N/mm2 

33.33 X 106 2 
or 

cr = 2.31 MPa 
Maximum deflection Ym will be the sum of Ymi + Ym2 

Ym =Ym1 +Ym2 

5 wz4 Wl3 

= 384 El + 48 EI 

= 4~:lifwt+ W) 
13 5.· ) 13 

= 48E/ g X/1280 + 900 = 48E/ ( 800 + 900) 

= (4) x(1000)3 xl700 = 6.BSmm 
48 X 10 X -103 X 33.33 X 106 

y max = 6.88 mm Answer. 
Example 8.25 . 

A beam AB of span 4 metres is simply supported at A and B. A 
cantilever PQ of length 2.5 metres which is fixed at P meets the beam AB 
at mid point Q, there by forming a rigid joint at Q. A vertical load 15 KN is 
applied vertically at common joint Q, find the reactions at ends of the simply 
supported beam. (AMIE) 
Solution 

The deflection at Q of the cantilever and the beam will be equal since 
the Joint Q is rigid. 

Let W;, load carried by the beam 
:. Load carrie~ by the cantitever = (15 - W) 
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L.LLfp f 
I 

2.5 m 

Elastic D1jlectirm 

Detlcetion of the beam at mid point Q 

Wl3 W(4)3 64 W 
y--~- . ---
. - 48£/ ·- 48£! - 48 EI 

A c10 I B 

l=-2 m ~-2 m -=:t 

4 W --- -
- 3 El. 

Deflection of the cantilever at Q 

(15-W)l3 
i.---- 4 m __ _____,.., y = 3 El 

(15 - W) (2.5)3 

3 El 

Fig. 8.28 = 15.625 ( 15 _ W, 
3 El 1 1 

Equating (i) and (ii) 

4W 15.625 (l" . =--- :)-W) 
3£/ 3£/ 

or 4W = 15.625 x 15 -15.625 W 

or 19.625 W = 15.625 x 15 

W = 15.625 x 15 = l' 94 KN 
or 19.625 1. · 

Load Carried by the cantilever= 15 - 11.94 = 3.057 KN 

= R.8 = J l:4 = 5.97KN Answer 

Example 8.26 

(i) 

(ii) 

A cast iron water pipe 250 mm external diameter and 25 mm thick 
rests on two support:,' 8 metres apart.· Calculte the maximum stress in the 
outer fibre of the material when empty and when full of water. Also 
determ,ine the corresponding maximum deflection. Density of cast iron is 72 
KN!rrl°' and E = 210 GN/m2 JMI 
Solution 

Moment of inertia of the pipe section 
it 4 4 4 4 I= 64 (250 -200 )=.ll320.7x 10 mm 

y = 250/2 = 125 mm 

Section modulus Z = f = 1J}.12i·;/ 104 = 90.50 x 104 mrn3 

Volume of the pipe 

Wt ofpipe 

= ~· (2502 - 2002) x 8 x l 000 mni3 

= 1413.71 x 105 rnm3 

1413.71 x 105 >< 72 x 103 = 10.178 KN 

(1000)3 

, 1'C . 2 · 7 3 
Vomme of water= 4 (200) x 8 x 1000 = 25.132 x JO' mm . 

1 7 .. ···· 3 .. . ,. I'. 

W . h i' 25.l32x_O x Wx 10 2513 KN 
e1g t o, water = 3 = . 

(1000) 
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W . o~h f _ 25.132 X 107 X 10 X l 2 <; ,., N 
e1 0 t o water - , = -~ l ;, K~ 

(1000)" 

Total weight = 10.178 + 2.513 = 12. 79 l KN 

This load will be the total u.d.L acting on the pipe. 

Stress in the outer fibre when the pipe is empty 

M = wt2 = Wl = 10.178 X 103 X 8 X 1000 [ W- . I• 
8 8 8 , -WX ·J 

6 
a = M = 10. l 7S x lO = 11.23 MPa 

Z 90.56x 104 

Stress in the outer fibre when the pipe is full 

and M = wl2 = WL = 12.791 x 103 x 8 x 1000 
8 8 , 8 

6 
) cr = 12·791 x lO = 14.32 MPa 

90.56 X 104 

Deflection when the pipe is empty 

swt" .swz3 
YI= 384£/ = 384 El 

_ 5 X 10.l 78X 103 X (8)3 X ( 1000)3 

- 384 X 210xl03 X 1132Q7 X 104 

=2.85 mm 
Maxm Deflection of the pipe when full 

5 12.791 X 103 X 83 X (1000)3 =- x---------~ 
. 384 . 210xl(f X 11320.7 X 104 

= 3.586 mm. Answer 
MOMENT AREA METHOD 

A 

' ! ! 
I -...., 

I dx I 1 
1-,ot' I X _.,.; 

c=;u=1 
~i..r--~ l ~-----i 

B. M. Diagram 

Fig. 8.29 
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Moment area method was developed as an alternative to double 
integration method. The slope and deflection at any single point on a beam 
can be more easily determii:ed by this method, with the help of Mohr's 
Moment area theorems stared below. 
Theorem I. 

The angle between the tangents at any two chosen ~oints A and B on 
the deflection curve ofa beam 1s given by the area of tne B. M. diagram. 
between these points divided by tne product of E and l. Where E is the 
modulus of elasticitv and l the moment of inertia of the section about the 
neutral axis , 

El =(Afd~ 
A EI 

The elastic curve between,points A and B of a loaded beam is shown 
in figure 8.29 Let us consider an element of this curve of length ds. Let R 
be tbe radius of curvature of the beam. From bending equat10n we know 
that · 

lv! E 
I R 

or 
M 
El 

(i) 

The element of length ds subtends an angled O measured with respect 
to the centre of curvature of the element ds, . 

1 de 
:. ds = Rd 8 or 

R 
-

ds 

Substituting 
l d8. . . R = d; m equatron (1) we get 

dB - M or dfJ = M d 
ds EI El . s 

Since the elemental length ds is very small, it may be represented 
by its horizontal projection dx. We may thus write 

M 
de= El. dx 

Let L be the length of the beam between points A. and B. The angle 0 
between the tangents at A and B may be found by summing up d8 between 
the limits El and L. Hence we get 

8= f Lde=f u'vfdx 
'o o EI 

or 9 = ~ = Area of B .M . diagram over AB 
EI E.I 

Theorem II 
If A and B are two points on the deflection curve of a loaded beam, 

the vertical distance of B from the tangent drawn to the curve at A is given 
by the moment of the area of B. M. diagram between A an,d B taken about A 
divided by the product of E and l. 

Referring to the same figure, we have already established that 

de M , 
=a.ax 

The vertical distance between the tangents at A and B from B is Bb as 
shown in the figure. The length Bb made by the bending of the element of 
length ds is the vertical element x dfl . Hence 

da Mx , 
x o=E1 .ax 
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The right side of this equation represents the moment of the shaded 
area M. dx about a.vertical line passing through B, divided by El. Integrating 
WC get 

or 

Bb= f sMxdx 
A El 
A.x 

y - El 

Standard Cases 
Cantilever with a point load at the free end 

Al~, 
~· L ___ __ 

t,--2/3L~ 

WL~ 

Fig. 8.30, 
A cantilever AB of span L with a point load Wis shown in figure. 8.30 

The bending moment diagram is a triangle with maximum B. Mat A = WL. 

The C.G of B. M. diagram is at i L from the reference line passing 

through B. 
Slope. 

Maximum slope 
A 

0max =EI 

1 L.WL WL2 
-------

2 El 2 EI 

WL2 
0max= 2 £/ 

Maximum deflection 
A.x 1 2 2 1 WL3 

Ymax = El = 2 WL x 3 L x EI == 3 EI 

WL3 

Ymax = 3 El 

Example 8.27 
A cantilever 4 metres long supports a point load of 50 KN at its free 

end. If the moment of inertia oft he section is 300 x l 06 mm 4. Calculate the 
slope and deflection at the free end. Take E = 200KN!mm2 
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·~50K.N A - e B 
y max 

----=,=-----4 m ----""1 
' X 1- 2/3 L ------IP! 

WL~ 

Solution 
Fig. 8.31 

Area of the moment diagram 

"' = 1. ~ Lx WL = ..!_ WL 2 
2 2 
2 

C. G of the triangle x = 3 x L 

Maximum slope 
A 

0max = El 

WL2 

- 2EJ 

50 X 103 'X (4000)2 0066 ct· 
= =. ra ,an 

2 X 200 X 103 X 300 X 106 

Maximum deflection will occur at the free end 

A.x 1 WL2 2 
y max = El = 2 El x 3 L 

3 3 2 
= WL 50 x 10 x (4000) = 17.7 mm Answer 

3 El - 3 X 200 X l 03 X 300 X 106 

. Cantilever with a point load not at the free end. 

w 
X C 

A~B 
· Ymax 

. l----~ 

~x = l-x/3 i:I 

Wx~ 

. 8.M.D. 

Fig. 8.32 
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A cantileverAB of span L with a point load Wat C is shown in figure 
8.32 

Area of the B. M. diagram 

A W.x2 
Max. slope= El = IE 

I 

x = Distance of C. G. of the B. M diagram from the free end 

= (i-x+;x )~(L- f) 
. d fl . A.x Maximum e ectlon = Fl 

Ymax = 2:1 L-f W 2 ( ) 

Wx2 ·(2 ) Wx3 
Deflection at C, Ye = 2 El 3 x = 3 El 

Wx2 
Slope at C, 0c = 2 El. 

A~{ w/unitlen:th . B. 

1 ymax 

~L·---""' 
,._x=3/4L~ 

~2~ 
Fig. 8.33 

Cantilever with U.d.L on the whole span 
A cantilever AB of span L carrying a uniformly distributed load w per 

unit length is shown in figure 8.33 
. L2 

The maximum bending moment at the fixep end= w2 

Distance of C. G. of the B. M. diagram from the free end x = i L. 

· . . 1 - -wL2 wL3 
Area of the B. M. diagram·· A = 3 L x 2 = ~ 

. A wL3 
Maximum slope 0max = El = 6 El . 

. . Ax wL3 3 
Maximum deflection Ymax = El = 6 El X 4 L 

wL4 

Ymax= 8 El 
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Example 8.28 

entire span Dcrcnuine the 
inertia 
GN!nz2. 
Solution 

Fig. 834 

Maximum detkction 
11 x 

)'nux = El where 

Elastic De{!f!Ction of' Beams 

9.33 Nim over the 
and if the moment of 

and modulus of elastir:ity is2(;0 

Area of B. 1\J. diagram 

l =--·x'x--3 L 2 6 
Maximum e 

A. 
EI 6EI 

9 '.{'.{ ("'r0{\\3 .. •.J X ~,U JJ 
·-----

109 
6 >< 200 X - X 7000 X 104 

106 

= .0029 radian 

- 3 
x= 4-L 

i~ t' 3 , w(+ 
-- ----x-1-----
-- 6E l . 4 - 8EI 

9.33 X (3 X 1000)4 
.1 = 6.74 mm Answer 

8 X 200 X 103 X 7000 X lff 

Example 8.29 
A cantilever of span L metres carries a U.d.l of w Nini over half of its 

length the fi'ee end . Determu1e the slope and deflection at the ji·ec 
end. 

Solution 
Maximum slope and 

deflection will occur at the free end. 

Total area of bending moment 
diagram A = A 1 + A.2 + 

l L ;vf} wl:1 
A,,=-;;x -;::-·x - 8-= 

::i L 48 
7 

L wL~ 
A 2 = 2x--8= 16 

16 

-~ w n/m) 
'AA ~B F L ~ ,,. 

Fig. 8.35 
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. A, l (wL 3 wL3 wL3 \ 7wL3 

Maximum slope emax - EI - EI 48 + 16 + 16 j - 48EI 

For maximum deflection find (A 1 x1 + A2 x2 + A3 x3) =Ax 

·- wL3 3L 3wL 4 

A1x1 =48X8= 384 

- wt3 3L 3wL4 
A2x2 =-x-=--

16 4 64 
3 · 4 

A3 X3 = wL x 5L = 5wL 
16 6 96 

- (3wL4 3wL4 5wL4) 4lwL4 
:. Ax= 384 + -~_+T6"° =3M 

Ax 41wL4 

Ymax = fl = 384EI 
Simply suppo.rted beam with a point load at mid span. 

w· 
U2- C U2 A-~----t---~-r~B e -... I:_ Ymax _.,, --- _J __ __ 

Fig. 8.36 

A simply supported beani AB of span L with a point load W at the 
centre is shown in figure 8.36. Maximum bending moment will occur at the 

lVL 
centre Mmax = 4 

Considering the portion BC only, as the result will be same for the 
portion AC 

. 1 L WL 
Area of B. M. diagram between B and C = 2 . 2 . 4 

wz,2 
A=I6 

Maximum slope at A or B = Area of B. M. diagram 
EI 

WL2 

0max = 16£/ 
x = distance of C. G of the B M. diagram between B and C from support B 

2 L L --x~ --- 3 2 - 3 
Ax lVL 2 L wz,3 

Ymax = EI = 16. 3EI = 48EI 
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Simply supported beam with U.d.L. on whole span 

A~.ngth B 

I Ymax C , 

~ A L 5 , B 
t-- ...c: ~ J+x =~x==-..,.., 

2 8 2 

Fig. 8.37 

A simply supported beam AB of span L and carrying a uniformly 
distributed load w per unit length is shown in figure 8.37 

Maximum slope 8max = Angle between the tangents at B and C 
. . . 2 L wL2 

Area of B. M. diagram over port10n BC= 3 x 2 x - 8-

wL3 
A -

24 
3 

Maximum slope 0A = 8B = ;1 = ;~I 
- 5 L SL 
X =-x-:::-
. 8 2 16 

Maximum deflection at C 

Ax wl3 x SL 5wL4 5wL4 

)'max= El = 24El x 16 == 384 El = 384£1 
A 1iimply supported beam with a point load not at the centre 

w w 
i,-a-:4-
1 Dy C 

A,;;;:::::=:=::==;==:=:::==::~ 

a 

Fig. 8.38 
A simply supported beam AB of span L with a point load W at a 

distance a from left support A is shown in figure 8.38 
Add a load Wat a distance a from the right hand support B to produce 

symmetry of loading on the beam. This will double the deflection at the 

centre. Hence from the Mohr's theorem w can state that 2yc = ,;;· 
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or )'c == 
Ax 
2£1 

Area of B. M. diagram between B and C 

= (1-.1_ ax wa!/f _ a I (Wa'l 
7 . I 1 2 ) ' 

__ (\- 7 \, (~ \ (L . ~ . I . l ( L 11 
and Ax= 7 Wcr tx -aJ+17 -aj' (Wa)!La+ 7 11-;;-ajl 

~ j ,3 1- -,L ~ 
'l \ \ \ 

W (( (L \j al 
==~+Wa \2-a 4+2) 

Wa·' Wa. 
= 3 + - 8- (L- 2a) (L + 2a) 

Ax l Wa J , 
_1 1 = 2El = 2£/ x 24 (3L- - 4a-) 

7 7 
Wa (3L- - 4a-) 

Ye = 48£/ 

MACAULAY'S METHOD 

W1 

i 
IX 
I 

------ X ------<ot 

l 

Rs 

------L-----'11"1 
Fig. 8.39 
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When several point loads act on a beam Macaulay's merhod provides 
a much easier solution for determing the slope and deflection at any section 
on the beam. 

A simply supported beam AB of span l is shown in figre. 8.39 Let Wi 
and W2 act at distances a and b from the support A. Consider a section x-x 
at a distance x from A then 

7 
d-y . 

El-d 2 =Mx = RA.,-- W1 (x-a)- W2 (x - b) 
X 

Integrating we get 
') ') ,.., 

Eldy=R,x~ +c.i-w (x-at i -w/x-bt 
dx fl 2 ': 1 2 i ~ 2 

The foliowing important points must be kept in mind 

(iii) 

(i) The constant of integration C 1 should be written after the first term. 
The constant C1 is valid for all values of x 
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7 

(ii) The quantity (x-a) should be integr'ated as (x ~ a)- and not as 

[~2 
-ax )similarly (x-b) as (x~b)2 

2 
(iii) The quantity (x ~ a) should be integrated as a whole ie as 

(x-·a)3 (x--b)2 (x-b)3 

6 and 2 as 6 . The constant C2 is written after Ct x. The 

constant C2 is valid for all values of x. I 

The constant Ct and C2 can be evaluated if ·the end conditions are 
,known. 

When a beam is simply supported the deflection is zero at ends i.e. 

y = 0 , at x = 0, and x = L. Puttingthese values in deflection equation we get 
C2 = 0 and putting x = L and y = 0 in the deflection equation Ct can be 
evaluated. Once the constants C1 and C2 are known,.slope and deflection 
can be easily determined. 

NOTE:- If for any value of x, the quantity within brackets in any term 
is negative and is raised to power higher than 1, the term is to be neglected. 

A simply supplr d beam _with a concentrated load not at the centre 
w . 

RC315,s Ye 
R · Rs 

A L 
Fig. 8.40 

A simply supported beam AB of span L carries a point load Wat C as 
shown in figure 8.40 LetAC>CB. consider a section x-x at a distance x from 
A, then . 

Mx=RA.xi - W(x-a) 
2 I : 

EI d y = Wb_ x i - W (x - a) 
dx2 L 

Integrating we get 
? ' 

Eldy = Wbx- + C1 ! 
7 

- W(x-ar-
dx 2L : 

Jnttgrating again 

Wbx3 
Ely=6L+ C1x+ C2 

2 

-W(x-a)3 

6 
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At A the deflection is zero ie at x = 0. r = 0 :. C2 = 0 

At B the deflection is zero :. at x == L, y = 0 

Whl} W (L- a)3 
0= --+C1L-6 . 6 

or 
6 

or 
Wb 3 

-, 

CiL == 
WbL.._ 

C1 
- VVb 

6 6 
or -

6L 
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and deflection at anv section can be found from the 

following 

, Wbx2 V\/b 
l,! =--

T , / 2 
7 1. -- v\! (X--a) 
- - b-) -- 2 ---· (Slope 

dx 2L 6 L 

ll/' ) "'h _ l.lf • )3 
El)' -- ~/J.\ - ~ ',,'L2 - l-.,!.) x - " (~ - a, r fl . " 6L 6 L, (de .ection equmions) 

Deflection under the load 
Put x = a in the deflection equation 

U/' 3 'Vb 7 U/ f \' 
F:f v"::= !!ll!!:_ _ ~- ([2- hL \ a - n ,,a-O; 
~ 'c 6L 6 L ., 1 6 

_ Whc2_ Wb (L 2 - b2)a 

6L 6L 

- Wba 1 . 1 1 
El Ye = ·. f(a+ b)- - 1;·· - a·] 

6(a + b) C • 

+ b) 

or Ye 
3E!L 

T'o f'i.nd rnaxin1un1 deflection 

Maximum deflection will occur in the larger portion AC and at the 

point of maximum deflection the slope will be zero 

Hence equating the slope at a section in AC ro zero, we have 
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-, 
Wh.C Wh -, , 

0=----IL--b-) 
2L 6L' 

-, 
a-+ 2ab 
--~~ 

3 

The maximum deflection can now be determined from the deflection 

equation. 

El . = Wb [L2-t/JY2 - Wb (L2- b2) ( L2-b2\jl/2 
) 1/1/1.\ 6L 3 6L l 3 ; 

-, , Y-, 
Wb (L - - h-) I -

9{3 EI.L 
-, :y, 

Wb (a-+ 2ab) -
.., :y-, 

Wb (a-+ 2ab) -
Ynwx 9'13£ IL 9,13 El (a+ b) 

Example. 8.30, 
A stei!'l beam of rectangular section 4 meters iong carries a 

concentrated load of 40 KN at I metrefrom the right end support. Determine 
the deflection of the beam under the load and the maximum deflection. Take 
E = 200 KN/mn:2 and I = 600 x 104 mn/ 

? 2 -:, 7 7 
W a-b 40 x IQ·' x (3000)- (1000f 

Jc = 3 EJL = 3 X 200 X 103 X 600 X l 04 X 4000 

W b (L2 b2W2 
Ymax = 9\}3 Ell 

:Y2 
40 X 103 X !000[ (3000/- (1000)2 ] 

9'13 X 2000 X 103x 600 X J 04 X 41)00 

=3lmm 

)"max will occur at 

= 25 mm 

= 2.33 metres from A 

Answer 
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Example'$.31 
A h'6~izantal beam AB having unifrorn section is 5 meters long and is 

simply supported at ends. It carries two points loads of 5 KN and 7.5 KN 

placed at 1 meter and 3 meters from support A ff the moment of inertia of 
the section is 400 x 104 mm4 and modulus of elasticity is 200 GN!m2, 

determine the deflection of the beam under the two loads 

Fig. 8.42 

Solution 
Support reactions RA= 7 KN and Rs= 5.5 KN 

Consider a Section x -x at distance x from A 

Mx = RA. x - W1 (x-a) - W2 (x- b) 

d\· ' ' 
El -" = 7 x ! - 5 (x - l) : - 7 .5 (x - 3) di : : 

dy 7x2 : -5(x-1)2 , -7.5(x-3)2 
EJ- =-+Cti, • 

d 2 2 •,', ? X : -

1 I ,- : 3 7 x· : - :, (x - I ) 
Ely= 6 + C1.x + C2 ! 6 

At x = 0, y = 0 

And at x = 5, y = 0 

- 7.5(.r- 3)3 

6 

0 = 7(5)3 + 'i c'"r - .2. 
6 . ~ 6 

(5 - l\13 -7.5 C 3,, 
(_, - ,· 

6 

or Ct= -16.5 

Deflection equation is given by 

,_3 !_5 " 
El. · - ~ - 1 6 "· : - ( · - l \·' \ - 6 l .. ,.X : 6 X I 

-'7.5 r _ .3)3 -6- ,.r 

':>\ ~. 

To determine deflection under W1 put x = I in the deflection 

equation 

' ' . 7(1)' : -5 . . , : -7 5 , 
Eire= - 6 - - 16.5 x l : - ( l - l )· : -·- fl - 3)· 

· ! 6 ! 6 ' 

The third and fourth terms are to be neglected 



7(1 )3 
:. El.ye= - 6- -16.5 x I 

= L 16 - 16.5 = -15.34 

:. El. Ye= 15.34 X 10 12 

£/ostir-£11!{/ec·tion _ c!l Beam.1·. 

- 15.34 X 1012 -15.34x IO Ye = ____ 9 ____ = 8 

200x 1.06400x 104 

10 

=19.17mm 

Deflection under D can be found b_y. putting x = 3 in the deflection 

equation. 

7(3/' 
ElyD= - 6--16.5 X 3 i -5 (~ l )3 

I - j-

! 6 ' 

= 7 x6 27 ~ 49.5 -65 (2)3 

= 31.5 - 49.5 - 6.66 = '24.66 

~ 24.66 X 1012 , 
YD 

200x 109 x400x 104 ' 
,., . 106 -

= 

24.66x IO 
= 8 

.·~ = 30.82 mm Answer 

Example s:J\ . 
A simply supported beam AB of unifrom section and span L meters 

supports two concentrated loads W each at U4 and 3U4 from S#pport A. 
Deter"':ine the deflection of the beam by Macaulay's method in terms of 
flexural rigidity EI 

w W X 
I U4 j) I U4 

K i:::========~:::;:, =i E:, 
--~~3U4-·~~--~-

RA = w x Rs= w 
-----L--·~ 

Fig. 8.43 
distance x from A 

<, 

. (i) Deflection under the· two 
loads 

(ii) Deflee-tivn at mid span. 

Solution 

Supp.ort reactions RA= Rs= W 
. Consider a section x-x at a 

Mx= RA. x-W(x-U4)- W (x-3 L/4) 
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J\ .. : ·, 
E ~ = W. xi - W (x - U4) - W (x - 3 U4) 

dr- : 
--- (i) 

Integrating we get 
-, i tv 

I dy - wx- C l:: =,.,_L_ E · , ·· - 1 + I , 
L , l W 

(x- 4 t j -7 --- --- (ii) 
uX - ' -

Integrating again 

Wx3 i W .. , i W( 3LJ3 
El._y=-6-+C1x+C2 : -- (x-Ll4r: -- x--

l 6 ! 6 4 
At x = 0, y = 0 :. C, = 0 
Again at x = L, y = 0 :. From equation (iii) 

WL3 C O ! _ W (L _ L/4)3 !- W (L- 3L)3 
EI.,= -6- + 1 L + l 6 ! 6 4 

-3 7 

:. C1= 32 WL-

Hern;;e the deflection equation becomes 

Wx3 3 ., i W ( L \3 

Elv=-6--32 wL-.xj ~6 x- 4J 
(i) For deflection under the first load put x = L/4 

(iii) 

,. I - 3 I f . 3 
r W 3 3 1_ . : W (L L \ : W (L 3LJ d r = -- (L/4) - ·.- WC (L/4) : - - - - -. I , - - -. - -

- C 6 . 32 l 6 4 4) ! 6 4 4 

WL3 3 WL3 

6 X 64 32 X 4 

. WL3 ( l 3 '\ WL3 (l 3] 
>c• - El 6x6\- 32x4J- 32£/ 12- 4) 

' ·( WL 8 I -WL3 · 
Ye = - 32£[ x 12 r 48£[ 

(ii) Deflection under the 2nd Joad, putx = 3f in the deflection equation 

El. =·W(3LJ3 _2wr2 (3LJi_ Wl(3L_!::_J3 _ W'(3L_3L'J·' 
>o 6 4 ) 32 _, l 4 ) ! 6 4 4 J 6 4 4 

27WL3 9WL3 WL3 WL3 
---- --~---

6x 64 32x 4 6x 8 - 48 

WL3 

Yo= - 48 E! 
·'·· (iii) Deflection at mid span, put x = L/2 

. ( 13 ,., wl )3 W.L .) "· L L 
El =~.l7 --wL-(L/2) -- ---

L .. 6 -J 32 6 2 4 
atx= 2 , 
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WL' 3WL3 \VL:1 -l l ------
- 48 32 X 2 6x 64 384 

-- l l Wl 3 
y = 

384£/ 

Examplt;l~.33 
Jtiantilever of unzfonn section 6 metres long carries a load of 2KN at 

the free end and 3 KN at 3 meters from the fixed end. Determime the 
maximum de•lection of the cantilever at the f1:ee end br Macaular 's method. J' ? , <; , " • -
Take E = 200 GN/m- and I = 300 x lo· mm 

X 
- 3 KN 

Solution t 
C 

Consider a section x-x at a 
distance x from B 

X X 

6m 

Fig. 8.44 

d2\' ! 
El~=Mr-2x l -3(x-3) 

dx- : 
2 ' 7 

EI !:fy_= -2x + C• ! -3(x-3)-
dx · 2 1 ! 2 

El - 2x3 C· C ! - 3(x - 3)3 
y= 6 + ix+ 2i 6 . 

At x = L, 2 = 0 then from equation (ii) we have 

- 2 (6)2 -· 3(6- 3)2 
0 = . + C1 ----. or C1 = 49.5 2 . 2 

At x = L, y = 0 then from equation (iii) we have 

0 - 2 (6)3 - 49 5 6 C -3 (6 - 3)3 
6 . xx + 2 6 

= -72-,- 49.5 X 6+ C2 -13.5 
= -72+ 297+C2-13.5 or C2= 211.5 

Putting the values of Ci and C2 in equation (iii) 

El)' = - 2 x3 
- 49 5x - 211 5 - 3(x - 3)3 

6 . . 6 

For Deflection at the free end B, put x = 0 
211.5 X 1012 

ElyB = - 211.5 or YB= ------
109 

200 X ~ X 300X 1cf 
10 

= 2ll.5x10 =35.25mm 
60 

(i) 

(ii) 

(iii) 

Answer 
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,Example 8.34/\ 
A puUof' I 20 KN is applied to a pole AB at point A on the top as shown 

in fig. 8.45. If the diameter of the pole is 40 mm determine the value of the 
pull P to be applied at point C so that the deflection at the top of pole is 
Zero. 
Solution 

Consider a section x-x at a 
distance x from B 

Mxx = 120 Cos45° (5 - x) - P 
Sin30 ° (2.5 - x) 

2 

T--~-'~~ 
2.5 rn -11145° ~ 120 KN 

Integrating we get 

Eld y - - R4 86 (5-- -1- 0 5 (7 'i - \ 
2 - " . X). . -·- X 1 

dx 

I : I f P sin 30° 1 lc 
! I o 

2.5 m_x x . 130 x 

Eldy = - 42.43 (5 -- x)2 + 0.25 P 
dx · 

- -H - 1-
p 111 . X 

-'"Jt.!, _j._ 1 
(2.5 - x)2 + C1 (i) 

- 3 ~ S 3 Fii!.. 8.45 E/y=-14.14(:,-x) +0.083P(.c:. -xt +C1x +c2 ---

where C1 and C2 are constants of integration 

At x = 0, <f/;= 0 

0 = - 1060.75 + 1.5625 P + C1 = 0 
or C1 = (678.88 - P) 

Andy= 0, atx=O :.0= -1767.5+l.296P+C2 

or C2 = (1767.5 - 1.296 P) 

(ii) 

:. Putting the values of C I and C~ in (ii) 
Ely =14.14 (5 -x)3 + 0.83 P (2.5 -xt+ (678.88 -P x + (176.5 -1.296 P) 

But the deflection is Zero at A i.e. y = 0 when x = 5 
(678.88 - P) 5+ (1767.'5 - 1.296 P) = 0 

(Neglecting terms in bracket that become - Ve) 
or 678.88 x 5 - 5P + 1767.5 - 1.296 P = 0 

or 6.296 P = 5161.9 
or P = 819.86 KN Answer 

SUMMARY 

l. Slope and deflection of a cantilever AB of length L and flexural 
rigidity El 

-,p· 1dw · 'f ·ct· wt2 d wt3 ,a,_ omt oa actmg at the .ree en IB = 2 El an yB = 3 El 

2. Point load W acting at a distance ti from the fixed end 
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Wit . W 11 Wit 
is= ic= 2EI and ys= 3El + 2EI .U-_l1) " 

3. Uniformly d_istributed load w per unit length acting on the entire span. 

. w t3 . wf 
18 = 6 E and Ys 8 E/ 

I 

4. GraduaUy-varyingJoad frdm Zero at the free and tow per unit Ieng.th at 
the fixed end. -

3 -· A 
. wt wt· 
1s= 24 EI and Ys = 30 El 

Slope and deflection of _a simply supported beam AB of span l and 
flexural rigidity EI · 

5. Point load JV acting at mid span 
wt2· Wt3 

iA = is= 16 EI and Ye= 48 EI 

6. Point load Wacting at a distance a from A and b from B 
. Wb . 2 . 2 . Wa 2 2 
IA = 6 El (l - b ) and lB = 6 El (I - a ) 

Wab 2 2 2 Wa 
Ye= 6 Ell (l - a - b ) and )'max= 9-.g Ell • 
. . 

7. Uniformly distributed load w per unit length over the entire span 
3 . .4 

. . wl d 5wt 
1A = 18 = 24 EI an Ys = 384 EI 

8. Gradually varying load from Zero at A to _w per unit llength at B 

. 7wt3 d 2.5wr' 
lA = 360 El an )'max = 384 EI 

. wz3 * 
IB = 45 EI at x = 0.591 from A .. 

9. Gradually varying triangular load from Zero at ends tow per unit length 
at mid span. 

. . 5wz3 wz4 
.lA .= lB = l92El Ymax~ 120El 

10. For Calculating x in respect of moment area method, some of the 
familiar B. M. diagrams are -~hown. 

IGJ 
I 1,. b/2 -.i 
~b .. 1_ 

A= bh.; x= b/2 
( i) Rectangle, 

AI 
I --Ill b/3 t- I 

~b--i 
1 -

A=-bh. ; X'=b/3 
~i) Triangle 

Fig. 8.46 

& 
I .,..113 (b+C) t-
i.-- b ~ 

1 -
A= - bh.; x = 1/3 (b+c) 

1iii) Triangle 
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EXERCISES 

(I) A cantilever AB,2 metres long carries a load of 4 KN at the free end and 
3 KN at I metre from the fixed end. Determine the· maximum deflection 
of cantilever at the free end. Take E = 200 KN/mm~ and I= I 5'()0x l 04 

4 mm (YB= 3.37 mm) 
(2) Calculate the maximum slope and deflection at the free end of a 

cantillver 3 metres Jong carrying a u.d.L of 2 KN!m oyer the who!~ 
span and a point Joad t 2.5_ KN _at the free ~n\:I. Take E = 210 KN/mm 
,andI= 400 x IO mm (i8·= .00241 radian YB= 5,08 mm) 

(3) A uniformly loaded cantilever of span Lhasa deflection at the free end 
equal to .015 L Find the slope of the deflection curve at the free end . 

. (0:02 raruan) • 
( 4) A cantil~ver of length 2 metres carries au. d. L of 2.5 KN!lJ! for a length 

of 1.25 metres from the ftJ<.ed end and a point load of ! KN at the free 

\.ond. The beam is 120 mm wide and 240 mm deep, determine the 

deflection atthe free end. Take E = 2_00 x KN/mm2. (y_ r.nax = 50.62 mm) . 

(5) Calculate the minimum depth of rectangular beam 5 metres long and 

carrying a u.d.L of w Nim over the whole span: The permissible 

deflection at the centre is 13 mm and a maximum fibre stress of 96 

MPa. Take E = 120 KN/mm 2. (d = 320.50 mm) 

"t 6) Compare· the magnitudes of the slopes which occur at each end of a 

si~ply supported beam A B placed across a span of L metres when a 

load W Newtons is placed at_ a point i rdofthe,.span from the end B. 

Assu,me the beam to be horizontal. when w· is removed. (:;= ~) 
(7) A uniformly loaded steel beam supported at ends has a deflection at the 

mid span = 3.125 mm while the slope at the end is .01 radian. If the 
maximum permissible bending stress is limited to 90 MPa, determine 
the depth of the beam. Take E = 200 KN/mm2 ( d = 30 mm) 
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(8) A cantilever of length L Carries a uniformly distributed ioad of w per 

unit length for a distance J L from the fixed end. calculate the slope and 

deflection at the free end. ( _ 9 wL3 v 117 wL 4 j 
lfl- 128£J'· 8 2048£1) 

(9'1 A rectangular wooden beam 120 mm x 180 mm deep is simply 
supported at ends on a span 4 metres and carries a u.d.l of 6 KN/metre 
o,p the whole span. What point load at the centre should be placed so 
that the maximum deflection is doubled (W == 15 KN) 

(lO)A beam of span 6 metres carries a load of 5 KN at a distance of 4.8 
metres from the left hand. support. Calculate the maximu~ deflection 
and the deflection at the mid span. Take E == 200 KN/mmk and I== 300 

X 104 mm4 (Ymax == 21.7 mm, Ye == 21.45 mm) 

DOD 



9 
Statically Indeterminate Beams ., 

So far only determinate beams have been.discussed where the number 
of unknown reactions was not more than three. 
Statically in.determinate beams 

When a system of forces acting on a plane of symmetry of a beam, 
Keeps it in static equilibrium and the number of unknown external reactions 
is more than three, the beam is called a statically indeterminate beam. 

The three well known equations of static equilibrium LH = 0, l:V = 0 
and LM = 0, can not provide solution to more than three unknown quantities. 

Hence more equations are formed with the help of deformation curve. 
Slope and deflection provide additional equations required in such cases to 
determine all unknown reactions. 
Degree of indeterminancy 

The degree of indeterminancy is given by the number of extra or 
redundant reactions. It is defined as the number of extra,equations required 
for analysis in addition to the general equations of static eguilibrium. 
Types of statically indeterminate beams 

Aithough several types of indeterminate strdctures exist but only the 
three main types of beams are given here. 

Fig. 9.1 

Propped cantilevers 

Fig. 9.3 

Continuous beams 

Fig. 9.2 

(ii) Fixed beams 

PROPPED CANTILEVERS 

Props are supports provided to a cantilever to neutralise the effect of 
deflection that the cantilever undergoes due to applied loads. In other wards 
props are provided to produce an equal and opposite amount of deflection 
in the cantilever so that it is brought back to its origmal horizontal position. 

285 
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Since up ward deflcctlon produced by the prop is equal to the down ward 
deflection due to applied loads on the cantilever, by equating the two 
deflections, the reaction at the prop can be easily determined. 
Sinking Of Prop 

If the prop sinks by an amount 8, the algebraic sum of the deflections 
due to load on the cantilever and the deflf:ctions due to prop must be equal 
to /5. 

The introduction of prop renders the cantilever indeterminate. 
Therefore such structures can not be analysed by the three equations of 
static equilibrium alone and therefore additional equations are obtained 
from consideration of slope or deflection while solving such problems. 
Following examples will help in understanding the procedure for calculating 
prop reactions for various types of loading. 
Example 9.1 

A cantiievcr of length l carries a concentrated !ood Wat its mid span. 
If the free end be supported on a rigid prop find the reaction at the prop. 
Draw the S. F. a.rid B. M. diagram for the cantilever. 

w 

a u2 i 112 
A~-- C 18 :::l - -- / 

-~ ----- R 
~ w 

A cantilever AB of span ! is 
fixed at A and a prop is provided 
at B as ,h,Jwn in figure 9.4. A 
load W is acting at mid span. 
Down warddeflectton due lo !Dad 
W will be equal to the upward (s!f k 

• 

0

1iii6 W 

8 deflection due to the prop. 

t 5/16 w :. W 1W~l~+ W W2 
Jl 2El 

11116 W c::::::] C t::::;;;:3 5/16 w 
S. F. D. 

l Rl3 

3 El 

5 
R = -·- W 

16 
or 

...,.,..,.~L~~ 
3/16 wl V ~ 8111 1 ___j 

Therefore reaction at A 

" '. = W-_::_ W=_!J_ W 
16 16 

Fig.9.4 

Shear Force. 
j 1 

S. F at any section between A and C will be equal to W 
16 

S. F. at any section between C and R will be ~ 65 H/. 
i ) 

The shear force diagram can now be draw as shown in the figllre. 

B.M. 
Bending moment at B = 0 



StaticaNy !ndetermi11ate Beams 287 

B. Mat C = ?6 W. ± = 352 WI 

5 WI 3 
B. M. ~tA =l6 Wl- 2 = l6 WI 

Point o( Contraflexure. 

B. Matxx = 1
5
6 Wx- Wr- ±1 

By equating this equation to ero, Point of contraflexure can be 
determined. 

5 l 
-·x- x+ -= 0 
16 · 2 

8 
or x = 11 1 from the propped end B. 

Example 9.2 
A Cantilever of length l carries a u.d. l w per unit run is propped at the 

free end. Find the reaction of tht'! prop if it holds the free end to the level of 
the fixed end. Draw the B. M and S. F. diagrams. 

A Cantilever A B of span l with a u. d. l w/unit length is shown in 
fig. 9.5 End A is fixed and,.B is propped. Let R be the reaction of the 

. prop. 

Downward deflection 

wf' 
-

8 EI 
Upward deflection due to 

prop R 

Rz3 
- 3 EI 

Since the cantilever remains 
horizontal, deflection at B is Zero. 

Rz3 wf' -----
3 EI - 8 EI 

~wl r--__ 
8 A i:::::::::::--- 3/8 I B 

5/8 wl <.:.:.::.:J 318 wl 

S. F. DIAG. 9 2 

A~I ~2v ~-l B 
~.D. 

Fig. 9.5 

or R = f wl and Reaction at A= i wt 

Shear Force. 
S. Fat any section xx will be zero, when 
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. 3 3 
S. Fxx= wx - R = wx - -8 wl = 0 or x = - I 

8 

3 3 ,:;; 
S. F B = - 8 wl , S. F. A == - 8 wl + wi == + t wl 

Shear Force diagram can now be drawn as shown in the figure. 

3 wx2 
BM at xx=.Mn= -wlx- --

. 8 2 
? 7 

B i\,f A = }. ,,,z 2 - ~v z- = - w z-
. · at 8 " 2 8 

Max m B. M will occur at x = 3
8{, lvlmax = 1; 8 wl2 

Point of contra flexure 

Equating M.u to Zero 

3 wx2 
Mxx=- wl---=O 

8 2 
3 

x = 0 and x = -- l 
4 

B. M. diagram can now be drawn as shown in fig. 9.5 

Deflection 

At any section xx from B. 
;)_ . 2 

crv 3 wx 
El d) =g wl .x- - 2-

EI !!:J'.. 3 ? wx3 
dx = 16 wl. x- - -6- + C1 

At A the slope is Zero i.e. _ddy = 0 at x = l 
'X 

3 3 wt3 -wz3 
0= 16 wl. - 6 +C1=0orC1=~ 

dv 3 2 wx3 - w 13 . 
:. El -;f; = 16 wl.x --6- -~ (slope equation) 

Integrating again 

wl .x3 w x4 wf 
Ely=16- 24 - 48 x+ C2 

Deflcetion is Zero at A , When x = l 

wr wz4 wr 
0 = 16- 24 - 48 + C2 or C2 = 0 

wl .x3 w x4 wz3 
Hence Ely = 16- 24 - 48 x 
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Maximum deflection will occur where the slope is Zero 

Equating the slope equation to Zero 
'.( \ 

j~ H / .. / - H~· - •;~ = Q 

Slaving the above equation 
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Maximum deflection will occur at 0.422 i from the propped end B. 

0.005415 W l 4 
Ymax = El 

Example 9.3 
A cantilever of'span 4 metres is supported at the free end ro the level 

of the fixed end. it carries a concentrated load of 40 KN at the cent re of the 
span calculate· the reaction of the prop and Ji,nd Jhe position an\i am91111t of 
maximum deflection. Take E = 210 KN/nun- anu I= 1300 x 10-+ mm~. 

Deflection due to the load at the 
free end 

Ys= 
5 w 13 

48£ l 

i ~KN 

A '~1==.=2=rr=1===2=m=. ==i+ ~ 
'H 

----1=4m ----The upward deflection due to 
reaction R must neutralize this down 
ward deflection. 

Rl3 5 Wl 3 
------
3 El 48 EI 

15 5 
R = 48 W= 16W 

5 
= 16 X 40= 12.5 KN 

Example 9.4 

Fig. 9.6 

Answer 

A cantilever carries a concen:r.zted load Wat i of its length from the 

fixed end and is proped at the free end to the level of the fixed end,find what 
proportion of the load is carried on the prop? 
Solution 

Fig. 9.7 

Down ward deflection due to 

concentrated load W at i 1 = upward 

deflection due to R 

W l 1 3 W l1 2 

= 3£!-+ 2El (l--lJ) --
R ,3 

l 

3 EI 

_R f3 - ·w f3!, \3 l3 ~ n;, ,2 t2 l(l - _43 l 
3 EI - 3El , 4 1 + 2EI ' 4 J 
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Rf·) Wx 27 {3 
-~-·---

3 E 1 3 El>< 64 

Example 9.5 

w +-~~ 
2 EI 

9 
--W/1 
128 

9 ,.,1 
--_ 1°, I 
128 J 

X 

S!ulica!lr !ncfetcr111inu1e lkwn, 

l) 0 l 1 --,-1-x 
16 4 

Answer 

A 11nifcn111 cantilever of spun 5 metres is propped at the.fr·ee end to the 
level of thr end. Calculate reaction on the prop. when the cantilever 
carries a uniformly distributed load of 20 KN per metre run over its whoje 
length. Also dttermine the maximum dej/ection. 

Fig. 9.8 

R 13 

3 EI 

Down ward deflection at B due 
to u.d. l. on the 

wt4 
Cantilever= 8 E 1 

Upward deflection due to the 
prop at the free end 

In order that the cantilever may remain horiwntaJ, deflection at B must 
be Zero. 

