
DIGITAL
PRINCIPLES A D APPLICATIONS

Seventh Edition

Donald P Leach
Santa Clara University

Albert Paul Malvino
President, Ma/vino Inc.

Goutam Saha
Associate Professor

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology (/IT) Kharagpur

Tata McGraw Hill Education Private limited
NEW DELHI

McGraw-Hill Offices
New Delhi New York St Louis San Francisco Auckland Bogota Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

lffllTata McGraw-Hill
Special Indian Edition 2011

Adapted in India by arrangement with the McGraw-Hill Compaines, Inc., New York

Sales Territories: India, Pakistan, Nepal, Bangladesh, Sri Lanka and Bhutan

Digital Principles and Applications, 7e

First reprint 201 1
DZXCRRXGRQRQR

Copyright© 2011, 2006, 1995, by The McGraw-Hill Companies, Inc. All Right reserved. No part of this
publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise or stored in a database or retrieval system without the prior written permission of
Tata McGraw-Hill Companies, Inc. including, but not limited to in any network or other electronic storage or transmission,
or broadcast for distance learning.

This edition can be exported from India only by the publishers,
Tata McGraw Hill Education Private Limited.

ISBN (13 digit): 978-0-07-014170-4
ISBN (10 digit): 0-07-014170-3

Vice President and Managing Director-McGraw-Hill Education: Asia-Pacific Region: Ajay Shukla

Head-Higher Education Publishing and Marketing: Vibha Mahajan
Manager: Sponsoring-SEM & Tech Ed: Shalini Jha
Asst Sponsoring Editor: Surabhi Shukla
Development Editor: Surbhi Suman
Executive-Editorial Services: Sohini Mukherjee
Jr Manager-Production: A11jali Razdan
Dy Marketing Manager: SEM & Tech Ed: Biju Ganesan

General Manager-Production: Rajender P Ghansela
Asst General Manager-Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.
However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information
published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, or
damages arising out ofuse of this information. This work is published with the understanding that Tata McGraw-Hill
and its authors are supplying information but are not attempting.to render engineering or other professional services.
If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Tej Composers, WZ 391, Madipur, New Delhi 110 063 and printed at Pashupati Printers Pvt. Ltd., 1/429/16,
Gali No. 1, Friends colony, Industrial Area, G.T. Road, Shahdara, Delhi 110095

Cover Printer: SDR Printers

Preface to the Seventh Edition (SIE)
Preface

1. Digital Principles

Contents

1.1 Definitions for Digital Signals 2

1.2 Digital Waveforms 4

1.3 Digital Logic 8
1.4 Moving and Storing Digital Infom1ation 13

1.5 Digital Operations 17
1.6 Digital Computers 22

1.7 Digital Integrated Circuits 26

1.8 Digital IC Signal Levels 32

Summmy 35
Glossary 35
Problems 36

2. Digital Logic
2.1 The Basic Gates-NOT, OR, AND 40

2.2 Universal Logic Gates-NOR, NAND 48

2.3 AND-OR-Invert Gates 57

2.4 Positive and Negative Logic 59

2.5 Introduction to HDL 61

Summary 68
Glossary 69
Problems 69
Laborat01y Experiment 7 3

3. Combinational Logic Circuits
3.1 Boolean Laws and Theorems 75

3.2 Sum-of-Products Method 81

3.3 Truth Table to Kamaugh Map 84

3.4 Pairs, Quads, and Octets 86

3.5 Kamaugh Simplifications 89

3.6 Don't-care Conditions 93

3.7 Product-of-sums Method 95

3.8 Product-of-sums Simplification 98

3.9 Simplification by Quine-McClusky Method 102

xi
xv

1

40

74

3 .1 0 Hazards and Hazard Covers 104
3.11 HDL Implementation Models 108

Contents

Problem Solving with Multiple Methods 110
Summary 111
Glossary 112
Problems 112
Laboratory Experiment 116

4. Data-Processing Circuits
4.1 Multiplexers 118
4.2 Demultiplexers 127
4.3 1-of-16 Decoder 130

4.4 BCD-to-decimal Decoders 133
4.5 Seven-segment Decoders 136

4.6 Encoders 138
4.7 Exclusive-OR Gates 141
4.8 Parity Generators and Checkers 143
4.9 Magnitude Comparator 146

4.10 Read-only Memory 148
4.11 Programmable Array Logic 154
4.12 Programmable Logic Arrays 156
4.13 Troubleshooting with a Logic Probe 158
4.14 HDL Implementation of Data Processing Circuits 159

Problem Solving with Multiple Methods 161
Summary 163
Glossary 163
Problems 164
Laboratory Experiment 169

5. Number Systems and Codes
5 .1 Binary Number System 171
5 .2 Binary-to-decimal Conversion 17 3
5 .3 Decimal-to-binary Conversion 17 6
5.4 Octal Numbers 179

5.5 Hexadecimal Numbers 183
5.6 The ASCII Code 190
5.7 The Excess-3 Code 192
5.8 The Gray Code 193
5.9 Troubleshooting with a Logic Pulser 194

5 .10 Error Detection and Correction 196

Problem Solving with Multiple Methods 198
Summary 199
Glossary 200
Problems 200
Laboratory Experiment 205

118

171

Contents

6. Arithmetic Circuits
6.1 Binary Addition 207
6.2 Binary Subtraction 211
6.3 Unsigned Binary Numbers 212
6.4 Sign-magnitude Numbers 214
6.5 2's Complement Representation 216
6.6 2's Complement Arithmetic 220
6.7 Arithmetic Building Blocks 226
6.8 The Adder-subtracter 228
6.9 FastAdder 232

6.10 Arithmetic Logic Unit 235
6.11 Binary Multiplication and Division 237
6.12 Arithmetic Circuits Using HDL 237

Problem Solving with Multiple Methods 239
Summary 240
Glossary 241
Problems 241
Laboratory Experiment 243

206

7. Clocks and Timing Circuits 244
7.1 Clock Waveforms 244
7.2 TTL Clock 249
7.3 Schmitt Trigger 250
7.4 555 Timer-Astable 253
7.5 555 Timer-Monostable 256
7.6 Monostables with Input Logic 258
7.7 Pulse-forming Circuits 262

Problem Solving with Multiple Methods 264
Summa,y 265
Glossary 266
Problems 266
Laborato,y Experiment 268

8. Flip-Flops 270

8.1 RS FLIP-FLOPs 271
8.2 Gated FLIP-FLOPs 276
8.3 Edge-triggered RS FLIP-FLOPs 279
8.4 Edge-triggered D FLIP-FLOPs 281
8.5 Edge-triggered JK FLIP-FLOPs 283
8.6 FLIP-FLOP Timing 285
8.7 Edge Triggering through Input Lock Out 286
8.8 JK Master-slave FLIP-FLOPs 288
8.9 Switch Contact Bounce Circuits 289

8.10 Various Representations of FLIP-FLOPs 290
8.11 Analysis of Sequential Circuits 293

Contents

8.12 Conversion ofFLIP-FLOPs: A Synthesis Example 296
8.13 HDL Implementation of FLIP-FLOP 298

Problem Solving with Multiple Methods 301
Summa;y 303
GlossaTJ' 303
Problems 304
Laborat01y Etperiment 306

9. Registers

9.1 Types of Registers 309
9 .2 Serial In-serial Out 310
9.3 Serial In-parallel Out 313
9 .4 Parallel In-serial Out 316
9.5 Parallel In-parallel Out 320
9.6 Universal Shift Register 324
9.7 Applications of Shift Registers 325
9.8 Register Implementation in HDL 333

Problem Solving with Multiple Methods 334
Summmy 335
Glossmy 336
Problen1s 336
Laborat01y Experiment 339

10. Counters

10.1 Asynchronous Counters 342
10.2 Decoding Gates 346
10.3 Synchronous Counters 349
10.4 Changing the Counter Modulus 357
10.5 Decade Counters 363
10.6 Presettable Counters 368
10.7 Counter Design as a Synthesis Problem 376
10.8 A Digital Clock 381
10.9 Counter Design using HDL 384

Problem Solving with Multiple Methods 386
Summary 387
Glossary 388
Problems 388
Laboratmy Experiment 390

11. Design of Synchronous and Asynchronous Sequential Circuits

PART A: Design of Synchronous Sequential Circuit 393

11.1 Model Selection 393
11.2 State Transition Diagram 394
11.3 State Synthesis Table 396
11.4 Design Equations and Circuit Diagram 398
11.5 Implementation using Read Only Memory 400

308

341

392

Contents

11.6 Algorithmic State Machine 404
11. 7 State Reduction Technique 409

PART B: Asynchronous Sequential Circuit 413

11. 8 Analysis of Asynchronous Sequential Circuit 414
11.9 Problems with Asynchronous Sequential Circuits 417

11.10 Design of Asynchronous Sequential Circuit 419
11.11 FSM Implementation in HDL 423

Problem Solving with Multiple Methods 425
Summary 432
Glossary 432
Problems 433
Laboratory Experiment 435

12. D/ A Coversion and AID Conversion 438
12.1 Variable, Resistor Networks 439
12.2 Binary Ladders 442
12.3 DI A Converters 447
12.4. DI A Accuracy and Resolution 454
12.5 AID Converter-Simultaneous Conversion 455
12.6 AID Converter-Counter Method 458
12.7 Continuous ND Conversion 461
12.8 ND Techniques 464
12.9 Dual-slope AID Conversion 467

12.10 AID Accuracy and Resolution 471

Summary 472
Glossary 473
Problems 473

13. Memory 476
13.1 Basic Terms and Ideas 477
13.2 Magnetic Memory 479
13.3 Optical Memory 483
13.4 Memory Addressing 486
13.5 ROMs, PROMs, and EPROMs 491
13.6 RAMs 496
13.7 Sequential Programmable Logic Devices 503
13.8 Content Addressable Memory 506

Summary 507
Glossary 508
Problems 509

14. Digital Integrated Circuits 512
14.1 Switching Circuits 513
14.2 7400 TTL 518
14.3 TTL Parameters 520

14.4 TTL Overview 528
14.5 Open-collector Gates 530
14.6 Three-state TTL Devices 532
14.7 External Drive for TTL Loads 534
14.8 TTL Driving External Loads 537
14.9 74COO CMOS 538

14.10 CMOS Characteristics 541
14.11 TTL-to-CMOS Interface 544
14.12 CMOS-to-TTL Interface 546
14.13 Current Tracers 548

Summary 550
Glossary 551
Problems 552

Contents

15. A!)piications 558

15.l Multiplexing Displays 559
15.2 Frequency Counters 565
15.3 Time Measurement 570
15.4 Using the ADC0804 571
15.5 Microprocessor-compatible AID Converters 577
15.6 Digital Voltmeters 585

Summat)' 591
Problems 591

16. A Simple Computer Design
16.1 Building Blocks 594
16.2 Register Transfer Language 597
16.3 Execution oflnstructions, Macro and Micro Operations 599
16.4 Design of Control Unit 602
16.5 Programming Computer 605

Summary 612
Glossary 612
Problems 613

Appendix 1: Binary-Hexadecimal-Decimal Equivalents 615

Appendix 2: 2's Complement Representation 621

Appendix 3: TTL Devices 625

Appendix 4: CMOS Devices 628

Appendix 5: Codes 630

Appendix 6: BCD Codes 633

Appendix 7: Overview of IEEE Std. 91-1984, Explanation of Logic Symbols 638

Appendix 8: Pinout Diagrams 643

Appendix 9: Answers to Selected Odd-Numbered Problems 647

Index

593

672

Preface to the Seventh Edition (SIE)

The seventh edition of Digital Principles and Applications continues with the upgradation of the work started
in its previous edition. The job was to build upon the strengths of one of the best introductory and authentic
texts in the field of Digital Electronics-its lucid language, down-to-earth approach, detailed analysis and
ready-to-use information for laboratory practices. The sixth edition sought improvement primarily by (i)
strengthening the design or synthesis aspect that included advanced material, such as a simple computer
design, and (ii) incorporating many new topics like Hardware Description Language, Asynchronous
Sequential Circuit, Algorithm State Machine chart, Quine-McClusky algorithm, Look Ahead Carry Adder,
etc.

The tremendous response to the improvements made in the sixth edition from the academic community
prompted us to work on their suggestions and come out with this seventh edition.

NEW TO THIS EDITION

The seventh edition has been revised extensively and restructured to emphasize new and important concepts
in Digital Principles and Applications. This edition increases the depth and breadth of the title by incorporat
ing latest infonnation on existing topics like BooleanAlgebra, Schmitt Trigger, 555 Timer, Edge Triggering,
Memory Cell, Computer Architecture, and also introduces new topics like Noise Margin, Error Detection and
Correction, Universal Shift Register and Content Addressable Memory.

The most notable change in this edition is the inclusion of two completely new features-problem solving
by multiple methods and laboratory experiments-that will enable the student community develop deeper
understanding of the application side of digital principles. Problem solving by multiple methods help students
in understanding and appreciating different alternatives to reach a solution, without feeling stuck at any point
of time. Laboratmy experiments facilitate experimentation with different analysis and synthesis problems
using digital integrated circuits (IC). Each experiment describes its aim, a short reference to theory, apparatus
required and different work elements.

THE BASIC FEATURES

The new edition retains its appeal as a complete self-study guide for a first-level course on Digital Logic
and Digital Circuits. It will serve the purpose of a textbook for undergraduate students of CSE, ECE, EEE,
Electronics and Instrumentation and IT. It will also be a valuable reference for students of MCA, BCA,
DOEACC 'A' Level, as well as BSc/MSc (Computer Science/IT).

Preface to the Seventh Edition (SIE)

The key features are:

>- Presence of various applications and lab experiments considering the common digital circuit design
employed in industries (e.g., LCD display and ADC0804 operation).

>- In-depth coverage of important topics like clock and timing circuits, DIA-AID conversion, register,
counters and memory.

>- Tutorial-based approach with section-end self test questions and problem solving through various
methods.

>- Useful discussion on TTL and CMOS devices and pin diagrams
>- Rich Pedagogy

• 180 Solved Examples
• 290 Section-end Problems
• 500 Chapter-end Problems

COMPREHENSIVE WEBSITE

An important addition to this title is the accompanying website-http://www.mhhe.com/leach!dpa7, designed
to be an exhaustive Online Learning Centre (OLC). This website contains the following:

For Students

• Downloadable codes for HDL examples in the book
• Supplementary Reading material

Besides Quine-McClusky code and HDL examples, additional information and discussion on various
supplementary materials like five-variable Karnaugh Map and Petrick's Algorithm will be available here.
Regular updates on different topics of Digital Electronics will be posted to keep the reader informed about
recent changes in this field.

For Instructors

Instructors who have adopted this textbook can access a password-protected section that offers the following
resources.

• Solution manual
• Chapterwise PowerPoint slides with diagrams and notes

ACKNOWLEDGEMENTS

I would like to acknowledge the inspiration and support I received from Prof. B N Chatterji (Retd.), Prof.
RN Pal (Retd.), Prof.RV Rajakumar, Prof. A Chakraborty, Prof.PP Chakraborty, Prof. D Datta, Prof. S
Bannerjee, Prof. P K Biswas, Prof. S S Pathak, Prof. S Mukhopadhyaya, Prof. AS Dhar, Prof. I Chakraborty,
Prof. P Mandal, Prof. S Mahapatra, Prof. T K Bhattacharya, and all my faculty colleagues at Indian Institute
of Technology (IIT) Kharagapur, especially, from the Department of Electronics and Electrical Communica
tion Engineering and GS Sanyal School of Telecommunications. But for the paucity of space, I would have
named many others.

Preface to the Seventh Edition (SIE)

Thanks are due to my research students-Mr S Ari, Mr Md Sahidullah, Mr Israj Ali, and Mr A Manda! for
their contribution at different stages of development of the edition. I acknowledge the benefit derived from
my interaction with different batches of students while teaching the Digital Electronics subject-three years
at Institute of Engineering and Management, Kolkata and over six years at IIT Kharagpur.

I am grateful to the esteemed reviewers for their encouraging comments and valuable suggestions for this
edition.

Sunil Mathur
Maharaj a Agrasen Institute of Technology, New Delhi

VKumar

Maharaj a Surajmal Institute of Technology, New Delhi

Bijoy Bandopadhyay

University College of Science & Technology, Kolkata

Anita Kanavalli
MS Ramaiah Institute of Technology, Bangalore

I also thank the entire team of Tata McGraw Hill Education, more specifically Vibha Mahajan, Shalini Jha,
Ashes Saha, Surbhi Suman, Anjali Razdan and Baldev Raj for their support.

At this point, I humbly remember all my teachers and my father (late) G N Saha who provided me a great
learning environment. I also fondly recollect the contributions in my upbringing ofKharagpur Vivekananda
Yuva Mahamandal, Vivekananda Study Circle, IIT Kharagpur Campus and Ramakrishna Mission. I must
mention the support I always received from my family-my mother, my parents-in-law, my sisters (specially
Chhordi), Chhoto Jamaibabu, and last but not the least, my wife, Sanghita, and daughter, Upasana. The effort
behind this work was mine but the time was all theirs.

GOUTAM SAHA

Feedback
Due care has been taken to avoid any mistake in the print edition as well as in the OLC. However, any note
on oversight as well as suggestions for further improvement sent at tmh.csefeedback@gmail.com will be
gratefully acknowledged (kindly mention the title and author name in the subject line). Also, please report to
us any piracy of the book spotted by you.

Preface

PURPOSE

The fifth edition of Digital Principles and Applications is completely recorgnized. It is written for the
individual who wishes to learn the principles of digital circuits and then apply them to useful, meaning
ful design. Thus the title. The material in this book is appropriate for an introductory course in digital
logic in either a computer or an electronics program. It is also appropriate for "self-study" and as a "ref
erence" for individuals working in the field. Emphasis is given to the two most popular digital circuit
(IC) families-transistor-transistor logic (TTL) and complementary metal oxide silicon (CMOS) logic.
Many of these individual I Cs are discussed in detail, and pinouts for more than 60 digital IC chips are
summarized in Appendix 8. Standard logic symbols are used along with the new IEEE standard logic. A
review of the new IEEE symbols is given in the appendix.

I

BACKGROUND

It is not necessary to have a background in electronics to study this text. A familiarity with Ohm's law
and voltage and current in simple de resistive circuits is helpful but not required. If you have no desire
to learn about electronics, you can skip Chap. 13. To the extent possible, the remaining chapk:rs are
written to be independent of this material. If you have not studied electronics, Chap. 13 will provided
the necessary background for you to converse successfully with those who have. Study it any time after
Chap. 1. For "old-times" who have studied electronics, Chap. 13 will provide a good review and perhaps
a new and valuable point of view. In any case, the material in Chap. 13 will certainly enhance both the
knowledge and ability of anyone!

ORGANIZATION

Each chapter begins with a contents that lists the subjects in each section. The contents listing is fol
lowed by a list of chapter objectives. At the end of each chapter section are review questions, called
self-tests, which are intended to be a self-check of key ideas and concepts. At the end of each chapter,
answers are supplied for the self-tests. A summary and a glossary are provided at the end of each chap
ter. In any subject area, there are many terms and concepts to be learned. The summary and glossary
will provide you with the opportunity to be sure that you understand the exact meaning of these terms,
phrases, and abbreviations, The end-of-chapter problems are arranged according to chapter sections.
The problems reinforce ideas and concepts presented and allow you to apply them on your own. Solu-

Preface

tions to selected odd-numbered problems are given at the end of the book. In addition, the appendix
contains reference material that will be useful from time to time.