Hf R !3 
or ------

or 

Example 9.6 

8£1 -- 3£1 

R.=3x":'._r=3 
. 8 13 8 

300 
8 

37.5 KN 

3 
iv/= X 20X 5 

8 

A cantilei·er of span 4 metre carries a. u.d. I of 15 KN per metre run 
on the entire span and a point load of 20 KN at the free end which is 
supported to the same level as the fixed end. Calculate the reaction at the 
prop. 
Solution 

Down ward deflection at B due 
to u. d. l. + load = U pwarcl 
deflection due to R at B 

vi· t4 Hi l3 R 13 

20 KN A~=+ ~4m . R 
;;I 

--.j..-----

8£/, 3£/- 3£1 
Fig. 9.9 
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or 
(11 l) !' Wt 3 Rt 3 
----·+--· 

8 3 .3 

(l5x 41 20 R . __ , + ·-- - --
8 3 -- 3 or 

or R = 1 160 _,_ 1-Q l = " [- 1 so+_. 16.Q 
., L 8 ' 3 J _, L 24 

340 
- 8 KN= 42.5 KN · Answer. 

Example 9.7 
A cantilever l carries o toto! iond 1r/ uniformly 

distributed throughout the length. If thc cantiln·er is propped at a point f 
.,Jrom the free end and the th{lt 1/zere is no al the 

· free end. Determine the 
Solution 

w/unit lenqth 

Down ward deflection ai B due to 
II. d. f. 

j \V r 
A~B 

~ ..... ------------·· I I~-----"""' deflection at B due to prop 

Fig. 9.10 
I 

at 4 from the free end 

Rl 1 . Rl 2 

= -3-E,' +'I - 1 )--l -
• \ . 1 2 EI 

/ \J ( .. ,) 

R f l t l (1 l 1LR l ~ l ,I 
~- + , ~ 

3El 4) 2£1 

R x 2 7 !3 j f x R x 9 i2 
----- + - -------
3 X 64 E J 4 2E/ X 16 

9 Rl3 9R!" 27R! 3 
---+---- - ----
- 64 EI 128 El - 12 8 El 

( ii) 

In order that the cantilever may remain horizontal deflection at B 
must be Zero 

l w/ 4 27Rl 3 

8 EI 12 8 EI 

R i28xwl 16 - ------ -- -· H-f 
--- 8 >< 27 - 27 Answer 

Example 9.8 
A cantilever A B 2 metres long rests 011 an other cantile1·er CD one 

metre long as shmvn infigure 9.11. !fthe can!iicver AB is to a 
u.d.L of J KN!m over the whole length determine the reaoion ar C. ff the 
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flexural rigidity A Bis 
Take El CD= 200 
Solution. 

tho! of CD, who! will /Je rlzc def!euion ot C. 
(Modrns) 

Let R be the reaction and Ye the deflection at C. 

Downward deflection of end B 
due to u.d./. 

.. 14 
' 1 'AB 

8 E !AB 

Fig. 9.11 

R l~E 

3 E IMJ 

Upward deflection of end B due 
to reaction R at C 

Net down ward deflection of cantilever A Bat B 

w ds R ds 
8 E IAB 3 E: IAB 

Reaction Rat C causes downward deflection of C 

Rll'D 
= 

3 E lcD 
As the deflections at B and Care same 

8EIAB 3EIAB 3ElcD 

Now ElcD = :200 KN-m2 :. EIAB = 400 KN-m 2 

or 
l (2/ R (2)3 Rx 1 

8 X 400 3 >< 400 3 X 200 

2 R 5 
or 0.5 - R x or 0.5 = R x -6 3 6 

or R = 0 .5 X 6 
5 

Deflection at C 

Rll'D 
y,=---
.. 3 E fen 

3x(lf' 
= 

5 X 3 X 200 

= l mm 

Example 9.9 

3 KN 
5 

Answer 

A Cantilever 4 metre long carries a 11.d. I of 20 KN per metre 1w1 over 
the entire span. A prop is provided at the fife end H-/1ich sinks JO mm from 
the !?vei ofihefixed end. ff E = 200 KN/111111~ and I = 4000 nun~. Cafrnlote 
the prop reaction. 
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Solution 

,;-- 20 KN/m 

A~4=10mm 
~-~-- 4 4 rn rn ---j ~--· R 

Fig. 9.12 

Downward deflection due to u.cU - deflection due to prop = 

y 

i1· l 4 R l 3 
or l O mm = -- - --

8 El 3El 

R l 3 l 4 
or = _l-1:'___ - lO 

3£1 8£1 

R _(w[).13 x 3El !Ox~£/ 
- 8£1 T- 1~ 

20X 4 X 3 
------
- 8 

l () X 3 X 200 X l 03 X 4000 

( 4000)3 

"l ~ A i 
= .30 - _, X :4 X '-' = 30 - 8 
= (30 - . 375) KN= 29.625 KN Answer. 

DD D 



Statically Indeterminate Beams 
(Fixed Beams) 

When the ends of a beam are firmly clamped so that the ends remain 
horizontal, the beam is then called a fixed beam. Such beams are also called 
huih-in beams or 'Encastre beams.' 

When the ends are held firmly, the slopes at the ends of the beam are 
zero. Therefore a fixed beam may also be described as a beam to which 
certain couples are applied at the ends so th-at.the ends rc:main horizontal and 
slopes at both the ends ;ire zero. The moment induced at the end., due to 
fixed ends are called fixing moments or fixed end moments. 

To deterrnine the rnagnitude and nature of the fixing moments, the 
moment area rnetlwd has been found to be.quite easy. 
Moment - Area theorems 
Theorem I 

If A and B are two points on a loaded 
beam, the bct\vcen rhe tangents at A and 
B is given by the ;irea of the bending moment 
diagram between A and B divided by E i. 
Theorem H 

If A and B are two points on a loaded 
be:im the intercept AC on the vertical at A 
between the tangents at A and Bis given by the 
moment of bending moment diagram taken 
about A. Similarly the intercept BD on the 

Fig. 9.14 

verticai at Bis giver. by taking the moment of the bending moment diagram 
about B. 
Method Of Superposition 

After determining the end moment MA and M8 t!:;; bending moment 
diagram for the beam is constructed by super-impo~ing fhe fixing moment 
diagram on the free moment diagram. This is called method of super 
position. 

First construct the free mornent diagram for a simply supported beam. 
This is represented by the triangle ABC. The trapezium ABDE represents 
the fixing moment diagram. By plotting the negative ordinates due to MA 
and M 3 on the same side of the base fine AB as the positive mdinates due 
to W, the overlapping portions cancel! each other and the net bending 
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MA Ms 

<JA=-=~==:~ 

B 
Fig. 9.15 

295 

moment is given by the ordinates of 
the shaded portion of the diagram. 
The following examples will be 
helpful I in understanding the method. 
Some standard cases of fixed beams 
are discussed below. 

Fixed beam with a poi.nt load 
at the centre 

A fixeq beam AB of span L with 
a point load W at the mid span is 
shown in figure 9.16. 

When thr beam is freely supported maximum bending -moment will 
· WL 

be at the centre and is equal to 4 as shown. 

Since the lmid W is centrally 
placed the fixing moments MA and 
M 8 at the fixed ends 'Nill be equal. :. 
Af.4 = 

The fixing moment diagram 
will be rectangle. 

Since the change of 
slope--betwcen A and B is Zero; 

Therefore according to theorem 
no. l. 

Area of free moment diagram+ 
Area of fixing moment diagram= 0 

J , iV L 
or - L, x --- + ·'"A x L = 0 2 4. . 

-WL 
or MA= - 8- = ,\fB 

Point of Contraflexure 
Consider a section x - x at a 

distance x from A, then 

Mxx=R.4. x-M.4 =0 

Or W x- WL = 0 
- 2 . 8. 

L 
or x = 4 
Similarly when section x - x 

lies in the portion CB. 
Mu= RA .x-M,.;, - W. (x--1/z) 

== 0 

MA lw Ma 

r> 'V \,,J= ! 
,, 

L;2 
G 

Li2 A~--- ~B 

FREE MOMENT DIAG. 

MA r/// ////////? 7 ;'l>l MB 

~((.(/////~~ 

FIXING MOMENT DIAG. 

B~ M. DIAG. 

S. F. DIAG. 
d . ~ 
~_:::---~ 

DEFLECTION DIAG. 

Fig. 9.H:i 
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or or x 

So the point of contraflexure will be at a distance of 

I f 3 L _ 
x = L 4 rom A and - from A 

4 

Shear Force 
Taking moments about B, 

L 
RA .l - MA - W . 2-= - MB 

WL Wl 
RA . L - - 8- - - 2- + M 8 = o 

or R A L _ W L _ W L + W L = O 
n. 8 2 8 or 

3L 
- 4 

Hence SF. diagram for a fixed beam is similar to the .5. F. diagram 
for a simply supported beam as shown in figure 9.16. 
Deflection. 

Consider a section x-x in AC at a distance ofx from A. 

d2 v Vl W Wl 
EI~ = + M X = + 2 . X - A1A = + 2 . . X - -8-

d\' W.:c WL 
EJ:::::....L =+--- --x+ c. 

d X 4 8 1 

Now slope _ddJ.. will be zero, when x = 0. hence C1 = 0 
X 

Integrating again, 
3 7 

Ely = + W x - W L x~ + C 1 x + C 2 = 0 
12 16 

At x = 0. deflection y at the support will be zero, 

:. C2 = 0 

' At x = f y will be maximum 

' 7 W (L'' WL(L'f 
Elyc=+ 12 !2j -16lz) 

WL~ WL3 ·wL3 

= + 96 - 64 - 192 

WL3 WL3 

Ye=- 192El or Ymax= -192£/ 

Negative value shows that the deflection is downward. 
Fixed beam with a u.d.t w/unit length over the entire span. 

A fixed beam AB of span L with a uniformly distributed load w/unit 
length over the entire span is shown in figure 9 .17 
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;". t???/????.,,.-?/.>?.,,,.-:>?/1 

••\ t::: - 1 Ma 
Ve< .,, < < < < / < < < c < // ././/,d 

FIXING MOMENT DIAG. 

~ 

~ 
DEFLECTION 

Fig. 9.17 
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Since the load is uniformly 
distributed over the entire span equal 
fixing moments are induced at A 
and B. 

=Ms 
Since the change of slope 

between A and B is Zero. 

Therefore, 

Area of free moment diagram+ 
Area of fixing moment diagram= 0 

2 w L2 

3 L x - 8- + MA X L = 0 

wL2 
or MA= - 12 = Ms 

Point of cont.raflexure : 
Consider a section x - x at a 

distance of x from A 

X 
Mxx = RA . X - MA - W.X. 2 = 0 

wL wL2 2 wx 
0 or 2 . x- -- --

12 2 
2 Lx L2 X 

0, or ---+-= 
2 2 12 

2 Lx + 
L2 -

0 or X -
6 

L 
or x = 2 ± 0.289 L or x = 0.211 Land 0.789 L 

The points of contraflexure will be at a distance of 0.211 L and 0. 789 
L from A and B respectively. 

Shear force 
By symmetry the supports reactions RA and Rs will be equal, 

wl 
RA=RB= 2 

The shear force diagram will be similar to the S. F. diagram for a freely 
supported beam. 
Deflection 

d2v wL 
EI:::::_,[_= +Mx= +-

dx 2 
x2 wL2 

.x-w.2-12 

Integrating 

w x3 

2. 3 
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At x = 0. is zero ie. C 1 = 0 
Integrating again 

CJ ~ 

vV L x1 W x4 
£fr=+~.--··-. 12 

· 2 6 2 . 

we x~ 
12 2 +C1x+C2 

at x = 0, deflection J is zero :. C2 = 0 

and maximum deflection will occur at the centre, when x 

wL Pf,, - ' -
~ .!C-T 12 

+ \1,' 

Ely,=~--

wL4 
Ely,= 

384 -
-wL4 

J,= 384£1 

13 w r L \4 

2 J - 24 [2)1 
J \ 

wL4 wL4 

) (1<2 w L- - I 

24 12 I 
\ J 

96 384 

wL4 

or Ymux = 384£ I 

Negative si:;n means the deflection is downward. 

Fixed beam with a point load not at the centre. 
Since the load W is nGt 

2 

centrally placed fixing moments MA 
and MB will be unequal. 

MA w r,\ 

rr===a=====~=!===b~ Since change of slope between 
A and B is zero, therefore Area of free 
moment diagram + Area of fixing 
moment diagram = 0 

(MA + /VJ B) ·~ 
_Wab L 

or -
L ·2 

(1v!;1 + /l.1s) 
- H'ab 

or 
L 

(i) 

According to 2nd theorem, the 
moment of both the above areas about 
A must be equal. 

L2 
(MA + 2 Ms) - = 

X £ X 2a+ J'I ah X f?_ ff!,: f.~t 
·2 3 L 2(' i.iJ 

---- I---- --

0. ~~~ G~.\v\ 

MAV l' ~~ 
A B 

B. M.DIAG. 

t ..... _ . S. F. D!AG. ,., 
~--~."")--~. 
~ v 

Fig. 9.18 
Wab · 

=--'- (2a + b) 
6 

or 
.,1 .., ,_~Vab(2a+b) 
V•A+2msJ-- L2 (ii) 
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Solving (i) and (ii) 

M __ -W ab2 

A -- L2 
and 
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- 2 
-Wa b 

Ms=--,-
_.·· L-

Now consider a .seetion x -- x at a distance x from A in the portion AC 

W bx [ X] Mxx=-L-- MA+ (Ms--MA) ·L 

·· W bx W a b2 W ab (a -b) x 
= -L- --;y:-- L3 

For point of contraflexure put Mxx = 0 
' . . 

it'bx _ Wab- _ Wab (a - b) . x = 0 
L L2 · L3 

aL h . d or x = w ere x 1s measure from A 
. (3a + b) 

Similarly for ·point of contra-flexure in portion BC, We get, x = 
bL .. ·· 

( · 3b) where xis measured from B. 
a+_ . . 

Shear Force -
·Taking moments about B 

R'Ax L- MA-Wb+Ms= 0 

R 'A x L - W ;b2 Wb + W ~2b = 0 
L L 

2 .. .. 
R' _ Wb (3a+ b) 

A - .. L3 

Wa2 (a+ 3b) 
R's=---~-~ 

L3 

Shear Force diagram has been shown in fig. 9.18 
Deflection under the load 

Wa3 b3 
Ye=---

3L3 EI 
Example 9.10 

An encastre beam, 5 m long carries a concentrated load of 16 KN flte 
its centre. Determine the fixed end moments and the support reactions. Also 
calculate the maximum deflection under tlie load and draw the B. M. and 

. 2 6 ·4 
shear force diagrams. Take E = 200 KN/mm and l = 80 x 10 mm ,. 
Solution 

·. . WL 16x5 
f:or free moment diagram Max . B. M = 4 = --4- = 20 KN--m 

Area of free moment diagram - 2 x 5 x (20) = 50 
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Area of fixing moment 
diagram 

MAX L=Msx L 
Since ends are fixed 

change of slope between A 
and Bis Zero 

:. Area of free moment 
diagram + Area of fixing 
moment diagram =0 

1 
or 2 X 5 X 20 + MA X L = 0 

50 
or MA=--

5 

= - 10 KN-m = Ms. 

Statically Indeterminate Beams 

MA C j16 KN Ms 

~k====~t~====~=!:~c 
r 2.5 m -+- 2.5 m --"'1 

~-

B. M. DIAG. 

8 KN L:::::J · [ ;;::: ::J 8 KN 

S. F. Diag. 

Fig. 9.19 

S . A 'B W 16 8 KN upport reactwns at ana = 2 = 2 -= 

WL3 
Maximum deflection at C = 192 E 1 

Ye= 16 x 103 x (5 x 1000)3 = 0.65 mm 
192 x 200x HY x 80 x 106 

Answer. 

Example 9.11 
A fixed beam AB of span 4 metres supports a load of 30 KN at a 

distance of 1 metre from support A. calculate the fixing moments at the ends 
and draw the B.M. and shear force diagrams. 
Solution 

MA 1 m J 30 KN 

We 
i----4m 

~ A . B 
B. M. DIAG. 

D 
S. F. DIAG. 

Fig. 9.20 

For free moment diagram 

M = W ab = 30x 1 x 3 
max L 4 

= 22.5 KN-rn 

Fixing moment at A 

M = Wab2 = 30(1) (3)2 

A L2 (4)2 

= 16.75 KN-m 

M _ Wa2 b_30(l)2x 3 
B - L2 - (4)2 

= 5.625 KN-m 

Shear Force 

n' _ W b2 (L + 2a) 
HA-. L3 
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30(3)2 (4+ 2x l) 

(4)3 

= 25.31 KN 

D' _ W a2 (L + 2b) 
"B - L3 

') 

30 ( W ( 4 + 2 X 3) 

(4)3 

301 

4.687 KN 

Point of Contra flexure, for point D when x < a 
aL 1 x4 

x = (3a + b) = (3 x 1 + 2) =. 66 m from A 

For point E when x > a 
L(L+ b) 4(4+ 3) 

x = (L+ 2b) = (4 + 6) =2.8mfromA 

Example : 9.12 
A built-in beam of span 6 metres carries two point loads 20 KN each 

at 1 metre and 5 metres from fixed end A. Find the moments at the supports. 
What is the central moment. Draw the S.F. & BM. diagrams. 
Solution: 

M 
A 20 KN 

(~\ m 4c 
A -:1 

A B. M. DIAG. 

D20KN 

Fig. 9.21 

For point of contraflexure, 

Mxx= RA. x-MA;:: 0 

Area of the free moment 
diagram 

1 
= 2 X ( 6 + 4) X 20 = 100 

Area of the fixing moment 
diagram 

=MA. L = lvfB .L 
Since the change of slope 

between A and B is zero, 

and 

:.MAX L= -100 

or 
-100 

MA =-6-

16.66 KN--m 
Ms= -16.66 KN-m 

Central moment 
= (20 - 16.66) 
= 3.36 KN-m 

or 20 .x - 16.66 = 0 or 16.66 n g~J 
X =~ = U. j ill 

Point of contraflexure will occur at 0.83 m from either end. For shear 
force, Taking moments of all forces about B, 
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R4 X 6 - M_ 4 -- 20 X 5 - 20 X l + MB == 0 

- 20 _ _J!_ - "1i) K-N - D Al1S"'°'" -- 6 ··- -',. ' - "B ,-.. , "'--'• 

Example 9.13 
AB is·cu1 encastre beam /1l span. It carries poim loads of 

10 KN each at quarter spon points and m centre. Draw the B.i'rf and S.F 
cliagrmns. What is the maximum B.}vl. and where the B.ivf.is Zero. 
Soiution 

For free rnornent 
diagram 

RA= RB= 15 KN 
Mc= 30, Afo = 40. 

l>fE == 30KN--rn 

Area of free mnmcnt 
diagram = 
. r 1 . . 1 -~, 
2 / -x2x30 + - (:iv+ 

2 2 

= 200. 

Area of 
moment 

= lv!A. >< 8 
= Msx 8 

·,l -, 
I 

j 

( i) 

. . . . (ii) 

Since the change of 
slope between A and B is 
Zero. 

:. Area of free moment diagram 

+ Area of fixing moment diagram== 0 
or x 8 + 200 = 0 

or •1 = _ ioo "" - )"' K'·'-"1 1t1 IY A 8 -J ' l ~ " = B 

= IHB = - 25 KN-m 

B. M. DIAG. 

Fig. 9.22 

Maximum B.M (40- 25) = + J 5 KN-m and - 25 KN-m (- ve) 

For Point of contrafkxurc, equate Mrx to Zero 

MXX = x -- M.4 = 0 

or 15.x - 25 = 0 or 
)5 

x = ; "'- == l. 66 m from A,. 
'-

Zero Bending moment will occur 1.66 m from either end 

Example 9.14 
A fixed beam AB 6 rnetres long carries a uniformly distributed load of 

2 KN!m over the 11vhole span and a concentrated load of JO KN at the centre. 
Draw the B.M. and S0 F. diagrams and calculate the maximum deflection. 
Take E = 200 KN!mmL and I= 4 x 104 mn/ 



Statically Indeterminate E'eams 303 

Solution 
KN/ 110 KN For free moment diagram 

(] ~2 m ; . . [) ~ RA=Rs=llKN 
~. 3 
1,...:..-3 m · "14 3 m ~ B.Mc = 11 x 3 - 2 x 3 x -2 
----'-6 m ---~ 

= 33-9 = 26 KN--m 

+ / 6 6 6 l 
~~ B.M at-= ll x -4 -2x -:;-x-x 

- · 26KN-m .,,)J13.5 4 ., 4 2 
~~ KN.,..m = 16.5--2.25 = 14.25 KN-m 

B. M. DIAG. l 
B.Mat 3 4 = 14,25 KN-m 

11 KN • 5 KN . F t·· · 
"-"'-"-"J;,.,<..,(...4.""'4~~,..,....,..,..,,."'""· or 1xrng moments. 

SKN~11 KN MA=-: [fixed end moment 
s. F. DIAG. duet? u.d.l. + fixed end moment due 

to point load] 
Fig. 9.23 [ ') ] w 1-, W L 

=- -+--
12 8. 

=-[2\i6)2 _ 10 ; 6]= [6+7.5]=-13.5KN--m 

.. ~; MA-= M8_= - l~.5 KN-m 
The combined diagram is shown in fig. 9 .23 
S.FA = 11 KN 
S. Fe just to the left of c = 11 - 2 x 3 = 5 KN 
S.f. just to the right of c= 11 - 2 x 3 + 10 = - 5 KN 
S. F B = 1 - 2 x 6 - 10 = - 11 KN 

m . wL4 WL3 L3r 2 10] 
Max . Deflection= 384£ I+ 192 EI =e1l6x 384 + 192 

0.0520x (6)3x (1000)3 
= = 1.404 mm Answer. 

200 X 103 X 4 X 104 

Example : 9.15 
· A fixed end beam AB has an effective span of 6 metres and loaded with 

1 Knlm on the whole span in addition a concentrated load of 12 KN at 2 m 
from'A. Draw B. M. and S. F. diagrams. (Rajdsthan) 
Solution 

· :For free moment diagram 

RA.= wL+ Wb 
. ..2 L 

= ·1 X 6 J+)2 X 4 == l l KN 
2 6 · 
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ivL iv a -+--
2 L 
Jx r~ 1'.lx? 

=T+Y=7KN 

S1a1ically hdeterminate Beams 

12 KN i KN/m 

~ 
MA =0 --~-6 m-----

M 
x=2m 

M 
x=3m 

M 

2 
=llx2-lx2x 2 

= 20 KN-m 

3 
=llx3-Jx3x--

2 

12 X] 

= 16.5 KN-m 
4 

=llx 4-lx4x 
.. r=4m. 2 

- ]2 X 2 

12 KN-m 

M =llx 5-lx 5 x 
s 

A=5m 

M 8 =0 

Fixing Moments 

B. M. DIAG. 

S. F. DIAG. 

Fig. 9.24 

- i2 X 3 7.5 KN-m 

6.11 
KN 

wL2 Wall Jx(6)2 . 12x2(4)2 _ 
M,4=·12 + -L2--= - 12--i- -(6f=3+10.67=13.6tK-m 

7 7 6)7 . ,., 2)? _wL~_wa-b_lX(J- _!..::__( -(4)_ 3 533 _ T 
- 12 ..,. - l" + 7 - + . - 8.33 KN-m 

L /.., (6)-

Shear Force 

Taking moments about B 

6 
R'A x 6 - i3.67 - l 2 x 4 - l x 6 x 2 + 8.33 = 0 or RA= 11.89 KN 

R's= 6 .11 KN 

S.F,1 = 11 . 89 KN 

S. F. just to the left of C = 11 .89 - 1 x 2 = 9 .89 KN 

S. F. just to the right of C = 11 . 89 - 12 - l x 2 = 2 . ll KN 

S. Fs = 11 . 89 - 12 - l x 6 = - 6. 11 KN 

B. M. and S. F. diagrams are shown in fig. 9. 24 

Example 9.16 
An encastre beam of span 4 metres carries a u. d. l. of J KN!m over 

its entire length and two point loads of 2 KN and 4 KN at 1 metre and 2 
metres from fixed end A. Draw the B.M. and S. F. diagram. 
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Solution: 
For free moment diagram 

taking moment about B. 

Fig. 9.25 

M _ [w z2 W a b2 W a b2] 
A - - 12 + L 2 + L 2 

RA X 4 - 2 X 3 -4 X 2 -
lx4x4/z =0 

_ [1 X 42 2 X 1 X 32 4 X 2 X 22] 
MA - - 12 + 42 + 42 

[ + 16 36 32] =- U+ 16+ 16 = -{l .33+2.25+2} = -558KN-m 

M =-[wL 2 Wa2b WL] =-[lx 4 2 2x 1 2 x 3 4x 4] 
B 12 + L2 + 8 12 16 + 8 

= -[ 1.33 + 166 + 186] = - (1.33 +. 375 + 2) = 3.705 

=-3.705 KN-m 
Shear Force. 

Taking moments about B. 

R,AX 4-MA-w·LiL-2x 3-4x 2+MB=O 

4 . 
R'A X 4 = 5.58 + 1 X 4 X l + 6 + 8 - 3.705 = 23.775 

R'A = 23 ]75 = 5.94 KN 

R' 8 = 1 x' 4 + 2 + 4 - 5.94 = 4. 06 KN 



306 Statically Indeterminate Beams 

S.F. A = 5. 94 
S.F. just left of C = 5.94 - l x 1 = 4 .94 KN 
S. F. Just to the right of C = 5.94 - I - 2 = 2.94 KN 

S.F. Just to the left of D = 5.94 - l x 2 - 2 " 'i 95 - 4 = l .94 KN 
S.F. Just to the right ofD = 5.95 - l x 2- 2- , 5. 94- 8 = - 2.00 KN 
S. F. at B = 5.94 -lx 4 - 2 - 4 = 5. 94 - 10 - - 4.06 KN 

Eample : 9.17 
A built-in beam of span 8 metres carries a distributed ioad 

of 112 KN per metre over the left half of the span. Calculate the support 
moments and iraw B. M. and S. F. diagrams. (J.M.!.) 

Solution 
Supports ·eactions for a, freely 

sup12orted bear 
·i (4 \ 

R X8=...!-..x4-+41 
A 2 l 2 j 

RA= 1.5 KN . 

Rs= (1/2x 4 -1.5) = 0.5 KN 
Since change of slop between 

A and B is zero. 
Aiea of free moment diagram 

+ Area of Fixing moment diagram = 
0 

Now area f free moment 
diagram = Area of parabolic figure Fig .. 9.26 (a) 
ADC+ Area of triangle DBC - Consider a strip dx at a distance x from A, 

· then 

Mx D Mx=(1<A-x-w.x.i) 

~ 
Area for the strip = dx 

A~B 

y2 

=(RA .x- w;·-1dx 
" ' / 

! Total area of the figure = J 
0 

dx 

Fig. 9.26 (a) 

Area of the triangle 
1 

=-x 4x 2 
2 

Total area of free moment diagram 

A wx2 
= I (RA .x--2-)dx 

·o \ ) 

A 2 • 
= I (RA.X- wx )dx + !:..x 4x 2 

Jo " 2 ; 2 

Area of fixing moment diagram= (MA+ Ms) t 
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r 21 
I X I 
I 1 <; y O 5 - I a'v -!. ,1 , .J ,c - . 2 I .,,_ , , 
L J 

4 (MA+ Ms)= (6 .67 + 4) = 10 .67 

or(MA+ =i0~, 67 =2.66 

According to 2nd theorem 
Moment of fixing moment diagram about A = Moment of free moment 

about A 

+ 2Ms) \
2 

= l (Mx .dx). X + l._ X 4 X 21 (4 + 
0 ~ ) 

== ~ [ R,4 . x - w / J. x . dx . + 4 ( 13
6) 

=l 0 

r 3 414 
__ 1' 1.5 X _ 0.5 X + £_'!_ 

_ 3 8 Jo 3 

2 

(MA+2Ms)X ! =32-16+~4 

or MA+ 2 Ms= 3.50 
Solving (i) & (ii) M,4 + 2M8 = 2.66 

MA+2M8 =3.50 
MA= 1.72 KN-m and M8 = 0.94 KN-m 

For Shear Force 
Taking moments about B 

4 
R' Ax 8 - 1.72 - 0.5x 4 (2 + + 0.94 = 0 

R'A = 1.5975 
R'8 = 2.15975 = 0.4025 

Example : 9.18 

Answer. 

(ii) 

An encastre beani AB of span 8 metres carries a uniformly distributed 
load of 4 KN/metre over the left half of the span and a concentrated load of 
8 KN at 2 metres from B. Calculate the fixing moments at the ends and draw 
the B.M and S. F. diagram. · ( CalcuttaUniv) 
Solution -

For free moment diagram support reactions 
R A X 8 :=: ( 4 X 4) ( 4/2 + 4) 8 X 2 
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=96+16=112 
RA= 14 KN 

Statically Indeterminate Beams 

8 KN 

Rs= lO KN 
Moment at C, Mc 

/\ f4KN/m ~ 

\.~~ D ~ 
A ,r---a m --,e:.. 2 m +2 m ,+B 

IE 
Mc =RAX 4-4x 4(~J 
=14 x 4 - 32 = 24 KN-m 

MD=R3 x2= l0x2 
,1767~~ _15.16 
KN-m~KN-m 

= 20 KN-m. A C D B 

S. h , f I B. M. DIAG. rnce t ..: cnange o s ope f 
between A and l:' i~ Zero. 14.32 t~ 

There fo,, Area of fixing KN ~
0
;~ 

moment diagr&rn + Area of free "'-<o-<..L.-'-4-~,...~.,...,....,...,...,,..,,..,...,,.,,..,...,,..,..., 9.68 

moment diagram = 0 6d KN 
L S. F. DIAG. 

(MA+ Ms) 2 = Area of ACE+ Fig. 9_27 

Area of ECDE + Area ofFDB 
Area of parabolce figure ACE IE 
Consider a strip dx at a distance x from A 

1
, 

Mx = (RA x - w x . x/2) 

Area AEC = l (RA. x - wx. x/2) dx A .._ __ _..,,..,.__ __ Jc 
0 1--X ---1 r:;: 

Total area of free moment diagram. ~dx 

= r ( R . - w .i I dx + 2 ( 24 + 20J ..J... 1. x 2 x 20 
JO t A 2 ) 2 ' 2 

= ~ 14 . X - W ;
2

) dx + 44 + 20 

=[14x2 - 4x.x3]4 +64=[14x8- 4x (4)3lj+64=133.33 
2 2x3 0 2x3 

(MA+ Ms) t = 133.33 or (MA+ Ms) f = 133.33 

MA+ Ms= 33.33 
Again according to 2nd theorem. 

(i) 

Moment of fixing moment diagram about A= Moment of free moment 
diagram about A 

(M,4+2M8)~
2 

=l (RA.x- w;2
Jxdx+44(4+1)+20l6+ IJ· 

o \ J \ 3 

= ~ [14x 2 - 4;3)dx+44x 5+20(6.66) 
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= [14x3 - 4x4I + 220 + 133.2 
3 8 0 

= [ ~4 (4)3 - 4 ~)
4

] + 353.20 

= (298.66 - 128) + 353.2 = 170.66 + 353.20 
= 523.82 

g2 
(MA+2Ms)X 6 = 523.82 or (MA+2MA)= 94.10 

Solving (i) + (ii) 
MA= 17.67 KN-m and Ms = 15.6 KN-m 

For ShearForce. 
Equating clockwise moments to anti clockwise moments 

R'sx 8+17.67=(4x 4x 1J+8x 6 +15.16 

8 X R'S= 32 + 48- 2 .57 = 77.43 
R's= 9.68 KN. 
R'A= (4x 4+8)-9.68=14.32 KN 

The shear force diagram is sh9wn in the figure 9.24 
Example 9.19 

... . (ii) 

Affred beam of span L metres carries a uniformly varying load whose 
intensity varies from zero at one· end to w at the other. Determine the fixing 
moments at the ends. (Poona Univ.) 
Solution 

~c 

Consider a strip dx at a distance 
xfromA. 

.,~: 
. . L 4 

Fig. 9.28 

Load intensity at this section 
X 

=w . .L 
Total load on the strip 

X w = w.L.dx 

This load W may now be treated as a point load acting at a distance x 
from A and (L- x) from B. 

wab2 
HenceMA=-

L2 

2 
and Ms= wab 

L2 

Now W = ( 7 J dx , a= x , b = EL -x) 

Therefore integrating between the limits, 0 and.L we get_ the fixing 
moments. 
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MA = t (w XX) dx. X (L - x>2 
o L L2 

or MA=~ l x2 (L-x)2 dx = ~ l x2 (L2 - 2Lx +x2)dx 
L o L o 
wt 2 

MA= 30 

JLW.X · 2 
and M8 = 0 L. dx. x (L- x) 

Example 9.20 

wL 2 
or M8 = 20 Answer. 

A built-in beam AB of span L metres carries a uniformly varying load 
which varies from zero at A to w at the mid span. Determine the fixing 
moments at A and B. 
Solution. 

Consider a strip dx at a distance x from A 

Load intensity at this point = (~: J 
(~ . '7~) 

Totfil load at this point= \,,';1 J. dx 

= wx. dx 
L 

Now consider this a~ a point load 
atxfromA 

2 
Then MA = W.~b 

v· 
P . W 2wx. dx uttmg =L , a=x, b = (L-x) 

Fig. 9.29 

MA = J l/2 2wx.dx . x.(L ~ x) = 2w J l/2 x2 (L _ x/ dx 
o L L~ L3 o 

_ 2w J lh. 2 (L2 ,.,Lx 2d - 3 x -,_ +x.x 
L o 

= 2w [L2.x3 _ 2Lx4 + x5lj I/z = wL2 

L3 3 4 5 30 
0 

N M _ Wa2b -J l/2 (2w.x.dx) x2(L - x) . i 
OW B- 2 - L . 2 I 

L o L 

= J lh. 2w.x3 (L -x) . dx = Zw f l.,'2 (x3 L - .i) dx 
o L3 L3 o 

= ~; ri:·-{r 
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Answer 

\Vhen the load varies from zero at 
'l 

B tow at mid span, MA will be l~O 

and /1,f B will be 3
1
0 wP 

Fig. 9.30 

When the load varies from zero at A 
to w at C and then decreases to zero at B. , ~,~ 

This case may be treated as the • :~-</,.... I w ~ 
combination of above two cases and MA ~ L;, --..+,- L/2 --; 
will be sum of and {ii) 1 

1 2 3 2 5 2 =-wr. +·"--wL =-wL 30 ,_ 160 96 Fig. 9.31 

and M8 will be the sum of the fixing moments at Bin case and 
3 1 ,., 5 ,., 

Ms= 160 + 30wL"' = 96 wL-

Sinking of a '-'"""'a'" 

+6LJS 

If the prop B sinks by an amount ,S 
below the level of A, it will result in the 
induction of a shear force to 
12Elo , 
--~- tnroughout . 

L-' 

Bending moment at A, 

MA_ -6EI o 
, - L2 

rfthe fixed bean, carries a• -~ +6 E! 5 
distributed h>ad and . 6 El B ~ ~ 

-one sn,pport is !cvver 1han the '-i_2 ~ B. M. DiAG. 
other then the 1.noments 
will be 

r--wL2 
- ---

12 
at the 

12 El 6 r7V??777????77777,'77-~1 
----v /~ 

L 3 ~LL..:LL n ttuuuc.Ll 
S. F. DIAG. 

higher support. 

and 
i --- tvL2 6Elo I . J ---··::,- i at the ower 

J.., ' 

Fig. 9.3.3 
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Example 9.21 
A fixed beam AB of span 5 metres carries a u.d. l. of 8 KN/metre. The 

support B sinks by 10 mm. 
If E = 2 x 1 a5 Nlmm2 and I = 66 x 106 mm 4. Draw the Bending 

moment diagram. 
Solution 

~---
- -... ~mm ---- -_ ---:JT ~ -- Sm , 

15.04 

Fig. 9.34 
Fixing moments due to u.d.l., 

2 
M , M, wL 

A= S =-il 
-8x 25 

12 = - 16.66 KN-m. = 
End moments caused by sinking of support 

M --,~_: M ,,_ -6£/8 
A -- S - --

L2 

= 
-6x 2x 105 x 66x 

(5 X 1000)2 
= - 31.7 KN-m 

6 . 
10 X 10 

MA"= - 31.7 KN-m., Ms"=+ 31.7 KN-m 
Net and momc;nts due to u.d.l. and sinking of support B 

MA=MA'+ MA"= -16.66-31.7=-48.36KN-m. 

Ms= Ms'+ Ms" = -16.66 + 31.7 = + 15,04 KN-m i\.-~wer 
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Table 9.1 

Standard Cases of Fixed End Beams 

Type of Loading 

A 3 l1z I w L/2 ~ B 

----i----1 

A~ 
a 

.w - / 
l b, ~B 

Fixed End_ Moments. 

WL 
MA=Ms=--

8 

wL2 
MA=Ms= -

12 

wL2 wL2 
MA= -- Ms= --

30 20 

wL2 3 2 
MA= - 30 , Ms= 160 wL 

- 5wL2 
MA=Ms=---

96 

Ms=+ 6E/8 
- L2 

313 
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( Continuous Beams) 

A beam resting on more than· two 
~ I supports is called a continuous beam. The 

A== I deflected form of a continuous beam 
B · C under a loading system is shown in the 

I figure. The elastic curve shows that the f I curvature at the supports is convex f'- -:--.,, , '-----1 upwards. It means that the moments 
· . . ·· induced at the supports will be opposite in 

· nature to the moments produced in the 
Fig. 9.35 centre of different spans of the continuous 

beam. The moments induced at the 
supports are called support momeots. 
Clapeyron's Three Moments Theorem 

A"r, 
I ............ 

~B C 
A ''<.Pr i 
-.I X ~ '-....Jc· 
I~ 
~. 

A 8 C ' 
M ,. 

Fig. 9.36 
Let AB and BC be two consecutive spans of length 11 and 12 of a 

continuous beam of any number of spans. The free moment diagrams for the 
loading on these spans is shown in the figure. Let xi be the distance of the 
C. G of the moment diagram on span AB from. A. Similarly let x2 be the 
distance of the C. G of the moment diagram on span BC froin C. let I 1 and 
12 be the moment of inertia of spans AB and BC respectively. 

Let MA, M8 andMc be the support moments at A, Band Crespectivly. 
Then clapeyron's theorm states that 

11 ([I '2) /2 -6A1X1 6A2X2 
MA.-1 +2MB 1+1 +Mel = II __ 1_2 _12-1 1 2 2 11 

314 
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the 
When both the spans AB and BC have similar sections then 11 = 12 and 

can be written more simply as 

- 6A1X1 
+ :::: 

l 1 l2 

Now. to moment - Area method, the intercept AA' on the 
Yertical at between ihe tangent at A and Bis given the moment of the 

moment between A and B divided by the flexural 
E'J The moment taken about A. 
l'herefo:re 

r ' ~1 l 1 
l ! . 'l l• 8 l J AA = --- ; A t .. -+- > - + -- x -

, • 1· 1 7 ' < 7 3 L. _,_ ~, ..., 

AA' A'.Xt 
i = ~- = ·:~~-i__..:__ -t- --+ 

lj ' 

and i2 -·-=--+ 
Mch Msl2 
---+ --
6El2 3£12 

Since the beam is Continuous i 1 = - i2 

A1x1 l1 Ms.l1 A2x2 Mcl2 Msl2 
. -- +--- + . ------··--- - ---
.. l1Eli 6£ 11 3£11 l2E 12 6E 12 3Elz 

Transporting terms 

(~!_I 7 (j_ _!J:_) lv(!!:_ __ 6A l XI _ 6A2 x2 
MA ~1 I+ .. M 81 El + EI + El - l l El 

1:, I / , l 2 2 l 2 2 
' \ 

And when / 1 == 12 = l 
Then the equation can be written as 

Standard Cases 
1. Continuous beam with point loads at mid spans and of constant I 

Area of free moment diagram on 
span AB 

W1l1 l1 
Ai ::::-4-x2 

l1 x, =2 
6A1x1 r 1 w111 1, 1 
-- =6j-X [1 X --x -1 

l1 l 2 4 2 J 

3 2 
= 8 W1 l1 

Fig. 9.37 

Similarly Area of free moment diagram on span BC 
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Wzli l2 
A2 = 4 - and x2 = 2 

6A2X2 3 2 
-l - =gW2l2 

2 

Statically Indeterminate Beams 

Now Applying three moments theorem on spans AB and BC 

- 6A1 X1 6A2 X2 
MA l1 + 2Ms (ll + l2) + Mc l2 = l -l-

1 2 

-3 2 -3 2 
MA t1 + 2Ms U1 + l2) + Mcl2 = gwl l1 8 Wz l2 

2. Continuous beam with non - central point loads on. each span 

Fig. 9.38 

Area of free moment diagram over span AB 
_ _ll W1a1(h-a1) 

A1 - 2 .1 X [i 

U1 + 0 1) 
X1 =--3--

Similarly 
Area of moment diagram on span BC 

l lz Wz az (lz - az) 
A2=2 l 

2 

(lz + a2) 
X2 3 

6A2 x2 W2 a2(d- a~) 
-lz-= h 
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Applying three moment theorem on spans AB and BC 

,, ' 6A l X l 6A2 X2 

MA l 1 + LM B U i + 12) + MC 12 = - -l-1 - - -T;-

or 
4 
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Example 9.23 
A continuous beam ABC of span 6 metres is shown in figure 9.40 Draw 

the shear force and Bending moment diagrams. 

Solution a KN 10'kN 

1---2m:±2m--j1m l1m I 

L 4m ~~ 2m=t 
-----6 m------

~ 
B. M. DIAG. 

B. M. Diaagram 

S. F. DIAG. 

S. F. Diagram 
Fig.9.40 

Maximum f~ee moment ordinate on span AB 

. = W1l1 = 8 x 4 = 8 KN-m 
max 4 4 

Maxi free moment ordinate on span BC 

' Witz· lOx 2 
lvf max= -4- = --4- = 5 KN-m 

Now applying three- moments theorem on spans AB and BC 

- 6A !XI 6Azx2 
MA Ii+ 2MB (/1 + lz) + Mc lz = lt - -lz-

- 3 2-3 2 
4MA+2MB(4t-2)+Mcx :2= ·gWI It 8 W2lz 

4MA + 12MB + 2Mc = -8
3 x ,8 (4)2 -f x 10 x (2)2 

4MA + 12MB + 2Mc = - 48 - 15 = - 63 
Since end moments MA and Mc are zero 

:. 12MB=-63 
Ms= -5.25 KN-m 
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, Support Reactions 
Taking moments about B of all forces to the left of B 

RAX 4 - 8X 2 = - 5.25 

or RA= 10.?S = 2 68 KN 4 . 

Taking moments about B of all forces to the right of B 

Re x2- l0 x l =-5.25 

R c = 4·;5 = 2.37KN 

NowRA+RB+Rc= 10+8= 18 
or 2.68 +Rs+ 2.37 = 18 or RB= 12.95 KN 
B. M. and S.F. diagrams are shown in the figure. 
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Example 9.24 
Draw the B.M and S.F. diagrams for the continuous beam shown in 

fig. 9.41 

12 KN 16 KN 

·C 4m 

2m ! 2m C 

B ~ 4m =t 5m 

B.M. D!AG. 

8.16 

KN ~~'77?77:'77'°"*'"""u.,;.b.,..,.,, 

S.F. D!AG. 

Solution 
Fig. 9.41 

Max. free moment ordinate on span AB 

W1ab 12 X 1 X { 
Mmax = --l-- = 5 

l 

== 9.6 KN-m 
Maximum free moment ordinate on span Be 

W2 l2 16 X 4 
Mmax = -4- = --4-

= 16~1\J'-m 

6.2 
KN 

Applying three moments theorem on span AB and BC 
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- 6A1 Xi 6Ai,t2 
= ----

l1 l2 

W1a1 2 2. 2 
5MA + 2MB (5 + + 4Mc == - - 11- (l 1 - a 1Lf W2 l 2 

= 12; 1 (52 - 12) -t 12 X 42 

5MA + 18MB+4Mc=-57.6-72= 129.6 
Since ends are simply supported MA= Mc= 0 
:. 18MB = 129.6 

MB=7.2KN-m 
Support Reactions 

Taking moments about B of forces to the left of B 

RAX 5 - 12 X 4 = - 7.2 

or R - 48 - 7·2 8.16 Kl'\T A - 5 

Taking moments about B of forces to the right of B. 
Rex 4-16x 2= -7.2 

R _32-7.2 62KN 
c-- 4 . 

Now RA +RB+ Re.;= 12 + 16 = 28 
8.16+ RB+ 6.2=28 

R8 = 28 - 8.16- 6.2 = 13.64 KN 

.Ex~unp,ie 9.25 
Determine the support moments and draw tne bending moment and 

diagnnsfor the beam shown in figure 9.42 (Bombay 

4KN : l ,,..6 KN/m 

A.f:: --~ 
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Solution. 
Maximum free moment ordinate on span AB 

Wl 4x 4 
Mmax= 4 =-4- = 4KN-m 

Maximum free moment ordinate on span BC 

wz2 2 (6)2 
M =-= -- = 9 KJ."\f-m 

max 8 8 

Applying three moments theorem on spans AB and BC 

MA l1 + 2MB (ll + l2) + Mc lz -6A1 xi 6A2x2 
--/!- - -l2--

3 W1 li w2d 
4MA + 2MB (4+ 6) + 6Mc =--8 - 4 

Since ends are simply supported MA= Mc= 0 
-3 2 l 3 

:. 20 M8 = g 4 (4) - 4· (2)(6) = - 24 -- 108 

132 
or MB =--20 =-6.6 KN-m 

MA= 0, Mn= -6.6 and Mc=O 
Bending moment diagram is shown in the figure 

Support Reactions 

Taking moments about B of forces to the left of B 

RAX 4-4 X 2 = - 6.6 

4RA = - 6.6 + 8 = 1.4 

RA= \ 4 = .35 Ki"l" 

Taking moments about B of forces to the right of B 

Re X 6 - 2 X 6 X ! =- 6.6 

6 Re= - 6.6 + 36 = 29.4 

Rc=4.9 KN 

Now RA+ R8 +Rc= 0.35 +R8 + 4.9 = 4 + 12 = 16 

or R8 = 16 -- 0.35 -- 4.9 = 10.75 

Shear force diagram can now be drawn as shown in the figure. 

Example 9.26 
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Draw B:M. and S. F. diagram for the continuous beam ABC of span 7 
metres. Span AB carries a u.d.l of 6 KN!m and span BC carries a u.d.l of 10 
KN!m. 
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A~. B 10KN/m C 

=---w,.::;...-4m 

B. M. Diagram 

S. F. Diagram 
Fig. 9.43 

Solution 
For free moments Span AB 

. W1/i 6 (3)2 
Mmax=-8-=-8- =6.75 KN-m 

Span BC 

Wzl~ 10 (4)2 
M max= -8- = -.-g-

= 20 KN-m 
End moments MA= Mc = 0 
Applying three moments theorem on spans AB and BC 

. 6A1 x1 6Az xz 
MAl1+2MB(ll+iz)+Mcl2 =------

11 lz 

W1/i Wzl~ 
3 MA + 2M B (3 + 4) + 4M c =- 4 4 

14M8 = -- 40.5 - 160 = 200.5 
MB= -14.32 KN-m 

Support reactions 

= _ 6(3)3 _ 10(4)3 

4 4 

Taking Moments about B of all forces to the left of B 
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R.4. X 3 - 6 X 3 X t = - 14.32 or = 4.22 KN 

Taking ,noments about B of all forces to the right of B 
4 

Rex 4- lOx 4x 2=-MB=-14.32 or R,., = 16.42 
'-., 

Now RA+ Rs+ Re= 18 + 40 = 58 
4.22 + + 16.42 = 58 or RB= 37.34 
B. Mand S. F. diagrams are shown in figure 9.43 

Example 9.27 
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Determine the support moments for a continuous beam ABC as shown 
9.44 and draw the B.M and S. F. diagrams also locate the 

contraflexure. 

Solution 

4 KN 4 KN 3 KN 

Ar-' I • 1 t c 'f D E ! B F 
I . 

,+1 m~1 m,fi m,l<- 2 m + 2 m+ 
D E F 

3 KN-m -!~ ~-......l!t--.-~::~v ~ A- 8 C 

3KN 

B. M..Diagram 

S. F. Diagram 
Fig. 9.44 

Since the ends A and Care simply supported 

MA :;:Mc=O 
Area of free moment diagram on AB 

A,= (3+ l)'X .±= 8 
! . 2 

x 1 = l = l 5 m from A 2 . 

6,4.lxl = 6 X 8 ~_?- = 24 
li 3 
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Area of free moment diagram on span BC. 

A 2 =tx 4x 3=6 

x 2 = 2m from C. 

6Ar2 6x 6x 2 
-- = =18 

l2 4 

Now applying 3 - moments theorm on span AB and BC. 

6A1X1 6A2X2 
MA[l +2Ms([I +l2)+Mel2=--z- - ---

1 12 

Since MA and Me are zero 

2M S (3 + 4) = - 6 X : X 1.5 _ 6 X ! X 2 

l4Ms=-42 
-42 

or, Ms= 14=-3 KN~m 

Support reactions 
Taking moments about B, of forces to the left of B. 

RAX 3-4x 2-4x 1=-Ms= -3 

3RA= 12-3=9 or, RA=3KN 
Taking moments about B, of forces to the right of B. 
Re X 4 - 3 X 2 = - 3 

or, 4Re = 3 or, 

RA + R,B + Re= 4 + 4 + 3 
or 3 +Rs+ 0.75 = 11 or, Rs= 11 - 3.75 = 7.25 KN 
B. Mand S. F diagrams can now be drawn as usual. 

Point of contraflexure. 
Consider a section x-x at a distance x from A. 

and equate Mxx to zero 
Mxx = RA x x -4 (x- 1)-4 (x-2) = 0 

3x - 4x + 4 - 4x + 8 = 0 
12 

or, -5x=-12 or, x= 5 =2.4mfromA 

Similarly consider a section x1-x1 at x1 from C in span BC and equate 
Mxixi to zero. 

Mx1x1 =Re. x 1 - 3 (x1 - 2) = 0 
or, 0.75.x1 - 3x1 + 6 = 0 
or, - 2.25 x1 = - 6 

6 
or, x1 = 225 = 2.66 m from C. 
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Example 9.28 
Use the three moments theorm to prove that in a beam uniformly 

loaded and supported at its two extremeties and continuous over the· 
intermediate pier at its centre at the same level as the other two supports. 

The load taken by the pier is { th of the. total load on the beam. 

Solution -

~ A C B 
I I 

S. F. Diagram 
Fig. 9.45 

Applying three moments theorm on span AB-BC 

MA lt + 2MB (ii + 12) + Mcl2 = 6A1 x1 6A2x2 

li [z 

End moments MA = M~ = 0 

wl3 w/3 
:. 2MB(l + l) =- 4 - 4 

wl 3 
4lxMB=- 2 

Taking moments about B. 

l 
RAX l-w X l X 2 
-wl 2 wz2 
~2 

RA= l 

wz2 
or, MB=--8-

wl 2 
--

8 

Now RA+ RB+ Re= (wl + wl) = 2wl 
3 3 
8 wl + RB + 8 wl = 2wl 

(Oxford Univ.) 
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3 (8 - 3) 5 
R = 2wl - - wl = --- wl = - wl 

B 4 4 4 

or, 

5 = -(2wl) 
8 

5 
or 8 [Total load 2wl ] 

B. M. and S.F. diagrams have been drawn above. 
Example 9.29 

A beam ABCD JO metres long covers three spans of 4m, 3m and 3m, 
the supports being at the same level. On span AB there is a u.d.l of 1 KN!m. 
On span BC a point of 12KN load acts at 1 m from B and a point load of 
16KN at the mid span on span CD. Calculate the moments and reactions at 
the supports and draw the B.M and S. F. diagrams 

12 KN 

S.F. DIAG. 

S. F. Diagram. Fig. 9.46 
Solution -

MA=Mv=O 
Free moment ordinates for 

w/2 1 X 42 
Span AB, Mmax = S = - 8- = 2KN-m 

S . B M = Wab = 12 x 1 x 2 g KN-
pan c, max l 3 m 

S C M _ WI 16x 3 
pan D• max- 4 4 

= 12 KN-m 

8 
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Now Applying three nmments tneorem spans AB and BC 

4M.4 + 2MB (4 + 3) + 3Mc 
4 

(4)3 12 X 2 ... 'l 
14MB + 3Mc = - l X -4 ---3---· (3- -

14MB + 3Mc = - 16- 40 = - 56 

2 -a·,1 . -1 

Now applying three - moments theorem on spans BC and CD 

Wz a) ? 2 3 1 

M 8 !2 - 2Mc (l2 + l3) +MD l3 = - 1 _:: (l2- a2) - ~~ W3 Z:j, 
2 /) 

. 12 X 1 2 2 3 2 
3M8 +2Mc(3+3)+3Mv =-~(3 -1 )-"g.16.(3) 

3MB + 12Mc = - 32 - 54 = - 86 (ii) 

Solving (i) and (ii) we get 

MB= - 4.49 and Mc= - 2.286 
Support reactions 

Taking moments about B of ali forces to the left of B 
4 

RAX 4 - l X 4 X 2 = MB= - 4.49 

RA= .88 

:~:: :;:::::::u,t ~ :w::r'; :h:':::: ~ -2.28 
or Rs= 11.86 

Taking moments about C of all forces to the right of C 
Rnx 8=16x 1.5 

Rn=8 
NowRA+Rn+Rc+Rv=4+ 12+16 
.88 + l L86 + Re+ 8 = 32 

Re= iL26 
Example 9.30 

A continuous beam ABC is shown infig.9.47 Draw the B.M. and S.F. 
diagrams 

.12 KN .. 4 KN/m 16 KN 

!2m~ Ji.Sm 
ALml~ 3~;:.:JD 

B.M. Diagram 
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B. M. DIAG. 

arls 

S.F. Diagram Fig. 9.47 
Solution 

End moments MA= Mv = 0 

Free moment ordinates for 

Wab 
Span AB, M max = - 1-

Wl 2 
Span BC, M,,,.ax = - 8-

12x l X 2 
3 8 KN -m 

4 X (4)2 
8 

8 KN-m 

Wl 16x 3 
Span CD, Mmax = 4 = --4- = 12 KN -m 

Applying three moments theorem on spans AB and BC 

6A1 Xi 6A2 X2 
MAli+ 2Ms U1 + lz) + Mc-l2 = - -- - --

l1 l2 

W1 al 2 2 w2 l~ 
3MA+2M8 (3+4)+4Mc=--z.--(l1 -a1 )--4-, 

12x l 2 2 (4)3 
3M A + 14M 8 + 4M c = - --3- - (3 - l ) - 4 X 4 

= - 32 - 64 = - 96 

or l4M8 +4Mc=-96 

Now applying three moments theorem on spans BC and CD 

,., 6A2 x2 6A3 x3 
Mel2 + ;_Mc U2 + l3) + Mv .l3 = - -,- - --

'2 l3 

3 wz lz 3 2 
4M8 + 2Mc(4 + 3) + 3MD = --4--8 W3 l3 

-4(4)3 3 2 
or 4M8 + 14Mc = 4 -·-- 8 x 16x {3) 

4M B + 14M c = - 64 - 54 = - 118 

Solving equations (i) and (ii) 

M 8 = - 4.84 K.1\I -m and Mc== - 7.04 

(i) 

(ii) 
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Reactions 
Taking moment about B offorces to the left of B 

RA x 3 - 12 x 2 =Ms= - 4.84 or RA= 6.38KN 

Taking moments about C of all forces to the left of C 

4 
RA{3 +R8 x 4-12x6-4x 4x 2=Mc=-7.04 

+ 4Re- 72 - 32 = - 7.04 
4RB - 7.04 + 72 + 32 - 7 X RA 

= - 7 .04 + 104 - 7 X 6.38 
= 104 - 51.7 = 52.3 

Rs = 13.05 KN 
Taking moment about C of all forces to the right C of 

Rvx 3 = 16 x 1.5 
RD= 8 KN 

Now RA+ RB+ Re+ RD= 12 + 16 + 16 = 44 
6.38 + 13.075 +Re+ 8 = 44 
Re= 16.545 KN 

Example 9.31 
A continuous beam ABCD, 20m long rests on supports at its t 

329 

is propped at the same level at 5m and 12mfrom left end A. It carri, •,vo 
point loads of 8 KN and 5 KN at a distance of 2m and 9m respectivel} n 
end. A and a u. d. l. of 1 KN!m over the span CD. Draw the B. M. and ;:;· 
diagrams. (J.M./.) 

8. M. DIAG. 

S. F. Diagram 
9.48 

3.21 
KN 
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Solution 
l'v!A = !vi D = 0 
Span AB, Free moment 

~,1 Wab 8 x 2 x 3 == 9.6 KN-rn 
1 max=-! - == --5-

Span BC. 
Wab 5 x 4 x 1 

----·-·- -
'7 
i 

8.57 KN 

Span CD, Mmax = 8 
) X 18)2 
- ' ' = 8 KN-m g 

Applying ,three moment thcorm on span AB and BC 

M.4. l 1 + 2A1 B + + l2 

w,a1 7 
MAl1 +2M8 (!1 +l2)+Mcl2 =--1-(!1-

l 

or, 2MB (5 + 7) + MCx 7 = - 8 x 2 (52 -
5 

- 16 - 15 
24Ms+1Mc= 5 x 21 7 x 40 

24Ms+ 7Mc= - 67.3 -- 85.7 =-153 

,., 
J 

Again applying 3 - moment theorm on span BC and CD. 

w 
4 

+ 
5 (4) --.2 42\ 

(7 8, Q - X . ( ! - J 
+ ) +' = ' . 7 

_l X 

4 
+ 30Mc+ 0 = -94.3 - 128 =:.... 222.3 

equations and we get 

rr1,:Ju1ents about .B 
= -4.54 

5A = 24 - 4.54 = or, RA == 3 . 8 9 KN 
Taking momems about C of forces to the left of C 

(5 + 7) + 7- 8 (3 + 7) - 5 X 3 = - = -· 6.35 

3.89 (12) + 7 -- 180 --· 15 = - 6.35 

7Rs == 180 + LS - 6.35 -
or, RB= 6.0 KN 
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or, 
or, 

taking moment about C of forces to the 

>< 8 - Ix 8 X t = - 6.35 

= - 6.35 + 32 or, RD= 3.21 KN 

ofC 

arr; shovv'n in figure 9048. 
9.32 

spans l each carries a 
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A continuous bemn 
distributed unit 
ar the supports and draw the 
beam has a constant section 

or, al! the spans. Determine the moments 
rrwmcnt and shear force diagram. The 

SJ?~ 
From the symmetry of loading and spans 

and end moments =0 
3 - moments th,;:orm on span AB and BC 

+ 

+ 

wl3 

4 4 

x1 6A2x2 

Applying three moments theorm on span BC and CD. 

·- wl3 wi3 --- --
4 4 

+ 2Mc (l + l) + 

or, 2MB + 4Mc = - --;, 
~(,; 
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Solving equations (i) and (ii) 

-3 2 
Ms=-wl and 

28 
Since MA =ME= 0 

· -3 2 
Ms=Mv= 28 wl 

Statically Indeterminate Beams 

-2wz2 
Mc=·--

28 

and 
-2wz2 

Mc=--
28 

Support Reaction. 
Taking moments about B 

wz2 
RA x z - 2 = - Ms or, 

Taking moment about C 

llwl 
RA=--=RE 

28 

-2wz2 
RA x 2[ + Rs x l - 2wl. l = ~ 

Rs= 32wl 
28 

Now RA + Rs + Re+ Ro +RE= 4wl 
llwl 32 l 32wl R llwl Wt- 4 1 
28 + 28 w + 28 + C + 28 - w 

R l 12wl - 86wl _ 26wl 
or c= 28 - · 28 
The B.M and S.F. diagrams can now be _drawn as shown in fig. 9.49 

Beams with overhanging ends 
In continuous beams with overhangs on one side or on both sides, the 

overhang portions are treated as cantilevers. Three moments theorem is 
applied on the rest of the protions to determine support moments. 
Example 9.33 

Draw the bending moment and shear force diagrams for the beam 
shown infigure. 9.50 

1 KN/m 6 KN _ 4 KN 2 KN A~' '=:t le -12 mJ..!L 8 m =:µ: 6 m ~D2 I--

~ 
A B C -D E 

B. M. Diagram 

2KN 
'IE?'~~'4>"'""'"'~~""tr.7=mf'~E 

S. F. Diagram Fig. 9.50 
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Solution. 
Free moments 

? ') 
w[- J X (2)- ,-

Span AB, MB= - 2 = 2 =-2KN-m 

W [ 6 X 8 
SpanBC,M =-=--= 12KN~m • max 4 4 

W [ 4 X 6 
Span CDM =-=--= 6 KN-m 
u max 4 4 -

Moment at D, Mv = 2x 2 = - 4 KN-m 
Applying three - moments theorem on spans BC and CD 

- 6Az X2 6A3 X3 
MB l2 + 2Mc (/z + l3) + MD l3 = - 1-- - - 7-

2 '3 

- '< ~ 2 
- 2x 8 + 2Mc (8+6) + (- 4) 6 = -8~ W2 l~ _ f W3l, 

- 16 + 28 Mc- 24 = --/ x 6 (8)2 -/ 4 (6)2 

28 Mc- 40 = - 144 - 54 = - 198 
28 Mc= - 198 + 40 = 158 

-158 
Mc= 28 = - 5.64 KN-m 

End moments MA = ME= 0 
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:. MA= 0, MB=--2 KN-m, Mc=-5.64, MD =-4, ME= 0 
Bending moment diagram can now be drawn as shown in figure9.50. 

Support Reactions 
Taking moments about C 

RBx 8-(lx 2{f+8)-6x4=Mc=-5.64 

8RB - 18 - 24 = - 5.64 
8RB = 18 + 24 - 5.64 = 42 - 5.64 = 36.36 

Rs= 36/ 6 = 4.56 KN 

Taking moments about D 
(2 1 

R8 x(8+6)-lx2l2+ 8+ 6j-6(4+6)+Rcx6-4x 

63.63 - 30 - 60 + 6 Re - L: = - 4 

6 Re= 102 - 4 - 63.63 = 34.37 

Re= 34637 = 5.72 = 5.72 

Now R8 +Re+ Rv = 2 + 6 + 4 + 2 = 14 
4.560 + 5.72 + Rv = 14 

RD= 3.72 K.i'l' 

J=MD=--4 
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Shear force diagram can now be drawn as shown in figure 9.50. 
Example 34 

Draw B.M and S.F. diagrams for the beam shown in fig 9.51. 

~4 KN/m . \10 KN/m 

ocnsrA B~C 
/-3 m.i:= a m _J.._:rn 

25.93 

S. F. Diagram Fig. 9.51 
Solution 

End moments Mv=Mc= 0 
Free moment ordinates for 

M _ wz2 _ 4 X (3)2 

A- 2 - 2 = 18 KN-m 

Span AB, 

Free B.M. diagram on span AB is a straight line 

Span BC 

_wt2 -~ _ 
Mmax- 8 - 8 -45KN-m 

Applying three - moments theorem on spans AB and BC 

6AzXz 6A3 X3 
MA l2 + 2M B {lz + l3) + Mc l3 =- - 1 - - - 1-

2 3 

-w3 l~ 
MAX 8+2Ms(8+6)+McX 6 =0 -4-

18 X 

3 
8 + 28 M8 + 0 = - l0(6) . 4 

H4+28M8 

or M8 

=-540 

= 24.42 KN-m 
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Support reactions 
Taking moment about of B to the left of B 

RAX 8-4x 3(f+8)=Ms=-24.42 

or RA= 11.19 KN say 1 .2 
Taking moments about B of all forces to the right of B 

6 
Rex 6 - 10 x 6x 2 = - 24.42 

Re=25,93 KN 
RA + Rs + Re = 12 + 60 = 72 
11.19 +RB+ 25.93 = 72 or Rs= 34.87 
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Application of theorem of three moments to beams having fixed ends. 
When a beam is fixed at one end and freely supported at the other, the 

theorem of three moments may be applied by imagining a zero span and 
moment of inertia ex: on the side of the fixed end. 
Example 9.35 

A rolled steel joist is firmly built-in at one end and rests freely on the 
top of a cast iron column. The span of the joist is 8 metres and it carries a 
point load of 5 KN at distance of 2 metres from the fixed end. Determine the 
reaction on the column and draw B.M. and S.F. diagrams. 

Solution 

S. F. Diagva;:n 
Fig. 9.52 

Imagine a span AA' of length 11 = 0 to the left of fixed end A. Now 
applying three moments theorm on span A' A and AB 
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-6A1x1 6A2x2 
MA' li + 2MA (l1 + /z) + Ms lz ---- - --

l1 i2 
- Wa2 ? 2 

MA' x O + 2MA (0 + 8) + 8 Ms = -,- (l2 - a2) - 0 
12 

Since end B is freely .supported Ms= 0 

or 2M (8' = - 5 x 6 (82 - 62) = - 30 28 
A' J 8 8 

or, MA = - 3
8°: 1268 = - 6.5625 KN-m 

Maximum central ordinate for the free moment diagram 

== W;b = 5 X ~ x 6 = ?.5 KN-m 

For support reactions, Rs x 8 - 5 x 2 = - 6.5625 

Rs= - 656~5 + lO = 3.4;75 = .429 KN, RA= 5 - .429 = 4.571 K.."!\l" 

B.M. and S.F. diagrams have been drawn as shown in fig 9.52 
Example 9.36 

A cantilever ABC of uniform section 7 metres long, is fixed at A and 
freeely supported at Band C to the same level as the fixed end. The span AB 
is 3 metres and carries a udl of 2KN/m. Span BC is 4 metres long and carries 
a point load of 8 KN at its centre. Draw the B.M. and S.F. diagrams. 

2 KN/m BKN. . 

~-----~~ t,m~ 
lo A 3 m ---4-£= 4 m =:J _C 

0.785 
KN-m ~~~~-'L...-~'--~-->< 

2.29 
KN ""'-"~.,..,.,.,""""P"""G.<:.<."47-rn?:n! 

S. F. Diagram Fig. 9.53 
Solution 

Assume a span A'A oflength l1 = 0 to the left of the fixed end A. Now 
applying 3 - moments theorm on span A'A and AB. 

-wl3 
M.4.' li + 2MA (l1 + l2) + MB!z - 4 
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2 (3)3 
M;,' X O + 2MA (0 + 3) + 3MB = 4 

6MA + 3MB = - 13.5 
Applying 3 - moments theorm on span AB and BC. 

-wl3 3 
A1Ax 3+ (3+4)+ Mex 4=-4--8 

, - 2(3)3 3 2 
3MA + 14A1B + 4Mc = -4--- - 8X 8x (4) = - 13.5 - 48 

Since Mc= 0 

3MA + 14MB = 61.5 

Solving equation (i) and 

MB= -4.38 KN-m 

Support reactions 

we get 

MA= - . 06 KN-m 

Taking moments about B of forces to the left of B 

3 
RAX 3 - 2x 3x 2 = - 4.38 or, Re= 1.56 KN 

Taking moments about B of forces to the right of B. 

Rex 4 -- 8 x 2 = - 4.38 or, Re= 2.9 KN 

NowRA+R8 +Rc=2x 3+8=14KN 
1.56 + R8 + 2.9 = 14 

R8 = 14 - 1.56 - 2.9 = 9.54 KN 
The B.M. and S.F. diagrams are shown in figure. 9 .53 

Example 9.37 
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A cantilever ABCD of uniform section 25m long is encastred at A and 
supported at Band Call supports being at the same level. Spans AB and BC 
are 10 metres each and beam overhangs C by 5 metres and supports a load 
of 2KN at the free end. A uniformly distributed load of 1 KN!m acts on span 
BC. Calculate the support moments. 

2KN 

2.25v 
~ 

KN-m· . 

B.M. Diagram 
Fig. 9.54 
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Solution 
Imagine a span A' A of length l 1 = 0 to the left of the fixed end A. 

Applying three moments theorms on span A'A and AB. 
MA' l1 + 2MA (l! + l2) + 

- 6A1x1 6A2x2 
Msh= li ---

!2 
MA'X O + 2MA (0 + 10) + MB X IO= 0 \ 

or, 20MA + lOMs = 0 
ApplyinJ 3 - moments theorm on span AB and BC 

-6A1X1 6A2X2 
MA x 10 -: LMs (10 + 10) +Mc x 10 = ---

1, l2 

1 3 0---wt 
4 

10 MA+ 40 Ms+ lOMc = ± x (l)x (10)3 = l~OO = 250 

Moment at C = 2x 5 = - 10 KN-m 
:. 10 MA+ 40 Ms- lOx 10 = - 250 

10 MA+ 40 M8 = - 250 + 100 = - 150 
or, MA+4M8 =-15 (ii) 

Solving (i) and (ii) we get 

MA=+ 2.15 KN-m 

Ms =-4.30 KN-m 

SUMMARY 

1. · In case of propped cantilevers determine y 1 the down word deflection 
at the propped place. If the prop is rigid then equate it to y2, the upward 
deflection caused by the prop reaction. This shall give the prop reaction. 

2. A cantilever with a point Wat mid span and supported on a rigid prop 
at the free end 

. 5 w Prop ract10n R = 16 
3. u.~J. on the entire span of the cantilever and propped at the free end 

. 3 
Prop reaction R = 8 Wl. 

0.005415 wt1 

Ymax= El 

4. Fixed beam with a point load at mid span 
-Wl 

MA=Ms=-s-
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5. Fixed beam with a u.d.L over entire 
spa.n 

i'vlA =AIR= --. . - 12 

Yr'!ax = - 384£/ 
6. Fixed beam with a point load not at the mid span 

Wab2 
MA= - and Mr:r::: -- --- • z2 

9.55 

7. T'hree n]o1r1cnt theQrern on AB and BC of a continuous beam 

,, 12 - 6A2x2 
+ 1111 c-- = --_---·- -· --

E1 l/1 

the spans are of saine material and Cross-Section then 
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=E and ! 1 = 12 =I, the theorem may be written in a form 
as 

+Mcl2 
-6A1x1 xz 

=---------
fi l2 

8. Yilhen a Continuous beam is fixed at its one or both then an 
span is taken and then three moment theorem is 
the zero span as the first span of the beam. 

EXERCISES 

A cantilever 8 metres long carries a uniformly distributed.load of 12 KN per 
metre nm over the entire span. A rigid prop is provided at 6 metres from the fixed 
end level with the support Calculate the reaction at the prop. (56.8 KN) 

2. A cantilever of span 6 metres carries at concentrated load of 20 KN at the free 
end. Ii is propped at a distance of 1.5 metres from the free end. Determine the 
prop reaction: (30 KN) 

3 A timber cantilever of length Lis propped at its free end. The cantilever carries 
a uniformly distributed load of w perunit length over the whole span. If the prop 
sinks by an amount o, find the reaction at the prop. 

R = 3 E~ (wf _ 0 lj 
L3 8El 1 

4. A cantilever 4 metres long is propped at its free end. It carries a u. d.l. of 6 
KN/metre over the whole length. Find by how much above the level of the fixed 
end the level of the prop must be fixed so that the load may be equally shared 
by the supports. (10 mm) 

5. A cantilever AB 3 metres long carries a u.d.l of 12 KN/m rests on an other 
cantilever CD of 1 metre span as shown in figure 9.55 calculate the reaction at 
C (13.01 KN) 
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6. A cantilever is propped at a distance L from the fixed end and carries a uniformly 

distributed load w KN!m run. The cantilever projects a distance of~ beyond the 

prop and on this length there is a uniformly distnibutcd load of 2 w KN!m run. 
If the prop is rigid and holds its point of application nn the fiorizonaL find what 
proportion of the total load Wis taken by the prop. 

. ( 31 \ . 
I 4s w I 

7. A fixed beam\of sp}n 4 metres carries a point load ,,f i:: KN at mid sp:m. 
Determine the support moments at the fixed ends. Also calcul:.ite the maximum 
deflection. 
l= 20x l / mm4 and£= 210 KN/mm2 (MA =Ms=-6 KN-m,yc= 15.87 mm) 

8. An encast,e <;earn AB of span 3 metres carries a uniformly distributed load of 4 
KN/m ove· is entire span and a concentrated load of 10 KN at its centre. 
Calculate t •,: fixing moments at A andB and draw the S.F. and bending moment 
diagrams. (MA= Ms = - 6.75 KN-m) 

9. A built in beam of span 6 metres supports a concentrated load of 10 KN at l.5 
metres :"rom the right hand support Determine the fixed end moments and the 
reactions at the supports. Also calculate the position of the points of 
contraflexure. 
MA= - 8.4375 KN-m, RA= 1.5625 KN, x1 = l .8 m from A 
Ms= - 2.812 KN-m,. Rs= 8.4375 KN, x2 = 1m from B 

10. A fixed beam AB of span 4 metres carries two concentrated loads of 4 KN each 
at a distance of one metre from the fixed ends. Calculate the fixing moments 
and the points of contraflexure. 
(MA= Ms= - 3 KN-m and x = 0.75 m from either end.) 

11. A built in beam of span 7 metres carries a uniformly distributed load of 1.5 KN/m 
run over the left half of the span. Calculate the support moments and the reactions 
at the supports (MA= - 4.20 KN-m, Ms= 1.93 KN-m 

RA= - 3.722 KN and Rs= 0 .988 KN) 

12. An encastre beam AB of span 6 metres carries a uniformly varying load \Vhose 
intensity varies from zero at A to 10 KN/m at the fixed end B. Find the fixed 
end moments at A and B. 

(MA= - 12 KN-m and Ms= - 18 KN-m) 

13. A fixed beam AB 4 metres long supports a uniformly varying load whose 
intensity varies from zero at fixed ends A and B to a maximum of 10 KNim run 
at the mid span C. Determine the fixed end moments at A and B. 

(MA= Ms = - 8.33 KN) 

14. A beam AB of uniform section and span 6 metres is built-in at the ends. A 
uniformly distributed load of 3 KN/m runs over the left half of the span. It also 
supports a concentrated load of 4 KN at 15 metres from the other end. Determine 
th fixed end moments at A and B and the support reactions at the two ends. 
Draw the shearing force and bending moment diagrams for the beam. 

(MA= - 7.3 KN-m, Ms= - 6.2 KJ'i'-m 
RA= 7.93 KJ>l", Rs= 5.07 KN) 

15. A beam of span 6 metres is fixed at both ends. When a unifomtly distributed 
load of 2 KN/m is placed on the beam, the level of right hand support sinks 10 
mm below that of the left hand one. Find The support moments. Take E = 200 
K,.l\J/mm2 and I= 90 x !06 mm4 . (MA = - 36 K.N'-m and MB= + 24 KN-m) 
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16. A continuous beam 15 metre long is supported at A,B and C, the supports being 
on the same level span AB is 8 metres long and carries a u.d.l of 1.5 KN/m and 
the rate of loading on the second span is 1 KN/m. Calculate the support moments.· 
Draw tht!B.M and S .F diagrams and locate the points of inflexion. The beam 
has uniform t~ickness throughout. 

[Mn=; 9:26 KN-m, x = 6.45 from.A] 
x= 4.36 m from C 

17 A beam ABC 30 metres long is fixed in a wall at A and simply supported at B 
and C. AB= 18 m carries a point load of 6 KN at 12 m from A and BC= 12 m 
carries a point load of4 KN at 24 m from A. Draw the B.M. and S. F. diagrams. 
Take moment of inertia of AB twice that of BC. Alos locate the points. of 
inflexion. 

{MA= 10.25KN-m x=5.31, 15.17m(J.M.I) 

Mn= - 11.5 KN-m and 21.89 m from A 

18. Draw the B.M. and S.F. diagrams for 
the two span continuous beam shown 
in figure 9.56. The beam is simply 
supported at A and C and is 
continuous over support B (J.M.I.) 

4KN . BKN 

A 1 . . J 
· J1.amt--c3.6m J~.4mf1.amlc 

Fig. 9.56 

19. A girder 15 m long carrying a uniformly distributed load of 6 KN/m covers three 
spansAB = CD= 4.5 m each and BC= 6 metres. Draw the B.M. diagrams and 
calculate the position of points. of contraflexure. 

20. 

21. 

(17.06 KN-m, 9.94 KN-111,, 3.24m and 5.67m from ends. 

A continuous ,,girder of 2 spans, 20 metres and 10 m has an overhang of 5m from 
the smaller span. It carries a u.d.l of 0.5 KN/m run and an isolated load of 1.5 
KN at the tree end. Find the ·support moments and draw th~ B.M. and S.F. 
diagrams. (-17.5 KN-m and- 7.5 KN-m) 

A continji!OUS beam consists of two spans. The left span is twice as long as the 
second span. The beam is uniformly loaded from one end to the.other. If the 
length ?f the beam is 31 and the weight per unit length is w, Find the reactions 

and s~pport moments. (M = ! wF 

. 33 2 13 
Reactions = 16 wl, 16 wl, 16 wl, ) 

22. A Continuous beam ABCD is hinged at A and simply supported at B and C, all 
th~ points being at the same level. AB = 3m, BC= 4m and. CD = 2m. The beam 
carries a u.d.1 of 1.5 KN/m on the whole span and a point load of 10 K.t"l at mid 
point-pf BC. Draw the B.M and S.F. diagrams. · 

23. A contiIJUQ!IS beam ABCD is supported at Band Candis fixed at D. A point l~ad 
of 16 KN acts..at_A and a total. u.d.l of 10 KN on span CD. Assuming the beam. 
being of uniform -seclion and spari AB = !Om, BC= 8 m and CD = 12m. Draw 
the B.M. and S.F. diagrams and locate the points of inflexion, 

MA= 0, Mn = -16 KN-m, Mc= -1.53 KN-m 

Mv=-14.24KN-tn,Rp= 17.81,Rc = 2.12. 
Rv=6.66 

ODD 
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Combined Direct And BendingStresses 

Structural members subjected to direct stresses and bending stresses 
separately have been discussed in previous chapters. 

There are instances when· a body is subjected both to direct and 
bending stresses simultaneously. 
Eccentric Loading 

A load whose line ofaction is parallel to vertic:11 axis passing through 
the C. G. ofthe section is called eccentric load. Eccentric !oad induces both 
direc;t. as well as bending stresses in the section . Hence at any point in the 
section of a body the cumulative effect of eccentric loading. is the algebraic 
sum ofJhe direct and bending stresses. 

.. . Dams,Jetai~ing walis, chimneys, hooks and certain machine parts 
have to with stand both direct and bending stresses. In this chapter you will 
analyse the stresses in these structures 
Analysis of stresses due to eccentric loading on a Short Column. 

<:;onsider a sho~ column subjected to a load 
. W acting at a distance e from the vertical axis 
· passing through the C. G. of the section. Now apply 
two equal and opposite forces each equal to W 
·along the vertical axis. This win reduce the system 
to 

(i) An axial force W and (ii) A couple M = 
W.e 

A section which is at a distance y from the 
geometric axis will thus experience 

w 
(a) A direct stress ad= A , where A= area 

ofx-section and (b) A bending stress crb = Mi Y 

Where 1 = Moment of inertia of the section 

M = Bending Moment= W.e 
Hence total stress at the point 

='t:Jti± crb 

= W ± M.y = W + M 
.A . ·I A - Z 

Fig.10.l 

Where Z is the section modulus, the sign depending upon its position. 
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The maximum stress at a section will be 
CJmax = C5d + (Jb 

and the m.inimum stress <Jmin = crd- ab 
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The nature of the resultant stress cr will therefore depend on the nature 
and magnitude of direct stress crd and bending stress crb 

(i) If crb «Jd the combined stress will be of the same sign 
(ii)If crb >crd the combined stress will change sign being partly 

compressive and partly tensile. 

(iii) If crb = ad the combined stress will be of the same sign. 
The three possible distribution of stresses are shown in figure l 0.2 

- crd crd ad ~ad al)~-1~.l ; + 
--- . ;b_l_____ : T---~i 

crd>crb crd<ab crd=crb 
(a) (b) (c) 

Fig.10.2 

· Limit of eccentricity 
The above diagrams are theoretical representations only. From 

practical considerations the stress should not be allowed to change its sign. 
Hence in no case the bending stress ab should be greater than the direct 
stress crd At the most ab should be less or equal to od. For the stress to be 
of the same sign. 

crb ::; ad 

M W 
Of :,; 

Z A 

or 
We.d 

21 

w.e.d 

w 
~ 

A 
(For symmetrical section Z = I I 1 

"" 
or 

w 
:5: 

I, 
(Where K is the radius of gyration of the section 

2k) 
:. e 

d' 
(Where dis the depth of the section.) 

The above equation gives the limit of eccentricty. 
Eccentric Limit for Various Sections 

With the help of the above equation we can find out a certain region 
where we can apply a load and remain sure that stress will not change its 
sign. 

(a) Rectangular section of breadth band depth d. 
·, 

l = dl ;~, if the load line is in the vertical plane bisecting d, then 
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X. . W M 
O"d=Aandcrb= Z. -t b13 + ~h ~ b1a ,r-

If 

W.e 

W . db2 6We 
= bd and O"b=6= db2 ... Y 

OJ 

. (Jb :<;'. (jef. 
fiWe W 
~·<-
db2 bd 

e '< ib 

b16 b,6 T 
!t:$.· ·~.· .. ·· -~o. R;l\ 

• . I· . , 

~ . bx __ ~ 

Fig. 10.3 

Therefore with respect to centre the. eccentric limit goes upto ~ on 

either side along y 0 ·axis and ~ on either side along x-axis. This creates a 

middle thirdr~gion or zone in th~ form of a rhombus with diagonal equal to 

t and 1 on tfi~ respective principal axis. This rhombus is known as the 

''CORE'' or KERNEL of the sectiom 
(b) Circular Section 

Let. D be the diameter of a circular 
section .. Let W be the force actingalong the 
diameter X - X at aR eccentricity of e. from the 
centre F1g 10.4 · 

. . w w 
Dtrect stress cr d = A = --

'!!: m)2 
4 ' 

M W.e 
Bending Stress O" b = Z - T 

W.e 32We 

For no tension / 
O"d = CJb 
4W 32 We 

1tD2 = 1tD3 

D 
Oi" e=-

8 
Load Eccentric to both Axes 

y 

Fig.10.4 

Let the load W be at a distance ex and ey from the principal axes oy 
and o x as shown in the figure 10.5 
. . We may c.ons.ider the eccenttjc load W to be equivalent of a central · 

load W together with a bending moment W.ex about y axis and a bending / 
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X 

Fig.10.5 

moment W.ey about x-axis. 
The stress at any point in the section 

defined by the Coordinates x , y is made up of 
three parts. , 

W W.eyx . W.e x·Y 
a = + --- + 

A ly-y lx-x 

Where x and y are to be reckoned 
positive when on the same side of their 
respective axis oy and ox as the load W 

Therefore the maximum stress occurs at 
a point in the same quadrant as the load and 
the minimum stress in the opposite quadrant. 

Example 10.1 
A short column of solid circular section diameter D is to carry a 

vertical compressive load offset from the centre of the setiion. Detirine the 
maximum allowable offset if there is to be no tension induced in the column. 

Solution 
Let W be the Compressive load 
Let A be the cross-sectional area 

w w 
then ad= A= 1tz 

4D 
Let e be the offset from the centre line of the column 

Then bending moment at the column base = M = W.e 

1t 

S . ·ct• ·z I 64D4 1tD3 ectmn mo urns = - = -- = -
. y D,12 32 . 

For no tension at the base 
CTd=CTb 

W. W.e 
or -- -

~D2 
4 
4W 

or -- = 
1tir 1tD3 

D 

or 1 = Se 
D 

or e= g - .125 D Answer 
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Example 10.2 
A short column of lcsectioµ is built-up of 200 x 20 mm flanges and 

300 X, 20 mm web plates. A yertical load of 600 KN is applied on the web 
at a distance of 90 · mm from the centre. Calculate f he maximum and 
minimum intensities of stresses developed in the section 
Solution 

Area of the section A = 2 x (200 x 20) + (300 x 20) 
A = 8000 + 6000 = 14000 mm2 

Moment of inertia of the section 

200 X (340)3 130 X (300)3 
1xx 12 12 

= 25 007 x 104 mm4 

. 600x 103 
Direct stress CJd = 3 = 42.85 MPa (Comp.) 

14x 10 
Bending moment = M = W x e 

. M = 600 x 103 x 90 = 54 x 10 6 N-mm 

Z=!_ 
y 

4 

= 2500::o 10 = 25007 x 102 mm3 

. M 54x 106 
Bendmg stress ab= Z = ~2 = 21.59 MPa 

25007x lu-
crman =ad+ CJb= 42.85 + 21.59 = 64.44 MPa (Comp) 
CJmin= C1d-C1b = 42.85 -21.59 = 21.26 MPa (Comp) 

Example 10.3 
· A hollow circular column has a projecting bracket on which a load of 

30 KN rests The centre line of this load is 500 mm from the centre of the 
column. Determine the maximum and minimum stress intensities if the 
external diameter is 250 mm and internal diameter is 200 mm. (J.M./) 
Solution 

Area of cross-section of the column· 

· A='!S:.D2 -ti') 4 . 

= 'JS:. (2502 - 2002) 
4 

= 176.78 x 102 mm2 

Moment of inertia along y-axis 
1t 4 d4 lyy = 64 (D - ) . 

= : (2504 - 2004> 

= 11325.33 X 104 mm4 
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l 

Section rnodu!us Z = .:_ 
y 

7_ 
,L-

i325.33x a ·i ·--- = 90.60 x l O · mm· 
25012 

morn.era A1 = VVe 
lvl = 30 x !03 x 500 = t5 x 106 N-mm 

lV 30x 
·-

A 176.78x 102 
l .69 MPa (Comp) Direct stress 

15 X 106 , 
stress cr1• = - = 4 = 16.55 MPa 

.· Z 90.6x 10 

crmax= + = i.69 + 16.55 = 18.24 MPa (Comp) 
=ad-ab= L69 - 16.55 = - 14.86 MPa (Tensile) 

:WA 
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1000 mm x 600 mm in section carries an axial load of 250 
KN. The maximum moment of inertia of the section is 224 x 106 mm '4 and 
the area is 123.6 x ur mm2. A bracket is bolted to the flange of the pillar 
and supports a vertical load of 60 KN which acts in the plane of the major 
axis of the section at a distance of 400 mm from the face of the flange. 
Calculate the maximum and minimum intensities of stress in the section 
Solution 

Bending moment due to eccentric loading 

M = 60 (500 + 400) = 54000 KN-mm = 54x 106 N-mm 

. I 224x 106 
Sectwn modulus Z= - = ---- = 44.8 x 104 mm3 

. y 500 
Resultant stress = D!rect stress ± Bending stress 

· W (250+ 60) X 103 
D1rect stress= -A = 2 = 25.08 MPa 

123.6x lO 

. M 54 X 106 
Bendmg stress=± -2 = 4 = 120.5 MPa 

44.8x 10 
W M 

Omax=A+ Z =25.08+ 120.5 

= 145.58 MPa (Comp) 

Ci min= 25 .08 - 120.50 
= - 95.42 MPa (Tensile) 

Example Ht.5 
A short masonry 0.5 m x l metre in section is subjected to a 

compressive load of 600 KN at A and a bending moment of 40 KN-m 
tension above the section x-x Fig. 10.6. Determine the ma:xunw'l1 

section. 
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Solution 

D. 600 1-0 _ , 2 irect stress = -0-5--, = l O KN!ln 
. X 1 

Bending moment M 

M = (600 x 0.5 - 40) 

= 260 KN--m 
Section modulus 

z = bd2 = 0.5 X (1)2 

6 6 
- . 260 

Bending stress ab= 0_516 

crb=3120KN/m2 

Maximum stress 

(Jmax = Gd+ (Jb 

= 1200 + 3120 
= 4320 KN/m2 

Minimum stress 

crmim = 1200- 3120 
= - 1920 KN/m2 

Example 10.6 
Answer 

Fig.10.6 

Stresses 

Determine the maximum tensile and compressive stresses on the 
section x-x of the clamp shown in fig 10.7. When a force of 2 KN is exerted 
by the screw. The section of the screw is 24 mm x 10 mm. 

rcr-2KN I ' 
1 l24mml,' JI 1 

-r 
I 

80mm 

I 
-4c----- i ---- - __ j------~-

f Ix 

Fig, 10.7 

Solution 
The section x - x is subjected to a tensile force of 2 KN and a bending 

moment of 2 x l 03 x 80 N-mm .., 
Section area = 24 x 10 = 240 mm~ 

Direct stress ad= 2 ;4~~~ = 8.33 N/mm2 = 8.33 MPa 

Maximum stress due to B.M. 

ab=~= 2 x ~~; 30 = 166.66 
z = bi2 = 10(24)2 960 

6 6 
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Maximum stress in the section 

0 max= Gd+ (jb 
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= 8.33 + 166.66 = l 72.99 MPa (tensile) 

Minimum stress in the section 

Gmin = CT d - (jb 

= 8.33 - 166.66 = - i58.33 (Comp) 
Example 10.7 

A bent up bar A.BCD has a diameter of 120 mm. If a tensile load of 
80 KN is applied at the free end of the bar as shown in figure /0.8. 
Determine the maximum and minimum stresses induced in the section of 
portion BC of the bar. 
Solution 

8 -,ii T Ii I I -1.6m 

+----)Jl l 
D C 

I I r 0.8m--j 

Fig.10.8 

Area of cross-section of the bar 

= ~ (120/ = 3600 re mm2 

The portion BC of the bar will 
be subjected to a direct stress as well 
as bending stress due to the load of 80 
KN 

. . 80 X 1000 
Direct stress ad= 3600 TI: 

= 7.07 MPa 
Bending moment 

M = (80 X 1000) 800 
64x 106 N-mm 

Section modulus Z = 3n2 (120)3 = 169.64 x 103 mm3 

6 
B d. M 64 x JO = 377.2 MPa 

en rngstressab=+z= 169.64x 103 

Maximum stress 

Example 10.8 

Gmax = 7.07 + 377.2 = 384.17 MPa Tensile 

Gmin = 7.07 - 377.2 = - 370.13 MPa Tensile 

A bar of rectangular section 60 mm x 40 mm is subjected to an axial 
compressive load of 70 KN. By how much can the width of the section be 
reduced by removing material from one edge only if there is to be no tensile 
stress in the bar and the ax.is of the bar is exchanged ? For this condition 
calculate the maximum compressive stress in the bar. 