LABORATORY EXPERIMENTS

A complete set of experiments keyed to this text is available in a laboratory manual, Experiments for
Digital Principles.

DONALD P. LEACH

ALBERT PAUL MALVINO

Visual Walkthrough

+ State machine design using Moore model and Mealy model
+ Stale transition diagram and preparation of state synthesis table
-+ Derivation of design equation from state synthesis table using Karruugh map
+ Circuit implementation: flip-Hop based approach and ROM based approach
+ Use of Algorithm State Machine chart
+ State reduction techniques
+ Anal~is of asynchronous sequential circuit
+ Problems specific to asynchronous sequential circuit
+ Design issues relaled to asynchronous sequenti;d circuit

Design problem normally s1at1s with a word description of input output relation and ends with a d1cuit
diagram having sequential and combinatorial logic elements. The word description is first converted to
11 stale transition diagram or Algorithmic State Machine (ASM) chart followed by preparation of stale
synthesis tabk. For flip.flop ba.sed implementation, eJtcit:ation tables are used to generate design equations
through Kamaugh Map. The final circuit diagram is developed from these design ~tions. 1n Read Only
Memory (ROM) based implementation, excitation tables are no! required however; flip.flops are used as
dday dements. In this chapter, we show how these techniques can be used in sequt-'tltial circuit design.

There are two ditforent approaches. of :s.tate .. machine design called Moore model and Mealy model. In
Moore model circuit outpUts, also called primary outputs are generated solely from secondal)' outputs or
memory values. In Mealy model circuit inputs, also known as primary inputs combine with memory elements
to generate circuit output Both the methods are discussed in detail in this chap1er.

In general, sequential logic circuit design refers to sy11chronous clock-triggered circuit because of its
design and implementation advantages. Bat there is increasing attention 10 asynchmnous sequential logic

Eve,y chapter contains several worked out
examples totalling to 180 in the book.

Benefits: These will guide the students
while understanding the concepts and
working out the exercise problems.

Eve1y chapter opens with a set of chapter ob
jectives.

Benefits: These provide a quick look into
the concepts that will be discussed in the
chapter.

Visual Walkthrough

4,14 • HOIAMl'l:EMENTATION Of DATA
PROCESSING ORCUITS

We strut with hardware design of multiplexers using Verilog code. The data flow model provides a tlifferenl
use of keyword assign in the foml of

:ttsigttX"' S? A: B;

This statement does following a~signment. If. S"' l,X•• A and if S"" O,X"' B. One can use this st:itement
or the logic equation to realize a 2 to l multiplexer shov.n in Fig. 4.2(a) in one of the folkwdng ways.

Figures are used exhaustively in the text.

Benefits: These illustrate the concepts
and methods described for better
understanding.

New to this edition, HDL, an interesting
development in the field of hardware design,
has been introduced.

Benefits: The relevant HDL description
and codes are weaved into chapters
to help students implement and design
digital circuits.

Programming a PAL

A PAL is diffen-nt from a PROM because it has a progr.mumtble AND array and a fixed OR array. For
ins.ancc. Fig. ·1-43 shows a PAL with-4 inputs and 4 outputs. The x's on the input side are fusible links, while
1he solid black bullets on the output sid-c are fixed connections. With a PROM programmer, we can bum in
the desired fumfamental products, which .ire then OR.ed by the fixed output conn,..--ctions.

C D

,7 "'7 ,7 v Fixc.dORamy -= = = =
=
=

I = = =
-

I I I =
I I I =
I = r =
I I I - 99 ,-,n

Structure of PAL

Visual Wa/kthrough

2 .and 3; (b) :5 .md5; (c)9and 9,
22, What11t~ the dig1ttl 01:tlflli! ievcb of the cnc,mier in Fig_ t26a if only infll,ll line 6 i11 l1igh?

A Brief summa,y is provided at the end of the
chapters.

Benefits: Summary gives the essence of
each chapter in bri<:f and will be helpful
for a quick review during the examina
tions.

A section called Se(f-Test appears a.fier evet)'
section in eve1y chapte1:

Benefits: This will help students check
their understanding of the concepts
discussed in a section before moving on
to the next section. Answers to Seif-Tests
are given at the end of that chapte1:

Visual Walkthrough

A glossary containing the important definitions
and abbreviations is listed at the end of each
chapter.

Benefits: It helps in memonszng the
important terms discussed in the chapter.

8. I list as nl.llly bistable d1."'l·ices as you can think
of-either electrical or mechanical. (flint:
Magnets, lamps, relays, etc.)

8.2 Redraw the NOR-gate flip-flop in Fig. 8.3b
and label !he logic level on ea.ch pin for R ""S
""-0. Repeat for R=S= 1, forR=OandS"" I,
and for R,.. I and s:,<;o.

8.3 Redraw the NANO-gale flip-flop in Fig. 8.7a
and label the logic level on C3\:b pin for ii =
S =O.Repe.i.tfor ii= S"' l, for ii."" l,and
S =O,andfor ii =Oand S = J.

8.4 Redraw. the NANO.gate !Hp-flop in Fig.
8.8a and label 1he logic level on each pin for
R "'S=O, Repeat forR"'S""' l, for R""Oand
S=-1,andforR"" 1 andS=O

8.5 The waveforms in Fig, 8.50 drive the docked
RS flip-flop in Fig. Kl 1. The clock signal goes
from lowtohlgb at points A, C,E, and G. IfQ
is low before point A in time;

a. At what point does Q become a 1?
b. When does Q reset to O?

ClK ..s1..JULJL
.--i1JCD£FGJI

s__f1_

L

8.6 Use the information in the preceding problem
and draw the wawform at Q.

8.7 Prove thal the flip.flop realizations in Fig.
8.12 are equivalent by writin,i;: the logic !eve!

8.8 The waveforms in Fig. 8.51 dri\·e a D latch
as shown in Fig. 8.15. \\'hat is the value of D
Mored in the flip-flop afte-r the clock pulse is
over?

cHEwnlo
8.9 What is the adv.i.ntage offered by an edge

triggered RS flip-fl-op O\'eT a clocked or gatc-d
RS flip-flop?

8.10 The waveforms in Fig. 8.18d illustrate th.:
typical operation of an edge-triggered RS
flip-flop, This circuit was connected in the
laboratory, but the R and S inputs were
mistakenly reversed. Draw the resulting
\\11\'eformforQ.

8.11 An edge-triggered RS flip.flop will be used
to produce the wavefonn Q with respect to
the clock as shown iu Fig. 8.52a. First, would
you use a posill',-e·edge- or a negatiVt-·edge
triggeredflip·tlop'?Wby? Draw thewan:forms
necessary al Rand S to produce Q.

c~
:t(.\ l'i :t2

Q~
(a)

C-fLfL:LfL[UUL
;t11:'1 :11:IJ

Q~

(b)

• ALU Arithmetic logic unit.
• analog signal A sign.al whose amplitude

can take any value bctv.·een given linuts. A
continuous signal.

• binary number A number code that uses only
lhe digits O and I to represent quantities

• bipolar Having two types of charge carriers; a
bipohlr transistor is npn or pnp.

• bitbinarydigit.
• hujfcr A iligital circuit capable ofrnainta..inin.g

a required logic level while ac_ting,a.s a current
source or a current sink for a given load

• t:hi'p A small piece of semiconductor on which
an IC i.~ fonned

• CMOS Complementary metal·oxide silicon.
An IC using both n-cbannel and p·channd
field.effect transistors (FETs},

• CPU Central processing unit.
• CRT Cathode·ra:y tube.
• clack A periodic, rect2ngular waveform used

as a bask: timing signal
• computer arr:hiucturr Microprocesror and

other elements building a cornpma.
• counter A digital circuit designed to keep

track of(to count) a number of events,
• 'decoder A unit designed to change a digital

number into another form.
• demultiplexer (DEMUA') A digital circuit that

will select cmlv one of manv innuts

• digital signal A signal whose amplitude can
have only given discrete values between
defined limits.A signal that changes amplitude
in discrete steps

• DIP Dual--inlinc package.
• D."dA Direct memory access
• Duty cycle. For a periodic digital signal, the

ratio of high kvel time 1Q the period or the
ratio oflow lcvd lime to the period

• ECL Emitter-coupled logic
• e.ncoder A unit designed 10 change a given

signal into a digital number.
• jlip,-jwp An electronic circuit that can store

one bit of a binary number,
• JlbJ'PY JW. A magnetically coated disk used to

storcdigitaldala
• gate A digital circuit ha\'ing two .n more

inputs and a single output
• handslttt!t,ing A "request" to transfer data

into or out of a computer, folloW<"-0 by an
•·acknowledge" signal, allowing data transfer
to begin.

• IC Integrated circuit.
• logic circuit A digital circuit, a switching

circuit, or any kind of tu·o-statc circuit that
duplicates mental processes..

• LSI largN;ca.fo io1cgration.
• ln't'mory The area of a digital compukr used

In ,;;:tow nmarnm<. ~ml ,U11:-1

The text contains more than 250 section-end
practice problems.

Benefits: These will help the students in
improving their problem-solving skills.

Visual Walkthrough

Each chapter contains a lab experiment.

Benefits:Laboratoryexperimentsfacilitate
experimentation with different analysis
and synthesis problems using digital
integrated circuits (JC). These give a
hands-on experience to the reader.

Each chapter contains numerous problems
solved using multiple methods.

Benefits: Problem solving by multiple
methods helps students in understanding
and app,:eciating different alternatives to
reach a solution, without feeling stuck at
any point of time.

Digital Principles

+ Understand the difference between analog and digital signals, recognize binary
equivalents of decimal numbers O to 15, and be familiar with basic terminology
related to digital waveforms.

+ Based on input conditions, determine the output of a buffer, a tri-state buffer, an
inverter, a tri~state inverter, an AND gate, and an OR gate.

+ Discuss several ways of how digital information (bits) can be stored and transferred
and describe some of the operations of an ALU.

+ Recognize digital logic symbols and identify fundamental difference, in operation
and logic levels between major IC families.

In the modem world of electronics, the tenn digital is probably most often associated with a computer. It
certainly is difficult to think of an area of life today that is not influenced in one way or another by a digital
computer. Checking and savings accounts at a bank, automobile insurance, credit card accounts, federal and
state income taxes, airline tickets-the list of functions controlled by large computer systems seems almost
endless! In addition to these large systems, the hand calculator, the IBM or IBM clone personal computer
(PC), the Apple family of computers, and a host of other desktop computer systems are readily available at
a reasonable cost to virtually anyone. The availability of such computational power can be traced directly to
the development of the digital integrated circuit (IC).

The semiconductor industry provided the first commercially available families of digital ICs in the early
1960s. These devices were used to develop smaller, faster, more economical, and more powerful digital
computers. They were also used in a great many other applications. Today, digital circuits and systems can
be found in almost every field of electronics. In communications, the principles of digital electronics are

Digital Principles and Applications

found in satellites, telephone switching and transmission networks, and navigation systems. Digital circuits
in the area of consumer electronics are found in compact discs, VCRs, and television. Process controls in
industrial applications, and electronic systems used in medicine have benefited greatly from advances in
digital electronics. The list will no doubt continue to expand.

An introduction to the field of digital electronics cannot cover all possible applications, but a collection
of basic principles can be identified. These digital principles are the basis for this text, and they along with
a number of applications are intended to provide the background for you to succeed in the modem world of
digital electronics.

This chapter presents some distinctive features of the world of digital electronics. It defines digital signals
and terminologies associated with digital waveform; discusses digital logic and basic operations on digital
data; introduces the concept of digital IC, its signal levels and noise margin.

1.1 DEFINITIONS fOR DIGITAl. SIGNALS

Analog versus Digital

Electronic circuits and systems can be conveniently divided into two broad categories generally referred to
as analog and digital. Analog circuits, designed for use with small signals, can be made to work in a linear
fashion. An operational amplifier (op amp) connected as an amplifier with a voltage gain of 10 is an analog
circuit. The output voltage for this circuit will be a faithfully amplified version of any signal presented at its
input till saturation is reached. This is linear operation. Digital circuits are generally used with large signals
and are considered nonlinear. One example is a remote control circuit that switches the lights in a parking
area on after sunset and turns them off at sunrise. In this case, the input signal might be a voltage representing
the time of day or it might be a current taken from a light-sensing circuit The output signal is simply on or
off, which is clearly not an amplified version of the input signal. This is nonlinear operation.

Any quantity that changes with time either can be represented as an analog signal or it can be treated as
a digital signal. For example, place a container of water at room temperature on a stove and apply heat.
The measurable quantity of interest here is the change in water temperature. There are two ways to record the
water temperature over a period of time. In Fig. l. la, the temperature is recorded continuously, and it changes
smoothly from 20°C to 80°C. While being heated, the water temperature passes through every possible

80 80 fl

u ,..._
u

0 60 t.., 60 '-' (II
C) C)

(II .a .a
"' 40 "' 40 (II
C) C)

I Os s" E (II I ,. I

~ 20 ~ 20 (II Ill Ill
,. I

I
I
I

0 t (min) 0 I t (min)
0 5 10 0 5 10

(a) (b)

(a) An analog (continuous) signal, (b) A digital (discrete) signal

Digital Principles

value between 20°C and 80°C. This is an example of an analog signal. Analog signals are continuous and all
possible values are represented.

If the water temperature is measured and recorded only once every minute, the temperature is recorded as
in Fig. 1.1 b. In this case, the recorded temperature is not continuous. Rather, it jumps from point to point, and
there are only a finite number of values between 20°C and 80°C say, at an increment of 1 °C like 20°C, 21 °C,
22°C, and so on. There are exactly 11 values in this case. When a quantity is recorded as a series of distinct
(discrete) points, it is said to be sampled. This is an example of a digital signal. Digital signals represent only
a finite number of discrete values,

Vi1tually all naturally occurring physical phenomena are analog signals. Temperature, pressure, velocity,
and sound, for instance, are signals that take on all possible values between given limits. These signals can
be conditioned and operated on with the use of analog electronic circuits. For example, an analog power
amplifier is used to amplify a music signal and drive a set of stereo speakers. Digital circuits and systems can
be used to process both analog signals and digital signals. As an example, both music and speech are readily
translated into digital signals for use in a digital stereo system. At the same time, digital circuits can be used
to perfo1m functions unrealizable with analog circuits-counting, for instance.

Binary System

Digital electronics today involves circuits that have
exactly two possible states. A system having only two
states is said to be binary (bi means "two"). The binary
number system has exactly two symbols----0 and 1. As
you might expect, the binary number system is widely
used in uigital electronics. We will consider the binary
number system in much greater detail later, but for
immediate reference, the first 16 binary numbers and
their decimal equivalents are shown in Table 1.1.

The operation of an electronic circuit can be de
scribed in terms of its voltage levels. In the case of a
digital circuit, there are only two. Clearly one voltage

Decimal

0
l
2
3
4

6
7

Binary

0000
0001
0010
0011
0100
0101
0110
0111

Decimal

8
9
10
11
12
13
14
15

Binary

1000
1001
1010
1011
1100
1101
1110
1111

is more positive than the other. The more positive voltage is the high (HJ level, and the other is the low (L)
level. This is immediately related to the binary number system by assigning L = 0 and H = 1. Many functions
performed by digital circuits are logical operations, and thus the terms true (7) and false (F) are often used.
Choosing H = 1 = T and L = 0 = F is called positive logic. The majority of digital systems utilize positive
logic. Note that it is also possible to construct a negative logic system by choosing H =.O = F and L = l = T.

Today the majority of digital circuit families utilize a single +5 Vdc power supply, and the two voltage
levels used are +5 Vdc and O Vdc. Here is a summary of the two binary states (levels) in this positive logic
system.

+5 V de = H = I = T

OVdc =L=O=F

You can no doubt see how to extend these definitions to include terms such as on-off go-no go, yes-no, and
so on. A lamp or a light-emitting diode (LED) is frequently used to indicate a digital signal. On (illuminated)
represents 1, and off (extinguished) represents 0. As an example, the four LEDs in Fig. 1.2 are indicating the
binary number 0101, which is equivalent to decimal 5.

Digital Principles and Applications

Volts

@)
0

:@:
1

@)
0

:@:
I

:shn DD[
, t (µs)

The binary number 0101
(decimal 5)

An ideal digital signal

Ideal Digital Signals

The voltage levels in an ideal digital circuit will have values of either + 5 V de or O V de. Furthermore, when
the voltages change (switch) between values, they do so in zero time!

These concepts are illustrated in Fig. 1.3, which represents an arbitrary digital signal whose level changes
with time. As we shall see in Sec. 1.2, actual digital signals depart somewhat from this ideal.

I. Analog signals are (co~uous, discrete).
2.. The operatiotJ of a digital circuit. is generally considered to be nonlinear. CU or F)
3. Write the binary number for the decimal number 7.
4. A certain digital circuit is designed to operate with voltage levels of.-0.2Vdc and -3 .OV de.

If H= l =-0.2 Vdc andL = 0 =-3.0 Vdc, is this positive logic ornegativelogic'?

l.2 DIGITAL WAVEFORMS

The ideal digital signal represented in Fig. 1.3 has two precise voltage levels-+ 5 V de and O V de. Furthermore,
the signal switches from one level to the other in zero time. In reality, modern digital circuits can produce
signals that approach, but do not quite attain, this ideal behavior.

Voltage levels

First of all, the output voltage level of any digital circuit depends somewhat on its load, as illustrated in
Fig. 1.4a below. When V

0
is high, the voltage should be +5 Vdc. In this case, the digital circuit must act as a

current source to deliver the current 1
0

to the load. However, the circuit may not be capable of delivering the
necessary current 1

0
while maintaining +5 V de. To account for this, it is agreed that any output voltage close

to +5 Vdc within a certain range will be considered high. This is illustrated in Fig. 1.4c, where any output
voltage level between +5 V de and V0 H,min is defined as H = 1 = T. The term V0 B,min stands for the minimum
value of the output voltage when high. As we will see, one popular transistor-transistor logic (TTL) family
of digital circuits allows V

0
H,min = +3.5 Vdc. In this case, any voltage level between +5 Vdc and +3.5 Vdc is

H= 1.

In Fig. 1.4b. ~ is low, and the digital circuit must act as a current sink. That is, it must be capable of
accepting a current 1

0
from the load and delivering it to ground. In this situation, ~, should be O Vdc, but the

Digital Principles

+5Vdc +5Vdc +5Vdc +5Vdc

Io
L

Io
L - -Digital

l
0 Digital 0

circuit a circuit a
d d

V
0

=H V
0

=L

(a) (b)

V0 (volts)

+5 Vdc 1--------------
H=l=T

L=O=F

0 Vdc 1--------------
(c)

Loading of digital circuit

circuit may not be capable of this. So it is agreed to accept any output voltage that is close to O V de within
certain limits as the low level. This is illustrated in Fig. 1.4c, where any output voltage level between O Vdc
and V0 L,max' is defined as L = 0 = F. The term V0 L,max stands for the maximum value of the output voltage when
low. Again, the popular TTL family mentioned above allows V

0
L,max = +0.1 Vdc. Thus, any voltage level

between +0.1 Vdc and O Vdc is L = 0.

The diagram in Fig. 1.4c clearly shows that the digital signals being used here require a high-level voltage
somewhere in the band labeled H. A low-level voltage must be somewhere in the band labeled L. Furthermore,
no other voltage levels are permitted!

Switching Time

If the digital circuit in Fig. 1.4 were ideal, it would change from high to low, or from low to high, in zero time.
Thus, the output voltage would never have a value in the forbidden range. In reality, it does, in fact, require a
finite amount ohime for V to make the transition (switch) between levels. As a result, the voltage V versus
time might appear as in Fig 1.5a. Clearly V,, does take on values in the forbidden range between the high and
low band-but only for a very short time, and only while switching! When it is not switching, V,, remains
within the high or the low band as required.