Solution 
Suppose a portion of thickness t mm be removed from the width of the 

bar as shown in figures 10.9 
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t 
The load win now act at -;:;-

L 

mm frmn the vertical centre line of the 
remaining section. 40 

In the limiting case of zero resultant 
stress at the right hand edge, the 

"'!' 1 th r j · • 1 f ec,ce11tr:ic:rtv wu. oe 7, or t 1e new wwrn o. 
0 

the section as per the middle third mle 
t l t t 60 
- = - r 60 - t or - + - = -
2 6' 2"6 6 

or t= 15 mm 

' ~ct 7U'"" 1°3 
H (' d" r • - LOc, - X "\Y - 38 ,::, ?,AP~ en-e 1rect st,ess - Area - (60 _ 15) x 40 - . ..:i , ., a 

Am,wer 
Example Ht9 

A is shown in JO.JO Determine the thickness the 
section at x-x if the pressure exerted by the screw is 4 KN and the maximum 
permissible stress is not to exceed 160 MPa. 

Solution 
Lett 

Force of 
4KN 

~ 

Section at x-x 
I 

~rg.10.10 

100mm I 
be the thickness of the section at x - x 

mm 

3 .. 
D . 4 X 10 400 N/ 2 1rect stress a = = --_ mm 

d tX 10 t 

1 °' Moment of inertia of the section I= - x 10 t-
12 

. _ · I 1 10t 3 JO 2 
Section modulus Z = - = - --= ---- t 

y 12 t/2 6 

Bending moment= 4 x 103 x 100 "" 4 x ] N-mm 

M 4 x 105 24.(JfJOO 
stress crb = ± --, = -----"" ---

;: 10 2 



\ 

Combine\J DirectAnd Bending Stresses 35/ 

Now Permissible stress = 160 MPa 
160 = (Jd + (Jb 

160 = 400 + 240000 or 
t t2 

I= 2.5 + 1500 
t t2 

or ,2 - 2.5 t - 1500 = 0 
+ 2.5 ± -'1~(2-.5-}---4-.-(--1-50_0_) 

or t = 2 --

+ 2.5 + "16.25 + 6000 2.5 + 77.2 
or· t = or t = = 40 mm 

2 2 
Walls And Chimneys Subjected To Wind Pressure. 
Wind pressure on walls and chimney cause bend\ng moment. at the 

base of these structures. Therefore at any point in the base, stress induced 
·will be the sum of (i) direct stress induced due to self weight and (ii) 
Bending stress induced due to wind pressure. 

mmmJD~m 
crmax~ T 

Fig.10.U 

Let W be the self Wt. of the wall 
A = Area of cross-section at the base. 
h = height of the wall 
p = density of masonry 

then 
W=pAh 

d D. w p.A.h h 
an 1rect stress crd =A= A =p. 

Let p = intensity of wind pressure 
Let P = total horizontal force on the area 

exposed to wind. 

Bending moment at the base M = P 1 
Bending stress crb =± 1 

(Jman = <Jd + <Jb 

(Jmin = <Jd- (Jb 

In case of circular sections the total horizontql wind thrust P = 
c.p.Area exposed to wind, where C =Coefficient of wind resistance C= 0.66 
Example 10.10 . 

A masonry wall is 6 metres high and 1.5 metre thick and 4 metres 
wide. It is subjected to a wind pressure of 1.5 KN!m2 acting on the 4 metres 
side. Determine the maximum and minimum stress intensities at the base of 
the wall. Masonry weighs 20 KN!m3. 

Solution 
Self weight of the wall 

= Volume x density 
= 6 X l.5 X 4 X 20 = 720 KN 
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. Wt. of the wall 
Direct stress = 

· Area of cross-section of the wall 
720 , 

ad = '4 x 1.5 = 120 KN/m-

Total horizontal thrust due to wind = p. h x L 
P = 1.5 X 6 X 4 = 36 KN 

M = P x ~ = 36 x 1 = l 08 KN-m 

1 /2 ( 4) (1.5)3 
Section Modulus = Z = ~ = l .512 = 1.5 

M 108 72 KN' 2 
:. <Jb = z = 1.5 = 1 Im 

1 
crmax = ad + <Jb = 120 + 72 = 192 KN/m- (Comp) 
a min= ad - ab = 120 - 72 = 48 KN/m2 (Comp) 

Example HU 1 
A masonry climney 25 metres high is of uniform circular section 5 

metres external diameter and 0.5 m thickness throughout. The chimney has 
to with stand a horizontal wind pressure of 2.5 KN!m2 on projected area. 
Determine the maximum and minimum stress intensities at the base if the 
masrnry weighs 20 KN!.'1/ 
Solution 

Direct stress at the base 

ad= 
= 20 X 25 = 500 KN/m2 

Total wind pressure. 

P= 
= (2.5) (5) X 25 

= 312.5 KN 

312.5 X 25 .. "' , _ , . = ·-----= '""!J /"i K/"T_,...., 2 ~h, ·--- -" u, 

't 
7 - n; ··--·-__ ··_;, ~ 7 ') '5 3 
~ - 32 S = · .~'+ m 

;if 3906.25 ~ 2 
~tres" ·"' - + - - ---- ·- "39 1, 6 KlN· /n, 1 ~ . u vb - - Z - 7 245 ·- _, · · · ' ' 

cr,aax= Gd+ CTb 

= 500 + 539.16 = lG.39.16 

crmin=500- 639.16=--39I6KN!m 2 Answe:r. 
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Example 10.12 
A hollow masonry chimney of square section 2.5 m x 2.5 m has an 

opening 2 m x 2 m. It has to withstand a unifnrm wind pressure of 2 KN!m2 

Determine the height of chimney if no tension is allowed to develop at the 
base. Take weight of masonry = 20 KN!m3 . 

Solution 
Direct stress crd = p.h = 20 x h KN!m2 

. M 
Bending stress crb = ± Z 

Bending moment at the base M = P . ~ 
2 

h 2 X 3 X h _ 3h2 
lvf = p (3X h) X 2 = 2 

z = !_ = rii (2.5 X 2.53 - 2 X 23 )~111 - 3.255 

y 2.5/2 - 2.5/2 
L 

= 2.604 

M 
crb= z+ -= - z 

3h 2 
= 1.152 

2.604 

For no tension at base 

crd=crb 
or 20 h = 1.152 

or h = 17 .36 metres Answer 
Example 10.13 

A hollow square masonry chimney is to have an internal bore 500 mm 
x 500 mm for its entire height of 22 metres. The thickness of masory is 
uniform throughout. If the chimney has to with stand a wind press of l.40 
KNlm2 on one of its face determine the wall thickness of the chimney. Take 
Weight of masonry as .22 KN!m3. (Roorkee Univ.) 
Solution 

p 

1-- (0.5 + 2t) m --..j 

Fig. 10.12 

Lett be the thickness of mas.onry in 
metres. 

Direct stress due to weight of 
masonry crd = p.h = 22 x 22 = 484 KN. 

Totai horizontal wind pressure 

P = (0.5 + 2t) X 22 X 1.4 

= 29.8 (0.5 + 2t) KN. 

Bending moment at the base 
h 22 

M =PX l = 29.8 (0.5 + 2t) X 2-
= 29.8 X l l (0.5 + 2t) 
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Moment of inertia the section 

I = /2 f (0.5 + 2!)4 - (0.5)4 l m4 

Maximum distance of extreme fibre 

J = r o.s; 2 t 1 l, - ) 
Hence maximum bending stress 

M 29.8 X ! I (0.5 + 2 t) X (0.5 + 2 t) 
01, - + - . )' - ------------·-·--· 

I ii [(0.5 + 2 t)4 - (0.5)4] X 2] 

For no tension at base 

CTd= CTI, 

or 
7 

484 = 29.8 X J J X 6 (0.5 + 2 tt 
[(0.5 + 2 t)4 - (0.5)4 J 

or " ro - .., )4 _ (0 5 41 _ 29.8 X 66 ro 5 +" ./ [ \ .) + L t . ) J - 486 \ . ,_. [ I 

(0.5 + 2 t )4 - (0.5)4 = 4.06 (0.5 + 2t/ 
Now Put (0.5 + 2t) = x then 

x4 - (0.5)4 - 4.06 (x/ = 0 
or x4 - 4.06x2- (0.5)4 = 0 

? + 4.06 ± ,/ (4.06)2- 4 (0.5)4 
x-::: 

2 

+ 4.06 ± -I 16.48 - 4 X .0625 
2 

+ 4.06 ± .... Ji 6.48 - .25 
::: 

2 

,., + 4.06 ± fu:i3 + 4.06 ± 4.02 
x- = 2 = 2 

X2 = 8.08 = 4 04 
2 . 

But x = (0.5 + 2t) 

(0.5 + 2 t)2 = 4.04 
or 0.5 + 2 t = 2.009 

or 2t = 1.509 or t = .754 meter 
Required thickness of brick masonry is 0.754 metres 

Example 10.14 

Answer. 

A masonry chimney has 2 metres diameter at the base and one metre 
diameter at the top. the thickness of wall at the base is 0.5 metre fig 10. J 8. 
If the weight of the chimney is 200 KN, determine the uniform horizontal 
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1:vind pressure 
any tension. The 
Solution 

to avoid 

4 1m ~· 
r-t-,-

Area of the base 

. 1C - 12) A=4 

~ l i\ 
I I I I\ 

= 0.75 n: sq.m. 

Moment of inertia of the base section about 0 

I 1 \ 
I I 

I \ 24 m 

Diameter = .E___ .. - 64 

15 n: 
64 

4 m 
Ii ! \ 

I \ I 

' I I \ I 
I , :I I \ l 

Section modulus of the base section 

I I ' 1 

LLLul 
1--2 

10.18 

Direct stress due to the 

1t (D4 -f+) 
Z=----

32 D 

_ _!::_ (2'=-- 14) 
-- 32 2 

15 1t 3 ,_, = ~ 4 m. == .:35 
1h, 

= 843.2 
Let the uniform intensity of wind pressure be p KN!m2 of the projected 

area of the chimney 
Projected area of the chimney = Area of the trapezium ABCD 

24 = 2 (2+ l) = 36 Sq. metres 

Total wind pressure P = 36 p KN 
This resultant pressure aots at the level of the centroid of the trapezium 

ABCD Height of centroid of the trapezium ABCD above the base · 

- (2+ 2 X lj 24 y= x-
2+ 1 3 

. 4 X 24 , 
= - 9- = 10.66 metres 

Moment due to wind pressure 
M = P. y = 36 p x 10.66 KN-m 

-B ct· + M 36 p x 10.66 KN/m2 en mg stress Cib = _ -2 = ~--,,;: 
. . ! .JJ 

For no tension at the base 

Gd= lf:Jb 
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or 

or 

843.22 - 36 X !)7~ ! 0.66 . ., :, 
843.22 X .735 

p = 36 X 10.66 

= l.6i4 KNim2 

Masonry Dams 
Structures constructed to store large quantity of water are known as 

dams. These structures are subjected to water, wind and wave pressures 
acting horizonfally and forces due tu self weight acting vertically down 
wards. These forces induce both direct and bending stresses in the dam 
section. They are designed in such a manner that only compressive stresses 
are allowed to develop in masonry. The design criteria for such structures 
are 
(1) Tensile stress should not be allowed to develop at any point in the 

cross-section of the masonrv structures. 
(2) The maximum compressive stress induced should be less than the 

permissible or working stress in the masonry. 
(3) The shearing forces must not be greater tha.n the frictional forces 

between the masonry. 
Analysis of stresses in a trapezoidal dam section with a vertical 

water face. 
Refering to t.he figure I 0.1 l 
Let a = top width of the dam in 

metres 

dam 

b = width of base in metres 
H = Height of the dam in metres 
h = depth of water 
p = density of masonry 

w = density of water. 
Considering one metre length of the 

Weightofthedam W= (a~ b) x 

Hxp 
The weight of the dam acts vertically 

at a distance of x from the. vertical face AB 

- a2 + ab b2 
x= , 3 (a+ b) 

Total horizontal water pressure. 

Fig.10.11 

wh2 · h · ·· 
P = - 2- acting at 3 from the base of the dam. 

. ,' 

Let the resultant R of W and P cut the base,.ar a distance Z from the 
vert.ical face. .,--
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For stability of the dam the base must offer a reaction equal and 
opposite to R. The vertical and horizontal component of R will be W and P. 

Taking moments about B 

- h 
W. x + P. 3 = Moment of R about B 

= Moment of vertical and 
horizontal components of R about B 

= W. Z+P x 0 
- p h 

or Z=x + W . 3 
Let e be the distance of the vertical component of R from the centre 

of the base B D then Z = ( t + e) 
' b . e=Z--

2 

The normal stresses set up at the base B D will therefore be due to an 
axial load Wand a bending moment W.e 

. . w w 
Direct stress = - = --

A bx 1 
b 

M W.e.2 
Bending stress = 1 .y = 1 3 

12 (b) (1) 

6We 

<Jmax = O' d + O'b 

W 6We --+--
- b b2 

= : (1 + 6/) 
O'min = O'd - O'b 

W 6We 
=,;--,;r 

= :(1-6/) 
Conditions of Stability 

. . 
(i) For no tension at the base 

Od~Ob 

W > 6We 
b - b2 

\ 
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or 

l> ~ 
- b 

b 
e < -- 6 

Combined Direct And Bending,Stresses 

Hence the resullant R must always be in the middle third portion of 
the base width b. Under worst conditions 

Z= 2b 
3 

(ii) Safety against sliding 
If µ is the coefficient of friction the maximum frictional resistance 

set up is µ W. 

Hence the horizontal water pressure P must not exceed µ W in order 
to prevent the section from sliding. 

P-5. µW 

Factor of safety against sliding = ~ W 

Generally a factor of safety of 1.5. (minimum). should be provided 
(iii) Safety against over turning . 

For the stability of the section against overturning, the restoring 
moment must be equal to the overturning momen(about the toe ofthe dam. 

h 
Px -= W (b-x) 

3 
Factor of safety against overturning 

W(b--'X) 
= 

Ph/3 
It should be more than unity. 

(iv) Safety against Crushing 
To avoid crushing of masonry at the base the maximum compressive 

stress acting normal to the base must be -less than the permissible 
compressive stress for masonry 

<Jmax :s; Permissible compressive stress 

or . : ( I + 6/) '5. Permissible compressive stress: 

Example 10.15 
A trapezoidal masonry dam 8 metres high has a top width of 2 metres 

and a base width 5 metres, it retains water to itsfulldepthwith water face 
vertical. Determine the maximum and minimum stress intensities at the base 
masonry weighs 20.7 KN!m3 and wt of water percubt'e melfemb.j•lie taki?n ' 
as JO KN. 
Solution 

Consider I metre length of the dam 
Self wt of the dam 
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W = (a; b) . H. p 

(2-5 · 
=-2-x 8 x 20.7 = 580 KN 

Line of action of W from the vertical face. 

- a 2 +ab+b 2 
X = 

3 (a+ b) 

R 

') ') 

= (2) - + (2) (5) + (5) - = I 85 
. 3 (2 + 5) · m 

Horizontal thrust of water 
7 ') 

P = w h - = IO (3) - = 320 KN 
2 2 Fig.10.12 

Line of action of P from base = h/3 = { 
- P h 320 8 

Z = X + W . 3 = 1.85 + 580 X 3 = 1.85 + 1.47 

b 
Z = 3.32 m and e = Z.,... 2 = 3.32 - 2.50 = . 82 m 

CJ = W(l + 6 e.) = 580(1 + 6 x .82J= 230 14 KN/m2 
maxb b 5 5 · 

w( 6e) 580( 6x.82) 2 CJmin = b I - b = - 5- I - 5 = _I .85 KN/m Answer 

Example 10.16 
A trapewidal dam with one face vertical is 12 m high. The top width 

is 4 metres and the base of the dam is. 7 metres wide. It retains water upto 
a height of JO metres. If masonry weighs 20 KN!m3, determine the maximum 
and minimum intensities of stresses at the base. 
Solution 

Consider one meter length of the dam 
Self weight of the dam 

W = T xHx p ( ·+b) 

=(4 ;:q 12x20= 1320KN 

Line of action of j from the vertical face 

- a2 + ab+ b2 42 + 4 x 7 + 72 
x= -

3(a+b) 3 (4+7) 
= 2.818 m 

4m ~ 

R 

Fig.10.13 
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. w 1i2 10 no/ 
Honzonta_l thrust of water P = - 2- = - 2 = 500 KN 

L. f . fp· 1 b f, !O rne o action o trom t,1e ase = -3 3 

- p h 
Z=x+W.3 

. 500 10 
=2.818+ 1320 x 3 =2.818+ 1.266=4.084 

b 
e = Z - - = 4.084 - 3.50 = 0.584 

2 -~lf1 §__~j_J.BQ(1 . 6x0.5841 
CTmax - b + b I- 7 X l [ +- 7 ). 

) ' 

= 13/ 0 (I+ 0.500) = 188.57 (1.5) = 282.8 KN/m 2 

. l!'.( ~\ 
CT min = b I l - b I 

\ ) 

= 1320 l(1 _ .6x 0.584J = J32Q {l-0 5) 
7 7 j 7 · . 

= 188.57 (0.5) = 94.285 KN Im 2. 

Example 10.17 
A concrete dam of trapezaidal section is JO m high, 2 metres vvide at 

the top with water face vertical. It retains water upto the top level of the 
dam. Find the minimum width at the base to avoid tension in masonry. What 
is the maximum Compressive stress ? Take weight of concrete as 24 KN per 
cubic metre. J.M.J. 1995 
Solution 

Consider one metre length of the dam 

Self weight of the dam 

W =1-:;- xHx p 
(a+ bj\ 
\ "-, 

(2 ' b) = .L2.__x IO x 24 = 120 (2 +- b) Kii\J' 
2 

? ? 
_ ( a- + ab + b~ ) 
X"'. 

3 (a+ b) 
? 7 

(2t + 2b + b~ 
= 

3 (2 + b) 
. _ w h2 

Honzontal thrust of water P = - 2-

l0 (l 0)2 = 500 KN 
2 

Fig. 10.14 
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·1 h lO f b P w1 act at 3 = 3 m rom ase 

For no tension at base the maximum value of Z ::;; 2/ 

- p h 
Z=x+W.3 

or 

2b 4 + 2b + b2 500 10 
3 = 3 (2+ b)+ 120(2+b) . 3 

2b 4+2b+b2 13.88 
3 = 3 (2+b) + (2+b) 

2 2b 
4 + 2 b + b + 3 (13.88) = 8 (2 + b) 

or 4 + 2b + b2 + 41.6 - 4 b - 2b2 = 0 
or b2 + 2b -45.6 = 0 
Solving the quadratic equation 

-2 ± 'V(2)2 -4 (1) (-45 .. 6) 
b = ----------

2 
-2± 13.65 = 2 = 5.8211\etres. 

Therefore for no tension at base the minimum base width shouk 
5.82 metres. 

Now Z = 2/ = 2 X :,82 = 3.88 m 

b 
and e =Z- 2 = (3.88-2,91) = .97 m 

Maximum Compressive stress 

<Jmax =: ( 1 + 6/) 

W (a+b) H (2+5.82) 24 = X Xp= -x X 
2 2 

O'max 938.4 (i + 6 X O . 97} 
1 X 5.82 5. 82 

= 161.23 (1 + 1) = 322 .46 KN/m2 

2 
O'max = 322.46 KN/m 

Example 10.18 

10 = 938.4 KN 

361 

A masonry dam trapewidal in section is 2 metres wide at top and 5 
metres wide at base. It retains water level lVith top against the vertical face. 
Calculate the height of the tam so that there is no tension at the base. Take 
Wt of masonry as 22 KN/m . (Madras) 
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Solution 
(a+ b) 

Self Wt of the dam = --2-. p . H 

W::: (2 + S)x 22 x H = 77 H KN 
2 . 

_ a2 + ab+ b 2 (2) 2 + (2)(5) + (5) 2 
X == ::: 

3(a+b) 3(2+5) 

Horizontl water pressure 

wH 2 lOH 2 .~ .. H 
P = --= --- = 'i HL KN acting at -

2 2 - 3 

- p H 
Z=x +Wx 3 

2b 
For no tension at base Z = 

2 
2b _ P H 
-=x +-x·-
3 W 3 

2x5 5H 2 H 
-3-=1.SS+77Hx3 

5H 2 
3.3 = 1.ss + m 

5 2 
or 231 H = 3.33 - l.85 = 1.48 

H2 = 1.48: 231 == 68_37 
J 

H = 8.26 metres Answeir, 
Example 10.19 

]2_ 1 
21 - ,.85 m 

Stresses 

Show that the minimum base width required to avoid tension at the 

base is ~ whether the section is triangular or rectangular, where His the 
'IY 

height of the dam and y is the sp. grairty of the ate rial of the dam. (A 

Solution 
When the section of the darn is trapezoidal and water face is vertical 

Self Wt of the dam== W (a! b)x H.p 
L, 

Line of action of W from vertical face 

- a 2 + ab+ b 2 
X ::: 

3 (a+ b) 

Hori:wntal water pressure P = w: L acting at H/3 
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ur 

of the darn 

fl 2b -< . 3 - 3 

a 2 J b+ b 2 ,vH 2 

.3 t.~- -~ b) .Jr 2 X 

w + -· 
y 

(a+h) ----x HQ 2 . ,,,, 

,, }V 
a~ +ab+ + -- . ~ 2b + 2b L or 

+ab+ + 
Hen::e base width can be calculated from 

-< 3 -

S 2 b (2. + b) 

r?srsltant of F and W passing through the middle third of the: 

~~/'h{;n !be ection is triungular a = o, hence 

VVhen y = ·Specific gravity of the masonrJ 

Wh;;;11 the secdon is 

becnrne 

2 V! ,,r b = -- . 
p 

y 

H 
orb= ~r.;:: 

'\/"( 

then hence no 

363 

Therefore the minimum base width to avoid tension at the base is b = -

when the section is traingular or rectangular. 

· iExampie 10.20 
A masonry dam of trapezoidal section has a vertical water.face and 

height 18 metres. Determine the widths at the top and bottom if the normal 
pressure on the base varies uniformly from Zero at one side to 500 KN!m2 

m the otherside. The depth oj water impounded is 15 Take weight 
as KN/m·1 and that of water a.< 10 (cakutta) 
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Solution 
Consider one metre length of the dam 
Let a and b be the top and bottom widths 

of the dam. 
Self weight of dam 

(a+ b) 
W=-2-x 18x22 =198(a+b)KN 

over 2 times-H. rho 

p = w h 2 = iO (15) 2 = ll25 KN 
2 2 · 

As the intensity of pressure at the base 
section is given, .therefore area of stress diagram 

1 
at base= 2 (0 + 500) x b = 198 (a+ b) 

or 250 b = 198 a+ 198 b 

Fig.10.18 

or (250b-198b)=198a 
198 

or b = 50 = 3.807 a 

2 2 2 2 . . 2 
x-= a +ab+b =a +3.807a +{3.807a) =l 338 a 

3 (a+ b) 3 (a+ 3 . 801 a) · 

Z = x- + t. h ove3 

1125 15 
= 1.338 a+ 198 (a+ b) · 3 

1125 15 
== 1.333 a+ 198 (a+ 3. 807 a) x 3 
= 1.338 a + 5 · 909 

a 
Since the intensity at the top is Zero there fore there is no tension, 

hence 
2b . 

Z=-3 

2: = 1.338 a+ 5.~09 

or 2 (3.~07a) = 1.388 a+ 5.~09 _ 

(2.538 a - 1.338 a)= 5·909 
a 

or 

or (1.20) a= 5·909 or a2 = 5·909 = 4.924 
a 1.20 · 

or a= 2.21 metres 
Hence b = 2.21 x 3.807 = 8A47 metres. 
Top width a= 2.21 metres, Base width b = 8.447 metres Answer 
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Example 10.21 
A trapezoidal masonry dam 2 metres wide at top 8 metres wide at its 

bottom is 12 metres high. The to water has a of 1 
horizantal to 12 vertical fig. I 0.16. Determine the nwxitmwi stress 
intensities, when water rises to the top level dam. weighs 24 
KN!mj. (ENGG. Services) 
Snl.ution 

dam. 
Consider one metre length of the 

Sum of the vertical forces. 

W = W1 + W2 + W3 + W4 
l 

W1 = l x lx l2x 10 = 60 KN 

Moment of W1 about A, 

M J = 60 x 1 x l = 20 KN--m 

( 1 . 
W2 = 1 2 X 1 X 12 X 24 =120 KN 

\ . 
Moment of W2 A, 

Ah= 120 x 1· :< 1 = 80 KN-m 

W3 = (2 x 24:::: 576 KN 

, (1 + 21 H ~,-, • 

Moment of W3 aoout A M3 = 5761--::;-- i = 1 D.L KN-m 
\ ,:;, ) ' ~ 

WJ = - >'. 5 X 12 l X 24 = 720 K.N . l 
) / ) 

Moment of W4 about A M4 = no ( 1 + 2 + * 1= 3360 K.J.'\T-m 

S . " . lf' ' j) um oJ aH vertrca .orces 

W = W1 + W2 + W3 + W4 

= 60 + 144 + 576 + 720 = 1500 Ki'\T 
1 

H . i h P-- wh onzonta,. water t rust 2 

P = IO (1 2)2 = 720 KN 
2 

Moment of P about A = Px !!:. = llO x_l1 
3 3 

M5 = 2880 K.'f\l'-m 

Sum of the moments of all forces about A 

M = M1 + M2 + M3 + M4 + Af5 
= 20 + 96 + 1152 + 3360 + 2880 = 7508 KN--m 
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Tht: distance at which the resultant strikes the base from A 

7508 
Z = 1500 = 5.005 m. 

b 
e = Z - 2 = (5 .00? - 4) = 1.005 m 

C>max=: (1 + 6/) 
= :~~ (1 + 6 x ~.005]= 328.6 KN/m2 

w( 6e) 
O"mi11=~ll- b 

= 15
8
00 (1- 6 x ~-005)= 46.90 KN/m2 Answer. 

Example 10.22 
A masonry dam is one metre wide at top 4 metre at the base and 8 

metres high. It retains water up to 6 metres height. Test the stability of the 
dam against tension, compression sliding and overtuming.Take weight of 
masonry 24 KN!m3. Bearing capacity of soil 240 Nlm2 andµ = 0.6 
Solution 

Self weight of the dam 
1 (2 + 4) 

W = 2 (a+b)H.p=-2-x8x24=480KN. 

__ a2 +ab+ b2 (1)2 + (1)(4) + (4)2 _ 21 _ 1 4 
X- 3(a+b) - 3(1+4) -15- · m 

Horizontal water pressure 

wh 2 10(6)2 . 6 
P = - 2- = 2 = 180 KN.actmg at 3 m 

- p h 
Z=x+w·3 

180 6 = 1.4 + 480 x 3 = 1.4 + 0.75 = 2.15 metres 

b 
e = z- 2 = 2.15 - 2 = 0.15 m 

crmax= :(1 + t) 
= 4!0 (1 + 6 X ~- 15)= 120 (1 + 0.225) 

= 147 KN/m2 . 
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( l) Since the eccentricity e = 0.15 mis less than 
b 4 

e <- =-= 66 m 6 6 . 

Therefore the section is safe against tension 
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(2) Since max. compressive stress (jmax= 147 KN/n/ is less than the 
bearing capacity of 240 KN/m2 hence the section is safe against 
compression. 

(3) For safety against sliding 
P<µ W 

F f . 0.6x480 6 , f 
actor o satety = 180 = 1. nence sa e. 

( 4) To be safe against overturning 
Restoring moment > overturning moment 

480(4-1.4) 
Factor of safety= 6 

= 

180x 3 
480x 2.6 
180x 2 

3.46 

Hence the section is safo.against all the four factors 
Example 10.23 

A trapezaidal masonry dam is 16 metres high with a top width 
metres. The Waterface has a bat:er of 1 in 16. Determine the minimum base 
width so that no tension develops at the base of the dam. Take lVL 

i . 
as 22 KN/m·. vl/ater stands upto the top level of the dam. (Cambridge) 
Solution 

Consider one metre 

Sum of vertical force~ 
W=W +W2 +W3 + 

W1 = :; (l X l 6) 
-

Moment of iv1 about 

of the dam. 

M = 80 X l X 1 :::: 2f {,;; K1'J_rn 1 3 '- J • ._,'-..f ,,',,./.' ~ \ 

1 
u, - ..:.. (1 x 16)x rr-, :::c 17(-·; ,.,".··' "2 -2 • L/ •. ,, ,I\. . .! 

Moment of W2 about A 
·j 

M7 :;:; 17t x ~ x 1 = 117.36 KN-m 
,, j 

22 '"' 1408KN 
Moment of VF I a.bout A 

/ a' 
= 1408 I 1 +;- I== 4224 KN-m 

l. 2 ,) 
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l = 2 (b -- 5) x 16x 22 = 176 (b - 5) KN 

Moment of W,1 about A 

M4 =J l 76 (b -·5) fl + 4 + t (b - 5) 11 KN-m 
L l . J J 

Sum of all vertical forces 

W = W1 + W2 + W3 + W4 

= [ 80 + 176 + 1408 + 176 (b - 5)} KN 

= [ 1664 + 176 (b - 5) ] 
Horizontal Water thrust 

· 7 2 
p = wh- = 10(16) 

2 2 
. 16 = 1280 KN actmg at -;;

:, 

Moment of P about A 

16 
M 5 = 1280 x J = 6826.66 KN-m 

Sum of all the moments 

M=M1 +M2 +M3 +M4 +M5 

r f 1 11 M=26.66+ ll7.3+422.4+j 176(b-5) 5+ 3(b-5)~i+6826.66 
L l L 

= 11194.62+[176(b-5){5+ich-5)}] 

Distance of the point of application of the resultant on the base fromA 

Z = Total Moment about A 
Total Vertical Load 

. h b 2b For no tenswn at t.,e ase Z = 3 

lb 11194.62+[176(b- 5) X {5 + t (b-5)}] 

Z=3- = 1664+ 176(b-5) 

2; [1664 + 176 (b - 5) = 11194.62 + 58.08 b2 + 295.68 b - 2930.4] 

or 512.7 b + 1173 b2 = 8264.22 + 58.08 b2 + 295.68 b 

or 58.22 b2 + 217.02 b - 8264.22 

or b2 + 3.72 b - 141.94 = 0 

-3.72± '1(3.72)2 +4(141.94) 
orb 

2 
or b = 10.18 metres Ans. 
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Retaining Wails 
A retaining wall has to withstand pressure due to earth which it retains. 

This pressure depends upon the weight of earth and the angle of repose. Just 
as in the case of water, earth pressure increases uniformly with the depth, 
giving a straight line pressure variation diagram. It varies linearly from Zero 
at the top to maximum at the base. The resultant thrust will act at one third 
the height of earth retained, from the bottom of the retaining wall. 

Angle of repose 
When a heap of earth is allowed 

Earth slides to rest freely, it will crumble down 
under the action of weather and 
finally it will take a certain definite 
position. The angle which the 
inclined surface makes with the 

Angle of repose horizontal in this condition is termed 
as angle of repose for a particular 
granular material. This angle of 

F" 10 21 repose may be considered to be the 
angle of frictioAgtor "one portion of the material tending to slide over the 
other. In the case of water, in which no friction exists, the angle of repose 
is zero. 

Retaining walls may be with or without surcharge. We shall discuss 
retaining walls without surcharge only when the top of the earth retained is 
horizontal. 
Rankine's Formula 

Horizontal Pressure per metre length of the wall 

p = w h2 ( 1 - sin 9) 
2 (l+sinEJ) 

Where h = height of earth retained 

w = density of earth 
e = angle of repose 

P will act at h/3 from the base of the wall. The 
rest of the analysis is similar to dams. 

Example 10.24 

a 

:TI\ 
!h \ i p 

b 

Fi.g.10.22 

A masonry retaining wall tmpezaidal in section is 10 metres high, 6 
metres wide at base has one face vertical and the other battered 1 in 5. It 
retains earth level with the top. Calculate how far, the resultant will Strike 
from the centre of the base. Find the maximum and minimum stress 
intensities at the base. Earth weighs 16 KN!m3 and masonry weighs 24 
KN!m3. Angle of repose is 30°. 
Solution 

Batter of sloping face is 1 in 5 

:. Top width = 6 - 2 = 4 metres 
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Consider 1 metre length of the retaining wall. 

(a+b) 
Self weight W = --2- X H X p 

= (4 ; 6) X JO X 24 
= 1200 KN 

_ a2+ab+b2 (4)2 +(4)(6)+(6)2 
x= = 

3(a+b) 3(4+6) 

= 2.533 m 

Horizwmal earth pressure 

0 _ wh2 (1 - sin0) 
' - 2 (l + sin6) 

16 (10)2 (1 - 0.5) 
= 

2 (1 +0.5) 
= 266.7 KN 

. h f h b lO P will act at 3 rorn t e ase, -3- m 

- p h 
Z=x+W' 3 

4 

Ti I 1~mLl1 i ~ I I 5 

I : I 

j_ I 

r- 4m--i 2m f,-
j--6m--j 

Fig.10.23 

2667 · 10 = 2.533 + l200 X } = 2.533 + 0.740 = 3.27 m 

b 
e = Z - 2 = 3.27 - 3 = 0.27 m 

Hence the resultant will strike the base at 0.27 metres from the centre 
towards the toe of the waH. 

q-=: ~+~) 
= 120 ~1 + 6 

X 
0·2J = 200 (1 + 0.2.·7) 6xl 6 . - , 

= 200 (1. 7); 254 /m2. 

crmin= !~~ (1- 6/) 
= 200 (1- 0.27) = 200 X 0.73 
= 146 KN/m2 Answer 

Example 10.25 
Design a retaining wall for a height of 6 metres. The face in contact 

with earth is to be vertical and earth level with the top. Take the wts. of earth 
and mas()nry as 18 KN and 21 KN per cubic metre. respectiJely. Maximum 
Compressive stress for masonry may be taken as 200 KN/m . 

The angle of repose 30 ° and coefficient of friction is 0.5. 
Solution ., · 

Assume the top width as 1 metre and base width b metres then 
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W =(a+b) xH or= (l+b)x6x 21=63(l+b)KN 
2 2 

Horizontal earth pressure 

p = l. wh2 (1 - sin 0) 
2 1 +sine 

= l_ X 18 X 62 (l - O.S)= 108 KN 
2 1 + 0.5 

P will act at ~ = 1 metres from the base . 

2 2 

x = a 3~:! ;t = 1 + b + b2ver3(1 + b)>P will act at h/3 

from the base of the wall. The rest of the analysis is similar to dams. 
- p h 

Z=x+w·3 

l+b+b 2 108 6 
= 3(1 +b) + 63(1 +b) X 3 

F . b 2b or no tens10n at ase Z = 3 
2 b 1 + b + b2 108 X 6 
3 = 3(1 + b) + 63 (1 + b) X 3 

or 2b (l+b)=(l +b+b2 )+ 10.28 
b2 +b - 11.28 = 0 or 

Solving the quadratie equation we get 

-1 ± ~ (1)2 - 4 (1) (- 11.28) 
b=-~~~~~~~~~ 

2 

b = 2 .895 metres. 

Now e = z-!!_= Zb _!!_ = !!. 
2 3 2 6 

·. 2.895 8 = - 6- = .4 metres 

(i) Check against sliding 
P= 108 KN and µW= 0.5 x 63 (l +2.89) 

= 122.69 
As µWis more than P , the section is safe against sliding 

(ii) Check against Crushing 

crm==!(l+~) · 
Here W = 63 ( l +b) = 63 (1 + 2.89) = 245.35 

245.35 ( 6 X .48) · 2 :.amax= 2_89 ,l+ 2_89 =169.77KN/m 
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Since crmax is less than the permissible compressive stress of 200 
KN/rn2, the section is safe against crushing. . 

Safety against overturning 

. D h 6 6 overturnmg moment = 1 x 3 = 108 x 3 = 21 KN-m 

Balancing moment= W (b - x) 

= 245.35 (2.895 - x) 

_ a2 +ab+ b2 1 + (2.895) + (2.895)2 

Where x = 3(a + b) = 3(1 + 2.895) 

= 1.05 m 

Bala:r:ping moment= 245.35 (2.895 - 1.05) 

= 452.67 KN-m 
As the balancing moment is more than overturning moment, the 

section is safe. 
452.67 

Factor of safety~ 216 = 2.09 

Example 10.26 
A masonry retaining wall IO metres high is stepped as shown in figure. 

10.21 lf the weight of earth filling is 12 KN!m3 and that of masonry 16 
KN!m3, determine the stress intensities at the base. The angle of repose is 
30° andµ = 0.6. Check the safety against sliding. (Baroda) 
Solution -

Consider one metre length of the 
retaining wall D 2m c 

Total vertical load W = W1 + W2 + W3 '"7"77:'7'Vn?!?'7"lrrr.,r---,l 1 
+~+~ I. 

W1 = (1 x 8) x 12 + (1 x 2) x 16 I I 
= 96 + 32 = 128 KN 

W2=(1X 6)12+(1x 4)16 
=72+64=136KN 

W3 = (1 X 4) 12 + (1 X 6) X 16 
= 48 + 96 =144 KN 

W4 = (1 X 2) 12 + (1 X 8) 16 
=24+ 128= 152KN 

W5 = (1 X 10) X 16 = 160 KN 
Sum of ail vertical forces 
W= 128 +136 +144 +152 +160 

=720 KN 
Moment of W1 about A 

.10m 

I 
---:.&-j--'-t--'-1--'-t-""---t--: __j_ 

Al 18 

fW1 W2W3 W4 W5 I 
j,o 6m-~ 

Fig. 

= M1 = W1 X 0.5 = 128 X 

= 64 KN-rn 
0.5 
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Moment of W2 about A, M 2 = 136 (1 + 0.5) = 254 KN-m 
Moment of W3 about A, M3 = 144 (2.5) =360 KN-rn 
Moment of W4 about A, M4 = 152 x 3.5 = 456 KN-m 

Moment of W5 about A, M5 = _160 ( 4 + ~) = 800 KN-m 

Horizontal thrust of earth 

p = ! wh2 · (1,- sin0) 
2 (l + sin0) 

= _!_ (12) (10)2 (l -0.5) = 200 KN 
12 (1 + 0.5) 

· Moment of P about A = 200 x ; 0 = 666.3 KN-m 

Sum of the moments of Wand P about A 

= 64 + 254 + 360 + 456 + 800 + 666.3 = 2600.3 KN-m 
2600.33 

Z = _ 720 = 3.6 metres 

b 
e = Z - 2 = 3.6 - 3 = 0.6 m 

<J = W (l + 6e) = 720 (l + 6 X 0.6) 
maxb b 6 6 

= 120 (l+ 0.6) = 192 KN/m2 

O'min = 120 (1-- 0.6) = 48 KN/m2 . 

Check against sliding 
P< µW 

200 < 0.6 X 720 
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Since P is less than µ W there fore retaining wall is safe against 
sliding 

!!:!:!'.'.: 0 . 66 X 720 432 
Factor of safety = p = 200 = 200 = 2.16 Answer. 

SUMMARY 
l. Direct stress <Jd = WI A 

2. 

Where Wis the vertical load and A us the area of Cross-Section. 

B d. M We 
en mg stress <Jb = - = -z z 

When e is the eccentricity of at which W is acting and Z is the 
sectjon modulus 

3. O'max= <Jd + <Jb 

<Jmin = <Jd - <Jb 

If crmin is negative the stress is tensile. 
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4 F . z 
. or no tenswn e s A 

For rectangular sections e s b 
6 

and For circular sections e s f 
5. In case walls and chimneys subjected to lateral loads. 

crd=P.h 
M 

ab= ±z 
6. In case of retaining wall, always analyse for 1 metre length 

W = Area x length x density of masonry 

_ (a+b) H 
- 2 . . p 

2 
P = w; Where w is the density of water 

X = 
a 2 +ab+b 2 

3 (a+ b) 

- p h 
Z_=x + w·3 

e=(z-1) 
At the base of width b 

d. w 
irect stress crd = b 

B d. 6we 
en mg stress ab= --2-

b 

O" max =: .. cr d +Ci b 

= :(1 + ~) 

(jmin = ad- /Jb 

= :(1-~) 
. wh2 (1- sin H) 

Rankme's formula P = 2 (l +sine) 

Conditions of stability 
b 

(i) For no tension es 6 

(ii) Against sliding 1:!!!:'. > 
p 
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... . . 3W(b-x) 
(m) Agamst overturmng, P.h > l 

Against crushing crmax <safe bearing capacity of soil or safe 
. compressive stress for the masonry . 

. QUESTIONS 
(l) What is meant by·eccentric loading ? Explain the effect of eccentric 

loading on a short column. 

(2) What do you understand by middle third rule ? Show that for no tension 
in the base of a dam the line of action of the resultant must pass through 
t~e midljlle third portion of the base. 

(3) What are the Various conditions for the stability of a dam? Explain them 
,( 4) Explain angle of repose. What is the effect of earth pressure on retaining 

wall? 

EXERCISES 
(5) A steel flat 200 mm wide and 18 mm thick is subjected to a compressive load of 

20 KN at an eccentricity of 30 mm from the geometrical axis of the flat. 
Determine the maximum and minimum stress intensities induced in the section 

(<Jmax= 60 MPa, C>min = 50 MPa) 
(6) In a tension specimen 25 mm in diameter the line of pull is parallel to the axis 

of the specimen. Determine the eccentricity of the load when the maximum stress 
is 20 percent grater than the average stress on a section normal to the axis 

(e =0.9 mm) 

(7) A masonry wall 2.4 metre wide is exposed to a wind pressure of 1.4 KN/m2. 

Find the maximum height of the wall so that there is no tension at the base of 
the wall. Take weight of masonry as 20 KN/m3. 

(27.43 metres) 

.(8) A masonry chimney 20 metres high has a uniform circular section. The external 
and internal diameters are 4 m and 3 m respectively. The chimney has to with 
stand a horizontal wind pressure of 1.6 KN/m2 of projected area. Determine the 
maximum and minimum stress intensities at the base if the weight of mason2' 
per cubic metre is 20 KN. (698 KN/m2 and 102 KN/m ) 

(9) A square chimney 25 metres high has an opening 1.2 m x 1.2 m inside. Find the 
necessary thickness at the base if the maximum permissible stress in brick 
masonry is 7 50 KN/m2 and the intensit¥ of horizontal wind pressure is 1.4 KN/m2 

. take weight of masonry as 21 KN/m . (1.12 metres) 

(10) A square chimney 20 metres high has an opening of l m x 1 m and wall 
thickness 0.30 metres. Calculate the maximum stress in masopry if the horizontal· 
wind pressure is 2 KN/m2 and weight of masonry 20 KN/m3 (150.7 KN/m2) 

(11) A masonry dam is 8 metres high, 2 metres wide at top and 5 metres wide at 
bottom it retains wateron the vertical face to the full height of the dam. Determine 
the stresses developed at the base. take weight of masonry as 21 KN/m3 and that 
of water as 10 KN/m3 . (217 KN/m2 , 18.8 KN/m2) 

(12) A masonry dam 9 metre high is one metre wide at top and 3 metre wide at base 
has water on the vertical face up to 8.4 m. Calculate the maximum and minimum 
stresses at the base. Take weight of masonry 20 KN/m3 

(677.8 KN/m2, 437.8 KN/m2 ) 
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( J 3) A masonry dam of trapezoidal section with vertical water face is 12 metres high 
and 1.5 metre wide at the top. it retains water upto the full height of the dam. 
Find the necessary base. Width for no tension. Take wt. of masonry= 2 KN/m3 

(b = 7.175 metres) 

(14) A retaining wall 6 metres high has to support earth level with the top on its 
vertical face. The batter of the sloping side isl in 3. Determine the top and bottom 
width if the angle of repose is 30 °. Take weight of earth= 18 KN/m3 and wt. of 
masonry= 22 KN/m3 Ans. (a = 1 m and b = 3 m) 

(15) A masonry retaining wall trapezoidal is cross-section 12 m. high, has one face 
vertical and the other batter 1 in 6 and retains earth at its vertical face, level with 
the top. Calculate its base width for no tension at base. Earth weighs 16 KN/m3 

and masonry weighs 24 KN/m3, angie of ropse of earth is 30° JMI. 

DOD 



11 
Torsion Of Shafts 

Torsion 

, Fig.11.1 
~When a shaft is rigidly fixed at one end and twisted at the other by a 

torque applied in a flane perpendicular to the longitudinal axis of the shaft 
as shown in figure l .1, the shaft is said to be in a state of torsion. 

The applied torque produces the following effects 
-~ "{i) It imparts an angular displacement of one end cross-section with 

respect to the other end 
-~ /{ii) It sets up shearing stresses on any cross-section of the shaft 
perendicu!ar to its axis . 

.,,,fwisting Moment 
Twisting moment at any section along the shaft is the algebraic sum 

of the moments of the applied couples that lie to one side of the section under 
consideration. 
~aring Stress Due To Torsion 

~- Shear stress produced due to the applied torque Tat a distance r from 
the centre of the shaft is given by 't. This is also called torsional shear 

T. r 
't=--

1 
Where J represents the polar moment of inertia of the shaft section. 

/Shearing Strain Due To Torsion , 
The angular displacement of one surface of the shaft from its original 

position due to the applied torque is called shearing strain at the surface and 
measured in radians . 

. .,,Modulus Of Rigidity 
1 The ratio of the shear stress and shear strain is called shear modulus 
or modulus of rigidity. 
Assumptions 

The torsion equation is based on the following assumptions. 
A plane section of the shaft normal to its axis remains plane after the 
torques have been applied. 

, 2. AH diameters in the section which were straight before torque was 
J' applied remain straight 

377 
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3J/ 'fH'."e twist -along the length of the shaft is uniform throughout 
4.f The material of the shaft is uniform throughout. 

5\fl-1a.~imum ~hear sn:es~ in_dqced in the shaft due to applied torque does 
·, not exceed its elastic bm1t value. · -

.)l~l:t~,'?!1.~«!tween torsional. ~t!~~'-sti;:~n .and ~111gle of tlvist. . 
Consider a cylindrical shafroflerigth/ arid radius R as shown in figure 

11.2 

Fig.n.2 
A couple. or' magnitude T is applied at one end and the other end of 

the shaft is held by a balancing couple of equal magnitude. Because of the 
applied torque th'ere is a relative twist of the two end cross-sections; 

Since one end is fixed the line A B on the surface of the shaft moves 
to the position AC ,after strain. The angular displacement c(> of the line AB 
to the helix AC is the shear strain at this surface and since cl> is very small 

:1 Be = L cl> or cl> = BLC (i) 

But 
't 

cl> = - or 't = cj>.G 
G 

Where 't is the shear stress in the material at the surfa,;:e of the shaft 
and G is the modulus of rigidity· of the material. Let the angle of twist BOC 
be the angular movement of the radius OB due to the strain in the length L 
of the shaft. · 

Hence 't = cj>.G and JfC = R.9 

't=Bcx G=R.9.G' 
· L · L 

't R .9 't GO 
or G~ L or R =L 

\ 

(ii) 

G.9 K - h T = , a constant t en 
I 

Put 

't 1 = R .K 
Similarly _if 't1 is the shear stress at a radius R1, then it follows that 
We therefore deduce that the intensity of shear stress at any point in 

't 't1 't2 
-=-= -= K 
R R1 . R2 



ToFsion Of Shafts 379 

, the cross-section of a circular shaft is proportional to its distance from the 
axis of the shaft.. It varies from zero at the axis to a maximum at the surface 
ofthe shaft. 
~ation between twisting couple and shear stress. 

Let us consider an elementry annular ring of radius R I and thickness 
o R 1 . Let t 1 be the shear stress acting on it then, · 

The total force acting on the ring = t 1• 2 7t RI o RI and the mome.nt 
of this force about the axis of the shaft = t I. 2 7t R I O R 1 . R 1 · · 

= t 1 .21e Rf.o ~~ 
't . 3 

. =R.21t.R1.l>R1 

When the ringis infinitely thin 
The total resisting moment of the section 

't rfl ~l t'.1tR3 . 
= 2 7t R Jo Kj.<>R1 =-2-

But the total resisting moment of the sectioq is equal to the couple T 

applied,·6n ;~ ~: ~ 

' 't 1tR4 
or T= R .2 

. . 4 

We know that the polar moment of inertia of the section J = ~ 
't 

T=~ .J 
R 

or 

Henr from equations (i) and (ii) we can write 
. T 't Ge 

1=Ji.=T 
this is known as torsion equation .. 
U_nits of m~asurement of these quantities are 

T = Torque or Twisting m9J11ent in N-mm 
J = Polar moment of inertia in mm 4 

t = Shear stress in MPa 
G = Modulus of rigidity in KN/mm2 or GN/m2 

R, = Radius of shaft in mm 
L = l,ength of shaft in metres or mm. 
0 ;: Angle of twist in radians. 

Torsional Rigidity ~ 
Torsional rigidity is the torque that produces a twist of one radian in 

a shaft of unit length 
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. Poly Modulus 

For a given shaft J and Rare constants. The ratio :Ji is also a constant 

and called polar modulus of.the section; 

Polar moment• of inertia 
Polar modulus=---------

Maximum radius 

~gle ·or Twist. · .. . . 
, when a torque T 1s apphed on a 

circular shaft a line A B on the surface of the J · 
shaft moves to the position AB' producing a fBv' 

, shearing strnin <I>, and simultaneously the .A·:. 1 $~8~0 
radiu,s OB moves through an angle 0 to the . :.+--.;..· ----------

corresponding position OB'. Since this· is 
caused by the twisting moment hence this 
angle 0 is called angle of twist. Fig'. 11.3 Fig. 11.3 
S,:ength Of A Solid Shaft . . .... . . 

The maximum torque or power transmitted by a solid shaft is known 
as' the )trength of'tlie solid 'shaft. .• 

· From the torsion equation we know that 

or 

T t 
J - R 

t 
T = Jx -

R 

Maximum torque will be transmitted when maximum shear stress is 
produced at the top surface of the shaft of radius R 

1t4t 1t. 3 
. • T = 32 D Dll. = 16 t x D 

Hence the strength of~ ~9lid shaft is given by 

T=.!!. tD3 
16 

Str~gth Of A Hollow Shaft . . . . .. . 
J The · maximum torque tran.smitted . by a hollow shaft of ex.temal 

diameter D and internal ;diameter d will be · 

T - .!!. (D4 - a) 
- 16 t D . 

Example 11.~ · · 
Find the maximum torque that can be applied safely to a shaft of 300 

mm diameter. The permissible angle of twist is l.5degree in aJength o/7.5 
metres and shear stress is not to exceed 42 MPa. 

Take G = 84.4 KN/mm2 J. M. J 
Solution , • . 

Torque that can be applied from the consideration of permis.si~le angle 
of twist. 



Torsion Of Shafts 

T G0 
J L 

Now J = ; 2 (30)4 mm4 = 795 .2 x 106 mm4 

or 
T=Jx G0= 795.2x106 x84.4x103 xl.5 1t 

L 7.5 x 103 180 

= 234 .6 KN-m 
Torque from shear stress consideration. 

T 'ts 

J R 

or T = ;6 't5 • D3 = ~ x 42 x (300)3 

= 222 . 7 K.N-m 
The smaller value of the torque ie 222 . 7 KN-mis the maximumtorque 

that can be safely applied. 
Example 11.2 

A specimen metallic bar 300 mm diameter and.JOO mm long stretches 
1.25 mm when a tensile force of60 KN jsapplied. The same specimen when 
tested under torsion twisted .030 radian under an applied torque of 500 / 
N-m. Determine the poisson's ratio and the values of elastic constants E, 
G,af!,dK. 

, .. 

Area of the bar = i (30)2 

Applied tensile force = 60 x 103 N 

P 60x 103 
Tensile stress = CJ= - = = 84.88 MPa 

A _?: (30)2 
4 

S . :1025 
tram e= 300 

Modulus of elasticity = E = f= . l:2~~!oo = 248 .4 KN/mm2 

From torsion equation we knowcthat 

or 

'!. _ G. 0 
J - L, 

G = TL= SOOx 1a3 x 300 = 62 _8 KN/mm2 

J. O :z (30)4 X • 03 

Now using relation E= 2_G(1+ µ) 
248.4=2X 62.8(1+ µ) 

or µ = . 318 or Poission's Ratio= .318 
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Again using the relation 

E = 2 K (1-2 µ) 
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K = E = 248.4 - 227 4 KN/mm2 
2(1-2µ) 2(1-2x.318)- ·. · 

Example U.3 
Determine the maximum shearing stress in a 100 mm diameter solid 

shaft carrying a torque of 25 KN-m. What is the angle of twist per unit 
length of the shaft. Take G = 85 GN!m2: 

Solution 
Applied Torque = 25 KN-m = 25 x 106 N-mm 
Diameter of the shaft= 100 mm 

·9 
Modulus of rigidity = 85 GN/m2 = 85 x ~ O N/rnm2 

10 

= 85 x 103 N/mm2 

Applying torsion equation 

T 't G. e - -- ---J - R - L 

T = J.,: = 
R 

25 x 106 = ~ 't (100)3 or 
-- 16 

,: = 127 .3 MPa 
For angle of twist per meter length 

T G.0 
J L 

1t 3 16 't.D 

25 X 106 X 16 
't=-----

11: (100)3 

or e = T.L = 25 X 106 X 1000 

]X G ; 2 (100)4 X 85 X 103 

e = 0.0299 radian per metre. 
Example 11.4 

A mild steel shaft 50 mm in diameter and 0.5 metre long is tested in a 
tension testing machine untill one end rotates through an angle of 0.6 
degrees with respect to the other end. For this angle of twist the torque 
measured was 1135-N-m. Find the value of shear modulus andshear stress. 
Solution 

Polar moment of inertia 

1t 4 11:, 4 4 4 
J = 32 (d) = 32 l50) = 61.35 x 10 mm 

. . T GS 
Usmg the relation 1 = L 
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T L 1135 X 103 X 0.5 X 103 
G =- X - =--------

} 0 4 7t 
61.35x 10 x0.6x 180 

G = 88.32.x 103 N/~m2 = 88.32 KN/mm2 

For shear stress 

't = I. x R = 135 x 103 x 25 = 46.241MPa 
J 61.35 X W4 _J • 

...,,1 't = 46.24 MPa 
yuwer tran_smitted through .shaft 

Answer. 

Let 
T = Average torque applied in N-m 
N = Number of revolutions per minute 
P = Power transmitted in Kilo watts 

Then 
Power transmitted= Av. torqu·e x angle turned per s~c;9nd 

N . 
P = T . 60 x 2 7t watts 

21tNT 
P= 60 · watts 

21tNT . 
P = 60,000 Kilo watts 

Example 11.5 
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Determine the Power transmitted by a solid shaft of diameter JOO mm 
running at 120 rpm if the angle of twist per metre length of the shaft is 0.5 
degree. 

Take modulus of rigidity G = 80 GN!m2. 
Solution 

Diameter of Shaft = I 00 mm 
9 

Modulus of rigidity= 80 GN/m2 = 80 x ;o N/mm2 

10 
= 80 x 103 N/mm2 

Angle' of twist = 0.5 degree/metre 
Number of revolutions/minute= 120 

From Torsionequation we know that 

T G. 0 N 0 0 50 .5 x 7t d' - =-- ow = =-- ra ian 
J L ' . 180 

1t,41C 4 
J = 32 a = 32 (100) m. 

T =JxGxe 1t (100)4 x80xHfx0.5x1t N 
L - 32 lOOOx 180 -mm 

=6850N-m 
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· . 2nNT 
Power transmitted = 60,000 

2n x ~~'~;0
6850 = 86.07 KW Answe:r 

Example 11.6 
A solid shaft of 100 mm diameter transmits 140 KW at 200 rpm. 

Determine the maximum intensity of shear stress and the angle of twist for 
a length of 8 metres. Take G = 80 GN!m2. 

Solution 
Power transmitted = 140 KW 

Speed = 200 r pm, Length = 8 m = 8000 mm 

. . . 80 X 109 
Modulus of ng1d1ty = 6 = 80 KN/mm2 

10 
2nNT 

p = 60 000 or , 
T = 140 X 60,0000 = 6_684 X l03 N-m 

2n: X 200 
Applying torsion equation 

T 't T.R 
or t= -

J R J 

T= 6.684 X 10 3 X 103 X 50 = 34_04 MPa 

~ (100)4 
32 

Again for angle of twist 

I - G. e or e = I X L 
J L J G 

(j = 6.684 X 106 X 8000 
0.068 radian 

; 2 (100)4 X 80 X 10 3 

0 = ~.89 degrees Answer. 

Example 11. 7 
Determine the diameter of a solid steel shaft which will transmit 112.5 

KW at 200 rpm. Also determine the length of the shaft if the twist must not 
exceed 1.5 ° over the entire length. The maximum shear stress is limited to 
55 Nlmm2 . Take the value of modulus of rigidity = 8 x 104 Nlmm2 

Solution 
Power transmitted 

21rNT 
p = 60,000 

11 2 S = 21t X 200 X T 
, . 60,000 

AMU 1992 
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Now 

5371 X 

Again 

T - 1l2.5x60,000 N'- _ 537 . N-
or - 21t x 200 . m - I 1 . m 

= 5371 x 103 N-mm 

1t < 
T= 16 "s D~ 

103 = ~ X 55 X 
16 

T = G.8 x J 
L 

or L = G. e .J 
T 

D3 or D = 79.2 mm say 80 mm 

4 1.5 X n: 1t 4 
L = 8 X 10 X 180 X 32 . (79.2) mm 

= 1.5 meters Answer 
Example 11.8 
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A hollow steel shaft h.as to transmit 6000 KW at 110 rpm. If the 

allowable shear stress is 60 MPa and inside diameter is t th of the outside 

diameter, determine the diameters of the shaft- Also find the angle of twist 
in a length of 3 metres. Take G = 80 KN/mm . 
Solution 

. 2n:NT 
Power transmitted P = 60,000 

2nNT 
6000 = 60,000 

or 

l 

T = 6000 x 60,000 N- = 5 20 8 l06 N 
2rc x 110 · m · x -mm 

Applying torsion equation 
T t 
J - R 

1 re (D4 - d4) 
or T = t . R = 16 t D 

[D4 _,_ d4)' = Tx 16 = 520.8 X 106 x 16 
or D 1t x 1: n: x 60 

4 lr(D4 (l D) ] J = 44212.8 

or ( 62!; 81 ) D3 = 44212.8 



386 

DJ = 442 l 2.8 x 625 = 50795 97 
544 . 

3 
D = 370 mm and d = 370 x 5 = 222 mm 

Hence external diameter of the shaft = 370 mm 

and internal diameter = 222 mm 

Angle of twist 
From torsion equation 

t G0 
R L 

txL 60x3xl03 
0 = - = = 0.012 radian 

G X R SOX !03 X 370 
2 

8 = 0 .012 radian Answer. 
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Example H.9 
A hollow shaft of diameter ratio 315 is to transmit 600 KW at I JO rpm, 

the maximum torque being 12% greater than the mean. If the shear stress 
is not to exceed 60 MPa and the twist in length of 3 metres not to exceed 
J 0 , determine the m~nimum external diameter satisfying these conditions. 
Take G = 80 KN/mm-. (Bombay Univ.) 
Solution 

. 2rr.NT 
Average Power transmitted P = 60,000 

2rr.110T 3 
or 600 = 60,000 or T mean = 52 .08 x l O N-m 

T max = (T mean + 12% of T me.gn> 

= (l.12 X 52 .08 X 10 ) = 58 .33 X 

= 58.33 x 106 N-mm 

n: (D4 -/') D4 - /' l6T 
T= 16 ;; D or D 

4 

103 N-m 

o,[ (D' -~ D l ] = 16 x !8/:ox 1o' = 49518 x 101 

D4 (1 - _§_!_) = 495 l 8 X 103 D3 = 4951.8 x l03x 625 
or D 625 · or 544 

or D = 178.5 mm 
From shear stress consideration 

't G 0 't X L 60 X 3 X 1000 -=- orR=-- =------
R L G X e 80 X I 03 X 1 ;o 
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or R = 128.9 mm or D = 257.8 mm 
Adopt the larger value of D, Hence dia of shaft = 258 mm Answer 

Example 11.10 
· A hollow circular shaft of 80 mm external diameter and 70 mm 
internal diameter is subjected to a torque of 600 N-m and an angle of twist 
of 0.3 degrees was observed kwer a length of 1.25 metres. Determine the 
deflection at the centre of the shaft when placed horizontally over supports 
1.25 m apart. The seft weight of the shaft may be taken as 200 Nlmetre and 
poisson 's ratioµ = 0.25 · 
Solution 

Polar moment of inertia J = ; 2 [(80/ - (70)4 ] 

1= 166.4x 104 mm4 

h I . T G.0 
From t e re at1on 1 = L 

G=TXL = 600xl03 xl.25xl03 

Jx9 4 1t , 
166.4 X 10 X 180 X 0.3 

= 86 KN/mm2 . 

Using the relation E = 2 G (l+ µ) 

E=2x 86x 103 (1+0.25)=215KN/mm2 

. . J 166.4 X 104 
Momentofmertia/= 2 = 2 = 83.2x 104 mm4 

Total weight of the shaft = ( w .l) = 200 x 1.25 = 250 N 
Deflection at the centre of the shaft 

5wt4 5 W L 3 

Ye= 384£/ = 384£ I 

= 
5 X (200 X 1.5)( 1.25 X 103) 

384 X 215 X 103 X 83.2 X 104 

Ye= 0.0354 mm Answer. 
Example 11.11 

The power transmitted by a hollow shaft at 90 rpm is 360 K watts. If 
the shear stress is not to exceed 60 MPa and the diameter ratio is 07, find 
the external and internal diameters of the shaft. Assume that the maximum 
torque is 30% greater than the mean torque. (Mysore Univ.) 
Solution 

. . 07 d Diameter ratio = . = D 

or d=0.1 D 
. 21tNT 

Power transmitted = 60•000 = 360 KW 
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Tmean = 36~; !~ioo = 38197.18 N-m 

Tmax= (38197 .18)x l.3=49656.34N-m 

Now 

or 

T ,: 

J R 

T=:i_ X J 
R 

1t (D4-tI' \ 
Polar modulus = 16 D J 

1t 4 4 1 3 
ZP=I 6D [D -(0.7D) ]=.lOdD 

or 
Tmax = 1: X .10~1 D3 = 60x .1011 D 3 

496 56 .34 X 10-' = 60 X .1011 D3 

D3 = 49656.34 X l a3 
or 60 x .1011 

or D = 202 mm 

d = .7 x 202 = 141 .4 mm Answer 

q\mparison Between Solid And Hollow Shafts 
~) Comparison By Strength 

Let us consider two shafts made of same material equal in weight and 
length and same maximum shear stress. 

Let 
d = internal diameter of the hollow shaft 

D = external diameter of the hollow shaft 

D 1 = diameter of the solid shaft 

As= cross-section~! area of solid shaft 

A8 = cross-sectional area of hollow shaft 

Now 

_ ~ 3 re (D4 - ef' ) 
Ts - 16 'ts .DI and ~ = 16 'ts D 

TH D 4 -J+ D 
- = 3 Let -d n or D = n d 
Ts DD1 

TH n41'-I' d3 (n4 -1) 
Then - = = -~-~ 

Ts nd. D 1 3 nD1 3 

Since cross-sectional areas are same 

(i) 
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or 

or . 

Di = '1(D2-d2) or =:D1 3 (v2 .:../) '1(D2-d2) 

D13=(n2/-d2)'1(n2d2-d2) = d3 (n2- 1) ~ 
Substituting this value of D13 in equation (i) we get 

TH d 3 (n 4 - 1) (n2 - 1) (n2 +1) 
Ts= nd 3 (n 2- l)..Jn2 -1 = n(n2-1r/cn2-1) 

T#i 

Ts 

n2 + 1 

n~ 

Now if;.~= 2 ie n = 2, then we get 

TH 22 + 1 5 . 
Ts = 2 ...fi'2 - 1 = -;r=; = 1 .442 

This shows that the torque transmitted by a hollow shaft is 1.442 times 
more than.the torqt1e transmitted by a solid shaft. The hollow shaft is 1.442 
times stronger than the solid shaft he.I.!fe for heavy torques hollow shafts are 
pre~ · · 
{::omparison By Weight · 

J \ Assume tha;t both the shafts are made of same material and· same 
length. Let the' aei,lied torque to both the shafts be same. The maximum 
shear stress will also be same in both hollow and the solid shafts. 

Let W H = Weight of the hollow shaft 
W s = Weigh~ of the solid shaft. 

As the length and material of both the shafts are same, therefore the 
weight of each shaft will be equal to its cross-sectional area 

WH= AH·='Ji (D2 -d2) 
4 . 

1t 2 
Ws=As= 4 .Dl 

'· WH D 2-Jl ... · D ' 
or -- - 'Let -d =n or D=nd 

W s - D1 2 ' 

W H n2d2 :_d2 (n2 - l)d2 
or W S = Di 2 = D1 2 

(i) 

Since ttie applied torque TH = Ts 

. ~: (l)4-<6 ~~ 3· 
. . 16 't~ D - 16 'ts Di 

4 A .• 1 4 
D3 D -a =a-(n -1) 

'ir l= D n 
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or D ! = d In 4 - l J 113 and DI 2 = d2 ( n 4 .,.. ! J 2 /3 

\ n ) \_ n ) 
Substituting in equation (i) we get 

W H _ (n2 - l)n213 D 
Now if -=n= 2 

Ws - (n4 -1{3 ' · d 

w r22 J) zV:i 
Then_!!_ =' - · · = 0.78 

w s (2 4 - l)V:i 

Hence hollow shafts are lighter in weight than the solid shafts. 

Example H.12 
What percentage of strength of a solid circular steel shaft 120 mm 

diameter is lost by boring 60 mm axial hole in it ? Determine the loss of 
strength in the two cases. (J.M.!.) 
Solution 

Strength of the solid shaft T5 = ~ ,: x ( 120)3 

T5 = 1728 X 103 X ~-

re [0204 -604)] Strength of the hollow shaft TH = 16 ,: 120 

4 n; 
TH= 153.66 X 10 X l6 't 

Loss of Strength= ~,: [ 1728 x 103 - 1536.6 x 103 J 
= f6 X 1: X 192.2 X 103 

Percentage loss of strength 

Example 11.13 

7t 3 
16x,: X 192.2 X 10 

= X 100 

l: X ,: X 1728 X 103 

= 192·2 X 100 = l 1.12% 
1728 

A solid circular shaft 125 mm in diameter has the same 
cross-sectional area as a hollow shaft of the same material with an internal 
diameter of JOO mm find ( a) the ratio of the power transmitter by the two 
shafts at the same angular velocity. 

( b) Compare the angle of twist in equal lengths of these shafts when 
subjected to the sam1 intensity of shear stress 
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Solution 

Area of solid shaft 

1t ') 2 
Area of hollow shaft = 4 (D- - I 00 ) 

Equating the two areas we get 

~ (125)2 = ~ (D2- 1002) 
4 4 

or D = 160 mm 

Torque transmitted by solid shaft 

n 3 1t -3 
~~ = 16 't. D = 16 't. (12:,) 

Torque transmitted by hollow shaft 

T _ 2!_ (D 4 -d 4) _ 2!_ (1604 - 1004) 
H - 16 'I: D - 16 't 160 

Power transmitted by solid shaft 
Power transmitted by hollow shaft 

= 
Torque transmitted by solid shaft 

Torque transmitted by hollow shaft 

~ 't. (l2S)3 1253 X 160 
= 

n: (1604 -1004) 1604 -100 4 

16 't. 160 

-= 

1253 X 160 = = ~~~~-
65536 x 104 - 1004 55536 X 10 4 

= 0.56 
(b) From the torsion eq1,Iation we know 

,: G.0 
Ji.=T 

or 0 = T.L 
G.R 
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For the same length and same intensity of shear stress the modulus of 
rigidity will be same 

Angle of twist of solid shaft = 
Angle of twist of hollow shaft 

es · (RH) (hollow) 169'2 

0H - (Rs/solid) 12$'2 = l.2S 

es 'ts .l "Cw .l 
---

SH - Rs.G Rn_G 

Answer 
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Replacing of Shaft 
When a solid shaft is to be replaced by a hollow shaft or vice versa, 

then the power transmitted by the new shaft should always be equal to the 
power transmitted by the shaft to be replaced, 
Example 11.14 

A solid shaft 200 mm diameter is replaced by a hollow shaft of 
external diameter 280 mm. Determine the thickness of the hollow shaft if the 
same power is transmitted at the same maximum shear stress and at the same 
rotational speed by both the shafts ( Engineering services) 
Solution 

Power transmitted by solid shaft 
= Power transmitted by hollow shaft 

pso!id = phollow 

2nNT, 2rrNTH 
---= Since N is same for both the shaft 
60,000 60,000 

:. Ts = Thollow 

TC 3 
or 16 's. D., 

T(; 'H (Dt-dif) 
DH 

D4 ·. d4 
D 3 H- H 

s DH 

3 2804-4 4 
(200) = 280 or dif = (280) - 280 (200)3 

djJ = 6]4656 X 104 - 2240000 = 390656 X 104 

di = 62500 or dH = 250 mm 

Internal diameter of the shaft = 250 m·n 
External diameter of the shaft = 280 mm 

. 280-250 
Thickness of hollow shaft= 2 15 mm Answer 

Example. 11.15 
A solid shaft 180 mm diameter is to be replaced by a hollow steel 

whose internal diameter is 60% of the external diameter Determine the 
internal and external diameters and saving in the material. The value of 
maximum shear stress may be assumed as same for both the shafts. 
Sol.ution 

Since shear stress for both shafts is same 

1: S = "hollow 
Using the formula 

1t 3 1t 3 
Tsolid = 16 'Cs .(Ds ) = 16 'Cs · (180) (i) 
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Equating and we get 

n: 3 16 •s (180) 
n "H [Dt- (0.6DH)4] 

16 DH 

or (180)3 = 0.8704 Di D3 _ (180)3 

or H - 0.8704 

or DH = 188.67 mm 

dH = 0.6 DH= 0.6 x 188.67 = 113.2 mm 

N . . h . l As-AH 
et savmg m t e matena = A 

s 

1t 2 . 2 
As= 4 (180) = 25446.9 mm 

AH=l[(188.67)2 -(113.2)2] = 17893.04mm2 

As-AH 
:. Percentage saving = A ' x 100 

s 
= 25446.9 - 17893.04 l 00 = 29 68 

25446.9 X . 

Example. 11.16 
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A hollow steel shaft is made to replace a solid wrought iron shaft of 
the same internal diameter, the material being 30% stronger than wrought 
iron. Find what fraction of external diameter of the shaft would be the 
internal diameter. (J.M./. 1990) 
Solution 

For wrought iron solid shaft let D be the diameter, then 
'tw n: 3 

Tsolid == R J = l6 'Cw D 

For hollow steel shaft 

Let D be the external diameter and d the internal diameter since shear 
stress in steel is 30% more than in wrought iron shaft. Therefore allowable 

· stress in steel shaft = 1.3 'tw 

'CS= 1.3 'tw 

- _I£_ - (D4 - JI) 
Thollow - 16 X 1.3 "w X D 

Torque transmitted by both the shaft is same 

Tsolid = Thoilow 

n: :n.3 1t 1 3 .,. (D4 - cf) 
16 'twv = 16 X . ·w D 
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or 

or 

or 

or = 0.693 

The internal diameter= 0.693 D Answer 

Co!Rposite Shaft 
,) When two shafts of same or different lengths, cross-sections or 

materials are connected together to form a single shaft it is known as a 
composite shaft. 

,;.1,Shafts in Series 
When a Composite shaft connected in series is subjected to a torque 

then torque transmitted by each individual shaft is same. Torque applied 
at one end of the Composite shaft is equal to the resisting torque at the other 
end. 

Total angle of twist at the fixed end or the resisting end of the shaft is 
the sum of the angles of twist of the two shafts. If e 1 and e2 are the angles 
of twist of first and second shaft the total angle of twist e will be 

e = 01 + e2 
TL1 TL2 =--+ --

6 = ~r;~. ~2:~,i or 

When both shafts are of same material then G1 = G2 = G, the total 
angle of twist will be 

e = T (Li+ Lz) 
G {__11 h 

If both shafts,,have same length and cross section ie. 
L 

L1 = L2 = 2 and 11 = Jz = J 

then e = T ( _f_ + _f_ I 
Gl2J 21) 

0 = T.L 
GJ 

~hafts in Parallel 
,l When the driving torque is applied at the junction of two connected 
shafts they are said to be connected in parallel. Resisting torques develop 
at both the ends. Torque transmitted by each shaft is different but the angle 
of twist for both the shafts is same 

Eh= 82 
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or 

Total torque T = T1 + T2 

If the shafts are of same material 
T1L1 T2 Li T1 l1Li 

or - = --
11 h Ti hL1 

If the shafts have same cross section 

Ti lz 
or 

Example. 11.17 
A Solid Steel Shaft 60 mm diameter is fixed rigidly and Co-axially 

inside a bronze sleeve 90 mm diameter. Calculate the angle of twist in a 2 
metre length of the composite shaft when subjected to a pure torque of 1000 
N -m. Take the modulus of rigidety of steel as 80 KN!mm2 and of bronze as 
42 KN!mm2· 

Solution 
1t,4 7t 4 4 4 ls=- a·= - (60) = 1272 x 10 mm 
32 32 . · . 

7t 4 ~ 4 4 
lb = 3 2 (90 - 60 J = 517 x 10 mm 

· Since the two shafts are connected in parallel therefore total torque 

or 

or 

T= Ts+ Tb 
Gs. ls. S 

= 
L 

+ 

106 = (80x I03 x 127.2x104 + 42x103 x 517x 104) 20~ 0 

S = (2000 X 106]x 180 
3189x 108 1t 

= .359 degree Answer. 
Example 11.18 

A Composite shaft consists of a solid aluminium alloy shaft of diameter 
$0 mm enclosed in a hollow circular steel shaft 60 mm external diameter 
and 15 mm thick. The two metals ate rigidly connected at their juncture. If 

. the composite shaft is loaded by a twisting moment of 2 KN -m, Calculate 
: the shearing stress at the outer fibres of steel and aluminium, if both the 
· shafts have equal lengths and welded to a plate at each end, so that their 
. twists are equal. Take GA = 30 KN!mm2 and Gs = 85 KN!mm2 

Solution 
Let T1 = torque carried by aluminium shaft 

T2 = torque carried by steel shaft 

Then T1 + T2 = T= 2 KN -m 
Since twist in both shafts are equal and L 1 = L2 
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Hence 01 = S2 

T1 Li Tz Lz 
or --=--

11 Gi Gz 
r , 
i _I!_ (50)4 x 30 x 103 I t 32 . . I 

l.!!_ (604 - 504) X 85 X 103 I 
32 J 

625 X 104 X 30 X 103 
T1 = T2 x = .328 T2 

671 X 104 X 85 X 103 

Now T1 + T2 = 2 KN -m 
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2 
.328 T2 + T2 = 2 or T2 = 1.328 = 1.506 KN -m 

T1 = (2 - 1.506) = 0.494 KN -m 
The shearing stress at the extreme fibre of the steel shaft 

1.506 X 103 X 30 X 103 1.506 X 30 X 106 
't2 = 

_I!_ (604 - 504' 
32 1 

= 68.5 MPa 

3~ X67l X 104 

3 3 
"l = 0.494xl0 x25x0 = 20.l2MPa 

~(50)4 
32 

Example" 11.19 
A shaft of 30 mm diameter and 1 metre length is subjected to a torque 

of 0.3 KN-m at one end. The other end of the shaft is fixed and a hole is 
drilled earlier in a part of the shaft. If the maximum permissible shear stress 
is 80 MPa and allowable angle of twist is 0.3 degree, calculate the diameter 
and length of the hole. Take G = 80 KN!mm2 

Solution 
Due to drilled hole, the shaft has two sections and torque is applied at 

one end. The shaft is connected in series. Since the area of cross-section of 
hollow region is less it is subjeceted to maximum shear stress. Let l be the 
length of drilled portion and d be the diameter of the hole. 

~ - .I£ (D4 - J4) 
10rque T - 16 't' D 

0 3 106 = _I!_ 80 (304 - d4) 
. X 16 X 30 

6 
, 304 _ d4) = 0.3 X 10 X 16X 30 

or ' re x 80 
d = 22mm 

Total angle of twist 0 = Sh + 08 
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8= I.. fJ__ (1000- [)1 
G l Jh JS J 

= .!!:__ iD4 -tI') 
32 \. 

1t 4 4 1t 
= 32 (30 - 22.00 ) = 32 (81000 - 234256) 

- 4 . 
= ::>6523.5 mm 

JS = ;2 (D)4 = ;; (30)4 = 79521.56 

300000 [ l ( 1000 - l)J1 
8 = 80,000 56523.5 - 79521.5 

0·~8~1t = 3.75 [l.76x 10-5!- .0125 +l.25x 10- 5!] 

or l = 461.6mm Answer 
Example. 11.20 

A steel shaft 30 mm diameter and 4 metres long is rigidly fixed at ends 
as shown in figure 11.4. A twisting moment of 200 N-m is applied at a 
distance of 1 metre from one end. Calculate the fixing couples at the ends, 
the maximun shear stress induced and the angle of twist of the section where 
the twisting moment is applied. Tale G = 84 GN!m2 , (Camb. Univ.) 
Solution 

Fig.11.4 

or 

Let TA and TB be the fixing 
couples at A and B, then TA + 
= 200N-m 

From the consideration of 
consistent deformation the angle 
of twist in each por!ion is same e A 

= 9B 

Now TAX = 200 putting TA= 3 T8, we get 
3T8 + TB= 200 or 78 = 50 N -m and TA= 150 N -m 

For Maximum shear stress in segment A 

T rt (d)3 't = 150 x 103 x 16 = 28.3 MPa 
A = 16 't or n: (30)3 

For Angle of twist e = .'.£. LA = 283 >< 1 x 
R G 15 X 84 X 103 

0 = 0.022 radian 
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Strain energy stored in a shaft subjected to a torque T. 

B 

~ --.----~ 

T T 

I 
T 

(a) 
o~~~-'-~~~--l• 

A Q 

(b) 

Fig. 11.5 
When a shaft is subjectea to a torque T, the angle of twist 8 is given 

by the relation 

0 = T.L 
G.1 

If the torque T and angle of twist 9 are represented along the vertical 
and horizontal axis as shown in figure 11.5 (b) and point B represents the 
applied torque T the amount of work done on the shaft is stored as internal 
energy in the shaft and represented by the Li OAB. 

I 
U= 2 T.0 

=1._T T.L 
2 . G.J 

T 2.L 1:2 
or U = 2 GJ = 4G x Volume of the shaft 

Where L is the length of shaft, G the modulus of rigidity and J is the 
polar moment of inertia of the shaft section. 

For hollow shafts of outer radius R and inner radius r 

Strain energy = t T.0 

1 T 2 L =-- -
2 J . G 

-
2 

Volume of hollow shaft. 
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,., ') 1 
.- (D-+ d-) 

= 4G . D 2 x Volume of the hollow shaft. 

Example 11.21 
A solid shaft JOO mm diameter is to be replaced by a hollow shaft of 

the same material, weight and length. Calculate the diameter of this shaft if 
its strain energy is to be 15% more than that of the solid shaft when 
transmitting torque at the same maximum shear stress. 
Solution 

Let D and d be the external and internal diameters of the hollow shaft 
strain energy of the hollow shaft 

Strain energy of the hollow shaft 

or 

or 

= 1.15 x strain energy of solid shaft 
.2 

= 1.15 x 4G x Volume of solid shaft 

.2 (D2 + d2) .2 

4G. D2 x Volume= 1.15 x 4G x Volume 

D2 + d2 = l.l 5.D2 

.15D2=d2 (i) 

Since for both shafts, length weight and materials are same therefore 
cross-sectional areas of the two must be equal. 

"!!:_ (D2 -d2) = "!!:_ (100)2 
4 4 

or D2- d2 = (100)2 

D2 - .15 D 2 = (100)2 or D = 108.46 mm 
d= 42. mm 

Example 1L22 
A solid circular shaft is required to transmit 220 KW at 100 rpm. If 

the shear stress is not to exceed 50 MP a, calculate the diameter of the shaft 
and the strain energy stored per metre length. Take G = 80 GN!m2. 

Solution 
. 2 rtNT 

Power transm1tted = 60,000 

2 1t NT T = 60,000 x 220 
220 = 60,000 · or 2n x 100 

T = 21.008 X 103 N -m = 21.008 x 106 N -mm 

1t 3 d3- 16T _ 21.0x 106 x 16 
T= 16 't (d) or rt.'t n x 50 

d= 128.8 mm 
Strain energy per metre length 

,.2 
U = 4G x Volume of the shaft 
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(50)2 X 106 TC 2 = -'----------'----9 X -4 (128.8) X 1000 = 101.79 KN-mm 
4 X 80 X 10 

Answer 
Keys and Flanged Couplings 

A key is inserted between two machine 
parts to prevent relative motion between them. 
A key is necessery for connecting a shaft and the 
surrounding hub as shown in figure 11.6 

Let lk = length of_ the key 
bk = width of the key 
'Ck = safe shearing stress in the key 

then resistance set up by the key = "CK. lk. 

Let d = diameter of the shaft then the 
moment that can be transmitted by the Key= "Ck. 

d 
lk. bk. 2 

TC 3 
Maximum Torque T = "Cs . 16 d 

~ 
I _11:_\ 

+- ~ f 
~ 

:Fig.11.6 

The moment transmitted by the key must be equal to the torsion on 
the shaft 

TC 3 d 
T = 'ts. 16 d = 'tk. lk. bk. 2 

Coupling 
When shafts of required lengths are not available, then two shafts are 

connected by coupling. The coupling surrounds the two shafts and 
connection between each shaft and coupling is provided by the key. The two 
parts of the coupling are held together by bolts as shown in fig. 11. 7 the bolts 

Fig.11.7 
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are arranged along a circle known as bolt circle. The bolts are subjected to 
shear stress when the torque is being transmitted. 

Let db = diameter of the bolt 

n = number of bolts provided on the . 

bolt circle of radius Rb 
Tb= Safe shear stress in the bolt 

Resistance of one bolt= Tb. i if; 
Total moment transmitted by n bolts 

T = n. 'tb.1 dE x R 

Equating maximum torque on the shaft to the moment transmitted by 
the bolts 

Example 11.23 
Two 100 mm diameter shafts are connected by means of two flanges 

with 2() mm dia. bolts equalty spaced on a circle of diameter 240 mm. If the 
maximum shear stress in the shafts due to the torque is not to exceed 120 
MPa and the average shear stress in the bolts is not to exceed 80 MPafor 
the same torque, determine the number of bolts required. 
Solution 

Torque transmitted by the shaft 

T = ; 6 TD3 = ; 6 X 120 (100)3= 23.56 X 106 N -mm 

Torque transmitted by bolts 

1t 2 
T = 4 db . 'Cb . n . Rb 

n '20" 4 = 4 {. )"x80x nx 120=301.59x 10 .n 

= 301.59 x 104 x n N -mm 
Since the torque transmetted is the same 

:. (301.59) X 104 n = 235.56 X 106 

0[ n == 235.56x 106 = 7 8 4 . 
301.59x 10 

Number of bolts required= 8 Answer 
Example 11.24 

A 60 mm dia. shaft transmits 120 KW al 100 rpm. A flanged coupling 
is keyed to the shaft by means of a key 120 mm long and 30 mm wide. The 
coupiing has 6 bolts of 20 mm diameter symmetrically arranged along a bolt 
circle of 240 mm diameter. Determine the shear stresses in the shaft the 
and the bolts coupling. 
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Solution 
. 21tNT 

Power transmitted P = 60,000 

120 = 21t x lOOT or T= 11.45 X 103 N -m 
60,000 

T = 11.45 x 106 N -mm 
. (i) shear stress in the shaft 

1t 3 
T = l6 'ts. d 

6 rt 3 
11.45 X 10 = l6 X 'ts (60) 

'ts= 11.45x 106x 16 =270MPa 
1t X (60)3 

(ii) Shear stress in the Key 
d 

T = 'tk. lk .. bk (2) 
11.45 X 106 = 'tk. 120 X 30 X 30 

11.45 X 106 
or 'tk = 120 >< 30 x 30 = 106 MPa 

(iii) Shear stress in bolts 

T = 'tb.n.idEXRb= 

Torsion Of Shafts 

11.45 X 106 = 'tb X 6 X ~ (20)2 (120) 

6 
'tb = l I.45 x 10 x 4 = 25.33 MPa Answer 

1t X 6 X 400 X 120 

1. Torsion equation 
T --c G0 
1=R=T 

SUMJ.\!,!RY 

4 
2. · J = rt~ for solid circular shaft 

J = 3rt2 (D4 - I') for hollow circular shafts 

\3.. - T = 1: 't D3 for solid shafts. 

. rt (D4-tf) 
= 16 't D for hollow shafts. 

4. Power transmitted 
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2rrNT 
P - ----lFnt+c - 60 ,, Wk• 

2nNT ., = --- Kao Watts 

5. Comparision by strength 

6. 

Tu n2 + l _ D 
T.c 12-- Where n = d 

J n"'i n ·-1 

Comparision ,veight 

Ws 

7. Strain energy due to torsion 
.,..2 

u :::: ic X Volume of shaft 

8. For hollow shafts 
~ '} ') 

, 1 ,;;~ R~ + r~ 
L - ----·-x Volume ofhoUow sh.aft 

4 G R2 

QUESTIONS 
State the assumptions made in the theory of torsion of shafts. 