Digital Principles and Applications

The time required for v;,, to make the transition from its high level to its low level is defined as fall time
t,. For ease of measurement, it is customary to measure fall time using 0.9H and 1. IL, as shown in Fig. 1.5a.

Volts

H
0.9H-

(a)

Volts

H 4.0
0.9H""'3.6-

Switching in digital circuit

(b)

The time required for V
0

to make the transition from its low level to its high level is defined as rise time t,..
Again, rise time is measured between l.lL and 0.9H, as illustrated in Fig. 1.5a.

Figure 1.5b illustrates how rise time and fall time are measured. For example, suppose
H=+4.0 Vdc andL = +0.2 Vdc. Then, 0.9H= 0.9 x 4.0 =+3.6 Vdc, and l.lL = 1.1 x 0.2 =+0.22 Vdc. The
rise and fall times are then measured between these two voltage levels as shown.

H

L

µ~-~ 2 2

I I I I C.
(a) r ~ Clock [}-JUL

D
(c)

• t

(b)

(a) Symmetrical signal with period T, (b) Asymmetrical signal with period T,
(c) System clock

Period and Frequency

There are many occasions where a symmetrical digital signal as in Fig. 1.6a will be used (clock and counter
circuits for instance). The period T of this waveform is shown: This is the time over which the signal repeats
itself. A rectangular waveform such as this can be produced by adding together an infinite (or at least a large
number) of sinusoidal waveforms of different frequencies and amplitudes. Even though this digital signal is
not sinusoidal, itis convenient to define the frequency as/= 1/T. As an example, if the period of this square
wave is I µs, then its frequency is found as

Digital Principles

1 I I
f= -=-=-- = 106 = I MHz

T I µs 10-6

The digital waveform in Fig. 1.6b is not a square wave; that is, it is not symmetrical. Even so, its frequency
is still found as the reciprocal of its period i.e./= 1/T.

A symmetrical signal as illustrated in Fig. 1.6a or Fig. 1.6b is frequently used as the basis for timing all
operations in a digital system. As such, it is called the clock signal. The electronic circuit used to generate
this square wave is referred to as the system clock, as illustrated in Fig. 1.6c. A system clock is simply an
oscillator circuit having a very precise frequency. Frequency stability is provided by using a crystal as the
frequency-detennining · element.

Duty Cycle

Duty cycle is a convenient measure of how symmetrical or how unsymmetrical a waveform is. For the
waveform in Fig. 1.6b, there are two possible definitions for duty cycle.

Duty cycle H = .21
T

Duty cycle L ·. = !.h.
T

The first definition is the fraction of time the signal is high, and the second is the fraction of time the
signal is low. Either definition is acceptable, provided you clearly define which you are using. To express as
a percentage, simply multiply by 100.

Note that the duty cycle for a sylllllletrical wave as in Fig. 1.6a is

T/2
Duty cycle H = Duty cycle L = T = 0.5 or (50%)

The waveform in Fig. 1.6b has a frequency of 5 MHz, and the width of the positive pulse is
0.05 µs. What is the high duty cycle (Duty cycle H)?

Solution The period of the waveform is found as

Then

T=.!_= 1
f (5MHz)

_,.,,
1

-.-6 =0.2µs
5xl0

Duty cvcle H = 0·
05

µs = 0.25 = 25%
• 0.2µs

5. Referto,Fig·.;.l.4c.anddescribe.the.meaningoftheterms V:
0
.· H··· .• andV

0
·t . , ~mm , ,1uo::

ever have a value within theforbidden band inFig.JAc? Explain.
In Fig: L5a,H= +5.0 Vdc and L =+1.0Vdc. What aretne voltage levels between which the
rise and falltimes are measured?
What isthevalue of Duty cycleH if the wavefonnin Fig. 1.6bis high for 2 ms a.n:d low for 5
ms?

Digital Principles and Applications

DIGIT Al LOGIC

Generating Logic Levels

The digital voltage levels described in Fig. 1.4 can be produced using switches as illustrated in
Fig. 1. 7 on the next page. In Fig. 1. 7a, the switch is down and r,;, = L = 0 = 0 V de. When the switch is up, as
in Fig. 1. 7b, v;, = H = 1 = +5 V de. A switch is easy to use and easy to understand, but it must be operated by
hand.

A relay is a switch that is actuated by applying a voltage v; to a coil as shown in Fig. 1.7c. The coil current
develops a magnetic field that moves the switch ann from one contact to the other. This is indicated with the
dashed line drawn between the coil and the relay arm. For this particular relay, i,:, = L = 0 Vdc when v; = 0
V de. Applying a voltage v; will actuate the relay, and then r,;, = H = +5 V de. This relay could of course be
connected so that its output is low when actuated.

Switches and relays were useful in the construction of early machines used for calculation
and/or logic operations. In fact, they are still used to a limited extent in modem computer systems where
humans must interact with a system. For instance, on-off power switches, reset, start-stop, and load-unload
are functions that might require human initiation.

On the other hand, modem computers are capable of performing billions of switching operations every
second! Switches and relays are clearly not capable of this performance, and they have th.erefore been replaced
by transistors (bipolar and/or MOSFET). A digital integrated circuit (IC) is constructed using numerous
transistors and resistors, and each is designed to perfo1m a given logic operation. On an IC, each transistor is
used as an electronic switch. Let's use the simple switch models shown in Fig. 1.7 to define some basic logic
circuits. Later on, we'll take the time to look at the actual ICs and discuss circuit operation in detail.

+5 Vdc

:- I------- :
I I
I I
I
I
I
I
I
I
I
I
I

The Buffer

I
I
I
I
I
I
I
I

--------'

(a)

+

+5Vdc +5Vdc

r------ - I ------ :
: //'' '"\ :

I \
I \

I +

(b) (c)

(a) Switch, (b) Switch, (c) Normally low relay

In order to deliver the necessary load current 1
0

in Fig. 1.4, a digital IC called a buffer might be used. A buffer
can be thought of as an electronic switch, as shown in Fig. 1.8a. The switch is actuated by the input voltage
v;. Its operation is similar to the relay in Fig. 1. 7c. When v; is low, the switch is down, and r,;, is low. On the
other hand, when v; is high, the switch moves up and r,;, is high. Operation of this IC is summarized by using
the truth table, or table of combinations, shown in Fig. 1.8b. There are only two possible input voltage levels
(L and JI), and the truth ,able shows the value of r,;, in each case.

Digital Principles

+5Vdc

,------ !_ ______ I

e--,le-------, I +: '\
I
I

V;:
I
I

-I

I 1. ______ _
I

--------'

(a)

+

(a) Buffer amplifier model, (b) Truth table, (c) Symbol

Since the buffer is capable of delivering additional current to a load, it is often called a buffer amplifier.
The traditional amplifier symbol (a triangle) shown in Fig. l.8c is used on schematic diagrams. If you're
interested in an actual IC buffer, look in the standard TTL logic family. The 5407 or 7407 is a 14-pin IC that
contains six buffers.

The Tri-State Buffer

At the input of a digital system, there may be more than one input signal of interest. Generally speaking,
however, it will be necessary to connect only one signal at a time, and thus there is a requirement to ~onnect
or disconnect (switch) input signals electronically. Similarly, the output of a digital system may need to be
directed to more than one destination, one at a time.

The logic circuit in Fig. 1.9a is a simple buffer with an additional switch controlled by an input labeled
G. When G is low, this switch is open and the output is "disconnected" from the buffer. When G is high, the
switch is closed and the output follows the input. That is, the circuit behaves as an ordinary buffer amplifier.
In effect, the control signal G connects the buffer to the load or disconnects the buffer from the load.

+5 Vdc G

I ___ _J ------- i----,
I • J I
I ~- j

8---¥------, --~
+ : ' : +

I I
I I

V; : : V0
I I
I I
I I
I I

V; G ~,
L L Open

G H L Open V;=c;-V, L H L
H H H

(a) (b) (c)

A tri-state buffer: (a) Model, (b) Truth table, (c) Symbol

The truth table in Fig. 1.9b summarizes circuit operation. Notice that when G is high, V:, is either high or
low (two states). However, when G is low, the output is in effect an open circuit (a third state). Since there
are three possible states for V:,, this circuit is called a tri-state bzttfer. (Tri stands for "three", and thus the term
three-state buffer is often used.)

Digital Principles and Applications

The standard symbol for a tri-state buffer such as this is shown in Fig. 1.9c. It is simply the buffer symbol
with an additional input, G. Since G controls operation of the circuit, it is often referred to as the enable input.
In the standard TTL logic family, a 54126 or a 74126 is a 14-pin IC that has four of these circuits.

The Inverter

One of the most basic operations in a digital system is inversion, or negation. This requires a circuit that
will invert a digital level. This logic circuit is called an inverter, or sometimes a NOT circuit. The switch
arrangement in Fig. 1.10a is an inverter. When the input to this circuit is low, the switch remains up and the
output is high. When the input is high, the switch moves down and the output is low. The truth table for the
inverter is given in Fig. 1.1 Ob Clearly the output is the negative, or the inverse, of the input.

+5Vdc

:- -T- ~ ----: ---~ + : : +
I I

V; , : V0

- ~-- -----~ -

(a) (b)

Digital inverter: (a) Model, (b) Truth table, (c) Symbol, (d) Another symbol

When the inverter is used as a logic circuit, His often defined as the "true" state, while L is defined as the
"false" state. In this sense, the inverter will always provide at its output a signal that is the inverse, or comple
ment, of the signal at its input. It is thus called a negation or NOT circuit. This makes sense, since there are
only two possible states, and therefore NOTH must be L and NOT L must be H.

The inverse or complement of a signal is shown by writing a bar above the symbol. For instance, the
complement of A is written as A or A' and this is read as "A bar" A logic expression for the inverter in Fig.
1.1 Oc is v;, = V;. It is read "V sub oh is equal to V sub eye bar."

The standard symbol for an inverter is given in Fig. 1.10c. Notice the small circle (bubble) at the output.
This small circle signifies inversion, and it is used on many other logic symbols. For instance, the symbol in
Fig. l.l Od has the small circle on the input side. This is still an inverter, but the circle on the input side has
additional significance, which will be considered next. In the standard TTL logic family, a 5404 or 7404 is a
14-pin IC with six inverters.

The Tri-state Inverter

A tri-state inverter is easy to construct, as shown in Fig. 1.1 la. The truth table in Fig. 1.11 b shows that when
G is low, the inverter is connected to the output. When G is high, the enable switch opens, and the output is
disconnected from the inverter. The standard logic symbol for this tri-state inverter is given in Fig. 1.11 c. The
inverting amplifier symbol indicates that v;, is the inverse of v; (the small circle is at the amplifier output).
However, note the. small circle at the input of the amplifier used for G. From the truth table, you cari. see that
the switch controlled by G is closed when G is low! Thus, when G is low, the circuit is activated and output
v;, is the inverse of the input v;. Compare this with the G input to the tri-state buffer in Fig. 1.9. In this case,
the switch is closed and the circuit is activated when G is high. Here, then, is the significance of the circle
on the input side: Placing a circle at the input of a logic circuit means that circuit is activated when the

Digital Principles

signal at that input is low! The tri-state inverters used on the 74LS386A IC (TTL logic family) are similar to
Fig. 1.1 I.

+5 Vdc G

--k--:;~-.---: . I ; I I

~--" I I

+ : . : +
V; : : V0

I I

L_ -------------' -

(a)

L L
H L
L H
HH

(b)

V
0

H
L

Open
Open

(c)

ce::f'.iitfnJ Inverting tri-state buffer: (a) Model, (b) Truth table, (c) Symbol

The AND Gate

An AND gate is a digital circuit having two or more inputs and a single output as indicated in
Fig. 1.12. The inputs to this gate are labeled V1, V

2
, V,, ... r~, (there are 11 inputs), and the output is labeled

v;,. The operation of an AND gate can be expressed in a number of different, but equivalent, ways. For
instance.

1. If any input is low, i,:, will be low.
2. ~ will be high only when all inputs are high.
3. T~, = H only if V1 = H, and V2 = H. and V, = H, ... and

V =H.
n

This last statement leads to the designation AND gate, since V
1

and V2 , and V3, •.• and ~, must all be high in order for I~, to be
high.

AND

V ,,

A model for an AND gate having 2 inputs is shown in Fig. l. l 3a. This gate can be used to make "logical"
decisions; for example, "If V

1
and V

2
, then 11;,." As a result, it is referred to as a digital logic circuit, as are all

AND gates. From the model, it is seen that V1 = H closes the upper switch, and V
2
= H closes the lower switch.

Clearly, ~ = H only when both V
1

and V
2

are high. This can be expressed in the form of a logic equation
written as

+5 Vdc

----I------'----r. : + I I : V: Vi V2 Vo Vi ::---~ l
Vz:

I •+ L L L I
I I I~, H L L

- I I

V1D
- "--------J L H L • l, • Vo

H H H Vz

(a) (b) (c)

c:R:t!i:J::]IJ Two-input AND gate: (a) Model, (b) Truth table, (c) Symbol

Digital Principles and Applications

The operation is summarized in the truth table in Fig. 1.13b. The symbol for a 2-input AND gate is shown
in Fig. 1.13c. Thus, AND is a logic operation which is realized here through a logic gate.

The OR Gate

An OR gate is also a digital circuit having 2 or more inputs and a single output as indicated in
Fig. 1.14. The inputs to this gate are labeled V1, V

2
, V,, ... V", (there are n inputs), and the output is labeled

V:· The operation of an OR gate can be expressed in a number of different
ways. For instance,

1. V: will be low only when all inputs are low.
2. If any input is high, V: will be high.
3. V: = H if VI' or V2 or V3, ••• or V,, = H.

This last statement leads to the designation OR gate, since v;, = H only
if V

1
or V2, or V3, ••• V,, = H.

OR V
0

OR gate

A model for an OR gate having 2 inputs is shown in Fig. 1.15a. This gate can be used to make "logical"
decisions; for example, "If V

1
or V

2
, then v;,." As a result, it is referred to as a digital logic circuit, as are all

OR gates. From the model, it is seen that V1 = H closes the upper switch, and V2 = H closes the lower switch.
Clearly, V: = H if either V

1
or V

2
is high. This can be expressed in the fonn of a "logic" equation written as

v: = v1 OR v2

The operation is summarized in the truth table in Fig. 1.15b. The symbol for a 2-input OR gate is shown
in Fig. 1.15c. Thus, OR is a logic operation which is realized here through a logic gate.

+5 Vdc

:--~fr
; :-i:---E±L-----i

I : :
V: I

2 ·----------'v +
- 0-• - J. •

VI V2 Vo

L L L
H L H
L H H v1=[)---
H H H V2 Vo

(a) (b) (c)

Two-input OR gate: (a) Model, (b) Truth table, (c) Symbol

9. Refer only to the tri-state buffer symbol in Fig. l.9c and determine the State of v;, if both G
and v; are low. Check your response with the truth table in Fig. 1.9b. Repeat if both G and v;
are high.

10. Refer only to the inVertingtri-state buffer symbol in Fig. l.llcanddetermine the state of v;, if
both G and v; are low. Check your response with the truth table in Fig. 1.11 b. Repeat if both
G and v; are high.

Digital Principles

11. For the AND gate in Fig. 1.13c, V
1
=Hand V

2
= L. What is the state of V,,?

12. If the AND gate in Fig. 1.13c had an additional input (V,J, and V, = V
2
= H, and V1 = L,. what

would be the state of V) What would it take to produce v;, = H?

13. If the ORgate in Fig. L15c had an additional, input (V3), and V1 = V2 = H, and V
3
= L, what

would be the state of V,,? What would it take to produce i,;, = L?

1.4 MOVING AND STORING DIGITAL INFORMATION

Memory Elements

A digital memory element is a device or perhaps a circuit that will maintain a desired logic level at its output
till it is changed by changing the input condition. The simplest memory element is the switch shown in Figs.
1.7a and b. The switch in Fig. 1.7a is placed such that its output is low, and it will remain low withoutany
further action. Thus, it will ''remember" that ~, = L. Since L = 0 = 0 Vdc, the switch can be thought of as
"holding" or "storing" a logic 0. In Fig. I. 7b, i: = H, and it will remain high without any further action. The
switch remembers that ~, = H. In this case, the switch is holding or storing a logic 1, since H = I = +5 V de.
It is easy to see that this switch can be used to store a digital level, and it will remember the stored level
indefinitely.

The simplest electronic circuit used as a memory element is called a flip:flop. Since a flip
flop is constructed using transistors, its operation depends upon de supply voltage(s) as seen in
Fig. 1.16a. The flip-flop can be used to store a logic level (high or low), and it will retain a stored level
indefinitely provided the de supply voltage is maintained. An interruption in the de supply voltage will result
in loss of the stored logic level. When power is first applied to a flip-flop (turning the system on first thing in
the morning), it will store either a high or a low. This is a "random" result, and it must be accounted for in
any digital system. Generally, a signal such as MASTER RESET or power-on reset will be used to initialize
all storage elements.

+5Vdc

SET A

RESET.4

(a)

SET

H
L
L
H

RESET A

L
H
L
H

(b)

H
L
No change

/ ???(not allowed)

(a) A flip-flop, (b) Truth table

The truth table in Fig. 1.16b can be used to explain the operation of this flip-flop. The two inputs are SET
and RESET, and the output is A. The output labeled A is simply the inverse of A. Here's how it works:

1. When SET= Hand RESET = L, the flip-flop is set, and A = H.
2. When SET = L and RESET = H, the flip-flop is reset, and A = L.

Digital Principles and Applications

3. Holding SET= Land RESET= L disables the flip-flop and its output remains unchanged.
4. Applying SET= Hand RESET= Hat the same time is not allowed, since this is a request to set and

reset at the same time-an impossible request!

To summarize, when the flip-flop is SET, it stores a high (a logic 1). When it is RESET, it stores a low (a
logic 0). A simple flip-flop such as this is often called a latch, since its operation is similar to a switch. A 7475
is an IC in the TTL family that contains four similar flip-flops.

Registers

A group of flip-flops can be connected together to store more than a single logic level. For instance, the four
flip-flops in Fig. 1.17 can be used to store four logic levels. As such, they could be used to store any of the
ten binary numbers given in Table 1.1. As an example, if A is
SET, B is RESET, C is SET, and D is RESET, this will store the
binary number DCBA = LHLH = 0101, which is equivalent to
decimal 5.

When we speak of decimal numbers, each position in a num
ber is called a decimal digit, or simply a digit. For example, the
decimal number 847 has three digits. When we speak of binary
numbers, each position in the number is called a binary digit, or
bit. (The term "binary digi!" has been shortened to "bit.") For
example, the binary number 0101 is composed of four bits; it
is a 4-bit binary number. The four flip-flops in Fig. 1.17 can be
used to store any 4-bit binary number.

A group of flip-flops used to store a binary number is called
a register, or sometimes a storage register. The register in Fig.
1.17 is a 4-bit register. There are eight flip-flops in an 8-bit reg
ister, and so on. In the TTL family, the 7 4198 is an 8-bit regis
ter. Clearly a register can be used to store decimal numbers in
their binary equivalent form. In general, binary numbers such as
this are referred to as data. A register is a fundamental building

R

S= SET R = RESET

A four-bit register

block in a microprocessor or digital computer, and you can now see the beginnings of how these systems are
used for computation.