(2) Establish the reiationship 
T ,:; G.8 
J R L 

(3) Explain the following terms 
(a) Angle of twist 
(b) Polar section modulus 

Torsional rigidity 
EXERCISES 
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(4) A solid circular shaft 80 mm diameter runs at 120 rpm. Determine the power 
transmitted by the shaft if the maximum ,he&:- stress is limited to 64 
MPa. 

Ans. (80.85 KW) 
(5) A solid shaft WO mm diameter transmits 160 KW at 200 r.p.m. Determine the 

maxirr1un1 intensity of shear stress induced angle oft\vist for a length of 
3 metres. Take G =:, 80 

Ans. l° - 36') 

A. hoHov/ cylindrical shaft transrnits 500 KVl at 125 r.p.rn. I·7ind the external 
diarnetcr of the shaft if the .ir.:ternal dirnneter is 809t· of the external diarneter and 
the shear stress is 60 }r1Pa tnrn) 

(7) A~ hollow circular shaft of steel is rnade to replace a solid \Vrought iron shaft of 
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the same internal diameter, the material being 40% stronger than wrought iron. 
Find what fraction of the extern:.ll diameter, would be the internal diameter of 

the shaft 'I cl= 0.731) 

(8) A solid steel shaft has to transmit 75 KW al 200 r,p.m. Find a suitable diameter 
of the shaft if the maximum torque transmitted exceeds the mean by 25% Also 
find the outer diameter of a hollow shaft to replace the solid if the diameter ratio 
is 0.6. Allowable ,hear stress is 60 MPa (l 12.5 mm, 120.7 mm, 72.4 mm) 

(9) The outside diameter of a shaft is double the inside diameter for a hollow circular 
steel shaft which is to transmit a power of 500 KW at anavera9e speed of 100 
r.p.m. lf the maximum shear stress is limiter! to 75 N/rnm~. calculate the 
dimensions of the shaft. (D == 151 mm, d == 75,5 mm) 

( 10) A hollow circular shaft 12 meters long is required to transmit 11000 K\V at a 
speed of 200 r.p.m. If the maximum permissible shear stress is 80 l\fPa and the 
diameter ratio is 3/4, find the external diameter of the shaft aqd the angle of twist 
of one end relative to the other. Take G = 8.5 x 104 N/mm- (169.7 mm, 0.066 
radian) J.M.L AMIE 

(11) Design a holiow shaft 2m long with diameter ratio as 2/3 to transmit 200 KW 
at l 50 r.p.m Allowabie shear stress is 60 MPa and the angle of twist not to exceed 
i O per metre. Take modulus of rigid;iy for shaft matc~ia! as 80 KN/mm2 

(444 mm, 29.6 mm) (J.MJ 1984) 

(l 2) A soiid circular shaft is to be replaced by a hollow circular shaft whose inside 
diameter is 3/4 of the outside. Compare the weights of equal lengths of these two 
shafts required to transmitt the same torque, if the max. permissible shear stress 
in both shafts is equal. ( WH 5 r ~ l-·- =0. o_, 

Ws 
' (13) A propeller shaft is 350 mm in diameter. An axial hole of 175 mm is 

throughout it, length. H the allowable shear stress is 50 MPa and lhe angle of 
twist is not to exceed l O in a length of 15 diameters. Determine the maximum 
torque when the hole was not bored. 
By what percentage the torque is reduced after the hole has been bored? By what 
percentage is the weight of the shaft reduced. (41b KN-m, 6% and 25%) 

(14) A shaft 5 metres long and 60 mm diameter. is fixed at both ends. If a twisting 
moment of20 KN-mis appiiec! at a distance of2 meters from one end, determine 
the twisting moment induced at the two ends of the shaft. 

(8 KN-m anci 12 KN-m) 

( 15) A compound shaft consists of a copper rod of 40 mm diameter enclosed in a steel 
tube of 50 mm diameter 5 mm thickness. ff a twisting moment of 6000 N-m is 
to be transmitted, determine the shearing stresses developed in the two materials 
if both shafts have equal iengths and welded to a plate at each end so that their 
twists are equal Take Gs== 2 CC (1:, = 307 MPa, Tc= 122 MPa) 

( 16) A hollow shaft is to transmit 338 KW ar 100 r.p.m. lf the shear 5tress is not to 
exceed 65 N/mm2 and internal diameter is 0.6 of the external dia. Find the 
external and internal diameters, assuming that the maximum torque is 1.3 tirnes 
the mean. (AMlf. 1993) 

DD 



Springs 

Springs are devices meant to store energy or absorb excess energy. 
They are elastic bodi~s. or resilientmen1b"rn. which get distorted when 
loaded and recover their original shape when the distorting force is 
removed. Springs are used in clockwork to store energy which is used to run 
the watch. A carriage spring is used to absorb shocks in railway carriages 
etc. A spring which can absorb maximum amount of energy for a given stress 
is supposed to be the best spring. 
Classification of Springs 

Springs may be classified into the following types. 
Bending spring 2. Torsion spring, 

Bending springs. 
A bending spring is subjected to bending only and resilience is mainly 

due to bending. Laminated springs or leaf springs are examples of bending 
springs. 

Laminated springs are of two types 

(a) Semi - elliptical type 

(b) Quarter - elliptical type 
Torsion Springs 

A spring which is subjected· to twisting moment and resilience is 
mainly due to torsion is called a torsion spring. Helical springs are examples 
of torsion springs. 
Helical Spring 

When a length of a wire is wound into a helix, it is cailed a helical 
sprmg. 
Close-coile~ helical spring 

In close coiled helical springs the wire is wound quite closely so that 
the distance between the turns is very small. 
Open coiled heli ml springs 

In these springs the pitch or the distance between the turns is large as 
compared to the pitch in case of close-coiled helical springs. An open coiled· 
helical spring falls under both the categories. 

Stiffness - The load required to produce unit deflection is called 
stiffness of a spring 

Proof Load - The maximum ioad which· a spring can carry without 
suffering any permanent distortion is called proof load. 

Proof-stress - It is the maximum stress that develops in a spring 
when subjected to the proof load. 

405 
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Proof :resilience 
The strain energy stored ir, the spring when subjected to the proof load 

is called proof resilience. 
Spring Constant 

The stiffness of a spring is also called spring constant. 
Laminated spring or leaf spring 

(Semi-emptical type) 
These springs are also called carriage springs. Semi-elliptical type 

carriages springs are widely used in carriages, trucks, and other 
vehicles to absorb shocks. 

Laminated springs are made of a number of laminations or strips of a 
metal of uniform section and varying lengths bent into a semi circular arc 
and placed one over the other as shown in l 2.1. Tbe plates are secured 
together at the centre with a bolt. They are also provided with clamps at 
distances to secure compactness. These springs rest on the axle of the vehicle 
and are pin- jointed to the chesis through two horns provided at the ends of 
the top plate. 

When the spring is loaded to the designed all the plates become 
straight and the central deflection disappears. 

W/2 W/2 

(b) 

Fig.12.1 
Let W be the load acting on the spring 

l = length of the spring 
b = breadth of the plates 
t = thickness of the plates 

n = number of plates 
8 = original deflection of the top spring 
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cr = Maximum bending stress in the strips and 
R = radius of the spring then 

. b d. h WL Maximum en mg moment at t e centre = 4 
Moment of resistance of one plate 

a c- bt3 a bt3 crbt2 
Mr-- I- - --- ---- y . - y . 12 - t/2 . 12 - 6 

. . a.b.n.t2 
Moment res1stea by n plates = , 6 . 

407 

The maximum bending moment will be equal to the total resisting 
moment of n plates 

WL a.b.n.t2 
-4 6 

3WL 
or cr= 

2nbt2 

t2 
Deflection at the centre O = SR , 

When R = E.y = §__ x .!_ 
CT CT 2 

crz2 3 Wl 0 - , putting cr = we get 
4Et 2 nbt2 

3Wt3 wz3 bt3 o = --- =--Where/=-
8En.bt3 32El.n 12 

Strain energy or Resilience = ~ x bt.l 

U = ~ (volume of spring). 

Example 12.1 
A carriage spring is built up of9 plates 75 mm wide and 65 mm thick. 

Find the length of the spring so that it may carry a central load of 4 KN, the 
stress is limited to 160 MPa. Also the deflection at the centre of the 
spring. Take E ==- 200 KN/mm2 . 

Solutfon 
For length of the spring 

3Wl 
CT=--? 

2nbr 

160 = _1_>< 4 x 103 x l or 
2 X 9 X 75 (6.5)2 

160x 2 X 9 X 75 (6.5)2 
= 

3x4xl03 

l = 760 .5 mm 
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For deflection at the centre 

crz2 
0 = 

4Et 

160 (760.5)2 
=---~-~-

4 X 200 X 103 X 6.5 
= 17 .795 mm 

Example 12.2 

Springs 

Ans, 

A Laminated spring 0.8 metres long is required to carry a central 
proof load of 7.5 KN. If the central deflection is not to exceed 20 mm and 
bending stress is not to exceed 200 MPa, determine the thickness width and 
n_umber of p[ates. As~ume width of plate, equal to 10 times the thickness. A ls£ 
find the radms to which the plates shoutd be curved. Take E = 200 KN/mm · 
Solution 

Thickness of plates 

az2 
Using the relation 8 - 4Et 

az2 200 X (0.8 X 1000)2 

or t = 48£ = 4 x 20 x 200 x 103 

Width of the plate b = 10 x t = 80 mm 
Number of plates, using the relation 

3Wl cr= ---
2 X nbt2 

3Wl 
or n = 

2abt2 

8mm 

3x7.5x 103 x0.8x 103 
= 

2 X 200 X 80 X (8/ 
= 8 .75 

n = 9 plates 
Radius of curvature, using the relation 

t2 
o = 8R 

t2 (800)2 
or R = 80 = 8 x 20 = 4000 mm 

= 4 metres Answer. 
Example 12.3 

A leaf spring 1 metre long is made up of steel plates with width equal 
to 6 timr:s the thickness. Design the spring for a load of 15 KN when the 
maximum permissible stress is 160 MPa and deflection is not to exceed 16 
mm. Take E = 200 KN/mm2 . 

Solution 
Let n be the number of laminations and b and t be the breadth and 

thickness in mm. 
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'WI 15x 1 
Max.B.M.= 4 =~ KN-m 

. . f h I 15 Res1stmg moment o eac p ates = -4 KN-m 
.n 

A l . b d' . M a pp ymg en mg equat10n - = -
I y 

or 

or 

O" O" bt3 O"bt2 
M = y . l = t/2 x 12 = -6-

15 -x 
4n 

2 ry 

106 N-mm = 160x b.t = 160x (6t) V) 
6 6 

15 X 106 = 160 t3 
4n 

3 15 X 10 6 . 
or n t = 4 x 160 = 2.34 x 104 

3 

Maximum deflection o = 3:1.n 
16 15 X 103 X (1000)3 xt3 h 

= were 
32 X 200 X 103 X 0.5t4 X 2.34 X l(f 

[
bt3 6t4] 4 "( , 

I= 12 = 12 = 0.5t 

15 X 1012 
or t= -----------

32 X 2 X 0.5 X 2.34 X 109 X 16 
t = 12 .5 mm 

Hence b = 6 x t = 75 mm 

2.3.:rx 1 (ib- ~~.31:,: 104 
t2 n= 3 = ---3-

t (12.5) ·'Q, 
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Bryadth b = 75 nun., thickness= 12.5 mm, and n = 12 Answer. 
Example 12 .4 . . . . . . .. 

A leafspringpf semi elliptical type has IO plaies each of75 mm width 
and IO mm thickness. The limgth of the spring is 1.2 metres. The plates are 
made up of steel having proof strt~ of 6QQ MPa. To ~hat curvature the 
plates can be initially bent ? From what height should a load of 500 N fall 
on the centre of the spring if the maximum stress produced is to be one half 
of the proof stress. 

Take E = 200 KN!mm2 . 

Solution 
The leaf spring should initially bend to such a radius that under proof 

load, the spring may straighten up. 
Applying bending equation to one plate 

O' E R=fil. =E.t 
y-R or O' 20' 
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2nox 103 x 10 
or R = - 2 x 600 = l .66 metres 

Initial radius of curvature= 1.66 metres 
Let Wp be the proof load, then 

. d Wp.l 
Max1mum B.M. ue to proof load = 4 

B.M. Wp (llOO) = 300 Wp 
4 

Resisting moment of each leaf 
300W 

Mr=~ =30Wp 

substituting in the bending equation 
M cr 
I y 

I = bt3 = 75 (10)3 = 6 25 103 4 
12 12 · x · mm 

y = f = ~o = 5 mm, a = 6~0 = 300 

30Wp 300 
-

6.25 X 103 5 

or Wp = 12 .5 x 103 Newton= 12 .5 K,1\J 

The maximum deflection produced by the proof load 

Wit3 3 3 O = ~ = 12.5 X 10 X (1200) 
32.E/n 32 X 200 X 103 X 6.25 X 103 ~ 10 

o =54mm. · 

Sp,·ings 

The deflection produced by the falling load of 500 N will also be 54 
mm and the work done by it will be equal to the work done by the gradually 
applied proof load Wp 

500 (h + o) = ~ . o = l~OO . o 
12500 

(h + 0) = 2 X 500 0 = 12 5 0 

or h = (12 .5 o - o ) = 11 .5 x o 
Hence h = (11 .5 x 54) = 621 mm 

Height from which a load of 500 N should fall is 621 mm. Answer. 
Quarter elliptical springs 

Quarter elliptical springs are cantilever type with a number of strips 
of same width and cross-section but different lengths, fixed at one end as 
shown in fig 12.2 Effective length is taken as the projecting of the 
spring. All the plates are initially bent to the same radius and are free to slide 
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I 
,.. 11--+-~-

I I (a) I I W 
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one over the other. Quarter elliptical 
springs are half of the semi-elliptical 
springs. It can be imagined that the 
maximum stress and deflection in 
this case will be the same as that in a 
semi elliptical spring of length 2 l 
acted . upon by a load 2 W at the 
centre and a reaction Wat each end. 

I I I J I 

f 
,._, .····: ~-:.,.

1 

I I I I I 

\\\U}1~l >1 >[>){:~ 
-··· ,·r· , .... _ 

Let W = load acting at the free 
end of spring of length l ' width b and 
thickness t of the. plates. Let n be the 
number of plates and o be the 
original deflection of the spring. (b) 

Fig.12.2 

at the fixed end of the leaf 
M =W.l 

Moment resisted by one plate 
M =a. I iy 

Total moment resisted by n plates 

Then 
Maximum bending;moment 

M = n.a.btz Where[!_= bt3 ;i = br] 
6 y 12 2 6 

Equating the maximum bending moment to the total resisting moment, 
we get 

W . l = n.a/? 

6W.l 
or a= -

nbt2 

Deflection 

E:w:ample 12.5 

r t2 r [ E.v Et] '----o = - here R = =..c.. = -
2R a 2a 

r [2 ) at2 
or O = l2 x Et/2 a = Et 

6WJ 
Now put a 

nbt2 

6Wl3 
0 -·--

n.Eb.t3 

A cantilever leaf spri;ig 600 mm long is composed of 12 leaves each 
of 60 mm l{:ide and 7 mm thick. If the allowable flexural stress is 500 MP a, 
determine the allowable load at the free end. 
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Solution 
Flexural stress of the spring 

6Wl 
cr = 

bnt2 

or 500 = 6Wx 600 

60 X ]2(7)~ 
or W = 4900 N 
:. W = 4 .9 KN Answer. 

Example 12.6 

Springs 

A q1Jarter elliptical spring has a length 600 mm and consists of 
plates each 50 mm wide and 9 mm thick. Calculate the minimum number of 
plates which can be used if the deflection under graqually applied load of 
5 KN is not to exceed 70 mm. Take E = 200 KN/mm 
Solution 

Let n be the number of plates 

6Wt3 
b=--

nEbt3 

6x5x103 x6003 
70 = ----~---~ 

n X 200 X Hr X 50 X 93 

6x5x103 x6003 
or n = -----·----

70 X 200 X 103 X 50 X 93 

= 1~69 say 13 Answer. 
Example 12. 7 

A carriage spring quarter elliptical type is one metre long, 60 mm wide 
and 50 mm thick. If modulus of elasticity is 200 KN!mm2 and the number of 
leaves is 10, what load at the free end will produce an extension of20 mm. 
If the allowable flexural stress is 800 A1Pa, determine the st(ffness of the 
spring. 
Solution 

6Wl3 

E.n.b.t3 
3 

20 _ 6W (1000) _ 10 , - _,., mn, 
200x 103 x 10x60x50 

or W =50.KN. 
When the permissible stress is 800 MPa 

crz2 
o = 4Et 

5 = . 800(1000)2 = 20 mm 
4 x 200 x 103 x 50 
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Stiffness 
w so -----25 - 8 - 20 - . 
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S = 2 .5 KN/metre. 
Close-Coiled Helical spring subjected to axial load 

Fig. 12.3 

A close-coiled helical spring with a load W 
acting axially is shown in fig. 12.3 . In these springs 
the wire is so closely wound that each turn is 
practically a plane at right angles to the axis of the 
helix. Each cross-section of the spring is subjected to 
a twisting moment as well as bending moment which 
tends to alter the curvature of the coils. Since the coils 
are closely wound the bending stress induced is very 
small as compared to the torsional stresses and hence 
neglected. A direct stress also acts on the cross-section 
but this being exceedingly small is also ignored. 

Therefore while analysing a close coiled helical 
spring carrying an axial load only shear stress due to 
torsion is considered. 

Let r = radius of the wire of which the spring 
is made 

Then 

n = the number of turns of coiis 

R = The mean radius of the coils 

Length of the wire l = 2 n R .n 
Twisting moment due to axial at load T = W. R 
Let 8 be the angle of twist and o the axial deflection 

1 
Resilience of the spring = 2 T. 8 

Work done by the load =1 W. 8 

Equating and (ii) we get 
I s: 1 . 
2.W.u= 2 T.8 / 

1 
or 8 = W . 8 

Now from the torsion equation we have 

or 

Hence 8 

T G.e e T 
1-l or JxG 

8 = W.R 
re 4 
2r 

2nR.n 
G 

=---
G.r4 

= T e = W.R 
w. w ---::::---

Gr4 Gr4 

(i) 

(ii) 
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OT 64W.R3.n '''h _ 8 = Gcf+ ,, ,e1 e d is the diameter of the wire d = 2 r 

Stiffness of the spring, Which is the force per unit deflection 
,4 

s = 8 =~-
64WR3.n 

Springs of square section wire 
Let x be the side of the square section of the wire of the spring then 

T T.l 42! 
W. G . 4 

A. 
UT ,j_ '} 4 = R !!Ji!:. . ..,.x 

. G . 8 
6.x 

Gx4 

Strain energy stored in the spring 
If U is the strain energy storedin the spring 

1 
U=i.T.e 

Using torsion equation 
1 l 1 

9 = - . - and T = -- . J 
r G r 
1 (,; \ (,; t 1 

U=-1-.1) 1- -1 
2 ~~ lr. G j 
l 1~ [ 1t 4 't 2 2 

--i r2 ·c ·2r = 4 G .nr 

1 

U=.!:.. 
4 

,., 

~G~~ (volume of the spring wire) 
T , 

Example 12.3 
A close coiled helical spring is to absorb 40 KN-mm 

diameter of the coil is 10 times the diameter of the wire and the extension 
observed is JOO mm, determine the mean diameter of the diameter of 
the wire and the num~er of turns, if the shear stress is nut to exceed 16(} 
MPa. Take G == 80 KN/mm- . 
Solution 

Strain energy absorbed= Work done 

40 x 103 == ~ x 100 or W = 800 Newtons 

. t 1(41; 
Torque T:::: J x - = - r · . - == 

r 2 r 
- 2T 2W.R 

or rj = - -- Taking R = 10 r 
nt 1t1: 
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r3 = 2W (10r) or r2 = 2 x 800 x 10 _ 100 
re x 160 re x 160 n 

or r = 5.64 mm or say 6 mm :. d = 12 mm 
Mean diameter of helix = R = 10 x 6 = 60 mm 
Deflection 

3 
s: 64WR .n _ lOO 
u = .4 - mm 

G.a 

n = 8 x 103 (12)4 x 100 = 15 
64 X 800 X (60)3 . 

Number of turns = 15 Answer. 

Example 12.9 
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A close-coiled helical spring consists of 16 coils each of 100 mm mean 
diameter and 13 mm dia. wire. if it is subjected to an axial load of 1 KN 
find (a) the maximum shear stress in the wire (b) the extension suffered by 
·it. Take G = 80 KN/mm2 . 

Solution 
Twisting moment due to axial load 

100 
T= W. R = 1000 x 2 = 50,000N-mm 

T 
Shear stress 't = 1 x r 

't = _I_ .r = 2T = 2 X 50,000 = 115_90 
~ r4 n r3 1t (6.5)3 
2 

't = 115.90 MPa 
. 4 3 

Deflection o = 6 WR .n 
G(d/ 

Example 12.10 

0 = 64x 1000(50)3 x 16 = 56 mm 

80 X 103 (13)4 

A close coiled helical spring of20 mm diameter wire has 20 coils each 
of mean diameter 80 mm. Determine the height from which a weight of one 
KN should/all on the spring so that it is compressed by 40 mm. Take G = 
80KN/mm. 
Solution 

Let h be the height of drop 
Let W be the equivalent gradually applied load to produce the same 

compression. 
Then 
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40 ~ 64W (40)3 x 20 

8 X 10\20)4 

or W = 40 x 8 x 103 x (20)4 

64(40) 3 X 20 

Springs 

or W= 6.25 KN 

Equating the energy supplied by the impact load to the energy stored 
1 

p (h + 0 ) = 2 w. 0 

1000 (h + 40 ) = t X 6 .25 X 103 X 40 

(h + 40) = 125 
or h = (125 - 40) = 85 mm Answer. 

Strain energy stored within an elastic bar subjected to a pure 
bending moment 

When an elastic bar is subjected to a pure bending moment M it 
deforms into a circular are of radius of curvature R. We have already studied 
in the chapter on bending stresses 

That 
M CJ E 
1=y=i. 

The length of the bar L is equal to the product 
of central angle ff Subtended by the circular are of 
radius R. Thus we can write L = R . 0 

I 9 
or 

R L 
That 

M 1 9 -----
IE R L 

or 0=M.L 
IE 

From the above equation it can be said that the· relation between 
moment imd the subtended angle is a linear one. 

· If now a graph is plotted between a specific value of Mon the vertical 
axis and 9 on the horizontal axis as shown in figure 12.5. The work done by 

the moment M · is given by the area of the shaded portion O A B = } M . 0 

This is the amount of internal energy stored in the bar 

1 1 kflL 
U=2M.e=2 El 

U= .!_kflL 
or 2 EI 
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,' 

_/;.,Ciose-Coiled helical springs subjected to axial twist 
// When a close-coiled helical spring is subjected to an axial twist it 

produces a constant bending moment on the coils. The magnitude of the 
bending moment is always equal to the applied torque. As a result of this 
torque the curvature of the coils increases or decreases depending upon the 
direction or sense of the bending moment induced. The number of turns of 
the coil increases when mean radius of the coil decreases and vice-versa. If 
L is the effective length of the wire of the spring then. 

L = 2 re Rn= 2 re R1 n1 

Where Let R = initial mean radius of the coils 
R1 = final mean radius of the coils 
n = initial number of turns 

n J = final number of turns 
Let 8 be the angle of twist in radians due to the 

applied torque. 
Depending upon the direction of the applied 

torque the final number of turns n1 will be, more than 
8 

or less than n by a factor 2re turns. When the spring 

tends to close then 
~~1~ e 

111 = n + 2~ 

and when the spring tends to open the firnil number of turns 
6 

n1 = n - 2n: 

Assuming each coil as a beam of large curvature 
Energy stored in the spring 

1 M2L 
= 2M. 9 = 2E/ 

or S=ML 
EI 

or e = M.2n:R.n = 8MR.n 

E. ¥<r)4 Er4 

or e = I 28l'JRn 
EcI' 

R .1. U' l M S M.2L . ..,,2 rli eSl tence = ] . = 2 . fil putting !Yl - l 
r 

cl ./2 L cr2- 1t r2 L 
U=-2-· 2lE = 2Ex 4 

r 

l cl 
U = 8 -E Volume of the wire 
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For wire of square section of side x 

e = 24nRMn 

Ex2 
., 

R ·1 · T' l CT~ (V l f . ' es1.1ence u = 6 E o ume o W!fej 

Example 12.11. 

Springs 

A close coiled helical spring is made up of l O mm diameter wire having 
12 coils with 120 mm mean diameter. If a moment of 12 N-m is 
applied axially determine. . 

(i) The maximun bending stress in the wire 

( ii) The angle of twist 

( iii) Strain energy and (iv) The number of turns. 

The torque js applied in such a way that the spring tends to close. Take 
E = 200 KN!mni". 
Solution 

(i) cr = 't . y 
12 X 1(}' 

~(5)4 

10 
x -= 122 2MPa 2 . 

( .. ," ML 
ll) 0 =-= 

El 
L = 2n R n = 2n x 60 x 12 = 144n: 

n: 4 
1=4(5) = 156.25p 

12x 103 x 144n 

- 200 X 103 X 156.5n: 
= 0 .55 radian 

(iii) Strain energy U= ~ (Volume of wire) 

( 1 "2 ?)2 
U= ,L ·- x (2rrx60x12) 

8 X 200 X 103 

= 2579 . l N-mm 
Since the spring tends to dose 

e 
n1 = n + 2n: 

0.55 ~ 08 =12+ 211: =lL+08=12. 

Say 13 turns 
Open-Coiled Helical Spring Subjected to axial Load 

Let 
R = mean radius of the spring 
d = diameter of the wire 
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Fig.12.6 
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n = number of turns 
o = deflection of the 

spring caused by the axial load W. 
a == Angle of helix 

Momen, due to the axiai load 
W about OH = W .R this moment 
can be resolved into two comp
onents 

(a) .A moment T along plane 
xx causing twisting (b) a moment M 
along y-y Causing bending. 

Twisting moment T=WR Cos 
0: 

Bending moment M = WR Sin o: 
Let 8 be the angle of twist and (j) the angle of bend due to the bending 

moment 
Then from torsion equation 

I_ Q_(}_ or e _ Ix L _ W~ Cos a.L 
J L -Gxl- JG 

The angle of bend due to bending moment 

~ = l'v!L = WR Sin a.L 
El El 

Work done by the load W in causing a deflection 8 of the spring is 
equal to the strain energy of the spring 

lw b=l_T El' l~1'" 2 . . 2 . .,.. 2 "- . 't' 

l ws: 'VRC i ,, OSOL UTRs· I,., ~,.na.i) l ' 1 rwRc 1') 1 /v.R,' ··' 
or 2 .u = 2 ' osa l- JG , + 2 " ' . m a l--Ei--) 
Putting the values of J = 3~ and l = ~ cf 

and L = 2 1t R.n. seca, we get 

5 = 64WR3.11.sec ex (Coia.+ 2Si1?ai 
l G E j 

For open coiled helical spring subjected-to axial torque T, 

8 _ 64TR . n . Sin a (l_ _ l l 
- cf lG E j 

Example 12.12 
An open coiled helical spring is made out of 10 mm diameter steel rod 

having JO turns and a mean diameter 80 mm, the angle of helix being 15°, 
Calculate the deflection under_on axial load of250 Newtons. Tcike E = 210 
KN/mm2 and G = 85 KN/mm". 
Solution 

The deflection of an open coiled helical spring 
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,S = 64WR3 . n sec a 
er 

Angle of helix a = 15 ° 
l 

Seca = 0_965 , Cos a= 0 .965, Sin a = O .25 

Springs 

n = l 0, R = 40 mm and d = l O mm, putting these, values in the above 
equation 

O = 64 X 250 X 403 X IO X ) [ (0.965)2 + 2 X (0.25)2] 

( I 0)4 0.965 85 X 103 210 X 103 

1024x 1Cr1 I 
= 0_965 X JO 3 (0.0115 + 0.00063) 

8 = 1024 x 0.0125 = 12.87 mm 
Compound Springs 

(a) Springs in series 

Answer. 

When two springs are connected in series and a load W is 
applied then the total extension produced will be the sum of the 

s1 extensions in each one of the springs 

8 = 81 + 82 
w w w 
-=-+-s S1 S2 

and the stiffness of the composite spring will be 
I I I 
- =- +-s S1 S2 

Fig. 12.7 

(b) Springs in Parallel 
When spri_ngs are connected in parallel and 

a load W is applied . 
then W = W1 + W2 and 8. s = 8 S1 + 8 S2 

Hence the stiffness of the spring will be 

S=S1 +S2 

Example 12 .13 

w 
Fig. 12.8 

Two Close-Coiled helical springs A and B made of the same wire show 
axial compression of 80 mm and 30 mm respectively, when subjected to the 
same axial load. The spring A has 9 coils of mean diameters 80 mm while 
the spring B has 8 coils. Determine the mean coil diameter qf spring B. 
Solution 

The springs are connected in parallel therefore 

0A = OB 
spring A, Mean dia = 80 mm 

number of coils= 9, 
:. RA=40mm 

OA = 80 mm, dA = ds = 80 mm 
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bA = 80 mm= 64WR}n 64W X 403 x 9 

G(dA )4 G .(dA )4 

80 X G X (dA)4 80G (80)4 
or W =-~-~~ 

64 (40)3 X 9 64(40)3 X 9 
For s;:,ring B, 8s = 30 mm, n = 8, Rs= ? 

Ss = 64W (RB) 3.n = 

G(ds)4 

64W(Rs) 3 X8 64x8(R 3 
30 = = B) X W 

G(80)4 G(80)4 

30 = 64 X 8 X (.RB) 3 X [80 X G X (80)4] 

G(80)4 64 X (40)3 X 9 

8Rl X 80 30 X 403 X 9 
30 = or (RB)3 

(40)3 X 9 8 X 80 

27 1 3 
RBJ = 64 x 40- or Rs= 4 x 40 = .75 x 40 = 30 

Mean coil diameter of spring B is 60 mm Answer 

Example 12.14 
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Two Close Coiled springs are connected in series and the stiffness of 
the compound spring is 2.5 Nlmm. If the wire diameter of spring A .be 5 mm, 
determine the wire diameter of spring B. The number of coils in springs A 
and Bare 20 and 15 repectively. Each spring has a mean coil diameter equal 
to 8 times of its wire diameter. What would be the safe load for the compound 
spring so that the shear stress in the wire does not exceed 250 MPa. Take 
G = JO KN!mm2 . 

Solution 
The springs are connected in series 
Spring A, 

1 1 1 
- =-+-s SA Ss 
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or 

64 f 204 4 3 x ds 3 x 1 s l 
- ·-t 
- 80 x 103 [ s4 · ds 4 J 

.4 = .8 X 
i l 6 X 10000 64 X 15 
I 25 x 25 + ds 

or 
' ( . 

0 ,. in3_J__,56 _,_960I 
·--' X L - 1 L ' d f 

l B ,i 

or 500 - 256 = 960 
ds 

960 
or ds = 244 = 3.93 mm 

Example 12.15 
Two close-coiled helical springs A and B are connected in 

Springs 

and made up of the same material and number of coils. Coil diameter of 
spring A is I 00 mm and that of spring B is 75 mm. The wire diameters are 
9mm and 6mm for A and H respectively. If the load is 2 KN, 
detennine the load taken by each spring and the maximum stresses induced. 
Solution 

Since the springs are connected in parallet 
81= 02 

64W,.1. Ri . n 64\Vs. Rb. n 

Gdl 
<F R· 3 ( i,4 rrA B t.. A) 

or -,- = --3 x ---,;r-
n B RA (r1S) 

/ \' ( \4 
i1A=!J2.JJ x1'2j1 =213 
Ws l 100 i \ t\ . 

Applied load ·wil(be snared by the two springs 

WA+ Ws= 2000 Newton 

or 2.13Ws+Ws=2000 
W B = 200Q!3 .13 = 638.96 Newton 

WA= 2.13 Ws = 1360.98 Newton 
16lVARA 16 X 1360.98 X 100/2 _ . 

'tA = ---3- = ·-·------3----- = 4/5.38 MPa 
iC(dA) JC (9) 

'CB_ I6WsR: .:::: 16 x 638 96< x 75/2 = 564 .96 MPa 
1t(dB) :n:(6)' 

Let W be the maximum axial load which causes maximum shear stress 
of250 MPa 

16WA RA 
For spring A •A = --·T,r dA 
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or 
'tA · 7t · dl 250 X 7t X (5)3 

WA= 16RA = 16x 8x5 
2 

250xnx125 
WA= 16 x 20 = 306 .97 Newton 

For spring B 

Ws = 250 X 7t X (3.93)3 

· 16x8x 3·93 
2 

2 
W = 250xnx(3.93) = 18953 N 

3 16 x 4 . ewton. 

423 

Hence safe load for the compound spring is lesser of the two values 
ofW 

:. W = 189.53 Newton 

SUMMARY 
1. Leaf spring or Laminated spring (semi elliptical type) 

3Wl 
cr = -- where cr is the bending stress 

2nbt2 

3 wz3 
0 =---

8 nEbt3 

2 
Strain energy U = ~E (Volume of spring) 

. . . 8 nEbt3 
Stiffness of the spnng o = 3-;y--

2. Quarter elliptical type 
6Wl 

cr=--
bnt2 

6Wt3 
O=--

Ebnt3 
3. Close-coiled helical spring subjected to axial load 

m · 16WR 
Max . shear stress 'tmax = --3-

. 1td 

. 4WR3.n 
Angle of twist El = 4 

Gr 

. 64WR3n 
Deflect10n o = · Gcf 

· . 32W2R3n 1 't2 2 
Stram energy u = Gd4 . = 4 G (1t r .. l ) 
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. . Gcf 
St1tfness s = -~-,--

64K'.n 

4. Close-coiled helical spring subjected to axiai twist 

6 128MRn a 2 V , f . 
= £cf , U = 6 ( omme o wire) 

5. Open coiled helical spring subjected to axial load. 

T = WR Cosa 

M= WR Sinn 

f = ML = WR Sin ct. . l 
El El 

8 _ 64 WR~n.sec a ( Cos2a + 2Sin2 !!:_ j 
- cf lG E) 

6 . For open coiled helical spring subjected to axial torque T 

0 = 64TR n . Sin a ( j_ _ 2_ i 
(I' lG Ej 

7. Compound Springs 

(i) Springs in series 

l 1 l 
-=--+-s S1 S2 

(ii) Springs in parallel 

S = S1 + S2 

QUESTIONS 
( l) What is the function of a spring ? 

Springs 

When are they used ? How would you classify springs ? In which 
catagory would you place an open coiled helical spring. 

(2) Distinguish between the terms Proof load, Proof stress and Proof 
resilience. 

(3) What do you understand by the term spring constant? Closely coiled 
helical spring is subiected to an axial load derive a formula for the 
energy stotM in the" spring in terms of max. shear stress volume of the 
spring wire and the shear modulus of elasticity. 

( 4) What are helical springs ? Derive an expression for deflection of an 
open coiled helical spring. 

EXERCISES 

(5) A laminated spring one metre long 60 mm wide and 6 mm thick plates is to 
support a load of 240 N. It the permissible bending stress is not to exceed 140 
MPa, find the number of turns required. (12 turns) 

(6) A leaf spring is made up of a plates 600 mm long and l 00 mm wide. 111e spring 
is to carry a load of 5.5 KN. If the deflection is limited to 20 mm, clacu!ate the 
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maximum st,ess and thickness of plates. Take E = 200/mm2 . 

(t = 5 mm, stress = 220 MP1) 
(7) A leaf spring 750 mm long is required to carry a central proof load of 800 N. If 

the central defl.ection is not to exceed 20 mm and the bending stress is not grater 
than 200 MPa:. Determine the width and thickness of plates. Assume width £f 
plate as 12 times thickness (84 . 36 mm; .7 . 03 mm) Take E = 200 KN/mm . 

(8) A close coiled helical spring is made of 12 mm steel wire the coils having 10 
complete turns and a mean diameter of 100 mm. Calculate the increase in the 
number of turns and bending stress induced in the section if its is subjected to 
an axial twist of 15000 N-m. 

Take E = 200 KN/mm2 . (.0346 turns; 1130 N-mm/degree) 
(9) A close coiled helical spring is required to carry an axial load of I KN. The spring 

is to have a mean diameter of 50 mm. If the maximum shearing stress is not to 
exceed 30 MPa, determine the diameter of the wire used. (d = 7.5 mm) 

(10) A weight of 2500 N is dropped on a closely coiled heli:-al spring of 16 turns. 
Find the height from which the weight may be dropped before striking the spring 
so that the spring may be compressed by 220 mm. Mean dia. of the coils may be 
taken as 120 mm and the dia, of the wire as 30 mm. Take.G = 90 KN/mm2. 

(h = 176 . 8 mm) 
(11) _Compare the resistance of a close coiled helical spring of square section wire 

with that of a circular section if the volume of both the springs is same. 
(12) Two close coiled helical springs of wire diameter 12 mm and core radii 120 

mm and 80 mm are compressed between rigid plates at.their ends. Calculate the 
maximum stress induced in each spring if the applied load is 600 Newtons 

(t1 = 163.6 MPa, t2 = 32.49 MPa) 

ODD 



Columns And Struts 

Vertical members. of a building supporting compressive loads are 
called columns. Columns may be axially loaded or eccentrically loaded. 
Sometimes they are also called pillars or stanction. 

Struts are members subjected to compressive stresses. They may be 
vertical inclined or horizontaL 

The aim of this chapter is to discuss the behaviour of columns under 
various types of loadings, slendrness ratio and end conditions. 
Mode of failure of columns 

Under the action of axial compressive forces columns may fail due to 
(i) Crushing (ii) Buckling and (iii) Combined effect of crushing as well as 
buckling. 
Classification of columns 

Depending upon the mode of failure columns may be classified into 
the following catagories. 

(a) Short Columns 
(b) Long Columns 
(c) Medium Columns. 

(a) Short columns 

In short columns failure occurs purely due to 

0 h 8 ' l O ' h ~,, less t ,an ana K is 1ess t an J.:, 

Where l = Effective length of the column 
d = Least lateral dimension 
K = Least radius of gyration. 

(b) Long columns 

J cnh t" C a 1 era 10-; is 
a 

Failure occurs due to buckling only. These columns fail due t,:i lateral 
bending before the compressive stress reaches crushing value. The direct 
stress induced is insignificant as compared to bending stress. For long 
columns. 

1 > 30 and f > 120 

(C) Medium columns 
Such columns fail due to combined effect of both the direct as vvell as 

bending stresses. For medium columns. 
l 
- > 8 and< 30 
d 

426 
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l . 
k > 32 and< 120 

Buckling of columns 
The lateral bending of a compression member under axial loading is 

called buckling. Buckling occurs in a direction perpendicular to the axis 
about which the radius of gyration is minimum. 
Buckling load 

The axial load at which lateral bending starts is called buckling load. 
Buckling of column depends upon its effective length and least lateral 
dimension 
Effective length or equivalent length of a column 

The length of a compression member that be-nds as if the ends are 
hinged is called effective length or equivalent length of a column. 
Depending upon end conditions a column may have different effective 
lengths. 
End conditions. 

(i) Both ends hinged 
(ii) One end fixed and the other end free 
(iii) One end fixed and the other end hinged 
(iv) Both ends fixed. 

T 1 I 
I 

le= L le= lf~~ 

ll l I 
__i 

0) 
(a) (b) (c) 

Fig.13.1 

:T I . 
I 
lie= l,12 

ll 
(d) 

Both ends hinged One end fixed One end fixed Both ends fixed 
and other end free and other end hinged 

Radius. of gyration :-
It is the geometrical property of a section and is denoted by 

K=+IA '. 

Where K = Radius of gyration 
I = Moment of inertia of the section 
A = Area of cross-section 

Slenderness Ratio 
It is the ratio of the effective length of a column and its least radius of 

gyration. 
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l 
Slenderness ratio = -K = 

Effective ien ath 

Least radius of gyration 
Load Carrying Capacity of Columns 

The strength or load carrying capacity of a column is its capacity to 
support the maximum load till its failure. The load carrying capacity of a 
column depends upon. · 

(i) Cross-sectional dimension 
Length of the column 

(iii) Its end conditions 
(iv) Its initial curvature 1e whether it is perfectly straight or 

imperfectly straight before loading. 
Crushing load :-

The ultimate load beyond which the column fails due to crushing 
stresses is called crushing load. 
Buckling load 

The laod at which the column just buckles is called buckling load or 
crippling load or critical load. 
Euler's theory fo.r hmg columns 

The first rational attempt in the study of columns was made by Euler 
in 1757. The following assumptions are made in Euler's theory. 

(iJ Initiaily the column is perfectly straight and load acts truly axially. 
(ii) The material of the column is perfectly elastic, isotropic and 

homogenous and Hooke's law. 
The iength of fue column is very large as compared to its 

cross-sectional dimensions. 
(iv) The shortening of the column due to direct compression 1s 

neglected. 
(v) The faiiure of iong column occurs due to buckling alone. 

The self weight of the column is neglected. 
(vii) The Cross-section of the column is uniform throughout 

Proof of Euler's Formula 
Case I -- Both ends hinged 

Consider a column AB hinged at both ends and subject 
to a critical load P as shown in figure. 13.2 

Consider a section at a distance x from end A. Let 'y' 
be the deflection at this section from the centre line B. li,f at 
this section 

or 

or 

Fig. 13.2 
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The general solution of this differential equation is r-;;- r--

\' = CJ C:,s x "J f + C! Sin x ~; 

Where CJ and C2 are the constants of in,egration. 
Now applying end conditions 
at A,x=O, y=O :. C1 =0 

at B, x = l, y=O 
r;-

! '\ I --', \/ El 

This is possible if C2 is Zero in which case, the column h;:is not bent 

at all or Sin l ~ = 0 
-'---' I 

Ip 
l '\J El = 0, n, 2 n - - - -

Taking the !east significant value we get 

p _ rr-2.El 
er- 7 

1-
W here Per is the critical load. 

Case II 
Columns with one end fixed and the other end free. 

A column AB fixed at A and free at end Bis shown in the 
0 figure. Let a be the deflection of the free end under a critical -a;· loadP. 

Bl Now consider a section at a distance x from A Let y be 
the deflection at this section. 

i ;· Bending moment at the section= P (a - y) 
I d2v . 
! Hence EI -';:; = P (a - v) i dXL • yrr "' ~+ {>=ii 

A~l The solution oft; above diffe:·e~ equation is 

Cl) Y = Ci Cos x '\j Ei + C2 Sin x·\J t + a 

At x = 0, v = 0 :. CJ= - a 

dy ,. rp . ~ fP , fP , .. IF 
dx = - a \/ EI Sm x 'V Ei + C2 V EI Cos x \/ EI 

Fig.13.3 

Also at A, x = 0, 1 = 0 
ax 

:. C2 '\(f =0 
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I-Ience C2 = 0, since ;o is not Zero 
· Substituting the values of(~ 1 and C 2 i.ve get 

I 
- "I, i p 

y = - a cos x ~ ~; + a = a 
IA. 

at B, x = l y = a 

,--'-1 
l .... Cosx'\f _P. ! 

'4 El) 

l - Cos l 

since a 0= 0 :. 

Hence 

or 

rr 3n Src 
2· 2' 2 

value \Ve get 

Hence the effective of a column with one end fixed and the 
other end free is 2 l . 
Columns with both fixed 

A column AB with both ends fixed in position as well 
as in direction is shown in figure 13.4. Consider a section at 
a distance x from end A, then 

Where ,',dA is the moment at A 

P l\1A +-- y:::: --
El. El 

1he solution of this differential equation is 

~ . ,, r;- Mit 
y = Cosx + L 2 Smx \/ -Jii + p 

Differentiating 

Ms(tP 

Bf-r 
~ I 

I; I 
{, ! I 

I ~,:i l 
\ I X I 
~ I ! 

A ;17>' ..i _i_ 

\JJMA 

Fig, 13.4 

x Sinx '\jJ~ ... + C2 ~ Cos x ~ ;I ........ (ii) 

dy 
At x = 0, = 0 ~ ==0 :. C2 =0 
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Also when a = 0, y = 0, or O = C1 + p 

r {f 1 
· )' = - MA I rosx '\ _.f__ - 1 I 
. ' p L ~ . El J 

\ilhen x = l, y = o 

:. Cos! ~ ; 1 = 1, or l ~ = O. 2 rc , 4 it 

When x = l , ddy is also Zero, 
·X 

_/p /p 
C1 ·\Jt Sin l '\J El = 0 

Since CJ, and Pare not Zero :. Sin l ~ = 0 
· El 

:. l ,j ;1 = 0, re, 2 1t 
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or 

(iii) 

.... (iv) 

(iv) 

The minimum significant value consistent with equation (iv) and (v) 
is 2 1t 

P _ 4n2E! 
er-

Columns With One End Fixed And Tbe Other End Hinged 
Consider a column with end 11 fixed in position as well 

as direction and the end B hinged. Since end Bis free to rotate to a bending rnoment M will be induced at end A. Let R be 
R T the horiz~ntal for.ce required to keep AB in st:1tic equilibrium 

8 as shown in figure 13.5 Now consider a section at a distance 
x from A., then 

I d2" 
I El~=- P.y+R(l-x) 

I i dX-

yh I d2 R . 
'I I . or -* + _E_ . v = - (I - x) 

\ I dx~ H · 'SJ 

Aj 11 The solution :or. differential e~1r1~11 is . 

~ y =C1Cos'\Jii x +C2 S'in \Jfi .x+i (l-x) 

Fig.13.5 
At x:::: 0, y=O :. C1 

-Rl 
p 

d · Rl ~. I P ' P -~ 
r- .--

_2'. = ..... - "" "\ / _ :r J. r '\J--· l··')~ 
d • u,n V £1 .. ' ~2 \ f:'J A~ 

X p & • ~ 
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r R f El 
At x = 0, dx = 0 :. C2 = p '\j p 

,- c::- ~ 

-- Rl '\ I p R '\ ! El . "' I p R 
:. y = p Cos 'I EI . x + p "V p . Sm \J El . x +y; (l-x) 

At B, v = o When x =; l 

-~'?l ~ ~ R~~I . . ~f n or -- Cos l · - + - - . Sm l _r__ = 0 
P El P P El /p 1--

:. tan l \4 :1 = l ~ {;1 
(The tangent of the angle = angle itself) 

The smallest root of the above equation is 

'\J/p d' l - = 4.49 ra ian 
El 

~ p 2 z- -· = 20 = 2n 
El 

or p 2n2Et 
er= 

Limitations of 
Euler's formula may be used for long columns when slenderness ratio 

exceeds 100. If the value of slenderness ratio is less than 100 Euler's 
equation can not be used as such and has to be modified keeping in view the 
passing of the material into plastic stage. The Euler's formula is not 
applicable for crippling stress beyond 264 MPa 
Equivalent lengths for various end.conditions 

·Table -13 .1 

I I End Co;1ditions I 
Both ends hinged I 

--·---------------l-
One End fixed and the other end i 

I 

Equivalent Lengh l • 1 

l=L I 
l =2L ~ 

free 

I 3 Both ends fixed l = 1./2 I 
4 One end fixed and the other end , __ l_ 

I hinged t- ff 

Example 13 .1 
A mild steel tube 25 mm external diameter and 2 .5 mm thick is 3 metre 

long. lt is used as a column with both ends hinged. Calculate the collapsing 
load by Euler's formula. Take E = 200 KN!mnl 
Solution 

n2El 
- t2 
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External diameter = 25 · mm 
Thickness = 2.5 mm 

Internal diameter = (25 - 2 x 25) = 20 mm 
Moment of Inertia 

I=; (254 - 204) = :11320 j7 m~4 

Since both ends are hinged l = L = 3000 min 

p = Jr X 200 X l(f X 11320.77 

er (3000}2 

= 2.483 KN 
Example 13 .2 
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Calculate the safe compressive load on a hollow cast iron column ( one 
end rigidly fixed and the other hinged) of 100 mm external diameter and 70 
mm internal dia and 8 metres in length: Use Euler's formula with a factor 
of safety of 4 and E = 96 KN!mm2 . M. U. · 
Solution 

Moment of inertia of the column section 

I=~ (1004 -704) 
64 

= 373 X 104 mm1 
Since one end of the colu~nis fixed and the other is hinged 

· L 8x103 
Effective length l = ...ff= .../2 = 5657. 70 mm. 

Euler's crippling load P · :~ 2:rh{ ., : er- 2 ·... L 

p = 2.1c2 X 96 X lif X 373 X 1(>4 
er (5657.70)2 

= 220.8 KN 

Safe load = Crippling load = 220.8 
Factor of safety 4 

Per= 55.2 KN 

Example 13.3 .. 
An alloy tube 5 metres long extends 6.4 mm t!,.nder a tensile load of 60 

KN. Calculate the Euler's buckling load, when p,sed as a strut with pin 
jointed ends, The tube di~meters are 40 mm ahd 2.5 mlh. J. M. I. 
Solution 

·Area of Cross-Section 

J = ~ (402 - 252) = 765 .7 mm2 

Moment of inertia of the section 
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lt 4 2 · 4 4 
I = 64 (40 - 25 ) = 10.64 x 10 mm 

Stress induced due to a load of 60 KN 
Load 

('j = 
Area of Cross-section 

60 X 103 
= 765 _7 = 78 .3 MPa 

Strain produced in the tube= 

6.4 1 2s 0-3 
'.ix!Ooo=. x 1 

Theref;_1re modulus of elasticity 

E = 78·3 61.17 x 103 N/mm2 

1.28 X 10-3 

= 6U7 KN/mm2 

Since both ends are pinsjointed L = l 
l = 5000 mm 

rc2El 
Eulers buckling load Per = - 2-

l 

p _ n2 x 61.17 time 103 x 10.64 x 104 

er- (5000)2 

=2.56 KN Answer. 

Columns And Struts 

Example 13 .4 
An I-section R. S. J 200 mm x 160 mm with flanges 15 mm thick and 

web 10 mm thick is used as a column with one end fixed and the other end 
entirely free. Determine the Euler'"'lcrippling load if the length of the column 
is 6 metres. Take E = 200 KN/mm 
Solution 

I _ 160 (200)3 _ 2 (75)(170)3 1 .. _1 
xx- 12 x 12 ~ ,60 mm--->'71 

= 10666 .7 X 104 - 6141.25 X 1041· T 
= 4525.5 x 104 mm4 15 mm 

lyv = 2x 15 (160)3 + 170(10)3 iOmm 

, 12 12 200 mm 
= 1024 X 104 + 1.41 X 104 I 

= 1025 .4 x 104 mm4 l 
:. I Lest= 1025.4 x 104 mm4 . I ..1 , .. 5lmm 
Equivalent length l = 2L ===:J 
:. per= ._rcz_E_; r--._____ "T 

4L 

n2 x 200x 103 x 1025.4 x 10 4 
Fig.13.6 

= 
4 X (6000)2 
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= 
n2 X 200 X 1025.4 X 10 

4x36 
Newtons 

= 140500 N == 140.5 KN Answer. 
Example 13 .5 

A steel bar of rectangular section 30 mm x 60 mm is used as a column 
with both end hinged and subjected to an axial compression. If the critical 
stress developed is 240 MP a. and modulus of elasticity is 200 GN!m2 • 

Determine the minimum length for which Euler's Equation may be used. If 
the length of the colum is 2 metres, determine the safe load with a factor of 
safety of 4. 
Solution 

Minimum moment of inertia of the section 

1 - _!_ (d) (b )3 - _!_ (60') (30)3 - 135 x 103 mm 4 
'yy- 12 ' - 12 -

Least radius of gyration K = ~ 

rr:-2EI 
Crippling load Per= z2 

. . Per rr,2 EAk2 
Cnt1cal Stress = - = = 

A Al2 

12 = n2 x200xl09 x75= 61 _84 x 104 

240x 106 

l = 785 mm. 
When length is two meters 

p = n2EI = n 2 x 200 x 10 9 x 135 x 10 3 

er l 2 (2000) 2 X 10 6 

Per= 66620 Newton = 66 .62 Ki~ 

Safe load-P = Crippling Load= 66.62 
w Factor of Safety . 4 

= 16.65 KN 
Example 13.6 

A cast iron cylindrical column 4 meters long when hinged at both ends 
supports a· buckling load of P Newtons. When both ends are fixed the critical 
load rises to ( P + 250 KN) newtons. If the ratio of external diameter to 
internal diameter is 1.25 and E = 100 KN/mm2. Determine the external 
diameter of the column. (J.M./) 
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Solution 
Let D = External diameter 

d = Internal diameter 

Diameter ratio ~ = 1.25 or D = 1.25 d 

When both ends of the column are hinged 

l = L = 4000 mm. 

1t2 EI n:2 x 100 x Hf x l 
p = --= 

" l 2 (4000)2 

n2! 
or per= 160 

When both ends are fixed, l = f 
L 

2 2 
p + 250000 = n EI = 4n El 

(l/2)2 L2 

4n2 x lOOx 103 x 1 

(4000)2 

1t 2 
250000 = 40 . l or 

or 
1t 2 1t2/ 

250000 = 40 I - 160 or 

or I = 250000 x 40 = 135 .09 x 
.75 X n2 

TC 4 A 6 
64 (D - a ) = 135 . 09 X 10 

6 
(D4 J4) = 135.09 X 10 X 64 

1t 

[ (I. 25 d)4 - J4] = 2752.03 X 106 

or [(2 .44 J4) -d4] - 2752 .03 x 106 

1.44 J4 = 2752.03 X 106 

J4 == 27
1~~4°3 x 191173 x 104, d = 209 mm 

Hence external diameter= 261.3 mm Answer. 
Example 13. 7 

(ii) 

Determine the ratio of the strengths of '1 solid steel column to that of 
a hollow column of the same material and having the same cross-sectional 

area. The internal diameter of hollow column is i of the external diameter. 

Both the column are of the same length and are pinned at both ends. 
(Bangalore University) 
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Let P s = Crippling load supported by solid column 
Ds = Diameter of solid column. 
PH= Crippling load supported by r.ollow column 
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Let DH and dH be outer and inner diameter of the hollow column 

dH l 
-= -2 ordH= 0 .5 DH 
DH 

Since both ends are hinged 

L effective = L actual 
2 2 

1t Els 1t ElH 
Ps=--2- andPH=--2 -

l l 

P n2 E (AKh d p, n2 E(AKH2) 
or S= ,., an H 2 

l "' l 2 

or P hollow = (KH ! 
P solid Ks) 

Now for solid section radius of gyration 

K = - / Is 
s \J A s 

Jt 4 

2 I 64 Ds 1 2 

or Ks= As= '!!:_Dz =16D s 
4 s 

For Hollow Section 

D 2 s D 2 s 
Since the cross-sectional areas of the columns are equal 

As =AH 
1t21t 2 2 1t 2 2 
4 Ds = 4 [ DH - (0.5 DH) ] = 4 [DH - 0 . 25 DH ] 

D/ = 0 .75 DH2 

Hence PH = l.25DH 2 = l.25DH 2 = 5 
Ps Ds 2 0.15DH 2 3 

Ps 3 
Answer 
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Example 13.8 
A load of J 50 N produced a deflection of J 5 mm when placed at the 

.. center of a bar of length 3 metres. Determine the Euler's bucking load that 
the same bar can support if used as a column with both ends restrained in 
position but not in direction. 
Solution 

or 

Load = 150 Newtons 
Deflection produced at the centre = 15 mm 
Span = 3 meters = 3000 mm. 

wt3 
Ye= 48£/ 

15 _ 150(3000/ 
48£/ 

El = 150 (3000)3 = 5625 l 06 
48 X 15 X 

When used as a column with both ends hinged l = L 

. n2 EI 
Buckhng Load Per = - 2-

l 

p = n:2 X 5625 X 106 = 
er 300G2 

6168 N 

Example 13.9 
A straight length of steel bar I.5 m long and 20 mm x 5 mm section 

is compressed longitudinally untill it buckles. Assuming Euler's formula to 
apply to this case, estimate the maximum central deflection before the steel 
passes the yield point at 320 MPa. Take E = 210 KN/mm2 . (AMIE) 
Solution 

Moment of inertia of the section 
3 

I= 20
1~) = 208.33 mm4 

Euler's Crippling Load, l = L = 1500 mm 

p = n2 EI = n2 X 210x 103 x 208.33 
CT z2 (1500)2 

= 191.9 Newton 
Let the central deflection of the strut be O 

Mmax= PcrX 0 
M = 191.9 li 

D. S per . 191.915 1 91~ MP irect tress cr d = A = 20 x 5 = . u a · 
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. M 191.9 8 2 O s: 
Bendmg stress ab= Z = 52 = .3 2 u MPa 

20x-
6 

Resultant maximum stress 
a=ad+ab 

320 = 1.91 8 + 2.302 8 

or 8 = 4~~f2 = 75.99 mm 

Example 13.10 

Answer 
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A bar of length 4 metres when used as a simply supported bea:n and 
subjected to a uniformly distributed load bf 3 KN per meter run over the 
whole spdn, deflects 15 mm at the-centre. Determine the crippling load when 
it is used as a column with following ends condition. 

(i).Both ends pin jointed 
(ii) one end fixed and other hinged. 
(iii) Both ends fixed 

Solution 
Load= 3 KN/m 
Deflection at mid span = 15 mm 

5wf 

or 

Ye= 384£1 

15 = 5 X (3 X · 103) X (4 X 1000)4 

384£1 
3 . 12 

El= 5 X 3 X 10 X 256 X 10 = O 666 X 1015 
384x 15 · 

( 1) When both ends are pin Jointed l = L = 4 x 1000 mm 
2 

Crippling Load Per = 1t ?El 
1-

2 15 
p = 1t X 0.666X JO = 4 _112 KN 

er (4000)2 

(ii) When one end fixed and other end hinged l = -{z 
pc·r = 1t22EI = 21t2EI = 2 1t2 x 0.666 = 0.224 KN 

l L2 . (4000)2 . 
(iii) When both ends fixed l = l/2 

p = 4 1t2 El = 4 1t2 X 0.666 X 1015 

er L2 (4000/ 

= 16.448 KNli, Answer 

(AMIE) 

• 
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Emperkal Formula 
Rankine's formula 

acA 
P=----

1 ..J.. a(J} 
' I k) 

Where A = Area of cross ~ section of the column 
cr c = Ultimate stress for column material 

l = Effective length of column 
k = Least radius of gyration 
a= Rankine's constant 

The Values of Rankine's constant (a) and (Ge) are givi:n in the 
fol.lowing table. These Values are only for a column with both ends hinged 
or pinjointed. For other end conditions the proper effective lengths should 
be used. 

Values of crc and a are given in the fo!lwing table 
Table 13.2 

S.No. Material a,inM=~t Value of a 
I 

1. Wrought iron 2500 1/9000 

2. Cast iron 5500 1/1600 

3. Mild steel 3200 I 117500 

4. Timber 500 I 1/750 

Johnson's Straight Line Formula 

P = A [ O'c - n (,:) 

Where crc = allowable stress in the material 
n = a constant depending upon the material 

If ~ is plotted against ilk then a straight line is obtained, hence it is 

called straight line formula. 
The values of a and n are given in the following table. 

Table 13.3 

S.No. Material Ge in MPa n 

l. Mild steel 3200 0.0053 I 

2. Wrought iron. 2500 0.0053 

3. Cast iron 500 I 0.008 

I 
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Johnson's Parabolic Formula 

P =A[ crc-{f JJ 
\yhere P = Safe load on the column· 

A = cross-sectional area of the column 
cr c = Allwable stress in the material 
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r=A Constant whose,value depends upon material of the column 

f = Slenderness, ratio 

The following table gives the values of crc and r . . 
Table 13.4 

" 

S.No. Material crcMPA r 
,., 

3200. 0.000057 L Mild Steel 

2. Wrought iron 2500 0.000039 

3. Cast iron 5500 0.00016 

Exampl!il 13.11 
A cast iron hollow column is 3,metefslong and.both ends are fixed. 

The external diameter is 80 mm and the internal diameter is 60 mm. 
Determine the crippling loatf,using Rankine's formula. 

' ' . i 1 ' ... 

Take the value of crc = 550 MPa and a= 1600 (Aligarh University) 

Solution 

Area of cross-section A = ~ (802 - 602)' = 700 1t mm2 

Moment of inertia I= ~ (804 - 60\ = 625 x 700 1t mm 4 

Least radius of gyration k == {i;; 
k = ... ,-6-25-.7x-70_0_1t_· , = °'1625 = 25 mm 

\/ OOn: 
. . L 3000 

Smee both ends are fixed l = 2 = - 2- = 1500 mm 

J_ = 1500 = 60 
k 25 

Crippling Load 
· cr A p = C 550X 7001t 

1 + a (l!k)2 ·· 1 2 
l+ 1600<60) 

P= 372.15 KN Answer 
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Example. 13.12 
A hollow cylindrical cast iron column 5 metres long has both ends 

fixed. Determine the miximum diameter ofthe column if it has to carry a 
safe load of 250 KN with a factor of safety of 4. Take the internal diameter 

as 0.8 times the external diameter .. Take O:c = 550 MPa a.nd a = 1; 00 in 

Ramkine 's formula. 
Solution: 

) 

' Let D be the exteral diameter then the internal diameter d = . 8D since 
both ends are fixed,.the effective length 

L . 
1 = 2 = 2.5 metres = 2500 mm 

Sectional area of the columm 
1t2 21t 2 2 2 2 A= 4 (D -dJ= 4 [D -(.8D) ]=.091tD mm 

Moment ofinettia of the column section . . 

. I= ~(D4 -J.)· 64 .. 

~(n4 ·...itf) 

and K2 = l = 64 · = _!._ (D2 + d2) 
A '!!:,(D2 -tr) 16 

4 
• d! 2 

= /6 [D2 + (.8D)2] = l.~~ = . 1025 D2 

Crippling load = safe load x factor of safety 
6 = (250x 4) = 10,00 KN= IO N 

p = <JcA 

· ·. l+a(VK)2 

155.5D2 l06 = __ 5_5_0.,..x_._09_1tD_2 _ ..... 

1 + 1 2500x 2500 
160 0.1025D2 . 

4 
1. 3.81 X 10 
+ 4 

D 
4 

106 = .· .. 155.SD 

· D2 +3.81 X 104 
or 

· or 155.5 D4 - 106 D2 - 3.81 x 1010 = 0 

Solving the quadiratic equation 

· D4 - 6430 D2 ..,. 2.45 X IO~ = 0 

D2= 
6430± ~(6430)2+4 x2.45xrn8 

2 
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D2 = &_430± 31990 = 38420 = 19210 
2 2 

or D = 138.6 mm 

and d = 138.6 x .8 = 110.88 mm Answer. 
Example 13.13 
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A mild steel rod has a cross-section of 60 m x 30 mm and is one 
metre between centres. Assume that it is a pin ended strut for bending in a 
plane parallel to 60 mm side and fixed ended for bending in a plane 
perpendicular to 60 mm side, calculate the maximum pressure that can be 
allowed on a 300 mm diametre piston. Assume that the crank is at top dead 
centre and take a factor of safety of 4 Take for mild steel ac = 3250 MPa 

and for pin)ointed ends a= 75
1
00 (Engg. Services) 

Solution. 

Fig. 13.7 

For buckling in a plane parallel to 60mm 
side effective 

side 

Length l = L = 1000 mm 

Moment of inertia l = / 2 (60) (30)3 

= 13.5 x 104 mm4 

K = {I;;= '1 ~~:o~g = 8.66 mm 

_J_ _ 1000 _ " 
K - 8.66 - l L.S 

For buckling in a plane parallel to 30 mm 

l 3 4 4 I= 12x 30x (60) = 54x 10 mm 

L 
The ends are fixed hence l = 2 = 500 mm 

K = -r.-;-/ / =,,. / 54 X 104 17 3 
-VI/A \J 60 x 30 = · mm. 

/. 500 
K = 17.3 = 28·9 

The maximum slenderness ratio= 115.8 

Hence crippling load. 

P= crc-A 2 = 3250xl800 =2100KN 

1 + a(VK) 1 + _ _!._ (115 8)2 . 
• 7500 . 

Allowable load= cripplinggload = 2100 = 525 KN 
factor of safety 4 
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. 525xl~ 
Maximum Pressure = = 7.42 MPa Answer i (300)2 

Example 13.14 
A mild steel strut is built of 4 angles each 100 mm x 100 mm x 12 mm 

size forming a square section of side 350 mm over all as shown in figure 
13. 8. If the length of the strut is 10 metres and the ends are hinged. Calculate 
the· safe axial load using Rankine's constants and a factor of safety of 3. 
properties of angle section are (i) !xx = lyy = 207 x 104 mm 11 

Solution· 
(Cx-x = Cy-y) = 29.2 mm. 

Area of the angle = 2259 mm2 

Moment of inertia of the 
composite section 

= 4 [ 207 X 104 + 2259 (145.8)2] 
= 4x 5009.lx 104 

Total area of the compound 
section x 

4x 2259 mm2 

K = {v; = A / 4 x 5009 . 1 x 104 

,1 \J · . 4 X 2259 

= 148.90 

(Kn) = lOx 1000 = 67.15 
.148.90 

<Jc- A 3200 X 4 X 2259 
P= = 

1 + a (Y'K)2 1 2 1 + 7500 (67.16) 

Fig.13.8 

Newtons 

= 3200x 4x2259. _1_ K1N=lS0607 
1 + .601 X -1000 . 

18060 
Safe Load = - 3-. - = 602 KN Answer 

PW =60.2KN 

Example 13.15 

1 
E 
E 
0 
I!) 
(') 

The section of a compound column is shown in thefigure. The column 
is 3 meter long and both ends are hinged. Using Rankine's Formula. 
Determine the safe load the column can take if factor of safety is 4. Take crc 

1 . 
= 3200, a = 7500 

Solution 
Area of the section= (1200 + 1200 + 1150 + 1150) 

=4700mm2 · 
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55 X 11031 
12 j 
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• 4 4 = 508 x 10 mm X ' . 
11 I mm lxx for plates 

I -[160x 1353 160x 12031 
l-----'--1-~---1J:.._ . - 12 12 J 

= 976x 104 mm4 

Fig.13.9 

:. lxx for the compound section= i484x 104 mm4 

lyy for joists 

={10~2603 nox 53+ usox sa2] 

= 612x 104 rrim4 

15x 1603 4 · 4 
lyy forplates = 12 = 521x 10 mm 

lyy for the compound section = 1124x 104 mm 4 

2 · heast 
Hence least value of K = ~ 

4 
K2 = 1124 X 10 = 2400 

47 X 100 

C . 1· L d crc.A npp mg oa = 2 
1 +a(VK) 

3200x 4700 3200x 4700 
P = 1 1 3000x 3000 = 1.5 

+ 7500 X 2400 

P = 1002.6x 104 Newtons. 
4 

S c L d 1002.6 x 10 a1e oa = 4 

PW= 2506 KN 
I. S. Code Formula · 

Answer 

The maximum permissible axial compressive load P is given by the 
formula 

p = O'ac • A 
Where P = Axial compressive load 

cr ac = Permissible stress in axial compression 
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A = Effective Cross-sectional area of the member (Gross 
Sectional area minus deductions for any hole not filled completely by rivets 
or bolts) 

As per Is - 800 - 1984 the following formula is used for calculating 
Gae 

fee+ fy 
Gae = 0.6 X . II, 

[f~e + J;] n 

Where Gae = Permissible stress in axial compression 

fy = Yield stress of steel 

f ec = Elastic critical stress in compression 

rt2E 
fec=T 

Where "A= Slenderness ratio !:_ 
r 

E = Modulus of elasticity 2 x 105 MPa 
n = a factor assumed as 1.4 

Values of are given in the table for convinience corresponding to 

various values of O"ac yield stress cry and slenderness ratio J_ 
r 

Example 13.15 
. Determine the safe axial load an a strut built up of 100 mm x 100 mm 

··x 10 mm angles to from the shape of a square as shown in figure 13 .JO The 
column is 5 metres long and hinged at both ends take yield stress of steel as 
250MPa 
Solution 

Elective length = 5 meters 

Properties of 100 mm x 100 mm x 
10 mm Angle from steel table 

4 4 Ixx= Iyy= 177 X 10 mm 
2 Cxx = Cyy = 29 .4 mm, a= 1903 mm x 

Since the section is symmetrical 
about x-x and y-y axis 

:. lxx=lyy= 4 [lxx+ a Cxx2] 

= 4 [177 X 104 + 1903 (29 .4)2] 

= 1367.6 X 104 

Gross area A = 4 x 1903 

= 7912 mm2 

. . . 1367.6 X 104 
Radms of gyrat10n = '1IxxlA = 7612 

I d ·. [ 5000 S,en erness ratw - -- = 118 2 
r 42.3 · 

4 Ls 

100 x 100 x 10 mm 

Fig.13.Hl 

= 14.3 mm 
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Using yield stress= 250 MPa and l/r = 118.2 
From table 

for l/r = 100, CTae = 72 
l 

for - = 120, 13ae = 64 
r 

By interpolation, for l!r = 118.2 Ciae = 65.44 
:. P = Gae X Area 

= 65.44 X 7612 = 498.12 KN 
Example 13.16 

Columns And Struts 

A single angle strut ISA 100 x 100 x 8 mm is 2 meters long. Determine 
the safe compressive load if the yield stress/or steel is 250 MPa 
Solution 

Area of the section= 1539 mm2 

rmm= 19.5 
Effective length = 2 meters = 2000 mm 

Slenderness ratio = 21:o = 102.5 

Allowable stress from tables taking 
<Jy = 250, Gae== 76.84 

But permissible value for single angle strut dis-continous member 
= 0.8 <Jae= 0.8 x 76.84 = 6L4 MPa 

Hence safe load= 1539 x 61.4 Newtons 
Pw = 94.6 KN Answer. 

Eccentric loading on long columns 
Rankine's formula 

When a long column is subjected to eccentric loading, the reduction 
. factor is modified taking into account the effect of eccentricity as well as 

buckling. Hence Rankine's formula becomes 
<Jc.A-

When eccentricity is about both the axes the formula is further 
modified as under 

p = Cie.A 

{ (l'll} r e Ye e'xe 1 
I+a kl +il+z. +-2 ( 

J l kx ky J 

The above formula is valid for columns. with both ends hinged. Other 
cases with different end conditions may be solved accordingly. 
The secant formula 

Consider a column with both ends hinged with a load P acting at a 
distance e from the axis of the column Fig. 13.11 
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C. . ·. 1P 
B . ...:....f-

1 
I 
I 
I 
I 

Consider a section at a distance x from A . Let y be the 
. deflection of the column from the line of action of the load 
P, then 

I I 

Bending Moment;::: -P.y 
d2 

EI J=-P.y 
I I Y--lT 

. I 
I I . d2y _P 

:;: X 

A· p 
-le 

.. dx2 + EI .y =O 

The Solution of this differential equation is 

y = CJSinX~+C2 Cosx~ 
Fig.13.11 

at x = 0, y = e C2 = 0 

At the mid height of the column :Z- 0 

l 
andx =2 

O=C1-{f.cosf 1f-e-{f.sini 1f 
s· z-~ 

e zn2-\/m 
C1= l -~ 

Cos 2 'IE! 
Substiluting i11 ~9uation (i) we get 

Sini~ . _ Ip ·~ 
y =e . . Sznx-\J-fij +Cosx'\/i} 

J_-~ • I 

Cos 2 ·\/-fj J 

A l 
t X =-

2 

.2/-,;;--
Szn 2 ·\Jt l 

Ymax =e . . ~-+Cos 2 
l . p 

-Cos2 EI 

=esecJ_-/p 2 -\Jti 

(i) 
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The maximum B. M. will occur when x = f where y is the maximum 

Mmax = P . Ymax 

=P.e.Secf-{j; 

The maximum bending stress 
p M.y 

CJ max = A + -I-

p M =~,+-
A Z 

z_ Ip 
p P. e. Sec-{\Jt 

= A+ z 

°' er-a f/1+; e seed~ 
Where Ye is the distance of the extreme compression fibre from the 

neutral axis 1 , 

The term ~,'c: • is called the eccentricity ratio and l \ is the effective 
K 

length of the column. 

Example 13.17 
A hollow circular column of length 4 metres, eiternai diameter I 50 

mm and internal diameter JOO mm is hinged at both ends. It supports an 
eccentric load of 250 KN at an eccentricity of IO mm from the vertical axis 
of the column. Determine the maximum stress induced in the column. Take 
E = 200 KN/mm2 . , 

Solution 

Direct stress= 250x 103 = 2;~ ;~~~ 4 = 25.46 MPa 
~ (1502 - lOif), 

Moment of inertia of the circular column 

I=; (D4-cf) = 6~ [ (150)4 -(100)4 ] = 19.941 x 106 mm4 

Since both ends are hinged equivalent length = 4000 mm 

Bending stress a [PeSec.f '%)x i 
' 'l-r;-Now Calculate, Sec . z "\/-Jii , 
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== Sec . 4000 '1 250 x Hf 
2 200 X 103 X 19.941 X 106 

=.·S 2000.·.'\,~ 
ec · · 103 · ~ 19.941 

= Sec. 2 .,/~o-.6-2-68- = Sec 2 x .250 = Sec . 0.50 radian 

=Sec. 28°.68 = 0. 8772 

B d. . 250 X 1 (}' X 10 X .8772 ?S 
en mg stress = . . 6. X 

19:941 X 10 
= 8.20MPa 

· .. Maximum stress developed 
Ci max= Direct stress + Bending stress 

= 25;46 + 8.20 = 33.66 MPa Answer 
Columns with initial curvature 

451 

Consider a column AB oflength l and having an initial curvature such 
thatthe maximum centraldeflection is e Fig. 13.12 

Fig.13.12 

Let the initial deflection at a distance x from A be c 

C= 0 whenx = 0 
and also when x = l 

l 
C=e when x=-

2 
Assume that the initial shape of the. column is 

governed by the relation 

C = e Sin n: x and this satisfies the above stated 
l 

conditions. 
On application of the load P let there be a further 

deflection of y at x from A 
2 

El d )' = - P (y + c) 
dx2 

d\• p p . 1tX 
dx2 + EI y + ET eSml=O 

The solution of the above differential equation is 

{f r::- p s· nx 
. fr EI"e. m-l-

y = Ci Cos x El + C2 Sm x \J El + rc2 p 

z2 El 

When x = 0, y = 0 
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; 1 .e.SinO 
0 = C1 Cos O + C2 Sin O + ---

n2 p 

C1 = 0 
When x = l, y = 0 

p 

P-El 

. r;- El .e.Sin 1t 

0 = C2 Sm l '\j EI + r(' p 

z2 El 

= C2Sin l- Ip -\Ji:, 

Either C2 = 0 or Sin l "'1f, = 0 

Columns And Struts 

The later is the Euler's solution for a two hinged straight column. 
Hence C2 = 0 

y= 

p s· nx El .e. m-1-

r(' p 

t2 El 

Total eccentricity at any point is y + c 

p s· 1tX 
El.::?. m-l- . nx 

= ----- + e S1n - 1-1t2 p 

z2- El 

= e Sinn x 
l 

. rc2El 
Smee - 2- = Per (Euler's load) 

l 

E . . . ~· 1CX ( p 1)\ ccentnc1ty at any pomt = e :)Jil - 1- Pcr-P + 

- . rr.x(~) 
- e Sm l lPcr-P 

Maximum deflection occurs at the centre when 
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M . d fl . s· 1t l [ Per J :. ax1mum e ectlon = e ml x 2 Pcr-P. 

ePcr ----
- Pcr-P 

Maximum Bending moment at centre= Load x Max. deflection 
P.e Per 

Per-P 

Maximum stress = direct stress + Bending stress 

P Mmax -Ye 
O'max = A + I 

453 

Where Ye is the distance of the extreme fibre in compression from the 
neutral axis 

Ci max 
P Per . P . e . Ye 

=-+ 
A (Pcr-P) .I 

= r [ l + -(P-:-r~-'--c;-'-·~-~k-2] 

_ [i e Ge Ye] -0-o + . ., 
<Jc - Go I(" 

p 
WhereGo= -

A 

Per 
and cr = Euler's buckling stress= A 

O"max - l = eye X~ 

Go k2 O"e - O"o 

or e Jc =( <>ma~: Go) ( <re ;X cro) 

Struts With Transverse Loading 
Strut with a point load at mid span 

B 

Fig.13.13 

from A is 

p 

Let a strut A B of length L 
and. hinged at both the ends be 
subjected to an axial thrust P and 
a central load Was shown in figure 
13.11 

Taking origin at A, the 
bending moment at a distance x 
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·or d2y + ft - Wx 
dx2 EI 2El 

·The solution of the above differential equation is 
: . .· Wx 

y=C1 Sm Kx + C2Cos Kx- 2 p 

WhereK=·~ 

~ .. -w 
dx = C1k Cos kx - C2k Sm kx 2P 

At x = 0, y = 0 :. C2 = 0 

Also when x = !:.... dy = · O 
2' dx 

l w 
:. 0 = C1 k Cos k 2 - 2P 

w 
or Ci = l 

?.KP Cos K 2 
W n· kx Wx y = x:sm --

2Kp r ,!:_ 2P 
'-'OSK 2 

l 
At x=-, 

2 

y =Jmax =; ~tan ~-fr-! 
l 

At x= 2 

Columns And Struts 

B. M.max = -,· ~Ian 1f fr-::)- W: 
-W _ Ip l 

Mmax = 2 P tan -\J "t . 2 
w-lEI _tp t wz 

}'max = 2P -\J~ tan ·\Jt · 2- 4P 

2 PL2 l _ tp 
Now Put U = 4El then U = 2 ·\J t 

w l Wl 
:. )'max=-.- tan U--

2P 2u 4P 

Wl (tanu 11 
= 4P -u-- ) 
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4Elu2 
Now P = --2- from above 

l 

. , _ W.l.l 2 (tanu-u) 
.. )max- 4x 4Elu2 l u 

= W l 3 lr tan u - u I 
16£/ u3 J 

_ Wl 3 3 (tanu-u) 
- 48 El X l u 3 ) 
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Stmt with an axial load P and a uniformly distri.butedJoad w per 
unit mn over the whole length 

p~·p 
~~B. 

I !--~--..-! 

Fig.13.14 

differential equation is 

Bending moment at a distance x 
• 2 l 2 

M = El a y = - w x + wx _ P )' 
X 2 2 2 . 

dx 

d2y + _!_ , _ wx (l- x) 
2 El ·> - - 2E l dx 

The Solution of the above 

w-x (l-x) WE I 
y= Ci Cos Kx+ C2sin Kx- 2P -~ 

~ -w 
d x = - C1 K sin Kx + C2K Cos Kx 2 p (l - 2 x) 

At x= 0, y = 0 

wEl re K Kl . K wx(l-x) wEll 
and y = p2 _ os x + tan 2 sm x - lP p2 _, 

l 
Atx=. 2 

wEI{ l l l} wll wEI 
y = Jmax = 7 Cos K 2 + tan K 2 Sin K 2 - 4 p 2- p 2 
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W l 2 
Mmax· B.M==-g -P .y max 

I I 
-~ wEII - Ip J__ I 

kl max - P (ec -\J ti . 2 1) 

Maximum Compressive Stress = Direct Stress + Bending Stress 

1. For Short Columns 
l 

-;- < 32 or 
K 

2 . For Long Columns 

{ > 120 or 

3. For medium Columns 

SUMMARY 

I 
d < 8 

l d > 30 

{> 32and< 120 

l 
-> 8 and< 30 
d 

4. Euler's crippling load or critical load a for long columns 

1t2EJ 
(a) Per= - 2- (When both ends are hinged} 

l 
i2EI 

5 . (b) Per= --2 (When one end fixed and the other end free) 
4l 

4n2EI 
(c) Per= --2- (When both ends are fixed) 

l 
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2 . . . 

(d) Per= 21t ; 1 (When one end fixed and the other hinged) 
l 

5. Ranldne's Crippling Load 

O' ·A p =· . e 

6: 

7. 

8. 

er 1 +a (0c)2 

Where O'c = ultimate stress for column material 
A = Area of cross-section of column 
l = effective length bf column 
K = Least radius of gyration 
a= Rankine's constant. 

Johnson's straight line formula 

::e: ~j~able stress in the mare,iaJ 
n a constant depending upon the material 

Johnson's Parabolic formula 

P=A [cr,-,(i)2
] 

I. S. Code formula 

P= O'ae·A 
Where P = axial compressive load 

O' ae = Permissible stress in axial compression 
A = Effective cross-sectional area of the member. 

9. Eccentrically loaded long columns 

p = {1 +a(iJ}:Al + ~ + :: + 
10. The secant formula 

. P{ Ye l. ~1 
O'max == A 1. + k2 .e. Sec 2 EI . 

QUESTIONS 
(l) (a) Explaip. the terms "Column" and "Strut" 
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(b) What do you understand by the effective length of a column? Write 
the effective lengths for various end conditions. 

(2) What are the various modes of failure of the following types of columns 
(a) Long columns 



458 Columns And Struts 

(b) Short columns 
(c) Medium Sized columns. 

(3) (a) What ar1; the assumptions made in Euler's theory for long columns. 
What are the limitations of Euler's theory 

( 4) Deduce an expression for the crippling load for a column by Euler's 
theory 

(5) Explain slenderness ratio. Depending on slenderness ratio how are 
columns classified ? 

EXERCISES 
(6) A mild steel bar of diameter 50 mm is used as a column with both ends hinged. 

ff the safe allowable stress in steel is 210 MPa and the modulus of elasticity is 
200 KN/mm2, Determine the minimum length for which Euler's Formula is valid 

Ans. (1.21 metres) 

(7) Determine the critical load for a rectangular bar 250 mm deep when used as a 
column with pin jointed ends. The bar is 4 metres long and lxx = 44 
x 106 mm 4 and = 4 x !06 mm 4 Take E = 200 KN/mm2 · 

Ans. ( 493 KN ) 
(8) Calculate the crippling load for T-section show in figure 13. i 3. When used as 

a strut 4 m long an hinged at bothends. 

Take E = 200 KN/mm 2 1--- 150 mm ---j l 
Ans. (711.25 KN) T 

J.MJ 1995 II! T 
20mm 

(!')) A uniform bar of spa\1 2 metres deflects 6 
mm under a central load of 150 newtons. 
Determine the Euler's buckling load when 
used as a column with bothends fixed 

120mm 

L_ 
Fig.13.15 

20mm 

Ans. (41.6 KN) 

(10) Find the Euler's crippling load for a hollow cylindrical steel column 30 mm 
external diameter and 2. mm thick. Take length of the column as 2.3 m and hinged 
at both ends. Take E = 205 KN/mm2 

Ans. ( ! 6.88 KN) 

( 11) A circular bar Sm long and 40 mm in diameter was found to extend 4.5 mm under 
a tensile load of 40 KN the bar is used as a strut with both ends hinged. Determine 
the buckling load for the bar and also the safe load. Taking factor of safety as 3. 

(Aligarh Uni.) 

Ans. (210 N, 70 N) 

(12) Calculate the safe compressive load on hollow cast iron column (one end rigidly 
fixed and the other hinged) of 150 mm external diameter and 100 mm internal 
diameter and 10 m length. Use Euler's formula with a factor of safety 5 and E = 
95 KN/mm2 Ans. (748 KN) 
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(13) Asolid cast iron column 5 m long and 150 mm in diameter is fixed in direction 
and position at the lower end and carries a load at the free upper end. Assuming 
a factor of safety 5, calculate the safe load. the column couid carry. The value 
of 'a' in the Rankine's formula for cast iron may be taken as 1/1600 ands CTc= 

5500 KN/mm2 Ans; {45 5KN, 91 KN) (AMIE) 

(14) .Determine. the section of a castirnn hollow cylindrical column S meters long 
with ends firmly built in if it carries an axial load of 30 KN. The ratio of internal 
diameter to external diameter is 3/4 use factor of safety of 3 
Ta..1<e Ge= 5500 and a= l/1600 J.M.I. Ans. (166 mm, 125 mm) 

( 15) Find the Euler's crippling load for a hollow cylindrical cast irnn column 150 mm 
external diameter and 20 mm thick. If it is 6 metre, long and hinged at both the 
ends. Compare this load with the crushing load as given by Rankine's Formula 
using constants. 620 MPa and 1/1600 

Take E = 80 KN/mm2 (Engg. Services) 

Ans. (386.6 Kt"'! and 445 KN) 

DOD 



1 
Analysis of Simple Trusses 

Truss 
Truss is a framework consisting of any number of bars forming 

triangles. The members are pin-jointed or riveted. All members in a truss 
are in axial tension or in axial compression. 
Perfect frame 

A perfect frame is one which has sufficient number of bars so as to 
keep · the truss in static equilibrium under any system of load without 
distorting its geometrical shape. The forces in the members of a truss can be 
determined with the help of the equations of statics 1: H = 0, I: V = 0 and 
I:M= 0. 

If n be the number of bars in a truss and j the number of joints, then a 
perfect frame or a statically determinate frame must satisfy the following 
equation. 

n = 2j- 3 
Deficient frame 

When the number of bars in a frame is less than the number required 
for a perfect frame, such a frame is called a deficient or impefect frame. 
Redundant frame 

When the number of bars is more than the one required for a perfect 
frame then the frame is called redundant frame or statically indeterminate. 
We shall confine our studies to perfect frame or statically determinate 
frames orily. 

Perteet frame 

Types of Supports. 

Redundant frame 
Fig. 14. i 

Deficient frame 

Trusses are generaHy supported on the following type of supports. 
(1) Roller or Free supports. These supports provide retraint in only 

one direction. 
(2) Hinged or Pin-jointed - They provide restraint in two directions 

Vertical and horizontal movements are prevented 

460 



Analysis of Simple Trusses 

Fig. 14.2(a) Fig.14.2 (b) 

Strut 
A member of the truss m axial 

compression is l::alled STRUT 

4 ._I _· ____ .. __,{ 
.. 

Tie 

STRUT 

Fig.14.3 

461 

TIE A member in axial tension is .called a 
Tie 

F;ig.14.4 

Analysis of forces in perfect frames 
The following methods are commonly used to determine the 

magnitude and nature of forces in members of fram~d structures .. 
(1) Method of Joints 
(2) Method of Sections 
(3) Graphical Method 

Method of J6ilits" 
Since every joint in a perfect frame is in stable equilibrium, the sum 

of horizontal and vertical components of all forces acting ori a joint must be 
equal to Zero. !'.e: !.H = 0 and I: V = 0. Afterdeterming the support reactions 
a joint should be chosen where the number of unknown forces m11st not be 
more .than two. Now resolve 1.al.l the force on the joint into horizontal and 
vertic'al components and equate each equation to Zero. By solving these 
equations the two unknown forces can be determined. A suitable direction . 
for the. unknown. forces.should be assumed. If the. magnitude of the force 
obtained is found fo be negative, it means the assumed direction was wrong 
and the direction should be changed. 

Example 14.1 
Determine the magnitude and nature of forces in all the members of 

the truss shown in fig. 14.5 
Solution 

Number of m~mbers = 3 
Number of joints = 3 

.Now,. n =2j-3 
n=2X 3-3=3 • 
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l 
I 
I 

AnalysisofSimple Trusses 

16 KN 
C 

i,.,---8 m---+« 
RA = 10 KN Rs = 6 KN 

Fig. 14.5 

Hence n = 3, therefore the frame is statically 
Taking moments about B .. 

RA x 8 = 16 x 5 or RA= 10 KN 
and Rs= 6 KN. 
Now consider the equi-librium of joint A 
Resolving Vertically 

I 10 - j, f Ac Sin45° = 0 or f Ac= Si}J5 o 

10 . _r,:;- . 
f Ac = V.../2 K..1\1 = 10 ·112 KN (comp.) 

Res.:ilving horizontally 
~. 4 -t 

f AcCos45° -f AB= 0 

determinate. -

A.: Ats 

or f AB= f Ac Cos45° = Tz .ff= 10 KN (Tension) 

Consider jointB 

Resolv.ing.vertically we get · .. ·. ~·· C .· .. · .· 
1' 6 -:- f Be Sin30o = 0 or fsc = Sin 6300 300 . B 

or fsc= 12 KN (Comp.) . 