The register in Fig. 1.18a has 8 inputs, 1 through 8, and 8 outputs, a through h. It is constructed using
eight flip-flops and some additional electronic circuits. A binary number is stored in this register by
applying the appropriate level (high or low) at each input simultaneously. Thus one bit is "shifted" into each
flip-flop in the register. The binary number is said to be shifted into the register in parallel, since all bits are
entered at the same time. In this case, the binary number (or data) is entered in one single operation. Once a
number is stored in this register, it appears immediately at the 8 outputs, a through h. A 74198 is an example
of an 8-bit parallel register.

The register in Fig. 1.18b has a single input and a single output. It is also constructed using eight flip-flops
and some additional electronic circuits. It will store an 8-bit binary number, but the number must be entered
into the register one bit at a time at the input. It thus requires eight operations to store an 8-bit number. This
is how it is done. The first bit of the binary number is entered in flip-flop A at the input. The second bit is then
entered into flip-flop A, and at the same time the first bit in flip-flop A is passed along (shifted) to flip-flop

Inputs

2 3 4 5 6 7 8

Outputs
(a)

Digital Principles

(b)

(a) An 8-bit parallel register, (b) An 8-bit serial register

B. When the third bit enters A, the bit in A goes to B and the bit in B goes to C. This shift right process is
repeated, and after eight operations, the 8-bit number will be stored in the register. Since the bits are entered
one after the other in a serial fashion, this is called a serial register. For a stored number to be extracted
from this register, the bits must he shifted through the flip-flops from left to right. The stored number will
then appear at the output, one bit at a time. It requires eight operations, or eight right shifts, to extract the
stored number. A 74164 TTL is an example ofan 8-bit serial register (this particular IC also provides parallel
outputs).

Transferring Digital Data

A register is used to enter data (binary numbers) into a microprocessor or computer. A register is also used to
extract data from a computer and direct it to an external destination. Wire cables are generally the means for
connecting systems. If a parallel register is used, the data is said to be shifted in parallel. The connector in this
case must have one pin for each bit, and the cable must have at least one wire for each bit. An 8-bit register
requires a cable having at least 8 wires, a 16-bit register must have at least 16 wires, and so on.

Data are also transferred (shifted) between registers within a digital system. Instead of drawing all 8 (or
16 or 32) wires on a schematic, it is common practice to use an arrow between the registers, as illustrated in
Fig. 1.19a. The number 8 in parentheses means that there are eight wires. In this case, there are eight
connections used to transfer 8 bits of data in parallel from register A to register B. The eight wires represented
by this arrow are called a data bus. The double arrow shown in Fig. 1.19b means 16 bits of data can be shifted
in parallel from A to B or from B to A. This is a 16-bit bidirectional data bus.

R R R R
e e e e
g g g g
i A i B i A i B
s s s s
t t t t
e e e e
r r r r

(a) (b)

(a) An 8-bit data bus, (b) A 16-bit, bidirectional data bus

Digital Principles and Applications

On the other hand, data can be shifted serially into or out of a serial register, and only one wire (connection)
is required for the data. Clearly, parallel operation will transfer data into or out of a computer system much
more rapidly than serial operation. The price paid for this gain in speed is an increase in complexity, in terms
of both the electronic circuits and the increased number of connections (wires in the cable). The computer
connector where data is entered or extracted is frequently called a port. Nearly all computer systems have
available both a serial port and a parallel port.

Magnetic and Optical Memory

Any memory element must be capable of storing or retaining only two logic levels, and there are numerous
devices with the appropriate electronic circuits used for this purpose. One of the most common systems for
memory makes use of the fact that a magnetic material can be magnetized with two different orientations.
Thus, magnetizing spots on a strip of magnetic tape, or on a hard disk with a magnetic coating, or on a
magnetic floppy disk are well known and widely used memory systems. In optical memory data is encoded
in binary by making two different kinds of reflecting surface on a spiral track of a circular disk. A special
pointed source of light falls on the surface and intensity of reflected light gives infonnation about the data
stored. A number of devices that utilize magnetic and optical storage are illustrated in Fig. 1.20.

(a) (b)

(c) (d)

(a) A 3'/i-inch magnetic floppy disk drive, (b) Magnetic hard disk drive,
(c) Magnetic tape drive, (d) An optical disk drive

Digital Principles

14. Can. you. think of· different ways · to construct a digital. memory element beginning with
«opposite"terms such 1;1s on-off, in-out, Up-'-down, right-left, cold-hot, wet-dry, etc.?

15. What logic level will appear at A if the flip~flop in Fig. l.16 has SET= Land RESET= If?
16. Look at the binary representation of the decimal number 9 in Table 1.L How many bits are

there in this binary number? If it is stored in the register in Fig. 1.17, what are the bit values
ofDCBA?

17. If a shift operation requires a time of J µs to complete, bow long would it take to enter an
8-bit number into the parallel register in Fig. l .18a? How long would it take to enter an 8,bit
number into the serial register in Fig. 1.18b?

18. When we speak of a microprocessor, what is meant by the term port?

1.5 DIGIT AL OPERATIONS

Counters

It was mentioned previously that counting is an operation easily performed by a digital circuit. A digital
circuit designed to keep track of a number of events, or to count, is called a counte,: The counter in Fig. 1.21 a
is constructed using a number of flip-flops (n) and additional electronic circuits. It is similar to a storage
register, since it is capable of storing a binary number. The input to this counter is the rectangular waveform
labeled clock. Each time the clock signal changes state from low to high, the counter will add one (1) to the
number stored in its flip-flops. In other words, this counter will count the number of clock transitions from
low to high. A clock having a small circle (bubble) in the input side would count clock transitions from high
to low. This is the concept of active /ow-that is, an action occurs when the input is low.

/

r B r rD rE roo ~,1 A C

(a)

1 2 3 4 5 6

H;::J nJ1Jl
0000 0001 0010 0011 0100 0101 0110 0110

(Begin)
(b)

(End)

(a) A counter constructed with n flip-flops, (b) A count of 6

Digital Principles and Applications

As an example of how this circuit might be used, suppose that the counter consists of four flip-flops, all
of which are RESET. That is, the binary number stored in the counter is 0000. The clock signal is initially
held low. Now the clock is allowed to "run" for six clock periods, and then it is held low, as shown in Fig.
1.21 b. After the first clock transition from low to high, the counter will advance to 000 I. After the second
transition, it will advance to 0010, and so on, until it will store the binary number O ll O after the sixth
transition. The binary number O ll O is equal to decimal 6, and thus the counter has counted and stored the
six clock transitions! The waveform in Fig. 1.21 b shows the clock with the counter contents directly beneath
each transition.

A four-flip-flop counter can count decimal numbers from Oto 15. To count higher, it is necessary to add
more flip-flops. It is easy to determine the ma~1mum decimal count in tenns of the number of flip-flops using
the following relation

Maximum count = 2" - 1

where n = number of flip-flops.

The tenn 2" means 2 raised to the nth power, that is, 2 multiplied by itself n times. For example,

22 = 2 x2 = 4

23 = 2 X 2 X 2 = 8

24 = 2 X 2 X 2 X 2 '"-' 16

25 = 2 X 2 X 2 X 2 X 2 = 32

26 = 2 X 2 X 2 X 2 X 2 X 2 = 64

27 = 128

28 = 256

29 = 512

210 = 1024

(1.1)

We'll spend more time on binary and decimal numbers in Chapter 5. For now, this listing of powers of2
can be used with Eq. (1.1). For example, the four-flip-flop counter has a maximum decimal count of

Maximum count= 24 - 1 = 16 1 = 15

ce: EE~~~~::I!) How many flip-flops are required to count up to 100?

Solution From Eq. (1.1), we find that for n = 6, maximum count is 26
- 1 = 63

and for n = 7, maximum count is 27
- 1 = 127

Thus, I 00 lying in between, the count would require 6 flip-flops.

The other way of solving this problem is to round the number log/N + 1) to next higher integer when a count of N
is desired. Since, log)Ol = 6.6582, the number of flip-flops required is 7.

Arithmetic logic Unit

An arithmetic logic unit (ALU) is a digital circuit capable ofperfonning both arithmetic and logic operations.
The basic arithmetic operations performed by an ALU are addition (+) and subtraction(-:). Multiplication
(x) and division (7) of digital numbers are accomplished with other digital circuits. Logic operations will
usually include inversion (NOT), AND, and OR. The ALU represented in Fig. 1.22 has two data inputs; the

Digital Principles

A bus and the B bus, and the F bus is the resultant output.
The digital levels on the S bus detennine which operation
is to be performed. Generally, each of the data buses will
have the same number of bits. As an example, in the TTL
family, the 74181 is an ALU similar to Fig. 1.22. Both the
A and B inputs are 4-bit buses, and the output at F is also
a 4-bit bus. For this particular circuit, the control signal
at the S bus is also four bits. In addition, the 7 4181 has a
number of other inputs and outputs which we will discuss
in detail later.

F

An arithmetic logic unit
Addition and Subtraction If the proper digital levels (ALU)
are applied to the inputs of the S bus, the ALU in Fig. 1.23
can be used to add two digital numbers. The two numbers to be added are represented by the proper logic
levels at A and B, and the SUM of these two numbers will appear at output F. In the event the sum of the two
numbers generates a carry, an H will appear at the CARRY OUT. To illustrate, suppose we wish to perfonn
the addition 6 + 7 = 13. Here's how we might do it with decimal numbers.

(cany)<--

The digital levels illustrated in Fig. 1.23 will result
in the addition of these two numbers. The equivalent
decimal numbers are shown in parentheses. Notice that
the CARRY IN allows this ALU to add two numbers,
plus a carry.

By changing the control levels at the S bus, this ALU
will detennine the difference A -B (subtraction). In this
case, the digital levels at the F bus represent the DIF
FERENCE, rather than the SUM.

: 6
!7(+1)

3

OHO
(6)

0111
(7)

0

Carry 1
out (1)

0011 Sum F (3)

Carry
in

Logic Functions By changing the digital levels at the
S bus, the ALU in Fig. 1.22 can be used to perfonn a
number of different logic functions relative to the two
digital inputs. The desired function appears at the F
bus. Here are some of the possibilities:

(0) ~~~---'

F=A
F=B
F=AANDB

F=AORB

The operations are carried out "bit by bit." For example,

If A= 1010 then F= A= 0101

An ALU used for addition

Digital Principles and Applications

If A= 1010 and if B = OllO, then

F= A AND B = 1010 AND 0110 = 0010

In this case, the ANDing is done on the corresponding bit of each input. There are tour AND operations.
It's easier to see by writing the data as follows:

A= 1010

1111

B =0110

F= 0010

The "vertical lines" between A and Bshow which bits are ANDed.

Comparison Comparing the magnitude of two numbers is an
important logical operation. The circuit in Fig. 1.24 is a comparator. It
is capable of comparing two digital numbers and indicating whether
the magnitude of one is greater than, less than, or equal to the other.
For example, if A= 0110 (decimal 6) andB = 0111 (decimal 7), then
the output A < B will be high. The other two outputs will be low. A
7485 in the TTL family is a 4-bit comparator similar to Fig. 1.24.
Also, the 74181 ALU can be used with the same results.

Input/Output

A>B

A=B

A<B

L

L

H

A comparator

In order for any digital system to be useful, there must be some provision for entering data into the system
and also some method of extracting data from the system. In the case of a computer, information is frequently
entered by typing on a keyboard or perhaps by using a magnetic floppy disk. Useful information can be
obtained from the computer by examining the visual displays on a cathode-ray tube (CRT) or by reading
material produced on a printer. Clearly there is a requirement to connect multiple input devices, one at a time,
to the system. The digital circuit used for this operation is a multiplexer. Likewise, there is a need to connect
the system output to a number of different destinations, one at a time. The digital circuit used for this purpose
is a demultiplexer.

The term multiplex means "many into one." A multiplexer (MUX) can be represented as shown in Fig.
1.25a. There are n input lines. Each line is used to shift digital data serially. There is a single output line
which is connected to the computer (system) input port. Operation of the circuit can be explained by using
the "switch" as a model. Each setting of the digital control levels on the C bus will connect the switch to one
of the input lines. Data from that particular input is then entered into the computer. Changing the C bus levels
will connect a different input. Thus, data from multiple sources can be connected to a single input port, one at
a time. An example ofa MUX is the 74150 in the TTL family. It has 16 input lines and a single output line.

The opposite of multiplex is demultiplex, which means "one into many." A demultiplexer (DEMUX) can
be represented as in Fig. 1.25b. This digital circuit simply connects the single data input line to one of the n
output lines, one at a time, according to the levels on the C bus. Thus serial data from the computer output
port can be directed to different destinations, one at a time. An example of a DEMUX is the TTL 74154,
which can be used to connect a single input to any one of 16 outputs, one at a time.

Any information entered into a digital system must be in the form of a digital number. A circuit that
changes data into the required digital form is called an encoder. The encoder shown in Fig. 1.26a on the next

11

(a)

Digital Principles

One
-++-..... output

line

One

input --
line

(b)

(a) A multiplexer (MUX), (b) A demultiplexer (DEMUX)

page will change a decimal number into its binary equivalent. It may be used with a keyboard. For instance,
depressing the number 4 key on a keyboard will cause input line 4 to this encoder to be high (the other inputs
are all low). The result will be decimal 4, binary 0100, at the encoder output as shown.

L 0 0 L
L I I L
L 2 2 L
L 3 A '} Decimal H 4 B O Digital

inputs L 5 C 6 outputs
L 6 D
L 7
L 8
L 9

Digital r A 3 L
B 4 L Decimal

inputs l C 5 -L outputs

-:;,.'i; 0 D 6 H
7 L

"/,.~\: { 8 L
9 L

\ -<:j'(;
(b) (a)

(ij f:Ig~I~2[) (a) An encoder, (b) A decoder

Taking digital information from the output of a computer and changing it into another form is accomplished
with a decoder, for example, changing the digital number O 110 (decimal 6) into its decimal fonn. The decoder
in Fig. 1.26b will accept a 4-bit binary number and indicate its decimal equivalent between O (zero) and 9.
As shown, the binary input O I IO will cause output line 6 to be high, while all other output lines remain low.
There are many different types of encoders and decoders. A number of them will be discussed in detail in
Chapter 4.

19. What binary number will be stored in the counter in Fig. l.2Ia if the clock is allowed to run
for seven periods?

20. How many flip-flops are required to construct a digital counter capable of counting 1000
events?

21. State whether or not the ALU in Fig. 1.22 will generate a carry out if the numbers added are:
(a) 2 and 3; (b) 5 and 5; (c) 9 and 9.

22. What are the digital output levels of the encoder in Fig. l.26a ifonly input line 6 is high?

Digital Principles and Applications

1.6 DIGIT Al COMPUTERS

Terms

An appropriate selection of the previously discussed digital circuits can be interconnected to construct
a digital computer. A computer intended to perform a very specific task, constructed with a minimum
number of components, might be referred to as a microcomputer. Small portable, or desktop, computers are
usually in the microcomputer class. Computers with greater capacities, often used in business, are called
minicomputers. A large mainframe computer system capable of storing and manipulating massive quantities
of data, for example, a digital computer system used by a bank or an insurance company, might then be called
a maxicomputer.

Uses

What can a digital computer be used for? Numerical computation is surely one possible use. The inclusion of
an ALU with additional logic circuits provides arithmetic capabilities (addition, subtraction, multiplication,
division). The logic portion of the ALU means the computer can be used to make logical decisions. Beyond
these basic functions, a digital computer can be used to process data (balance bank accounts), to rapidly
perform otherwise time-consuming tasks (determine payroll amounts and print out paychecks), to precisely
monitor and control intricate processes (life support systems in a hospital operating room), to use speech for
communication with humans (automatic telephone systems and voice recognition)-the list is almost end
less, and is limited only by the ingenuity and resourcefulness of individual users!

Basic Configurations

A microcomputer designed to control a given machine, process, or system might be represented as in Fig.
1.27. The control signals produced by the computer appear as the output bus and are sent to an output device.
Here, the signals are properly conditioned and sent to the mechanism being controlled. The controlled entity
must then send signals indicating its present condition back to the computer via an input device and via the
input bus. The computer analyzes these present condition signals, determines any necessary action, and sends
required correction signals out to the system.

A microcomputer system might be designed to irrigate the lawn area of a park. Watering is to be done
only at night, when the soil moisture falls below a given value. The system "sensors" in this case would be
(1) a probe to detect soil moisture and (2) a
light detector to distinguish between daylight
and darkness. The computer would monitor
sfgnals from the two sensors, tum on the wa
tering system whenever the soil moisture fell
below a set value (but only at night), and tum
the system off as the moisture increased above
the desired value.

The minicomputer illustrated in Fig. 1.28
on the next page is more complicated than the
microcomputer described, but it has greatly in
creased utility. The input bus is serviced with
aMUX.

~

Input I

device)

Input ·,
V

Controlled IA
machine process

or r system

I ~ o Digital Output ' utput
computer J / device

A digital computer based system

Voice
input

MUX Input

Keyboard

Inputs

Digital Principles

Digital
computer

D
Disk drive

or
tape drive

CRT

DEMUX

Printer

Outputs

Audio
output

Disk drive
or

tape drive

Block diagram of a computer system

This allows the connection of a number of different input devices:

A keyboard for typewritten entry of alphanumeric information

A disk drive or tape drive for entering data stored in magnetic form

A microphone for voice input

The DEMUX on the output bus allows numerous possibilities for receiving information from the computer:

The familiar CRT for a visual display

A printer to provide printed material (called hard copy)

A disk or tape drive to record data in magnetic form

Perhaps a speaker for audio information

A minicomputer such as this can be used for many different tasks. It can be used as a word processor, for data
processing, for communication via telephone (both voice and fax), for training in an educational setting, for
computer games, and so on!

The block diagram in Fig. 1.28 forms the basis for larger computer systems. A larger system will have
a much greater capacity to store data and will in general utilize numerous input/output units. For instance,
a maxicomputer will likely have more than one printer, and perhaps even different types of printers. It will
generally have a large number of users, all of whom desire access to the system at the same time. One
workstation must then be provided for each user. A keyboard and a CRT are the minimum components
required at each workstation. The digital circuits used to construct maxicomputer systems are necessarily
more complicated than minicomputer systems, and they may operate at a much faster rate. Let's take a look
inside a typical digital computer.

Basic Computer Architecture

The central processing unit (CPU) is the brain of a digital computer. It is constructed using an ALU along
with a number of registers and counters. The CPU is therefore the primary center for computation and

Digital Principles and Applications

decision making. All the operations within the CPU,
and indeed within the computer itself, must be
carefully coordinated. A digital signal refened to as
the system clock is used as a reference to time when
specific operations take place. The clock signal is
usually a periodic, rectangular waveform as illustrated
in Fig. 1.6. Using a crystal in the clock circuit allows
the accuracy and stability of the clock frequency, to
be controlled with great precision. The clock provides
a "heartbeat" for the computer. A block diagram of a
digital computer is started by drawing the CPU and
clock as shown in Fig. 1.29.

The CPU is capable of computation and decision,
but it must have specific instructions telling it exactly
·what to do and when to do it. This set of instructions
is called a program. A program is a detailed list of
operations written by a human programmer. The pro
grammer decides what the computer is to do and when
it should be done, and then writes a list of instructions
to be carried out in the proper order. The program is
entered into the computer, using perhaps a keyboard,
and stored in the computer memory. The CPU can then
"fetch" from memory one instruction at a time, in the
given order. It will execute the instruction and then
fetch the next instruction. With this repeated fetch

Clock

CPU

The "heart" and "brain" of
a digital computer

CPU

Program Data
memory memory

CPU with memory block

and-execute cycle, the CPU will accomplish the desired task. A memory block used.for program storage has
been added in Fig. 1.30.

A portion of the memory block in Fig. 1.30 is labeled data. This is the area where the information being
processed by the computer is stored. In addition, this is where the CPU stores the results of computations
and/or decisions made. Since the CPU takes ("reads") data from memory, as well as returns ("writes") data
into memory, the memory data bus is bidirectional. By contrast, the program data bus is not bidirectional,
since information on this bus is always from memory to CPU.

The CPU communicates with the "outside world" by means of the input encoders and the output decoders.
The ability to multiplex inputs and demultiplex outputs may also be included in the input/output blocks
that have been added in Fig. 1.31 a. This configuration is sometimes quite inefficient, since all information
entering or exiting the computer must pass through the CPU. The CPU operates at a much faster rate than
most external devices, and it must wait while data are being entered or exited: A direct memory access (DMA)
block is generally included to alleviate this problem. As seen in Fig. 1.31 b, the DMA allows information
to move directly from an input device into memory, or from memory directly to an output device. While
information is being transfened via the DMA, the CPU is free to cany on its computational or logical
operations. This greatly improves system efficiency as well as speed of operation.

Before data can be entered into the computer, a signal on the input requestline asks the computer for "per
mission" to input information. For instance, depressing the enter key on a keyboard will generate an input
request signal. When the CPU is ready, a signal is generated on the acknowledge line, and data will be entered

From {
external
devices

Input

From {
external
devices

Digital Principles

CPU

Program
memory

Program
memory

(a)

(b)

Data
memory

Data
memory

D
e

Output C
0
d
e

CPU, memory with input/output block

}

To
external
devices

}

To
external
devices

via the DMA into the memory. This request-acknowledge sequence is often called handshaking. A similar
handshaking must occur when the CPU is ready to deliver data to an external device. However, in this case,
the CPU makes an output request, and the external device gives permission.

All of these blocks are operated in synchronism with the clock, but additional direction must be provided.
The controller is the unit that decides which block "goes first" (establishes priorities), decides the order.in
which external devices are serviced, routes data along the various buses such that no conflicts occur, and
controls the overall operation of the system. As such, the controller communicates individually with each
block as illustrated in Fig. 1.32. This block diagram is representative of the architecture of many digital
computers.

Amicroprocessoris often used as the basic IC around which amicrocomputerorminicomputer is constructed.
Numerous computers have been designed, beginning with the 8080 microprocessor. Improvements to this
basic IC have led to the development of a family of microprocessor units including the 8085 and the 8086.

From r
external l
devices

Request

Digital Principles and Applications

Controller

Program
memory

Data
memory

u ut

A microprocessor-based digital computer

}

To
external
devices

Referring to the block diagram in Fig. 1.32, a modern fully integrated microprocessor contains the controller,
the clock, the CPU, and portions of the memory, the DMA, and the input and output blocks. The purpose
of this section is to provide a general understanding of a digital computer. In the remainder of this text, the
blocks used to build any digital system, including a digital computer, will be studied in detail.

23. Why is the system clock considered the heart of a digital computer system?
24. What is a computer program?
25. What functions are ca1Tied out in an ALU?
26. What is the purpose of the DMA in Fig. 1.32?

1.7 DIGITAL INTEGRATED CIRCUITS

A digital IC is constructed by an interconnection of resistors, transistors, and perhaps small capacitors, all of
whic.h have been formed on the surface of a semiconductor wafer. The entire circuit resides on a tiny piece of
semiconductor material called a chip.

The semiconductor wafer is typically a slice of monocrystalline silicon about 0.2 mm thick and perhaps 8
to 15 cm in diameter, as illustrated in Fig. 1.33a. The wafer is divided checkerboard fashion into 1000 or so
rectangular areas. Each area will become a single chip. The resistors and transistors necessary for each digital

8 to 15
cm

Cutaway view

Digital Principles

0.2 mm thick
(a)

Up to 1000 chips

Gold wire

(c)

Chip

D t
ltolOmm

square

t
(b)

(a) A wafer, (b) One chip, (c) Dual-inline package (DIP)

circuit are then formed on each chip by a series of semiconductor processing steps. In this fashion, identical
digital circuits are manufactured simultaneously on the same silicon wafer.

After the processing steps are completed, the wafer is separated into individual chips as seen in Fig. 1.33b.
Each chip is a digital circuit, for example, an inverter or an AND gate. An individual digital circuit may have
only a few components, but some circuits have a few hundred components! Each chip is then mounted in a
suitable package, as shown in Fig. 1.33c. The package illustrated here is a 14-pin dual-inline package (DIP).
Some additional packages for ICs are shown in Fig. 1.34.

Digital Principles and Applications

(a) (b)

(c) (d)

Some IC packages: (a) DIP, (b) Flat pack, (c) Surface mount, (d) Pin-grid array

IC Families

ICs are categorized by size according to the number of gates contained on each chip. There is no absolute
rule, but an IC having fewer than 10 or 12 gates is usually referred to as a small-scale integration (SSI) IC.
For instance, a 7404 has six inverters in a 14-pin DIP. ICs having more than 12 but fewer than 100 gates are
called medium-scale integration (MS!) !Cs; encoders and decoders are examples of MSI ICs. If there are
more than 100 gates but fewer than 1000, the IC is called a large-scale integration (LSI) JC. An IC having
more than 1000 gates is referred to as a ve,y large-scale integration (VLSI) JC. A large complex system such
as semiconductor memory or a microprocessor will be either LSI or VLSI.

ICs are further categorized according to the type of transistors used. The two basic transistor types are
bipolar and metal-oxide-semiconductor (MOS). Bipolar technology is faster but requires more power, and is
generally preferred for SSI and MSI. MOS is slower, but requires much less power and also occupies a much
smaller chip area for a given function. MOS is therefore preferred for LSI and is widely used in applications
such as pocket calculators, wristwatches, hearing aids, and so on. For the moment, let's consider the overall
characteristics of each digital IC family.

Bipolar Transistors

There are two important digital circuit families constructed using bipolar transistors:

• Transistor-Transistor Logic (TTL)

• Emitter-Coupled Logic (ECL)

Transistor-Transistor Logic TTL was first introduced by Texas Instruments in 1964 using the numbers
54XX and 74XX. These two families are now widely available from a number of different manufacturers.
The 74XX ICs operate over a temperature range of 0°C to 75°C. The 54XX devices are more rugged; they
operate over a temperature range of -55°C to+ I25°C. As you might expect, the 54XX devices are more

Digital Principles

expensive. Otherwise, the logical operations of these two families are the same. In each case, the XX por
tion of the part number refers to a specific device. For instance, "04" stands for inverter, and a 7404 is a TTL
inverter. A 7 411 is a TTL AND gate, and so on. When there is no danger of confusion, it is common practice
to shorten the description by omitting the first two digits. Thus, a 7404 inverter is referred to as a 04, and the
7411 AND gate is designated as 11. Table 1.2 is a partial listing of some widely used 74XX ICs. Note that a
5404 is logically the same as a 7404; it is simply guaranteed to operate over a wider temperature range.

Some Standard Digital Circuits

TTL ECL CMOS Function

7400 74HCOO Quad 2-input NAND gate
7402 MCI0102 74HC02 Quad 2-input NOR gate
7404 74HC04 Hex inverter
7408 MCIOI04 74HC08 Quad 2-input AND gate
7432 MCIOI03 74HC32 Quad 2-input OR gate

In the interest of higher operating speed, the 74XX family was improved with the introduction of the
74HXX (where the H stands for high speed) family of devices. The price paid for increased speed was an
increase in power required to operate each gate. This led to another family of devices designed to minimize
power requirements-the 74LXX (where the L stands for low power) series.

A major improvement in the TTL series came with the development of a special transistor arrangement
called a Schottky transistor. Using this device, the 74SXX (S for Schottky) family came into being. These
devices greatly improved operating speed, but again at the cost of increased power consumption. At this
point, a family of devices designated 74LSXX (low-power Schottky) was developed. The 74LSXX family
offers high-speed operation with minimal power consumption and today is preferred in most designs. The
original 7400 also remains popular.

There are two additional families, 74ASXX (advanced Schottky) and 74ALSXX (advanced low-power
Schottky), available. One might anticipate the development of other families with characteristics to match
specific needs. Table 1.3 is a comparison of power consumption and speed of operation (delay time) for some
TTL families.

Emitter-Coupled Logic Emitter-coupled logic (ECL) is considerably faster than any of the TTL families,
but the power required for each gate is also much higher. With a propagation delay of only 2 ns, the industry
standard for ECL circuits is 10,000 ECL, abbreviated IOK. The lOOK (100,000) series is even faster, with
a delay time of only 1 ns. Motorola markets a family of devices designated MECL 1 OK and MECL 1 OKH
(Motorola .Emitter ~oupled Logic). Representative 1 OK MECL circuits are listed in Table 1.2.

MOS Transistors

There are three digital logic families constructed using MOS field-effect transistors (MOSFETs):

• PMOS Usingp-channel MOSFETs

• NMOS Using n-channel MOSFETs

• CMOS Using both n-channel and p-channel MOSFETs

PMOS, the slowest and oldest type, is nearly obsolete today. NMOS dominates the LSI field and is widely
used in semiconductor memories and microprocessors. CMOS is preferred where individual logic circuits are
used and where very low power consumption is required.

Digital Principles and Applications

Type

74XX
74HXX
74LXX
74SXX
74LSXX

Name

Standard TTL
High-speed TTL
Low-power TTL
Schottky TTL
Low-power Schottky

TTL Power-Delay Values

Powe,; mW

IO
22

l
20
2

Delay Time, ns

IO
6

35
3

10

The original 4000 series of MOS devices was introduced by RCA. It was slow, was not compatible with
TTL, and is rarely seen in modern designs. The 74CXX (C for CMOS) is a series of digital ICs that are
manufactured using MOS technology. These devices are pin-for-pin replacements for similarly numbered
7400 TTL devices. For instance, a 7404 is an IC that contains six inverters, and the 74C04 also contains six
inverters. Thus, digital circuits designed using 74XX TTL devices can also be implemented using 74CXX
MOS devices. The 74CXX design will require considerably less operating power but will be restricted to
lower operating speeds. The 74HCXX (where the HC stands for high-speed CMOS) family of circuits is the
most widely used today (see Table 1.2).

Complete digital logic systems can be constructed using entirely 74XX devices or 74HCXX devices, and
the two types of devices can even be used together, provided certain precautions are observed. The necessary
precautions involve voltage levels, current requirements, and switching times; this comes under the subject
of interfacing, which will be addressed in Chapter 13. A second family of CMOS devices that is entirely
compatible with TTL circuits is the 74HCTXX series (where the H stands for high-speed, the C for CMOS,
and the T for TTL-compatible).

Since the mid-1980s, two additional CMOS families have been available-the 74ACXX (advanced
CMOS), and the 74ACTXX (advanced CMOS TTL-compatible) families. As with TTL, there will no doubt
be further advancements to produce additional CMOS families.

Digital logic Symbols
The Institute of Electrical and Electronics Engineers (IEEE) along with the American National Standards
Institute (ANSI) have developed a new symbolic language and set of symbols to be used with digital logic
circuits. These new symbols are now being used on manufacturers' data sheets along with traditional symbols.
The most recent revision of IEEE Standard Graphic Symbols for Logic Functions, ANSI/IEEE Std 91-1984,
provides for two different types of symbols. Symbols of the first type, called distinctive-shape symbols, are
exactly as have been shown throughout this chapter. The second system, which is called the rectangular
shape system, uses a rectangular box with a special symbol for each type of gate. The IEEE standard does
not express a preference for either shape. Most people presently involved in digital electronics seem to prefer
the distinctive-shape system, and since this type of symbol is still included on data sheets, we will use these
symbols in this text. Below is a brief introduction WY
to the new rectangular symbols, which are ~ ~ L H
presented along with their traditional, distinctive- A~ Y A --U- Y H L

sha?e co~nterparts .. More detailed information is (a) (b) (c)
available m Appendix 7.

The standard logic symbol for an inverter is
shown in Fig. 1.35a, where Y is the complement of

(a) Standard symbol, (b) New
IEEE symbol, (c) Truth table

Digital Principles

A. The new IEEE symbol is shown in part b of this figure. A rectangular box is used for the gate, the input is
labeled A, and the output is labeled Y. The 1 inside the box signifies that the input must be active in order to
have an active output. The triangle on the output line signifies that the output is active when low. Thus, when
the input is active (high), the output will be active (low). The truth table is shown in Fig. 1.35c.

The 7404 is a hex inverter; that is, it is an IC that contains six inverters. The DIP package for this device is
shown in Fig. 1.36a, along with the proper pin numbers on the package. Figure 1.36b shows the six standard
logic symbols for the inverters. Figure 1.36c shows the new IEEE logic symbol.

GND

Vee
1~2

3~4

5~6

9~8

ll~lO

13~12

(a) (b) (c)

Hex inverter, 7404: (a) Pin configuration, (b) Logic symbol, (c} Logic
symbol (IEEE)

A 7411 is an IC that contains three 3-inputAND gates. The DIP package and pinout for the 7411 are shown
in Fig. 1.37a, and the standard logic symbols are given in Fig. 1.37b. The new IEEE symbol for the AND
gate is a rectangle with the ampersand(&) symbol written in it; is used in Fig. 1.37c to show the three AND
gates in the 7 411.

GND

Vee 'P 2 B y 12 1
13 C 2 &

12

'P
13

4 B y6 3
4 6

5 C 5

·p 9

10 B . . y 8 10 8

11 C 11

(a) (b) (c)

Triple three-input AND gate, 7 411: (a) Pin configuration, (b) Logic symbol,
(c) Logic symbol (IEEE)

The pinout and symbols for the 7432 quad 2-input OR gate are shown in Fig. 1.38. The term quad means
"four," and there are four gates in this DIP. The IEEE symbol for an OR gate is a rectangular box with the
greater than or equal to(~) symbol inside. This symbol means "at least one input must be high in order for
the output to be high."

Digital Principles and Applications

Vee lo-r 2 B 3

;;;: I 3 4o-r 2

S B 6 4 6
5 9o-r 10 B 8
9

10
8

121C)-r11
12 11

GND 13 13

(a) (b) (c)

Quad two-input OR gate, 7432: (a) Pin configuration, (b) logic symbol,
(c) Logic symbol (IEEE)

27. What is generally accepted as the number of gates per chip for SSI, MSI, and LSI?
28. Which is faster, TTL or ECL? Which requires more power to operate?
29. Over what temperature range will 74XX TTL operate?
30. When referring to TTL ICs, what is the meaning of quad? of hex?
31. In the 74ACTXX family of I Cs, what do the letters A, C, and T stand for?
32. What is the significance of the triangle on the output line of the inverter in Fig. l.35b?

1.8 DIGITAL IC SIGNAL LEVELS

The voltages in Fig. 1.39 are used to define the two digital logic levels, H = 1 = Tand L = 0 = F. Logic level I is
any voltage between+ Vee and+ V11_min· Logic level O is any voltage between+ VL.m,L, and 0. Voltages within the
forbidden region are not allowed. This illustration is often called
a profile, and it can be used to define the operation of any digital
logic circuit. Each family of digital circuits has its own unique
operating characteristics, and each individual circuit has an input
and an output. Thus, there must be an input profile and an output
profile for each family. An understanding of the correct voltage
levels for each digital family is absolutely essential. Measuring
logic levels in the laboratory, interconnecting different logic
families, and connecting digital logic circuits with other digital
circuits require a detailed knowledge of voltage levels. For now,
we will consider the two most popular TTL families and one of
the widely used CMOS families. Profiles for other circuits are
easily obtained from manufacturers' data books.

Volts

+Vee 1----------
H=l =T

Logic level profile

Digital Principles

TTL logic levels

The 74:XX and 74LSXX are the two most widely used TTL families, and they have identical voltage-level
characteristics (there is a difference in current capabilities, however).

The input profile and the output profile for Volts Volts
the 74XX and the 74LSXX family are shown in
Fig. 1.40. From the output profile, each circuit will
produce a voltage between +Vee= +5 Vdc and
V

0
H . = 2.4 V de to signify H = l. A voltage level

be~;~n +VOL.max= 0.4 Vdc and O Vdc will be pro
duced to signify L = 0.

From the input profile, it is seen that any voltage
between +Vc:c = +5 Vdc and +V1H.min = 2.0 Vdc is
recognized as H = l. Any voltage between +V1L,max
= 0.8 Vdc and O Vdc is recognized as L = 0.

Look carefully at Fig. 1.40 and note that any
output voltage within the high range is within the
input range recognized as a high. Similarly, any

V cc= +5 1----- ----1 Vee= +5

H= l
H=J

VOL. max= 0.4 L = 0 VIL, max= 0.8
. 0 -t-~~~------+--0

Output Input

74XX and 74LSXX profiles

output voltage within the low range is within the input range recognized as a low. Clearly an output voltage
from any 74XX circuit can be used as the input signal to any other 74XX circuit! This family of circuits is
thus said to be compatible. This shouldn't come as a surprise, since any circuit within a family should be
able to "drive" any other circuit within the same family. Similarly, any 74LSXX circuit can drive any other
74LSXX circuit-this is also a compatible family. Furthermore, the 74XX and 74LSXX families are compat
ible with one another.

There are, however, differences in the number of circuits that can be connected to the output in each fam-
ily. This consideration, calledfanout, is discussed in Chapter 13. ·

CMOS logic levels

74HCXX is the most widely used CMOS family. The input profile and the output profile for the 74HCXX
family are shown in Fig. 1.41. From the output profile, each circuit will produce a voltage between +Vee=

+5 Vdc and +V0 H,min = 4.9 Vdc to signify H = 1. Volts Volts
A voltage level between+ VOL.max = 0.1 V de and O H = 1
Vdc will be produced to signify L = 0. Vee=+ 5 1---+---

·,~:-. .. ~:,.::
From the input profile, it is seen that any

voltage between +Vee= +5 Vdc and Vm.min = 3.5
V de is recognized as H = I. Any voltage between
+ v;L.max = 1.5 V de and O V de is recognized as
L=O.

VoH, min= 4.9 ~~~

.
\~~
-~~ ~·· VoL,max =0.1 -~~

----1 Vcc=+5
H= 1

VIL, max = 1. 5
L 0 Look carefully at Fig. 1.41 and note that any

output voltage within the high range is within the
input range recognized as a high. Similarly, any
output voltage within the low range is within the
input range recognized as a low. Clearly an output

0------------0
Output L = 0 Input

74HCXX profiles

Digital Principles and Applications

voltage from any 74HCXX circuit can be used as the input signal to any other 74HCXX circuit! This family
of circuits is thus said to be compatible.

By comparing the profiles in Figs. 1.40 and 1.41, you can see that a 74HCXX CMOS circuit can be used to
drive any 74:XX TTL circuit. However, a 74:XX TTL cannot be used to drive a 74HCXX CMOS. The voltage
levels are not compatible. Interconnecting different families like this is called interfacing. Both interfacing
and fanout are considered in Chapter 13.

Noise Margin

We shall end the discussion on digital IC signal levels by introducing the concept of noise margin. We have
noted that level H = 1 and L = 0 are represented by a range of voltages. Consider, output of a digital device is
connected to input of another digital device (see Fig. 1.42) but some noise (in the fonn of a random voltage)
can get added to the output voltage before it arrives at the input of next device.