The magnitude and the nature of the forces are sh~wn in the table 

S.No. I Member I Compression Tension 

l AB I 10../2 lOKN 

2 AC I 12KN 

3 BC I 

I 

1 

Example 14.2 
DeLermine the magnitude and nature of the forces in members of the 

truss as shown in figure. 14.6 • 
• 
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Solution 

10 KN 

R1 = 20 KN 

Fig.14.6 

Number members= 11 
Number jomts = 7 

n = 2j-3 = 2 X 7 - 3 = 11 
Hence it is a perfect frame 
Since the loading is symmetrical 

:. R1 = R2 = 20KN 
Now consider joint No. (i) 
Resolving vertically I:V = 0 
i 20 - J- 5 - F 1 Sin30° = 0 

15 
F1 = Sin 300 = 30 Kl'\T (Comp.) 

5 KN F 
I 1 

0~0° ''-'.J F2 

.20 KN 

Since the result is positive, the direction assumed is correct 
Resolving horizontally LH = 0 

463 

'f-- f-

F 1 Cos30° + F2 = 0 or F2 = - F1 Cos30° or F _ -30xJ3 
2- 2 

F2 = - 25,98, Since the result is negative, the direction assumed is 
wrong. Therefore change the direction :. F2 = 25.98 KN (Tension) 

Consider joint No. 5 10 KN 

Resolving vertically I F3 

i 10 - i F1 Sin 30° +.t F3 Sin 30° - i Fs Sin 60° = 0 r, @ 30° 
. 1 1 .,/3 -- -- so:--
10 - 30 x 2 +F3X 2-F5x 2 = 0 

1 .,/3 
10 - 15 + F3 X 2- l F5 = 0 

1 F3 - f F5 = 5 .... {i) 

Resolving horizontally 
-;:} f- """"7 

Fi Cos 30° - F3 Cos 30° - Fs Cos 60° = 0 
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(ii) 
Solving equations (i) and (ii) we get 

F3 = 25 KN (Comp.) and F5 = 8.6 KN (Comp.) 
Consider joint No, 6 
Resolving vertically LV = 0 

J. F5 Sin 60° + J. F4 Sin 60° = 0 

F4 =-F5 60° 

Result is negative Hence change the. 
direction of an-ohead. F4 = 8.6 (Tension) 

Resolving horizontally 
~ ~ ~ ~ 

F2 - Fs Cos60° + F4 Cos60° - F6 = 0 
:. F2 = F6 = 25.98 KN (Tension) 

Forces in other members will be similarly Calculated. 
Example 14.3 

Figure 14. 7 shows a pin jointed truss with a vertical force of 20 KN 
and a horizantalforce of 10 KN acting at C. Determine the forces in all the 
members. 
Solution 

20KN 

Fig.14.7 

R _ 20 _ 10 
AV- 6 - 3 

Rs 

Horizontal reaction at A RAH = 10 KN 
J~intA 2 3 
Sm e 1 = ,I 13 , Cos th = fil 

Number of joints = 4 

n = 2}- 3 or 2 x· 4 -3 = 5 
The frame is perfect 
Reactions 

Taking moments about A 
RBX 6 = 20x 3 + 10 x4 

=60+40= 100 
R _ 100 _ 50 KN 
B- 6 - 3 

Taking moments about B 

RAV X 6 = 20 X 3 - 10 X 4 
= 60-40= 20 
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Sin 02 = f, Cos 82 = 3oer5 (Tensile) 

Resolving vertically. 

I ~O - -l,fAc Sin 92 + i'f AD Sin 81 = 0 

10 4 2 
3 -fAc.5+ fADill=O 

Resolving horizontally. 

f-- {,· ~ 

10 + fAcCos 92 - fAD Cos01 = 0 
3 3 

10 + fAc. S fAD. ill = 0 

Solving (i) and (ii) We get 
25 .r;-;;- . 25 X ill 

fAD= 3 X'\/13(Tenslle)= 3 KN 

f AC= 25 KN (Compression) 

Joint B 
Resolving vertically 

i 5
3°-i f 8cSin02 +i fsDSin9 1 =0 

50 4 2 
3-fsc-5+fsn· m=.0 

Resolving horizontally 

f 80 Cos91 - fBc Cos92 = 0 
Solving (i) and (ii) we get 

(Tensile) 

f 125 (C . 
BC= 3 ompress1ve) 

Joint C 
Resolving Vertically 

_J., 20 - Ac Sin 92 - I f BC Sin 82 + f CD = 0 
4 125 4 20 KN 

J_ 20 - 25 + S - 3 X S + f CD= 0 

f cv= l~O KN (Tensile) 

Example 14.4 
D 

465 

(i) 

(ii ) 

(i) 

(ii} 

Find the nature and magnitude o forces in the Pratt truss shown in the 
figure. 14.8 



466 Analysis of§imple Trusses 

S KN s;KN SKN 

Sm .P Sm 

F 10 KN 

• I • Sm----'----

Fig.14.S 

Solution 
n = 2j - 3 or n = 2 x 8 - 3 = I 3 
Hence the fri:l.me is perfect 

Reactioh at A shaU have horizontal and vertical Components 

RA:h:= IQ KN 
Takiq,g tp.on'ients about A 

{f.y><tQQ =10 X .5 + 5 {15 + 10.+ 5) + 10 (15 + 10 + 5) 
= 500 · or R8 = 25 KN 

RA= (45 - 25)= 20KN 
Consider joint A 

Resolving Vertically 1:V = 0 
i 20 - fAE Sin 45° = 0 

20 . , 
f AE = Sin 450 = 28 .28 KN (Comp) 

Resolving horizontally 1:H = 0 

f- f- ~ 

10 + fAECos 45° -f AF= 0 

I 
I 

E 
I I .. 

1_o_KN...,., __ A_',..- _ t~0 
__ 

F 

f AF= 10 + 28.28 x -v"f = 30 KN (Tension) 

Joint F 
Resolving Vertically 1:V = 0 

J 10-ifFE=O 
f FET'· 10 KN (Tension) 

Resolving horizontally 1:H = 0 

f- ~ 

·. . E . 

A • l:OKN G 

fr A - f FG =.0 or · fFG = 30 KN (Tension) 
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Joint E 
Resolving Vertical I:V = 0 

t 5 + t }EF - t f AE Sin 45° - i !Ee Sin 45° =0 

5 + 10 - 28.28 x Jr - i he Sin 45° = 0 

or ho Sin 45° = 5 + 10 - 20 = - 5 

-5 
fee= Sin 450 = - 7 .07 ~ 

467 

- -~·· ... -.5.KN · D, 450 . 450 \ 

A · F G 

Since the value obtained is negative, change the direction of arrow 
head,hence 

fee= 7.07 KN (Tension) 
Resolving horizontally, "f.H = 0 

f AE Cos 4~ 0 + he Cos 45 ° :,.. f ED = 0 

f ED = 28.28 X Jr+ 7 .07 x,:-Jy 

JointDt 

('(, 
= 25 KN (Compression) 

- t foe= o 
· orfvc = 5 KN (Comp.) 
Re~olving horizontally 
2.H =0 

,.....,;r ' ~ 
f ED ....: fvc= 0 .. 

@r fvc= JED= 251\N 
Joint G ' 

Resolving·yertically = 0 

5 KN 

E--L ... · ... C •.. !G. · .. · 

j, 5 + Jlo-i fee Sin 45 °-' ifci:; Sin"'5'·0 = 0 

·5 + 1()·._ 7.07 X €- t f CG Sin45° ~ 0 ·*. 5 KN C 

f CG Sin 15° = 5 + 10-: 5 = 10 • : . H 
10 . 10 .\ F G 

f CG= Sin 450 = 1/'ll = 14.14 (Tens10n\ \ 10 ' 

Resolving horizontally 

r r r 
f GF + f GE Cos45 ° - f CG Cos•45 ° :...,f'(';H = Q 

i '41\w · 1 · 
feF+7.07x ~2- x ,;2 -fGu=O 

f GH = 30 + 5 - 10 = 25 KN (Tension) 
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JointB 
Resolving Vertically 

LV=O 
l'.25 - l f BC Sin 45° = 0 

25 . 
f BC= Sin 450 = 35.35 (Comp.) 

Resolving horizontally 
LH=- 0 

~ ~ 

fncCt,s45° -f88 =0 

Joint H 

. 1 . 
or f 88 = f ncCos 45° = 35.35 x Tz 

= 25 KN (Tension) 

Resolvingy ertically 
LV=O 

.J- 10- i f He= 0 
or · .. f He = 10 KN ('tension) 

· ·Example 14.5 ., : , 

G+B . H . 

10KN 

Determine the magnitude and nature of JorJ:es in all the. members of 
the'cantilever truss shown in the figure 14.9 

~----~~-"'--,---~D 

(a) 

.Solution 

10KN 

Fig.14.9 

Ntimber of me!mbers = 7 
Number of Joi-s '!:: 5 

Now n=2}-3=2x 5-3=7 
"' Hence the truss is. sfaticaIIy;determinate 

0 
f CD Sin 45° = 0 

10KN 
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Resolving horizontally 2'. H = 0 E 

:. f CD= Si~~50 = 10-lz KN (Tension) ~C 

f: Cos 45° - iDE-: 0 ~o KN 

C 1 f DE= f CD cos 45° = W\12 X -/z = 10 KN) (Comp.) 

f DE= 10 Ki~ (Comp.) 
I 
I 
I 

JintC 
Resolving Vertically 

B 
1
C -.··,.,-50 

j, f CD Sin 45° - i f CE= 0 

f CE = f CD Sin 45° = 10-{; X fi- = 10 KN 

(Comp.) 

Resolving horizontally IR= 0 

""'."7 ~ 

f CD Cos45° - f Be= 0 

or f BC = f CD Cos 45° = 10-{.i X fi- = 10 KN •' 

:. f BC= 10 KN (Tensile) 

Joint E 
Resolving Vertically LV = 0 

tfcE-i fs£Sin45°=0 

or !BE Sin45° = fcE = 10 KN 

10 10 
:. !BE= Sin45° = TA/2 -JAE= O 

Resolving horizontally 

~ ~ ""'."7 

!DE+ fBECos45° -fAE= 0 

10 + 10-{; X _ ~ - f AE = 0 
'/2 . 

or f AE = 10 + 10 = 20 KN (Compression) 

b 

469 
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,' 

Tension, Member .,,, Compression 

BC 
1, 

IOKN . f 

CD :, 10{;° KN 

DE :': . ,,, " IOKN 
'"!·:;, 

' 

BE 
/ 

101-{;"KN 
' 

" CE IOKN 

AE· 
;:: 

20KN ,, ,, 
',, 

Exampl,e, 14.6 
Determine. the magnitude and the nature of the forecs in all the 

members of the truss shown in figure 14.10. All inclined members are at 45° 
with the horizantal: 

Solution 
Joint A 

Resolving vertically 

Fig. 14.10:. 

'.f' 8 - f AH Sin45 - f AB Sin45 = 0 
1 1 · 

8-fAHT2 -fAB 12= 0 

Resolving horizontally 

~>, ~ 
,' •' ' . 8KN 

,, (i) 

f AH Cos 45° = f AB Cos 45° or f A,H = f AB 
c-- (ii) 

From equation (i) 
1 1 • 

8-fAH {i-fAH12= 0 

A 

' 2 
8-fATi= 0 or 

8 . . ' . 
fAH 2--Ji = 4--Ji KN (Tensile) 

:.fAB= 4{;° KN (Comp) 
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JointH 
Since the vertical component of f AH and f .fH 

should balance each other, hence f HJ = 4'\/2 G - 4-5~0 r"'""""k" 

(Comp) 
Resolving horizontally J 

or f HG= f HA Cos 45° + f HJ Cos 45 ° 

fHc = 4-{; x ~ + 4-{; x i2 = 8KN (Tensile) 

Joint B 
The vertical components of the forces f BA and 

fBJ should balance each other 

:. f 81 = f BA= 4-{;(Tensile) 

Resolving horizontally 
fBc=f81 Cos45°+ f 8ACos45 s. 

= 4-{; x ~ + 4-{; x Tz= 8 KN(Comp.) 

JointJ 

get 

Resolving the forces in line 
With HJC, we have 

fJC=fJH= 4-{; KN(Comp.) 

And Resolving the forces in line with GJB, we 

he = f 18 = 4 £(Tensile) 

Joint G 
Resolving the forces in line 
with GE, we have 

f GE= f GHCos45° 

= 8 x ~ = 4-{;(Tensile) 

Now resolving the forces. in line with FG.f, we 
have 

f CF= fcE + fcH Cos 450 

f GF = 4~ + 8 ~= s£ (Tensile) 

Joint C 
Resolving the forces in line with CE, we have 

f CE= f CB Cos45° 
= 8 Cos45° 

G 

C 

F 

I 
I. 

471 

A 

J 
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f CE= 4 {i KN (Comp.) 

and resolving th.e forces in line with DCJ, we get 

.•f CD= f b + f CD Cos45° . 

E 

f CD= 4 {i + 8-i= g-{i° (Comp.) D 

Support re~ctions 
AtF 
Horizontal reaction = f FG Cos45° 

=8-{z" x .Ji-= 8 KN~ 

Vei:!rcal reaction = f FG Sin45° = 8 KN i 
AtE . 

I 
!F ,."G 

Since the horizontal component off Eoan.d'f EC will balance each other 
hence there will be no horizontal reaction. 

Vertical reactioris' · ,. 

= f EG Sin 45° + f EC Sin45° 

= z'~ 4-{z" Sin 45° = 8 KN -1-

,AtD 
Horizontal reaction 

= focCos 45° = 8 ...Ji' x :i-= ~ · 
Vertical reacti5m = fvc Sin 45° = 8 {i~ -.E -·~. 45: DI - . 

· =8KNi 

Method of•~ctibns 
In this method the frame is divided into two portions by a section line 

passing through a few members. Generally the section should not cut II1Qre 
than three members including the one in which stress is required toi;' ---· j.._ ·'. ',,~ ' ........ ~ 
determined. Equili bnum of one portion either to the left or to the right of 
the section iSCOilSidered. Moments are taken at a suitable point where all 
forces except one meet.. Now with the hel~ of the equations of statics, fo(c;s 
in vanous members are determined, by equating either 

(i) l: M = 0 
or (ii) l: H = 0 or l: V = 0 
The following exaniples will help in understanding the method. 

Example. 14.7 
, Forthe truss shown in figure 14.11 determine the forces in members 

BC, BE and CE 
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Solution 
Taking moments about B 

RA x 8 = 6x 6 + 8x 3 = 60 
RA= 7.5 KN and 
R8 = 6.5 KN 

Consider section ( 1) - ( l) 

Taking moments about E 

A f-J..:.::;__ ___ ____;-1.-~;f-l-":7--'--_.._-'\B-- f BC X 2 = - 7.5 X 4 + 6 X 2 

7.5KN 

Fig.14.11 

Taking moments about C 

f BEX ,/3 = 6.5X 3 
or f BE = 6.5 Y3 (Tensile) 
Taking moments about B 

'5 
fcEx4 2 = 6x3 

18 X 2 9 
f CE= -::g- = Y3 KN (Comp.) 

Example. 14.8 

f . _ - 30 + 12 JQ.? 
sc- 2 - '1'2 

=-9 KN 
f BC = 9 KN (Compressive) 

The truss shown in figure 14.12 rests on supports A and D ~o that 
ABCD is horizontal. It carries a point load of 9 KN at B and 18 KN at C. 
Determine the magnitude and nature of forces in tlie members BC, FC and 
FE. 

Solution 
n = 2j - 3 

=2X6-3=9 
The frame is perfect 

Fig. 14.12 

· Taking mom~ts about D 
RAX(27)=9x 21 + 18x6 
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RA = ! 1 KN and Rs = 16 KN 
Draw a section a-a which cuts the 

members BC, FC and FE and divides the truss 
into two. portions andtonsider the equilibrium 
of the portion to the left of the section. Assume 
that the member BC, FC and FE and all in 

9KN 

6 m 8 15 m 
---7c 

8m ,,.,....-,,...,,.. 

tension. 11 KN 

Taking moment about F, the interse.ction F 

ofFCandFE 
Wehavellx6+fscx8=.0 or fsc=-8~25KN 
Smee the value obtained is negative, direction assumed is wrong 
:. fsc= 8.25 (Comp.)· 
Taking moments at.Jhe intersection of BC and FC: 
+ 11 x(2l)-9(15)- fF£(8)=0 

f 231-135 96 12 KN 
or FE= 8 8 -

JFE= 12 KN (Tension) 
Resolving verticallY:EV = 0 
i 11 -J. 9 + fFc Sin 0 = 0 

-2 -2 -34 
fFc=-.-=-= -=-4.25 

Sm9 &in 8 
Since the value obtained is negative the direction assumed is wrong. 
Hence. f FC = 4.25 (Comp.) 

Example. U.9 _ . . . . . . 
A towerABCDEF is loaded as shown in figure. 14.13 Determine the 

magnitude and nature of the forces in the members FE, FD and AC. 

10KN 

X 

5 KN 
E 

-Fig.14.13 

D 

Let section x-x·cut members FE, FD and 
CD. Now consider the stability of the upper 
portion of the truss. 

Taking moments about D 

fr£x4-5x4=0 :. f FE=S KN (Comp.) 
Resolving horizontally "i.H = 0 

f- ---? 

· - .frn Cos 45°+ 10 = 0 

or hD = Co~ ~ 50 = 10 '12 KN (Tension) 

Consider the stability of the upper 
portion cut 

The section y-y. Resolving horizontally 
IB= 0 

-fAcCos45°+ 10=0 

or fAc= C 1~ 50 - 10'12KN (Tension) 
OS, . 
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Example. 14.10 
Determine the magnitude and nature of forces in the members DE, DH 

and HK of the truss shown in figure 14.14 

2 KN 2 KN 2 KN 

C 
1--~~~--,1<-~~-,---,.--~~~~ ~ -,--

RA= 10 KN 4KN 

Fig. 14.14 

Support reactions RA= RB= 22° = lOKN 

I 

8 

Rs= 10 KN 

Draw a section 1-1 which cuts the members ED, DH and HK and 
divides the truss into two portions. Now consider the equilibrium of the 
portion to the left of the section. Assume that all the three members are in 
tension. 

Taking moments about D, the intersection of ED .and HD, we have 
10 X 12.5 - 2 X 10 - 4 X 7.5 - 2 X 5 - 4 X 2.5 -fHK X 4 = 0 
125-20-30-10-10 - /HKX4=0 
4fHK= 125-70=55 

or fHK= 5} = 13.75 (Tension) 

Taking moments.about H 
10 X 10 - 2X 7.5 - 4 X 5 - 2 X 2.5 + fED X 4 = 0 
100-15-2 0-5+flwx4=0 

-60 
60+fEnx4=0 or fED=-4-=-15 

The negative value of f ED shows that the direction assumed was 
wrong. Hence fED is in Compression. 

JED= 15 KN (Compression) 
Resolving Vertically 
f 10 - .J., 2 - i 4 - -J.. - 2 - .J.. 4 + i f HD Sin 0 = 0 
or 10- 12 + JHD Sin 9 = 0 
or f HD Sin 9 = 2 

. . 4 
Now Sm e = 4.716 = .848 

2 2 . 
f HD=----:--;;= 848 == 2.53 KN (Tensmn) 

smo . 
Answer 
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Example. 14.H 
Calculate the stresses in the members BF, FG and GE of the cantilever 

truss shown in figure. 14.15. 

10KN 10 KM 

D 

A 

CD A'-----,~-...JL..-__;, __ ,..Y ___ E_ 

f--4 m _.....,.,__ 4 m----4 m--1 ., 
ar 

Fig.14.15 
Solution 

Draw a section a-a which passes through the members BF, FG and GE 
and divides the truss in two portions. Consider th equilibrium of the portion 
to the right of the section. Assume all the members in tension. 

Taking moments about joint at 

The intersection of FG and GE 

f BF X 4 = 10 X 12 + 10 X 8 + W X 4 
240 

fsF = 120 + 80 + 40 = 4 60 KN 

(Tensile) 

Since the resulting stress is positive, hence it will be tensile and the 
assumption is correct. 

For stress in GE, take moments about j.oint No. 2 and assuming the 
stress in GE to be tensile. 

+ GE x 4 + 10 x 8 + 10 x 4 = 0 

GE=- 80+40 = -120 
.4 4 

=-30 KN 
Since the ·value is negative change the direction 

HencefGE will be 30 KN (Comp.) 
Now resolving vertically :EV= 0 

1 he Sin 45° + t 10 + t 10 = 0 
he Sin 45° = -30 

-30 30 -
he=- Sin 450 = V,ff = -30 -v2 

Since the value obtained is negative the assumed direction is wrong 
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:. fFc = 300 (Comp.) 

= 42.42 KN 
Graphical Method 

477 

Graphical method is the simplest of all the methods but accuracy in 
drawing and measurement is ofutmost importance. It involves the following 
three steps. 

(i) Drawing of space diagram to a suitable linear scale and denoting 
the forces by Bow's. notation 

(ii) Drawing of force diagram or vector diagram to some suitable load 
scale. 

(iii) Presen.tation. of the results in a tabular form showing the 
magnitude and nature of forces in various members of the truss. 
Bow's Notation · 

According to Bow's notation each force in free body diagram or space 
diagram is denoted by two letters placed on either side of the force as shown 
in figure 14.16 (a) and the corresponding vector in the force diagram is 
labeled with the saine letters placed one at each ~d in the ve'itor diagram 
as shown in fig. 14.16 (b) 

D 

Space diagram 
(a) 

R 

Fig.14 .16 

C 

.?:\. 
Vector diagram 

(b) 

The force P. in the space diagram is denoted\y the letters A and B and 
force Q, by the letters B and C etc. If the point O is in stable equlibrium 
under the action of the forces AB, BC, CD and DA ,then these forces can be 
represented by ab, be, cd and da in the vector diagram in which ab is drawn 
parallel to AB and be (s drawn parallel to BC etc. to a chosen load scale. 

The vector ab means that the force is from a to b in directions. 
Similarly vector cd the force is from c to d in. direction. The length of the. 
side ab in the vector diagram gives the magnitude of the force AB. in the 
space diagram. 
Space Diagram 

Space diagram is constructed to show the actual shape and size of the 
framed structure along with the applied loads to a suitable linear scale. The 
support reactions are also shown in th~ diagram and forces are denoted by 
Bow's notations as shown in figure ,14.17 (a) 

I 

I 

r 
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A B 

D 

G) ® 
w C w 
2 2 

(a) Space diagram 

Fig.14.17 
Force Diagram Or Vector Diagram 

Analysis of Simple Trusses 

a 

I 
d C 

b 

(a) Force diagram 
or 

Vector diagram 

All forces acting on the frame ar~ shown in the vector diagram drawn 
to a suitable load scale as shown in fig. 14.17 (b) 

To draw the vector diagram select a suitable point a and draw a vertical 
line parallel to AB to a suitable load scale say W = 50 mm. 

(2) On this line mark 'be' equal to force BC i.e. support reaction on 

R2 = ; = 25mm, then the line 'ca' represents the support reaction R1 ; 

=25mm 
(3) Through c draw a line parallel to CD and from 'a' draw a line 

parallel to AD. These lines will intersect at 'd'. Through 'b' draw a line 
parallel to BD this will also meet the line through 'c' at 'd.' Thus we obtain 
the vector diagram 

(4) Magnitude of the forces 
From the vector diagram the length of the line 'ad' will give the 

magnitude of the force in member AD on the space diagram. Similarly 
measure the lines 'bd' and 'cd' obtain the magnitude of the forces in 
members BD and CD respectively. 

( 5) Nature of forces, 
For joint Q) draw the vector diagram separa•ely. Showing the forces 

CA, AD and DC in a clockwise direction. Now follow the direction of the 
force CA and mark the arrowhead near the joint as shown in the fig. Put an 

A / 
JOINT ./o 

G) h-
i 

14. 
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other. arrow head at the other end of the member on the space diagram. 
Similarly draw s~perate vector diagrams fofeach joint in. order of the letters 
in the space diagram. ' 

· d ~· ... ·. ca·:·,· For joint @ the forces th/ forces 
are BC, CD c1nd DB. Follow the 

A . 'direction of the force BC and itfark the 

~ I C ""'-. · 14.17 (a) 

arr6wheircl near the joihi: Sirtiilarly 
mark the directiori of forcb for joint@ 

(6) The results are presented in the table as shown 

S. No. Name of Magnitude Nature 
Member 

.• .. · 
I AD WKN Comp.· 

·. 
2 BD WKN Comp. 

3 CD 0.866 KN Tension 
. 

Example 14:12 . . 
Find'grdphically theforces in the members of the truss shown in fig. 

/4./8 
Solution 

Taking moments about joint @ 

k, x5 :=::1sx 2 orR(= 6 kN and G)--.:;.;3m __ -t--:';f---:::1® 

Ta~ing mom~~ts about j()in.t CD 
R2 x {~J 5,~.,:f. . or : R2 ~ 9 KN 
Choose a suitable load scale and 

draw a vertical line ab parallel to AB. @ 
Now mark be equ,al (oJorc.e BC i.e. 
R2 = 9 KN: •. Hence c;a represepts the Fig. 14:1s 
support reaction Rt':; 6 ~N. E~om 'a' draw ~.lini3 parallel toAD and through 
'C' draw a line parallel to CD, these will intesect at 'd' to give the vector 
diagram for:joint :CD. Similarly from 'C' ·drawaline parallel to CE anc! from 

A 
15 KN 

8 

C 

·(a) Space diagram 

Fig. 14.18 (b) 

Vector. diagram 

\ 



480 Analysis of Simple Trusses 

'b' draw a line parallel to BE, these lines will meet at 'e' to give the vector 
diagram for joint @. Now join de which will represent the member DE of 
the truss. The complete vector diagram is shown in fig 14.18 (b) 

Now for joint <D draw the vector diagram 
separately to know the nature of the forces. Start 
with · known force CA and . proceed in the A 

dire.ction. o.f C.'A and mark t.,he arrow heads near ~. 
the joint as shown in figure 14.19 j c "'-

14.19 
The magnitude and nature of forces in various;members are shown in 

the table 

S.No. Members Compression Tension 

1 AD 9KN 

2 BE 9KN 

3 CD 10.82 KN 

4 CE 12.73 KN 

5 DE 15 KN 

Example. 14.13 

20KN 30KN 
A two bay warren girder truss 

is loaded as shown in fig ( 14. 20 ). 
Determine graphically or other wise 
the forces in all the members of the 
frame. 

CD~-----.,..-~@ 

Fig.14.20 

22.5 KN 

R2' 
2m -1 .. 

(a) Space diagram 

Solution 
Calculate the support reactions 

by taking moments about joint © 
R2 X 4 = 30 X 3 + 20 X 1 

R2= l!O = 27.5 KN 

and R1 = 22.5 KN. 
a 

27.5 KN 
C 

(b) Vector diagram 
Fig. 14.20 (a) 
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Draw the space diagram to some suitable linear scale and name the 
member using Bow's notation. Draw a vertical line abc parallel to AB and 
BC to some suitable load scale. Ma.rk cd equal to support reaction Rz then 
da will represent the support reaction R1, Through a draw a line paralled to 
AE and through 'd' draw a line paralled to DE, these Hnes win intersect at 
e. Similarly draw parallel lines to BF and EF to get point/. Now complete 
the vector diagram as shown in figure. · 

Forces in various members are shown in the tabel 

S.No. Members 
! 

Compression 

l AE 26KN 

2 ED 

3 EF 
4 BF 14.5 KN 

5 CG 32 KN 

6 GD 

7 FG .. 2.78 KN 

Example.14.14 
For the truss shown in figure 1421 

determine graphically the magnitude 
and nature of the forces in all the 
members. 
Solution 

The truss is symmetrically loaded 
hence R1 = R2 = 8 KN. 

2 KN 

Draw the space diagram and name R1 

the members as shown. Select a point 'a' 
and draw a vertical line abcdefga 

Tension 

I 
13 KN 

2.78 KN 

16KN 

4 KN 

4KN. 
I 

Fig.14.21 

representing ail the loads and the support reactions. Jg and ga represent the 

a 

b 

8KN 
e 

(!i) Space diagram (b) Vector diagram 

Fig.14,22 

! 
I 

I 
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support reactions acting vertically upwards. from g draw a line parallel to 
GI and GH. From 'b' draw a line parallel to Bfl meeting at i and h. Similarly 
draw lines parallel to CJ, from C and proceeding further complete the vector 
diagram as shown in fig. 14.22. 

Magnitude and nature of forces are shown in the table. 

S.N. Members I Compression 

l BH, 12 KN 

2 HG,IG I 

3 CJ,DK 8KN 

4 JH,Kl 4KN 

5 I JK 

Example. 14.15 
A cantilever truss is shown in figure 

14.23. Determine the magnitude and nature of 
forces in all the members. 

Solution 

I Tension 
I 
I 

10.4 KN 

4KN 

4 KN 

Fig.14.23 

4 KN 

Draw the space diagram to some suitable linear scale as shown. Vector 
diagram may be drawn starting from a vertical line abc paralle to the forces 
AB and BC to a suitable load scale. 

a,----------,d 

C 

(a) Space diagram (b) Vector diagram 

Fig.14.24 

The table shows the magnitude and nature of forces in all the members 

! 
! 

i 
1 
i 
i 
i 

I 
I 
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S.No. Members Compression Tension . ·,, . 
1 BF 2.4KN 

2 CF 4.8 KN 
3 CE 4.8 KN' 

4 DA '··9.6KN .· 
5 DE 9.6 KN .. . 

' 
•. 

1EF .. 
6 .• 4.8KN 

' · . 
-,~- ~ 

Example 14.16 
.. 

":d, 

Find graphically or other wise the forces. i,;t M m.embers of the truss 
shown infigure 14.25 · 

C 

Fig.14.25 

(~) ,Space i:liagram 

Solution 
Choose a suitable load scale 

and draw ,ab to represent force AB of 
8 KN. Now draw bf and af parallel to 
BF and AF, these lines will intersect 
atf similarly draw f d and bde parallel 
to FD and B_D _which wiB meet at point 
d. Points .ll, e and c will Coincide as 
shown in 'the vector diagram 

·[><Jdf: 
b · ,e,c 

(b) Vector diagram 

Fig. 14.25 (a) Fig. 14.25 (I:!). 
Forces, in aU the members all shown in the table ,., 

S.No. Member Compression Tension 

1 AE 17.92 KN 

2 . AF• 16.0KN 

3 BF 17.92 KN 

4 BD 16KN 

5 ED 0 0 

6 DF 8 KN 
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' 
Exampl~ 

@ Th~ shown in the 
figure 14.26 is loaded at joint (2). 
A horizantal chain is a attached at 
joint (3) So that member 1-2 
remains horizantal. Determine the 
pull on the chain and the forces in 
other members of the frame. 

....C~ha-in~~~~~--,, --r-· 

0.9m 

(AMIE) 
Solution 

CD~:.;:;.__-~, @1 
Draw the space diagram and 

use Bow's notation as shown in the 
fig. To find the pull in the chain 
take moments of all forces about 
joint (1) 

JAE X 0.9 = 2 Cos 45° X 1.2 
or /AE = 1.885 KN 

(a) Space diagram 2KN 

Fig.14.27 

2P::N 

Fig.14. 26 

(b) Vector diagram 

Now to draw the vector diagram draw a line 'ad' parallel to AD to a 
suitable load scale. Through 'a' draw a line parallel to AE. Through d draw 
a line parallel to DE. These lines will intersect at e to give vector diagram 
forjoint (3). Now consider joints (2) and (4) and complete the vector 
diagram for the frame. Forces in various members are shown in the table. 

S. No. Members Compression Tension 

1 AD 2.38 KN 

2 BC 1.96 KN 

3 CD 1.12 KN 
.. 

4 CE 2.82 KN 

5 DE 3.03 KN 
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SUMMARY 
l. A perfect frame must satisfy the equation 

n = 2j-3 
Where n is the number of members andj is the number of joints 

485 

2. In case of roller supports the reactions will be always normal to the plane 
on which the rollers rest 

3. For determining support reaction, moments should be taken about one 
of the supports. If one support is a hinge then moment should be taken 
about the hinge. 

4. In case of method of joints. select a joint where the number of unknown 
forces must not the more than two. 

5. Resolve all the forces vertically and horizontally and apply the 
equations of stat.ic equilibriumLV = 0 and 'LH = 0 

6 In case of method of sections, the section line should not cut more than 
three such members in which forces are not known 

7. Select the point about which moments are to be taken in such a way that 
all except one cut member passes through it. In this method only the 
stafic equation 'f.M = 0 is used. 

8. In Graphical method represent all the forces by Bow's Notation in the 
space diagram to a suitable linear scale. 

9. Draw the forces diagram or the stress diagram by choosing a suitable 
load scale. Choose a suitable point O and draw a vertical li:ne 
representing all the vertical forces and the support reactions. Now · 
complte the vector diagram by drawing lines parallel to various 
members i:n tne space diagram. 

10 For determining the nature of forces start from each joint and move in 
a clock wise direction. 

11. A ten&ion member is known as Tie 
U. A member in compression is known as strut. 

QUESTIONS 
1. How would you classify framed structures into 

(a) Perfect frame or determinate frame 
(b) Imperfect frame or Indeterminate frame 
(c) Redundant frame. 

2. Which equation should be satisfied when the frame is perfect ? 
3. Which joint would you select while analysing a frame by the method 

of joints? 
4. What are the two conditions of static equilibrium which should be 

satisfied in the method of joints ? 
5. How many members should be cut by a section,, in which forces should 

be un known? · 
6. How many restrains are offered by 

(a) Hinged support 
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(b) Roller support 
(c) Fixed support 

7. What is a strut ? 
8. Which member of a frame is called Tie? 

EXCE.RCISES 
9. Find die nliture and magnituae of 

the forces in the frame shown in 

Analysis of Simple Trusses 

figu& 14:18 5 KN 

Ft = F1= 5.3 KN 
Cqmrh(T) 
F3 (T) = Fs (c) ='1.8 KN 
Fz (T) = 3.75 KN 
F4 (C) = 4.25 KN 

• F6 (G}= 6.25 KN 

Fig.:14.28 . 

10. Determine the magnitude and nature of forces in the members g{the __ 
truss shown in figure. 14'.29 · (AMIE) 

C--· T 

,k-~~~~-lif--~~~~~~D3~ 

-sm--1 
4KN 

Fig.14.'29 

11. The load at the crane head in figure 14.30 
is 4 KN. Determine the stresses in various 
members. 

,A,B = 3:5 ~ (C,omp ), 
BC= 1.5 KN (Comp) 
A~= 5.0 KN (Tension), 

\,,1, ' 

CD = 4.10 KN (Tension) 
,iJD = 7.05 KN: (Comp) 

AB= 5:215 KN(Corrip), 
CE= 2.'20 KN (Tension)' 
AE = 2.885 KN (Tension), 
CD= 4.78 KN(Com ) ;)· ' .. ,_p. 
BE= 2.82 KN (Tension), 
ED = 3.06 KN (Tensiqjl) 
BC= 4-45 .KN (Comp), 

D 

Fiig.14.30 
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12. Determine the forces AB, 
BF and AF members of the 
truss shown in figure 14.31 

AB= 12 KN (Tension), 

BF= 12.53 KN (Comp) 

AF= 6 .f3 KN (Comp) 

4 KN 

4 KN 
l 
'c 4KN 

Fig. 14.31 

487 

13. Find the forces in the members A B , A C, CD and B D of the truss 
shown in the figure 14.29 by the method of sections. 

20KN 

10 KN 

A C 

D 
' 

10 m 

Fig.14.32 

AB= 10 KN (Comp). CD= Zero. 
AC= 22.5 KN (Comp). BD = 15 KN (Tension) 

(l4)Find the forces in the members of the truss. 

BC= 13.3 (T) 
CD= 13.3 KN (T) 

DE= 16.6 (Comp.) 

CE= 10 KN (Comp.) 

BE= 16.6 KN (Comp.) 

AE = l 6.6 KN (Comp.) 

(J.M.I) 

(Roorkee Uriv.) 

Fig. 14.33 

15. A frame as shown in figure 14.31 carries a vertical load of9KN at point 
A and equivalent horizontal thrust due to wind of 4.5 KN at B. 
Determine stresses in the inclined members of the truss. 
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AC= BC= 12.72 KN (T) 
DH= EG = 6.36 KN (T) 

4.5 
KN 

Analysis of Simple Trusses 

C 

Fig.14.34 

16. A pin jointed frame is shown in figure. 14.35 . It is hinged at A and 
loaded at D. A horizontal chain is attached to C and pulled so that AD 
is horizontal. Determine the pull in the chain and also the forces in each 
member stating whether it is in tension or compression. 

P = l.885 KN 
AB = 2.83 KN (Comp) 
BC= 3.04 KN (Comp) 
CD = 2.39 KN (Ten sion) 
DA = 1.98 KN (Ten sion) 
DB= 1.14 KN (Comp) 

Fig.14.35 

oon 



Prefix 

tera T 

giga G 

mega. M 

kilo K 

hecto h 

deca da 

deci d 

centi i C 

millj m 

micro µ 

nano n 

pico p 

fern to f 

atto a 

Svmbol 
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Appendix-I 

Prefixes 

Multiolication factor 
1012 

109 

106 

103 

102 
' 

101 

10-l 

10-2 

10-3 

1 10-6 

10-9 

10-12 l 
I 

10-15 ,, 
I 

10-18 



Multiolv b-r To convert 
254 · Inches 

30.48 Feet 

9.14 Yards 

1609.3 Mile 

1853.27 Nautical miles 

6.450 Sq.inches 

0.093 ; ~ Sq.feet 

16.390 cu.inc.h 

28.3 ft3 

0.0283 ft3 

746 H.P. 

70.3 Pound per sq. 
inch (psi) 

10.0 kg 

0.1 kg/cm 2 

100 kg-cm 

1000 tonne 

100 quintal 

0.3732 pounds (Troy) 

0.4536 pounds (Avoir) 
10-1 erg 

4.186 calorie 

1.356 foot-pound 
10-s dyne 

To obtain 

490 

Appendix - II 

Conversion Table 

To 
Centimeters 0.3937 

Centimeters 0.3228 

Meters 1.094 

Meters 0.000611 

Meters 0.000539 

cm2 o.tss 
m2 10.764 

cm3 0.061' 

litres 0.0353 
m3 35'.34 

w 0.00134 

gm/cm2 0.0142 

N 0.1 

Nlmm 2 10.0 

N-mm 0.01 

kg 0.001 

kg 0.01 

kg 2.68 

kg 2.2046 

Joule 107 

Joule 0.239 

Joule 0.737 

N 105 

From Multiply by 
abo~ 
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Member Tension Compression 

BC lOKN 

CD lO'h KN 

DE I lOKN 

BE 
I IO'JlKN 

CE I I lOKN 

AE I 20KN I 

Example 14.6 
Determine. the magnitude and the nature of the forecs in all the 

members of the truss shown in figure 14.10. All inclined members are at 45° 
with the horizontal: 

Fig.14.10 
Solution 
Joint A 

Resolving vertically 
t 8 - f AH Sin45 - f AB Sin45 = 0 

1 l 
8 - f AH "'2 - f AB "'2 = 0 

~< 
(i) 

Resolving horizontally 

f AH Cos 45° = f AB Cos 45° or f AH = f AB 

--- (ii) 

From equation (i) 

1 l 
8-fAH{i-fAH,jz =0 

SKN 

A 

8-JA i= 0 or fAHf £ = 4,/2 KN (Tensile) 

:.fAs= 4V2 KN (Comp) 

I 
' 

I i 

I 



A 
Analysis of complex stresses, 54 
Analysis of 
- Dams, 356 
- Short column, 426 
- Simple truss, 460, 
Anistropic materials, \ 
Assumptions in theory of bending, 

201 .. . . 

B 
Beams, 111 
Bending moment, 114 
Bending stress, 1 
Breaking strength, 6 
Brittleness, 1 
Built-up sections, 104 
Bulk modulus, 43 

C 
Cantilevers, 112 

Carriage springs, 406 
Chimney-stresses in; 35Y 
Close-coil helical spring, 417 
Compressive stress, 3 
Compound sections, 22 
Continuous Beams, 314 
Core of a section, 344 
Coupling, 400 

D 
Dead loads, 2 
Deflection of beams ~hd 

cantilevers - double integration 
method, 237 

Moment area method, 265 
Direct stress, 3 
Direct and bending stress, 342 
Distribution of shear stress - in I -

beams - in rectangular beam, 223 
Ductile material, 1 

493 

E 
Eccentric load on short columns, 

392 
Effective length of a column, 427 
Elasticity, 1 
Elastic limit, 5 
Elongation due to selfweight, 11 
End conditi:ohs of columris, 427 
Euler; s theory for long columns, 

428 
F 

Factor of safety, 1 
Fixed beams,:294 
Flitched beams, 217 
Force diagram, 478 
Frame statically 

determinate,· 461 
Free body diagrams, 13 

G 
Gradually applied loaa, 82 
Graphical method; 458 
Centroid(l 77 

H 
Helical springs, 413 
Hogging moment, 114 
Homogeneous materials, 1 
Hollow shafts, 380 
Hoop stress, 98 
Hooke's Law, 4 

I 
Impact loading, 82 
Impact loading'on beams, 13 . 
Impact loading on springs, 15 
Inertia - moment of, 173 

- Polar moment of inertia, 17 4 

J 
Johnson'·s -
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Parabolic formula, 441 
straight line formula, 440 

K 
Kernel of a section, 344 

L 
Lateral strain, 46 
Leaf spring, 406 

Limit - Elastic, 5 
Limit of proportionality, 5. 
Limitations of Euler's formula, 432 

Loads - types of, 2 

Loading - gradual, 82 

- sudden Impact, 82 
Longitudinal strain, 4 

Longitudinal stress in cylinders, 98 
Long columns, 426 

M 
Macaulay's method, 273 
Malleability, 1 

Method of Sections, 472 

Moduius 9f~19sticity, 4 
ModuJus bfi;1iictity ,· 38 
Moment area method, 265 
Moment of resistance, 202 
Mohr circle of stress, 73 

N 
Neutral axis, 200 
Neutral surface, 199 

- Normal stress, 3 

0 
Oblique loading, 159 
Open coil helical spring, 418 
Over hanging beams, 14 7 

p .· 
( 

Permanent set, ~ 
Plasticity, 2 
Plastic range, 6 
Point of contraflexure, 148 
Point of inflexion, 148 
Poisson's ratio, 42 

Pressure vessels, 97 
Principal stress, 54 

Principal strain, 66 
Principle of superposition, 13 
Propped cantilevers, 285 
Proof resilience, 406 
Proof stress, 405 

Pure bending, 199 

R 
Radius of curvature, 202 

Radius of gyration, 173 
Rankine's formula, 440 

Relation between 
elastic constants, 43 

Resilience, 82 
Retaining walls, 369 

s 
Safe stress, 6 
Sagging moment, 114 
Secant formula, 448 

Section modulus, 17 4 
Shear force di~gram, 114 
Shear resilience, 93 

Shear strain, 38 
Shear stress, 37 
Simple bending, 199 
Sinking of props, 286 
Slenderness ratio, 427 
Slope, 236 
Spherical shells, l 05 
Springs - Laminated, 406 
Strain, 4 

Strain energy due to 
- gradual loading, 82 

Sudden loading, 87 
Strain energy due to shear 

Stress, 93 
. Stress - strain d;agram 

for mild steel, 5 
Supports types of 441 

INDEX 
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Supports, types of, 441 

T 
Temperature stresses, 27 

Tensile load, 2 

Tensile strain, 4 

Tensile stress, 3 

Theory of bending, 200 

Thin cylinder, 97 

Thin spherical shells, 105 

Torsion of circular 
shafts, 377 

u 
Ultimate strength, 6 

V 
Vector diagram, 459 

Volumetric strain, 42 

Volume change in cylinders, 101 
y 

Yield point, 6 

Yield stress, 6 

Youngs modulus of elasticity, 4 
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