Now, refer to Fig. 1.40 for TTL digital devices. The output for H = I can be lower than 5 V and can go as
low as V0 H.min(2.4 V). The input of a TTL device is treated
as H = 1 if it's within the range +5V to VIH.min(2.0V).
An addition of any random noise voltage greater than
2.0V-2.4V = -0.4V (e.g., -0.3V, -0.2V) makes the
summer output greater than 2.0V, the minimum accept
able level VIH . at input side. Thus, there exists a noise .mm
margin, the amount of noise that can get added without
any possibility of logic value misinterpretation. This can
be defined for H = l as

NM =V -V H IH.rnin OH,min

Digital
Device 1

Noise

Digital
Device 2

Noise affecting output of
a digital device

(1.2)

Similarly, a noise margin for L = 0 exists, beyond which output of a device at L = 0 may fail to get
identified as the same, at the input of a similar device due to noise corruption. The worst-case scenario here
can make V0 L,max plus noise go above VIL.max· Thus noise margin for L = 0 can be defined as

NM= V -V
L IL,max OL.max (1.3)

Note the polarity of the noise voltage in above two cases. For N~
1
the corrupting noise voltage should be

negative and less than the noise margin to cause any misinterpretation. If it is positive, there is no such issue.
However, for NML the corrupting noise voltage should be positive when misinterpretation may occur.

For TTL 74:XX and 74LSXX family,

NMH = vlH,min - VOH,min = 2.0 - 2.4 V = -0.4 V

NML = VIL.max - VOL.max= 0.8 - 0.4 = 0.4 V

For CMOS 74HCXX family, from Fig. 1.41

NMH = ~H,min - VOH,min = 3.5 -4.9V =-l.4V

NML = v!L,max - VOL.max= 1.5 - 0.1 = 1.4 V

Note that CMOS has better noise margin characteristics over TTL.

Digital Principles

This introductory chapter in digital principles is intended to provide a dear concept of a digital signal in
an electronic circuit or system. Both ideal and realistic digital voltage levels are presented. How these
levels vary with time (waveforms) is illustrated, and the concepts of rise time, fall time, and duty cycles
are defined. Simple ideal switch models are used to illustrate digital Circuit operation. Symbols and
operation of the following basic digital circuits are presented: buffer, tri~state buffer, inverter, tri-state
inverter, AND gate, and OR gate. The flip-flop is introduced as a basic memory element, and both serial
and parallel shift registers are discussed. The basic conceptual operation of a number of common MSI
and LSI digital circuits is covered: encoders, decoders, multiplexers, demultiplexers, ALUs, counters,
and comparators. These basic elements are then discussed in the contextoftheir use. in a simple digital
computer. Finally, currently available digital I Cs, including the 54/74XX TTL, 74HCXX CMOS, and MECL
families, are discussed.

• ALU Arithmetic logic unit.
• analog signal A signal whose amplitude

can take any value between given limits. A
continuous signal.

• binary number A number code that uses only
the digits O and I to represent quantities.

• bipolar Having two types of charge carriers; a
bipolar transistor is npn or pnp.

• bit binary digit.
• buffer A digital circuit capable of maintaining

a required logic level while acting as a current
source or a current sink for a given load.

• chip A small piece of semiconductor on which
an IC is formed.

• CMOS Complementary metal-oxide silicon.
An IC using both n-channel and p-channel
field-effect transistors (FETs).

• CPU Central processing unit.
• CRT Cathode-ray tube.
• clock A periodic, rectangular waveform used

as a basic timing signal.
• computer architecture Microprocessor and

other elements building a computer.
• counter A digital circuit designed to keep

track of (to count) a number of events.
• decoder A unit designed to change a digital

number into another form.
" demultiplexer (DEMUX) A digital circuit that

will select only one of many inputs.

• digital signal A signal whose amplitude can
have only given discrete values between
defined limits. A signal that changes amplitude
in discrete steps.

• DIP Dual-inline package.
• DMA Direct memory access.
• Duty cycle For a periodic digital signal, the

ratio of high level time to the period or the
ratio of low level time to the period.

• ECL Emitter-coupled logic.
• encoder A unit designed to change a given

signal into a digital number.
• flip-1fop An electronic circuit that can store

one bit of a binary number.
• floppy disk A magnetically coated disk used to

store digital data.
• gate A digital circuit having two or more

inputs and a single output.
• handshaking A "request" to transfer data

into or out of a computer, followed by an
"acknowledge" signal, allowing data transfer
to begin.

• IC Integrated circuit.
• logic circuit A digital circuit, a switching

circuit, or any kind of two0 state circuit that
duplicates mental processes.

• LSI Large-scale integration.
• memory The area of a digital computer used

to store programs and data.

Digital Principles and Applications

• memory element Any device or circuit used
to store 1 bit of a binary number.

• microprocessor An IC around which many
small computer systems are constructed.

• MSI Medium-scale integration.
• multiplexer (MUX) A digital circuit that will

connect a single input to any one of many
possible outputs.

• noise margin Allowable level of additive
noise for proper interpretation of logic value.

• parallel shifting Transferring all bits in a
binary number (digital data) simultaneously.

• port A register that serves as a place to either
input data to or extract data from a digital
system.

• program A detailed set of instructions used to
direct the operation of a computer.

PROBLEMS

1.1 Describe in your own words the characteristics
of an analog signal and a digital signal.

1.2 Use four indicator lamps to illustrate the
decimal number 3.

1.3 Demonstrate that only three indicator lamps
are required to display the eight decimal
numbers 0. 1, 2, 3. 4, 5, 6, and 7.

1.4 On certain wall clocks, the representation of
the progression of seconds is analog, while
on other clocks it is digital. What is the
difference?

1.5 Make a sketch similar to Fig. 1.4c to illustrate
that VOH.min = 3.9 Vdc, VQL,max = 0.8 Vdc, +5
Vdc ?.H?. V

08
. , and O Vdc $L $ V

0
L • ,min ,max

1.6 A certain digital logic family has levels which
are given as O Vdc?. H?. -0.2 Vdc and -2.0
Vdc?. L ?.-2.5 Vdc. Make a sketch similar to

• programmer A person who writes programs
for digital computer systems.

• Schottky diode A special kind of diode that
can be very rapidly switched on and off. The
combination of a Schottky diode with a bipolar
transistor is called a Schottky transistor.

• serial shifting Transferring each bit in a
binary number (digital data), one bit at a time,
one after the other.

" SSI Small-scale integration.
• tri-state circuit A digital circuit having three

states-high, low, and open.
" truth table A table that shows all of the input

output possibilities of a digital circuit.
" TTL Transistor-transistor logic. The widely

used 54XX/74XX family of bipolar junction
transistor (BJT) integrated circuits.

• VLSI Very large-scale integration.

Fig. 1.4c to illustrate the allowed logic levels.
(This is similar to the popular ECL family of
digital circuits.) Is this positive or negative
logic?

1. 7 The waveform in Fig. 1.6b has a duty cycle
H = 20 percent, and the positive pulses occur
every 500 µs. What is the width of each
positive pulse?

1.8 Draw a waveform similar to Fig. 1.6b if
H = +5 V de, L = 0 V de, and Duty cycle H
= 90 percent. Does this resemble a series of
negative pulses?

1.9 Make a sketch of an ideal symmetrical 1-
MHz square wave having H = +5 Vdc and L
= 0 Vdc (similar to Fig. 1.6). Directly under
this waveform, sketch a nonideal waveform
having the same values but with a rise time
of 0.5 µs and a fall time of 0.5 µs. What has
happened to the square wave?

Digital Principles

1.10 Construct a truth table for a 3-input AND gate.
Hint: Use the binary numbers in Table 1.1.

1.11 Construct a truth table for a 3-input OR gate.
Hint: Use the binary numbers in Table 1.1.

1.12 Determine the state of r,: in Fig. 1.43.
1.13 In order to obtain a digital signal at r,:. in Fig.

1.44, G must be high or low. What must the
state of ~ and G in Fig. 1.44 be if r,: = L?

H

H ~

H

1.14 Draw a circuit that can be used to SET and
RESET the flip-flop in Fig. 1.16. Use only
one switch and one inverter. With the switch
in one position, the flip-flop will SET. Moving
the switch to the other position will RESET
the flip-flop.

1.15 Explain how two 4-bit serial registers could
be used to form a single 8-bit serial register.
Draw a diagram to illustrate this.

1.16 A 16-bit serial register requires 500 ns for each
shift operation. How much time is required to
enter or extract a 16-bit binary number?

1.17 A modem computer uses a 32-bit micropro
cessor and shifts data in parallel between its
microprocessor and the input-output port reg
ister. How many connections (wires) must be
made between the microprocessor and the
register if the data are truly shifted in paral
lel?

To reduce the number of connections, data
are sometimes shifted in groups of 2. That is,
the first 16 bits are shifted in parallel, and then
the next 16 bits are shifted in parallel. If this is
done, the number of connections is cut in half.
How many connections are needed here if this
is done?

Compare the times required to shift a 32-
bit number for each case if one shift operation
requires 250 ns.

1.18 What is the largest decimal count possible
with a 7-flip-flop counter?

1.19 If both the A and the B inputs to the ALU in
Fig. 1.22 are 4 bits, what is the largest single
digit decimal number that can be represented?
What if the buses were only three bits each?

1.20 The ALU in Fig. 1.22 is set to perform an
AND function. What is F if A = 0 IO 1 and B =
0100? What is F if the ALU is changed to the
OR function and A and B remain the same?

1.21 Write binary values for F and CARRY OUT
shown in Fig. 1.23 if A= 0011 and B = 0001.

1.22 Determine the output logic levels for the
comparator in Fig. 1.24 if

a. A= 0111, B = 0111
b. A= 1000,B=Olll
c. A= 0011, B = 0100

1.23 Show the proper logic levels on the decoder
in Fig. 1.26b if the digital input is ABCD =
1001.

1.24 Give definitions for the following abbrevia
tions:

a. ALU

c. ECL
b. CPU

1.25 Discuss the term handshaking in reference to
the block diagram in Fig. 1.32.

1.26 What are the basic blocks included in the
architecture of a typical microprocessor?

Digital Principles and Applications

1.27 Why must the bus connecting the CPU and
the data memory be bidirectional?

1.28 Draw a block diagram, similar to Fig. 1.27,
of a machine, process, or system (similar to
the lawn-watering system discussed) that
is controlled by a computer. Describe any
sensors needed, and give a general discussion
of the system operation.

1.29 You are asked to recommend.a family ofTTL
digital circuits that will operate at temperatures
as high as 50°C and as low as -10°C. Power
requirements are to be kept as low as possible,

1. continuous
2. T
3. 0111
4. Positive logic

5. The term V0 H.mm stands for the minimum
valueofthe output voltage when.high.
The term V0 L.max stands for the maximum
value of the output voltage when low.

6. f'.', may have a value within the forbidden
region only during the short time while
transitioning from high to low or low
to high. When not switching (static), ·f'.',
lllUSt . either• be. in the high band or the
low band.

7. 0.9H = 4.5 V de, and UL= Ll Vdc.
8. Duty cycle H = 217 = 0.286 == 28.6

percent.
9. f'.', is open in the first instance, and then it

is high.
10. f'.', is high in the first instance, and then it

is open.
11. f'.', isfow.
12. f'.', would be low. To produce f'.', = H, all

three inputs mustbe·high.

and the system is to operate at the highest
possible clock frequency. What would you
recommend?

1.30 A co-worker asks you to explain the functions
of the TTL designated as a 7404 and also
wants to know the difference between a 7404
and a 74HC04.

1.31 You are designing a system that uses 250
standard 74:XX TTL gates. What is the total
power required?

1.32 Repeat Prob. 1.31 using 74LSXX gates.
1.33 Draw from memory the standard symbols and

the new IEEE/IEC symbols for an inverter, a
2-input AND gate, and a 2-input OR gate.

13. f'.',would be high. To produce·~= L, all
three inputs must be low.

14. The possibilities .a,re. almost endless!
15. A =L
16. This is a 4-bit number. DCBA = l 001.
I 7. It would take only I µs for the papdlel

register, but it would require 8 µs for the
serial register.

18. Aport is usually a register that serves
as a place to eitp.er input data to or
extract data from the microprocessor or
computer.

19. 0111
20. Ten
21. a. Nob. Yes c. Yes
22. 0110
23. The clock· provides a periodic digital

signal that is used to time• computer
operations.

24. It is a specific list of instructions,
prepared by a· programmer, that. directs
the actions of the computer.

25. Arithmetic computations and logical
decisions.

Digital Principles

26. The<DMA allows the transfer of data
directly between memory and external
devices, without passing through the
CPU.

27. SSI, less than 12; MSI, more than 12 but
less than 100; LSI, more thanJOO.

28. ECL is faster but requires more power.
29. 0°C to 75°C
30. Quad means "four." Hex means "six."
31. A-advanced, C-CMOS, T-TTL

compatible.
32. The output is active when low.

Digital Logic

+ Write the truth tables for, and draw the symbols for, 2-input OR, AND, NOR, and
NANO gates.

+ Write Boolean equations for logic circuits and draw logic circuits for Boolean
equations.

+ Use DeMorgan's first and second theorems to create equivalent circuits.
+ Understand the operation of AND-OR-INVERT gates and expanders.

A digital circuit having one or more input signals but only one output signal is called a gate. In Chapter 1, the
most basic gates-the NOT gate (inverter), the OR gate and the AND gate-were introduced. Connecting the
basic gates in different ways makes it possible to produce circuits that perform arithmetic and other functions
associated with the human brain (an ALU). Because they simulate mental processes, gates are often called
logic circuits. A discussion of both positive and negative logic leads to the important concept of assertion
/eve/ logic.

Hardware description languages (HDL) are an alternative way of describing logic circuits. This uses a set
of textual codes that is machine (computer) readable. The concept is relatively new and is useful for design,
testing and fabrication of complex digital circuits. We'll have a soft introduction ofHDL towards the end of
this chapter. We'll learn it in detail in later part of this book introducing features relevant to each chapter.

2.1 THE BASIC GATES-NOT, OR, AND

Is an action right or wrong? A motive good or bad? A conclusion true or false? Much of our thinking involves
trying to find the answer to two-valued questions like these. Two-state logic had a major influence on Aristotle,

Digital Logic

who worked out precise methods for getting to the truth. Logic next attracted mathematicians, who intuitively
sensed some kind of algebraic process running through all thought.

Augustus De Morgan came close to finding the link between logic and mathematics. But it was George
Boole (1854) who put it all together. He invented a new kind of algebra that replaced Aristotle's verbal
methods. Boolean algebra did not have an impact on technology, however, until almost a century later. In
1938 Shannon applied the new algebra to telephone switching circuits. Because of Shannon's work, engineers
soon realized that Boolean algebra could be used to analyze and design computer circuits.

Three logic circuits, the inverter, the OR gate, and the AND gate, can be used to produce any digital
system. The function of each of these gates was introduced in Chapter 1. Let's look more closely at the
operation of each circuit and-also at their Boolean expressions.

The Inverter (NOT Gate)

Figure 2.1 is the symbol and truth table for an
inverter. In one truth table, the symbols Hand L are
used, while the binary numbers O and 1 are used .in
the other. The information in each table is identical,
however, since we know L = 0 and H = 1. In this
text, both symbols are used, hence since there is no
chance for confusion. You will find both symbols
used in other texts, as well as in manufacturers' data
sheets. The important idea is that there are only two
possible voltage levels (low and high) associated
with a digital circuit. This fits nicely with the binary
number system, since it has only two values (0 and
1). This is often referred to as two-state operation.
By definition, this is positive logic, since the higher
voltage level is assigned binary 1. Later in this
chapter, we will consider negative logic, where the
higher voltage level is assigned binary (zero).

A-{>-Y WY
0 1
1 0

(a) (b)

(a) Inverter symbol, (b) Truth
tables

7404

Figure 2.2 shows the pinout diagram of a 7404 Pinoutdiagram of a 7404
hex inverter. This IC contains six inverters. After ap
plying +5 V de (the supply voltage for all TTL devices) to pin 14 and grounding pin 7, you can connect any or
all inverters to other TTL devices. For instance, if you only need one inverter, you can connect an input signal
to pin 1 and take the output signal from pin 2; the other inverters can be left unconnected.

In Boolean algebra a variable can be either O or 1. The output Yofnot gate is always complement of input
A. In equation f01m

Y=notA 1.e. Y=A' sothat,ifA=O,Y=O'=l andif A=l,Y=l'=O

The truth tables in Fig. 2.1 illustrate signal levels that do not change with time. However,
almost all digital signals do in fact change with time, as illustrated by the waveforms in Chapter 1
(Sec. 1.2). Here are two examples that illustrate how to use the truth table information with signals that vary
with time.

A I-kHz square wave drives pin 1 of a 7404 (see Fig. 2.2). What does the voltage waveform
at pin 2 look like?

Digital Principles and Applications

Solution Figure 2.3a shows what you will see on a dual-trace oscilloscope. Assuming you have set the sweep
timing to get the upper waveform (pin I), then you would see an inverted square wave on pin 2.

If a 500-Hz square wave drives pin 3 of a 7404, what is the waveform on pin 4?

Solution Pins 3 and 4 are the input and output pins of an inverter (see Fig. 2.2). A giance at Fig. 2.3b shows the
typical waveforms on the input (pin 3) and output (pin 4) of a 7404. Again, the output waveform is the complement of
the input waveform, Because of two-state operation, rectangular wavefonns like this are the normal shape of digital
signals. Incidentally, a timing diagram is a picture of the input and output waveforms of a digital circuit. Examples of
timing diagrams are shown in Figs. 2.3a and b.

Pin 1 Pin 3

A B C D E F G H I

Pin2 Pin4

A B C D E F G H I

(a)

Cfl F.i;:rI::)
OR Gates

An OR gate has two or more input signals but only
one output signal. It is called an OR gate because
the output voltage is high if any or all of the input
voltages are high. For instance, the output of a 2-in
put OR gate is high if either or both inputs are high.
Figure 2.4a shows the logic symbol of a 2-input OR
gate and Fig. 2.4b its truth table.

In Boolean equation form

A C E G I

A C E G I

(b)

A B y

B~y

0 0 0
0 I I
1 0 I
1 l l

(a) (b)

(a) OR gate, (b) Truth table

Y = A ORB. 1.e. Y = A + B

so that Y=O+O=O, Y=O+ I= 1, Y= I +O= I and Y= I+ l = 1.

The '+' sign here represents logic operation OR and not addition operation of basic arithmetic. Note that
in arithmetic 1 + 1 = 2 in decimal and l + 1 = l O in bi
nary number system (Table 1.1 of Chapter I). Binary
addition is discussed in detail in Chapter 6.

Three Inputs Figure 2.5 shows a 3-input OR gate.
The inputs are A, B, and C. When all inputs are low, Y
is low. If A or B or C is high, Y will be high. The truth
table summarizes all input possibilities. In equation
form, the three input OR gate is represented as: Y =
A+B+C.

The truth table (Fig. 2.5b) allows us to check that
all input possibilities are included. Why? Because
every possibility is included when the input entries

DA~
C~y

A B C Y
0 0 0 0
0 0 I l
0 1 0 I
0 l I l

0 0
0 1
I 0
I 1

(a) (b)

(a) Three-input OR gate,
(b) Truth table

Digital Logic

follow a binary sequence. For example, the first ABC entry is 000, the next is 001, then 010, and so on, up to
the final entry of 111. Since all binary numbers are present, all input possibilities are included.

Incidentally, the number of rows in a truth table equals 2", where n is the number of inputs. For a 2-input
OR gate, the truth table has 22, or 4 rows. A 3-input OR gate has a truth table with 23, or 8 rows, while a
4-input OR gate results in 24, or 16 rows, and so on.

An OR gate can have as many inputs as desired. No matter how many inputs, the action of any OR gate
is summarized like this: One or more high inputs produce a high output.

logic Symbols Figure 2.6a shows the symbol for a 2-input OR gate of any design. Whenever you see this
symbol, remember the output is high if either input is high.

Shown in Fig. 2.6b is the logic symbol for a 3-input OR gate. Figure 2.6c is the symbol for a 4-input OR
gate. For these gates, the output is high when any input is high. The only way to get a low output is by having
all inputs low.

(a) (b) (c) (d)

OR gate symbols: (a) Two-input, (b) Three-input, (c) Four input,
(d) Twelve-input

When there are many input signals, it's common drafting practice to extend the input side as needed to
allow sufficient space between the input lines. For instance, Fig. 2.6d is the symbol for a 12-input OR gate.
The same idea applies to any type of gate; extend the input side when necessary to accommodate a large
number of input signals.

TTL OR Gates Figure 2.7 shows the pinout diagram of a 7432, a TTL quad 2-input OR gate. This digital
IC contains four 2-input OR gates inside a 14-pin DIP. After connecting a supply voltage of +5 V to pin 14
and a ground to pin 7, you can connect one or more of the OR gates to other TTL devices.

Timing Diagram Figure 2.8 shows an example of a timing diagram for a 2-input OR gate. The input
voltages drive pins 1 and 2 of a 7432. Notice that the output (pin 3) is low only when both inputs are low. The
output is high the rest of the time because one or more input pins are high.

Pin 1

B D F H
7432 Pin 2

A B C D E F G H I

Pin3 L L

GND A D E H I

Pinout diagram of a 7432 Timing diagram

Digital Principles and Applications

Work out the truth table for Fig. 2.9a.

Solution With two input signals (A and B), four input cases are possible: low-low, low-high, high-low, and high
high. For convenience, let L stand for low and Hfor high. Then, the input possibilities are LL, LH, HL, and HH, as
listed in Fig. 2.9b. Here is what happens for each input possibility.

CASE l A is !ow and Bis low. With. both input voltages in the low state, each inverter has a high output This means
that the OR gate has a high output, the first entry of Fig. 2.9b.

CASE 2 A is low and B is high. With these inputs the upper inverter has a high output, while the lower inverter has
a low output. Since the OR gate still has a high input, the output Y is high.

CASE 3 A is high and B .is low. Now, the upper.inverter has a low output and the lower inverter has a high output
Again, the OR gate produces a high output, so that Y is high.

CASE 4 A is high and B is high. With both inputs high, each inverter has a low output. This time, the ORgate has
all inputs in the low state, so that Y is low, as shown by the final entry of Fig. 2.9b.

7404
2

A A B y

L L H
y L H H

H L H

B H H L

(a) {b)

Logic circuit and truth table of Example 2.3

Incidentally, the circuit of Fig. 2.9a uses only one-third of a 7404 and one-fourth ofa 7432. The other gates in these
digital ICs are not connected, which is all right because you don't have to use all of the available gates.

AND Gates

The AND gate has a high output only when all inputs are
high. Figure 2.1 Oa shows a 2-input AND gate. The truth
table (Fig. 2.1 Ob) summarizes all input-output possibili
ties for a 2-input AND gate. Examine this table carefully
and remember the following: the AND gate has a high
output only when A and B are high. In other words, the
AND gate is an all-or-nothing gate; a high output occurs
only when all inputs are high. This truth table uses Is and
Os, where 1 = Hand O = L.

B~y

A B Y

0 0 0
0 1 0
1 0 0
1 l l

In Boolean equation fonn

so that,

(a)

Y =A AND B, i.e. Y=A.B or Y=AB

(b)

(a) Two-input AND gate,
(b) Truth table

Y = 0.0 = 0, Y = 0.1 = 0, Y = 1.0 = 0 and Y = 1.1 = 1

The '.' sign here represents logic AND operation and not multiplication operation of basic arithmetic
though the result are same for both.

Digital Logic

Three Inputs Figure 2.11 a shows a 3-input AND
gate. The inputs are A, B, and C. When all inputs are
low, Y is low. If even one input is low, Y is in the low
state. The only way to get a high output is to raise all
inputs to the high state (+5 V) The truth table (Fig.
2.11 b) summarizes all input-output possibilities. In
equation form, the three input AND gate is represented
as: Y=A.B.C=ABC.

Logic Symbols Figure 2.12a shows the symbol
for a 2-input AND gate of any design. Shown
in Fig. 2.12b is the logic symbol for a 3-input
AND gate. Figure 2.12c is the symbol for a 4-
input AND gate. Remember: For any of these

A B C y

0 0 0 0
0 0 I 0

C~y

0 I 0 0
0 I I 0

(a)

0 0 0
0 I 0
1 0 0
I I I

(b)

(a) Three-input AND gate,
(b) Truth table

gates, the output is high only if all inputs are high. As before, it's common drafting practice to
extend the input sides when there are many input signals. For instance, Fig. 2.12d is the symbol for a
12-input AND gate.

(a) (b) (c) (d)

AND gate symbols: (a) Two-input, (b) Three-input, (c) Four-input,
(d) Twelve-input

TTL AND Gates Figure 2.13 shows the pinout diagram of a 7408, a TTL quad 2-input AND gate. This
digital IC contains four 2-input AND gates. After connecting a supply voltage of +5V to pin 14 and a ground
to pin 7, you can connect one or more of the AND gates to other TTL devices. TTL AND gates are also
available in triple 3-input and dual 4-input packages. (See Appendix 3 for pinout diagrams.)

Timing Diagram Figure 2.14 shows an example of a timing diagram for a 2-input AND gate. The input
voltages drive pins 1 and 2 of a 7408. Notice that the output (pin 3) is high only when both inputs are high
(between C and D, G and H, etc.). The output is low the rest of the time.

7408

GND

Pinout diagram of a 7408

Pin I

Pin2

Pin3

B

A B C

C

F

D F G H I

H

D G H

Timing diagram

Digital Principles and Applications

Work out the truth table for Fig. 2.15a.

A A B A' B' Y=A~B'

0 0 1 I 1
y 0 I 1 0 0

r 0 0 1 0
1 1 0 0 0

(a) (b)

logic circuit and truth table of Example 2.4

Solution We get the final truth table here in slightly different way. Consider, one logic gate at as shown in
Fig. 2:15b; The NOT gate connected to A gives A I at its output and is shown in column 3. The NOT gate connected to
B gives B' at its output and is shown in column 3. Finally, the 4'" column shows OR operation on column 3and 4 to
give the final output Y. Here is what happens for each input possibility.

CASE 1 A is low and B is low. With both input voltages in the low state, each inverter has a
high output This means the AND gate has a high output, the first entry of Fig. 2.16.

CASE 2 A is low and B is high. With these inputs the upper inverter has a high output, while
the lower inverter has a low output Since the AND gate produces a low output, Y is low.

CASE 3 A is high and B is low. Now, the upper inverter has a low output and the lower
inverter has a output Again, the AND gate produces a low output, so Y is low.

CASE 4 A is high and B is high. With both inputs high, each inve1ter has a low output Again,
the AND gate has a low as shown bythe final.entry of Fig. 2.16.

Note that input-output relations described i11 Fig. 2.15b and Fig. 2.16 are same.

What is the Boolean equation for the logic circuit of Fig. 2. l 7a?

A

L
L
H
H

B y

L H
H L
L L
H1L

Solution This circuit is called an AND-OR network because input AND gates drive an output OR gate~
The intermediate outputs are

=AB =CD
The :final output is

f 8 Y3 +Y,,

Y=AB+CD

An equation in this form is referred to as a sum-of products equation. AND-OR networks always produce sum-of
products equations.

Write the Boolean equation for Fig. 2.17b.

Solution Thislogic circuit u,ic.,u«;u an OR-AND network because input OR gates drive an output AND gate. The
intem1ediate outputs are Y

8
=A and Y

11
= C + D.

The :final output is

or

Digital Logic

B)(C+D)

y

A
B

C
D

(a) AND-OR, {b) OR-AND network

y

As shown in this equation, parentheses may be used to indicate a logical product (ANDing), Also notice that the final
answer is a product of sums. OR-AND networks always produce product-of-sums equations.

What is the logic circuit whose Boolean equation is

Y= ABC+ABC

Solution This is ,i ~um-of-products equati9n with some of the inputs in complemented fonn. Figure.2.18a shows an
.AND-OR circuit with the foregoing Boolean equation. upper AND gate. produces a logical product of

=ABC

The lower AND gate proi:luces

A
B
C

A
B
C

7411

(a)

y

7411
A -----~•.:;:,o.----2,,.t__
B ----,-+---------+

13

3

3 4 4

5

(b)

(a) Intermediate, (b) Final logic circuit of Example 2.7

I. A system in which H= 1 and L = 0 is (positive, negative) logic.
2. A gate whose output is H if any input is His an gate.
3. A gate whose output is H only when all inputs are His an ____ gate.

7432

Digital Principles and Applications

The final output therefore equals the sum of the f
12

and Y
6

products:

Y= ABC+ABC

The complemented inputs A and B may be produced by other circuits (discussed later). Alternatively,
inverters on the A and B input lines may produce the complemented variables, as shown in
Fig. 2.I8b.

4. Write an expression for an inverter, or NOT gate equivalent to Y = not A.
5. Write a Boolean expression for an OR gate having A and Bas inputs and Yas the output.
6. Write the Boolean expression for an AND gate with A and B as inputs and Y as the output.

This example illustrates one method oflogic design. Whenever you are given a sum-of-products equation,
you can draw the corresponding AND-OR network using AND gates to produce the logical products and an
OR gate to produce the sum.

2.2 UNIVERSAL LOGIC GATES-NOR, NANO

In the previous section we have seen how AND, OR and NOT gates can be connected together to realize
any logic function. Here, we address an interesting question. Is it possible to use only one type of gate for
this purpose? If possible, one needs to procure only one type of gate for his design. And more importantly,
fabrication of Integrated Circuit that perfonns a logic operation becomes easier when gate of only one kind
is used. Gates, which can perform this task, are called universal logic gates. Clearly, basic gates like AND,
OR and NOT don't fit into this category for the simple reason that conversion among themselves itself are not
possible. As for example, one cannot gate OR operation by using any number or combination of AND gates.
In this section, we discuss two universal logic gates NOR and NAND.

NOR Gates

The logic circuit of Fig. 2.19a used to be called a NOT-OR gate because the output is

Y=A+B
Read this as "Y equals NOT A ORB" or "Y equals the complement of A ORB." Because the circuit is an

OR gate followed by an inverter, the only way to get a high output is to have both inputs low, as shown in
the truth table of Table 2.1.

NOR Gate Symbol

The logic circuit of Fig. 2.19a has become so popular that the abbreviated symbol of Fig. 2.19b is used for
it. The bubble (small circle) on the output is a reminder of the inversion that takes place after the ORing.
Furthermore, the words NOT-OR are contracted to the word NOR. So from now, we will call the circuit a
NOR gate and will use the symbol of Fig. 2.19b. Whenever you see this symbol, remember that the output is
NOT the OR of the inputs. With a NOR gate, all inputs must be low to get a high output. If any input is high,
the output is low.

Digital Logic

~=D-{)»-r ~=[>-r
(a)

7402

(d)

(b)

7

(GND)

2
3
5
6
8
9

11
12

NOR logic gate

Figure 2.19c shows the new IEEE rectangular symbol for the
NOR gate. The small triangle on the output is equivalent to the
bubble used on the standard symbol. The indicator~ inside the box
means "if one or more of the inputs are high, the output is high."

The 7402 is a quad 2-input NOR gate in a 14-pin DIP as illus
trated in Fig. 2.19d. The new rectangular symbol for the 7402 is
shown in Fig. 2.19e.

Bubbled AND Gate

Figure 2.20a shows inverters on the input lines
of an AND gate. This logic circuit is often drawn
in the abbreviated form shown in Fig. 2.20b.
The bubbles on the inputs are a reminder of the
inversion that takes place before the AND operation.
We will refer to the abbreviated drawing of
Fig. 2.20b as a bubbled AND gate. We have already
analyzed this circuit in Example 2.4 and obtained
its truth table as shown in Fig. 2.15b. We find that
output Y and inputs A, B are identical for bubbled

~=§-r
(c)

(e)

A

0
0
l
l

(a)

(b)

4

10

13

B

0
I
0

NOR Gate

y

l
0
0
0

(a) AND gate with inverted
inputs, (b) Equivalent symbol

AND gate and NOR gate. Therefore, these two circuits are equivalent and thus interchangeable. Given any
logic circuit with NOR gates, we can replace it by bubbled AND gates and converse is also true.

De Morgan's First Theorem

The Boolean equation for Fig. 2.19b is

The Boolean equation for Fig. 2.20b is

Y=A+B

Y=AB

Digital Principles and Applications

The first equation describes a NOR gate, and the second equation a bubbled AND gate. Since the outputs
are equal for the same inputs, we can equate the right~hand members to get

A+B = AB (2.1)

This identity is known as De M01gan ~, first theorem. In words, it says the complement of a sum
equals the product of the complements. This can also be proved by comparing the truth tables shown
in Fig. 2.4(b) and NOR gate truth table of Table 2.1. A similar exercise that compares truth tables of
three input NOR gate and three input bubbled AND gate show they are identical and we can write,
(A+ B + C)' = A'B'C'. Note that this equivalence can be extended to gates or circuits for larger number of
inputs, too.

Universality of NOR Gate

Figure 2.21 shows how all other logic gates can be obtained from NOR gates. To get a NOT gate we tie
inputs of NOR gate together (Fig. 2.21 a) so that there is only one input to the circuit. If input is 0, then both
the inputs to NOR gate are 0. Following NOR gate truth table (Table 2.1) we see output now is l. Similarly,
if input is 1, both the inputs to NOR gate are 1 that gives output 0. Therefore output of circuit, shown in Fig.
2.2 la is complement of its input and thus gives NOT operation.

A

A~A;~A.+B

B

(a) (b) (c)

Universality of NOR gate (a) NOT from NOR, (b) OR from NOR,
(c) AND from NOR

Figure 2.21 b shows how to get OR circuit using only NOR gates. The first NOR gate performs usual NOR
operation while second NOR gate performs as NOT gate and inverts the NOR logic to OR.

To understand how we get AND circuit using only NOR gates (Fig. 2.21c) let us refer to example 2.3. The
configuration is similar except the output there is generated from OR and here from NOR and of course the
NOT gates are replaced by NOR equivalent. Since NOR gate is NOT operation followed by OR we invert the
output of example 2.3, shown in Fig. 2.9b to get output of this circuit. Thus output of circuit in Fig. 2.2 lc is
high only when both the inputs are high and it functions like an AND gate.

The above equivalences can be proved simply, by applying Boolean theorems and we'll discuss those
theorems in next chapter. Since, we can perform all the Boolean operations using only NOR gates it is termed
as universal logic gate.

Eye of the Beholder

Which brings us to a principle. Truth tables, logic circuits, and Boolean equations are different ways of
looking at the same thing. Whatever we learn from one viewpoint applies to the other two. If we prove that
truth tables are identical, this immediately tells us the co1Tesponding logic circuits are interchangeable, and
their Boolean equations are equivalent. When analyzing, we generally start with a logic circuit, construct

Digital Logic

its truth table, and summarize with the Boolean equation. When designing, we often startwith a truth table,
generate a Boolean equation, and arrive at a logic circuit.

A 7402 is a quad 2-input NOR gate. This TTL IC has four 2-input NOR gates in a 14-pin DIP
as shown in Appendix 3. What is the Boolean equation for the output of Fig. 2.22a?

Solution The AND gates produce AB and CD. These are ORed to get AB+ CD. The final inversion gives

Y=AB+CD
The circuit of Fig. 2.22a is known as anAND-OR-INVERT network because it starts withANDing, follows with

ORing, and ends with INVERTing.

The AND-OR-INVERT network is available as a separate TTL gate. For instance, the 7451 is a dual 2-input
2-wide AND-OR-INVERT gate, meaning iwo networks like Fig. 2.22a in a single 14-pin TTL package. Appendix
3 shows the pinout diagram. Figure 2.22b shows how we can use half of a7451 to produce the same output as the
circuit of Fig. 2.22a.

7408 7451
A A

B B

y y

C C

D D

(a) (b)

AND-OR-INVERT network

Prove that Fig. 2.23c is logically equivalent to Fig. 2.23a.

Solution De Morgan's first theorem says we can replace the final NOR gate ofFig. 2.23a by a bubbled AND gate to
get the equivalent circuit of Fig. 2.23b. If you invert a signal twice, you get the original signal back again. Put another
way, double inversion has no effect on the logic state; double invert a low and you still have a low; double-invert a
high and.you still have a high. Therefore, each double inversion in Fig. 2.23b (a pair of bubbles on the same signal
line) cancels out, leaving the simplified circuit of Fig. 2.23c. Therefore, Fig. 2:23a and Fig. 2.23c are equivalent or
interchangeable.

Why would anyone want to replace Fig, 2.23a by 2.23c? Suppose your shelves are full of AND gates and OR
gates .. Ifyou have just run out of NOR gates and you are trying to build a NOR-NOR network like Fig. 2.23a, you
can connect the OR-AND circuit of Fig. 2.23c because it produces the same output as the original circuit. In general,
this idea applies to any circuit that you can rean-ange with De Morgan's theorem. You can build whichever equivalent
circuit is convenient.

A A
B B

y y y

C
D

(a) (b) (c)

Equivalence among logic circuits: Example 2.9

Digital Principles and Applications

What is the truth table for the NOR-NOR circuit of Fig. 2.23a?

Convert Table 2.2 into a timing diagram.

Solution ... In tabl~ 2.2, IDflltD change;, statesf on~ach entry, input G'changes states every otl.ler entry, inpufB every
fourth entry, andjn.putA every eighth. eµtry. figure 2.24 shows how to draw the trutb table in thef ~llll ~f a tinli:11g
diagram. First, notice jhalthe transitions on i~put D are l, 2, 3, and. so on. Notic~. that input D. changes. state5 each
tr.lt:tsition, inp~tC eye137.?thertransition, input B .. every fourth transition, and.illpµtA~very .. eighthtransition .. ·Toagree
wit~ Jhe tl1.Ith tllbJf,.Qutput Yis low up to transition5, high between 5 and. 8; low between 8 and 9, and so forth.

D

0
l
0
1
0
1
0
1
0
1
0
1
0
1
0

Digital Logic

NANO Gates

Originally, the logic circuit of Fig. 2.25a was called NOT-AND gate because the output is

Y=AB

Read this as "Y equals NOT A AND B" or "Yequals the complement of A AND B." Because the circuit is
an AND gate followed by an inverter, the only way to get a low output is for both inputs to be high, as shown
in the truth table of Table 2.3.

;D-{>-y
(a)

;u-y
(b)

1
2
6
7
9

IO
12
13

NANO logic gate

NANO-Gate Symbol

The logic circuit of Fig. 2.25a has become so popular that the
abbreviated symbol of Fig. 2.25b is used for it. The bubble on
the output reminds us of the inversion after the ANDing. Also,
the words NOT-AND are contracted to NAND. Whenever you
see this symbol, remember that the output is NOT the AND of
the inputs. With a NAND gate, all inputs must be high to get a
low output. If any input is low, the output is high.

Figure 2.25c shows the new IEEE rectangular symbol for the

~=B-y
(c)

(e)

3

5

8

14

0
1
0

NANO Gate

y

1
l
1
0

NAND gate. The small triangle on the output is equivalent to the bubble used on the standard symbol. The
indicator"&" inside the box means "the output is high only when all inputs are high."

The 7400 is a quad 2-input NAND gate in a 14-pin DIP as illustrated in Fig. 2.25d. The new rectangular
symbol for the 7402 is shown in Fig. 2.25e.

Bubbled OR Gate

Figure 2.26a shows inverters on the input lines of an OR gate. The circuit is often drawn in the abbreviated
form shown in Fig. 2.26b, where the bubbles represent inversion. We will refer to the abbreviated drawing of
Fig. 2.2b as a bubbled OR gate. We have already analyzed this circuit in Example 2.3 and obtained its truth

Digital Principles and Applications

table in Fig. 2.9b. We see that output Y and inputs
A, Bare identical for bubbled OR gate and NAND
gate. Therefore, these two circuits are equivalent
and thus interchangeable. Given any logic circuit
with NOR gates, we can replace it by bubbled AND
gates and converse is also true.

De Morgan's Second Theorem

The Boolean equation for Fig. 2.24b is

Y=AB

The Boolean equation for Fig. 2.25b is

Y=X +B

A

B

y

(a)

~=D-r
(b)

(a) OR gate with inverted
inputs, (b) Equivalent symbol

The first equation describes a NAND gate, and the second equation a bubbled OR gate. Since the outputs
are equal for the same inputs, we can equate the right-hand members to get

AB= A +B (2.2)

This identity is known as De Morgans second theorem. It says the complement of a product
equals the sum of the complements. This can also be proved by comparing the truth tables shown
in Fig. 2.3(b) and NAND gate truth table of Table 2.2. A similar exercise that compares truth tables
of three input NAND gate and three input bubbled OR gate show they are identical and we can write,
(A.B.C)' =A'+ B' + C'. Note that this equivalence can be extended to gates or circuits with any number of
inputs.

Universality of NANO Gate

Figure 2.27 shows how all other logic gates can be obtained from NAND gates and why it is called a universal
logic gate. Figure 2.27a shows how we tie inputs ofNAND gate together (as we had done in case of NOR
gate) to get a NOT gate that has only one input. If input is 0, then both the inputs to NAND gate are. 0.
Following NAND gate trnth table (Table 2.3) we see output now isl. Similarly, if input is 1, both the inputs
to NAND gate are 1 that gives output 0. Therefore output of circuit, shown in Fig. 2.27a is complement of its
input and thus gives NOT operation.

Figure 2.27b shows how we get AND circuit using only NAND gates. The second NAND gate performs
as a NOT gate and inverts the NAND logic offirst NAND gate to AND logic.

A

A·~A;~A.B

(a)

B

(b) (c)

Universality of NAND gate: (a) NOT from NAND, (b) AND from NAND,
(c) OR from NAND

Digital Logic

==c=>- ¢=} =D- =D- ¢=} =r>-
(a) (b)

=D- ¢=} =[)- =CJ- ¢=} =r=>-
{c) (d)

Useful logic equivalences

To obtain OR logic using NAND gate we compare Fig. 2.27c circuit with Fig. 2.15a. The later gives NOR
logic and has AND gate at output. The present circuit has NAND gate at output and thus inverts the output
of previous circuit, from NOR to OR.

TTL NANO Gates

The NAND gate is the backbone of the 7400 TTL series because most devices in this family are derived from
it. Because of its central role in TTL technology, the NAND gate has become the least expensive and most
widely used TTL gate. Furthermore, the NAND gate is available in more configurations than other gates, as
shown in Table 2.4. Notice that the NAND gate is available as a 2-, 3-, 4-, or 8-input gate. The other gates
have fewer configurations, with the OR gate available only in 2-input fonn.

A

B

C

D

Type

NAND
NOR
AND
OR

(a)

Standard TTL Gates

Quad 2-lnput Triple 3-lnput Dual 4-lnput Single 8-lnput

7400 7410 7420 7430
7402 7427 7425
7408 74ll 7421
7432

Prove that Fig. 2.29c is logically equivalent to Fig. 2.29a.

y

Equivalence of logic gates: Example 2.12

Solution Ile.Mor~an's second theorem says we can replace the final NAND gate of Fig. 2.29a by a bubbled OR
gate to getthe equivalent circuit ofFig. 2.29b. Each double inversion in Fig. 2.29b cancels out, leaving the simplified
circuit of Fig. 2.29c .. Therefore, Figs. 2.29a and 2.29c are equivalent

Incidentally, most people find Fig. 2.29b easy to analyze because they learn to ignore the double inversions and
see only the simplified AND-OR circuit of Fig. 2.29c. For this reason, if you build a NAND-NAND Network like
Fig. 2.29a, you can draw it like Fig. 2.29b. Anyone who sees Fig. 2.29b on a schematic diagram will know it is two

Digital Principles and Applications

input NAND gates driving an output NAND gate. Furthermore, when troubleshooting the circuit, they can ignore the

bubbles and visualize the easy-to-analyze AND-OR circuit of Fig. 2.29c.

What is the truth table for the NAND-NAND circuit of Fig. 2.29a?

Solution Let us analyze the equivalent circuit of Fig. 2.29c because it is simpler to work with. Table 2.5 lists every
possibility starting with all inputs low and progressing to all inputs high. By analyzing each input possibility, we can
determine the resulting output Fo.r fostance, when all inputs llt'e 1owin Fig. 2,29c, ho.th AND gates have low outputs,
so the OR gate produces a low output. This is the first entry of Table 2.5. Proceeding like this, we can arrive at the
output for the remaining possibilities ofTable2.5,

Show a timing diagram for the NAND-NAND circuit of Fig. 2.29a.

Solution All you have to do is convert the low-high states of Table 2.5 into low-high waveforms like
First, notice that. the. traJJ.sitions .on. input D a.re. numbered l, 2, 3, and S() on. Input D chan~es states each .transition,
input C every other transition, input 8 ~very fourth transition, and input A every eighth transiti~n. To agree with the
truth table, output Yis low up to transition 3,.highbetween 3 and 4, lowl)etween 4 and 7, and so forth.

NANO-NANO Circuit

A 8 C D r.
0 0 0 0 0
0 0 0 I 0
0 0 l 0 0
0 0 1 I 1
0 I 0 0 0 A

0 I 0 1 0
0 1 l 0 0
0 I 1 I l
I 0 0 0 0
1 0 0 I 0
1 0 l 0 0
l 0 1 1 1
l 0 0 l
1 0 I I
1 1 0 1
l l 1 Timing diagram

l 0. Write the Boolean expression for a 2 input NANJJ gate.
11. 'Write De}forgan's second theorem. . < .•·
12. Wha~ symbol is used inside the IEijErectangular box to define a. NANI) gate?

Digital Logic

2.3 AND-OR-INVERT GATES

Figure 2.31a shows an AND-OR circuit. Figure 2.31b shows the De Morgan equivalent circuit, a NAND
NAND network. In either case, the Boolean equation is

Y=AB+CD

A A A
B B B

y y y
C C C
D D D

(a) (b) (c)

(a) AND-OR circuit, (b) NANO-NANO circuit, (c) AND-OR-INVERT circuit

Since NAND gates are the preferred TTL gates, we would build the circuit of Fig. 2.31 b. As you know,
NAND-NAND circuits like this are important because with them you can build any desired logic circuit.

TTL Devices

AND-OR circuits are not easily derived from the basic NAND-gate design. But it is easy to get an AND
OR-INVERT circuit as in Fig. 2.3 lc. A variety of circuits like this are available as TTL chips. Because of the
inversion, the output has the equation shown below.

Y= AB+CD

Table 2.6 lists the AND-OR-INVERT gates available
in the 7400 series. In this table, 2-wide means two AND
gates across, 4-wide means four AND gates across, and
so on. For instance, the 7454 is a 2-input 4-wide AND
OR-INVERT gate as in Fig. 2.32a; each AND gate has
two inputs (2-input), and there are four AND gates (4-
wide). Figure 2.32b shows the 7464; it is a 2-2-3-4-input
4-wide AND-OR-INVERT gate.

Device

7451
7454
7459
7464

(2.3)

AND-OR-INVERT Gates

Description

Dual 2-input 2-wide
2-input 4-wide
Dual 2-3-input 2-wide
2-2-3-4-input 4-wide

Connecting the output of a 2-input 2-wide AND-OR-INVERT gate to an inverter will give us the same
output as an AND-OR circuit.

(a) (b)

Examples of AND-OR circuits

Digital Principles and Applications

Expandable AND-OR-INVERT Gates

The widest AND-OR-INVERT gate available in the 7400 series is 4-wide. What do we do when we need a
6- or 8-wide circuit? One solution is to use an expandable AND-OR-INVERT gate.

Figure 2.33 shows the logic symbol for an expandable AND-OR-INVERT gate. There are two additional
inputs, labeled bubble and arrow. Table 2.7 lists the expandable AND-OR-INVERT gates in the 7400 series.

Expanders

A

B

C
D

Bubble----~

Arrow -----~

y

Expandable AND-OR-INVERT gate

Device

7450
7453
7455

Expandable AND-OR-IN
VERT Gates

Description

Dual 2-input 2-wide
2-input 4-wide
4-input 2-wide

What do we connect to the arrow and bubble inputs of an expandable gate? We connect the output of an ex
pander as in Fig. 2.34a. Connect bubble to bubble and arrow to arrow.

Visualize the outputs of Fig. 2.34a connected to the arrow and bubble inputs of Fig. 2.33. Figure 2.34b
shows the logic circuit. This means that the expander outputs are being ORed with the signals of the AND
OR-INVERT gate. In other words, Fig. 2.34b is equivalent to the AND-OR-INVERT circuit ofFig. 2.34c.

~Bubble

=L.__;- Arrow

(a)

(c)

y

y

(b)

y

(d)

(a) Expander, (b) Expander driving expandable AND-OR-INVERT gate, (c) AND
OR-INVERT circuit, (d) Expandable AND-OR-INVERT with two expanders

Digital Logic

We can connect more expanders. Figure 2.34d shows two expanders driving the expandable gate. Now we
have a 2-2-4-4-input 4-wide AND-OR-INVERT circuit.

The 7460 is a dual 4-input expander. The 7450, a dual expandable AND-OR-INVERT gate, is designed
for use with up to four 7460 expanders. This means that we can add two more expanders in Fig. 2-34d to get
a 2-2-4-4-4-4-input 6-wide AND-OR-INVERT circuit.

13. When we speak ofan AND-OR-INVERT gate, what is the meaning of2--wide?
14. What is the purpose of using an expander with an AND-OR .. JNVERT gate?

2.4 POSITIVE AND NEGATIVE LOGIC

Up to now, we have used a binary O for low voltage and a binary 1 for high voltage. This is called positive
logic. People are comfortable with positive logic because it feels right. But there is another code known as
negative logic where binary O stands for high voltage and binary 1 for low voltage. Even though it seems
unnatural, negative logic has many uses. The following discussion introduces some of the terminology and
concepts for both types of logic.

Positive and Negative Gates

An OR gate in a positive logic system becomes an AND gate in a negative logic system. Why? Look at the
gate of Fig. 2.35. We have been calling it an OR gate. This is correct, provided we are using positive logic.
Table 2.8 shows the tn1th for the gate of Fig. 2.35, no matter what you call it. That is, if either input is high
in Fig. 2.35, the output is high.

Positive OR

Negative AND

Meaning ofsymbol depends on whether
you use positive or negative logic

A

Low
Low
High
High

Low
High
Low
High

In a positive logic system, binary O stands for low and binary 1 for high. So, we can convert Table 2.8
to Table 2.9. Note that Y is a 1 if either A or B is 1. This sounds like an OR gate. And it is, because we are
using positive logic. To avoid ambiguity, we can call Fig. 2.35 a positive OR gate because it performs the OR
function with positive logic. (Some data sheets describe gates as positive OR gate, positive AND gate, etc.)

In a negative logic system, binary 1 stands for low and binary O for high. With this code, we can convert
Table 2.8 to Table 2.10. Now, watch what happens. The output Y is a 1 only when both A and B are 1. This
sounds like an AND gate! And it is, because we are now using negative logic. In other words, gates are
defined by the way they process the binary Os and 1 s. If you use binary 1 for low voltage and binary O for
high voltage, then you liave to refer to Fig. 2.35 as a negative AND gate.

As you see, the gate of Fig. 2.35 always produces a high output if either input is high. But what you call
it depends on whether you see positive or negative logic. Use whichever name applies. With positive logic,
call it a positive OR gate. With negative logic, call it a negative AND gate.

Digital Principles and Applications

0

y

0
0

In a similar way, we can show the truth table of other gates with positive or negative logic. By analyzing
the inputs and outputs in terms of Os and ls, you find these equivalences between the positive and negative
logic:

Positive OR
Positive AND
Positive NOR
Positive NAND

H negative AND
H negative OR
H negative NAND
H negative NOR

Table 2.11 summarizes these gates and their definitions ill terms of voltage levels. These definitions are
always valid. If you get confused from time to time, refer to Table 2.11 to get back to the ultimate meaning
of the basic gates.

·•· ··.·· Gate · ... •

J:>ositivl'l O!Vn,egatjveAND
.E'ositive AND/negative OR
Positive NOR/negative NAND
P?sitiye NAND/negative-NOR

Assertion-level logic

Voltage Definitions of Basic Gates

.•.

Definition

Output is high if any input is high .
Output is high when all inputs are high.
Output is low if any input is high.
Output is low when all inputs are high.

Why do we even bother with negative logic? The reason is related to the concept of active-low signals. For
instance, the 74150 multiplexer has an active-low input strobe; this input turns on the chip only when it is low
(negative true). This is an active-low signal; it causes something to happen when it is low, rather than high.
As another example, the 74154 decoder has 16 output lines; the decoded output signal is low (negative true).
In other words, all output lines have a high voltage, except the decoded output line. Besides TTL devices,
microprocessor chips like the 8085 have a lot of active-low input and output signals.

Many designers draw their logic circuits with bubbles on all pins with active-low signals and omit bubbles
on all pins with active-high signals. This use of bubbles with active-low signals is called assertion-level
logic. It means that you draw chips with the kind of input that causes something to happen, or with the kind
of output that indicates something has happened. If a low input signal turns on a chip, you show a bubble on
that input. If a low output is a sign of chip action, you draw a bubble on that output. Once you get used to
assertion-level logic, you may prefer drawing logic circuits this way.

One final point. Sometimes you hear expressions such as "The inputs are asserted" or "What happens when
the inputs are asserted?" An input is asserted when it is active. This means it may be low or high, depending
on whether it is an active-low or active-high input. For instance, given a positive AND gate, all inputs must
be asserted (high) to get a high output. As another example, the STROBE input ofa TTL multiplexer must be

Digital Logic

asserted (low) to turn on the multiplexer. In short, you can equate the word assert with activate. You assert,
or activate, the inputs of a gate or device to get something to happen.

Here are some ideas that you should try to remember:

1. Positive true always represents a high voltage, and negative true always represents a low
voltage.

2. If possible, draw basic gates with bubbles on active-low signal lines.
3. When a signal is active-low, use an overbar as a reminder that the signal voltage is negative true

when the underlying statement is true.

(a) The number stored in a register may be zero (all bits low). Show how to detect this condition.
(b) What change in (a) will detect presence of the word 10110101 in the 8-bit register?

Solution
{ a) Figure 236 shows a design using assertion-level logic. The bits go to a bubbled AND gate (the Satlle as positive

NOR gate). When all the bits are low, output ZERO is high. Because ofthe inverter, the final output ZERQis
a~tive-lo~,Therefore, wheil th~ SUfil is zero, ZERO isnegativ7 true.
Some of the bubbles .at the. inp~tofthebub.bled AND gate need to be removed.These are
code word where '1' is J>rese11t, specifically S7, S5, S4, S2 and S0•

Register

Assertion-level logic diagr.im ,showing the detectio., of zero and mir:ms
accumulator contents

What isne~ative l?gic?
What is meant assertion-level logic?

2~5 INTRODUCTION TO HOL

In this section, we introduce an interesting development in the field of hardware design. This is textual
description of a digital circuit. Though we have already described hardware, can there be a language which

Digital Principles and Applications

is more crisp and more importantly, machine-readable? The advantage of course, is to be able to (i) describe
a large complex design requiring hundreds of logic gates in a convenient manner, in a smaller space, (ii) use
software test-bench to detect functional error, if any, and correct it (called simulation) and finally, (iii) get
hardware implementation details (called synthesis). Hardware Description Language, more popular with its
acronym HDL is an answer for that.

Currently, there are two widely used HDLs-Verilog and VHDL (Very high speed integrated circuit
Hardware Description Language). Verilog is considered simpler of the two and is more popular. However,
both share lot of common features and it is not too difficult to switch from one to the other. In this book, we'll
deal with Verilog and shall discuss it over a span of number of chapters by introducing features relevant to
that chapter. We expect by the time you finish Chapter 11, you'll have reasonable knowledge about HDL to
deal with any digital logic design problem. We discuss target hardware devices on which HDL code can be
directly exported in Section 13.6 of Chapter 13.

Verilog HDl

Verilog as a hardware descriptionlanguage has a small history. Introduced in 1980, primarily as a simulation
and verification tool by Gateway Design Automation, it was later acquired by Cadence Data Systems. Put to
public domain in 1990, it gained popularity and is now controlled by a group of companies and universities,
called Open Verilog International. The reader with an exposure to any programming language like C will find
it relatively easier to learn Verilog or any HDL.

Describing Input/Output In any digital circuit, we find there are a set of inputs and a set of outputs. Often
termed as ports, the relationship between these input and outputs are explained within the digital circuit.
To design any circuit that has say, three inputs a, b, c and two outputs say, x, y as shown in Fig. 2.37 the
corresponding Verilog code can be written as shown next.

a

b

C

X

testckt
y

module testckt(x,y,a,b,c); //module name with port list

input a,b,c; //defines input ports

output x,y; //defines output ports

//module body begins next describing logic relation

//module body ends

endmodule

Input/output definition in Verilog HDL for logic circuit described within
black-box testckt

Note that, module and endmodule written in bold are keywords for Verilog. A module describes a design
entity with a name or identifier selected by user (here, testckt) followed by input output port list. This entity if
used by another then arguments (i.e. ports) are to be passed in the same order as it appears here. The symbol
'//' is used to put comments and improve readability for a human but not used by the machine, i.e. compiler.
The module body describes the logic within the black box which acts on the inputs a, b, c and generates
outputx,y. Observe, where semicolon';' is used and where not to end a statement, e.g. endmodule in above
code does not end with semicolon.

Digital Logic

Writing Module Body There are three different models of writing module body in Verilog HDL. Each
one has its own advantage and suited for certain kind of design. We start with structural model by example of
two-input OR gate described in Fig. 2.4a.

module or_gate {A, B, Y);

input A, B; / / defines two input port

output Y; / / defines one output port

o:r (Y,A,B); te declaration with predefined keyword
logic OR, is optional user defi.ned

encbnodule

Verilog supports predefined gate level primitives such as and, or, not, nand, nor, xor, xnor etc. The
syntax followed above can be extended to other gates and for 4 input OR gate itis as given next,

or (output, input 1, input 2, input 3, input 4)

For NOT gate, not (output, input)

Note that, Verilog can take up to 12 inputs for logic gates. Comments when extends to next line is written
within /* */. Identifiers in Verilog are case sensitive, begin with a letter or underscore and can be of any
length.

Let us now look at description of a logic circuit shown in Fig. 2.17 a that has 4 inputs and 1 output. The
inputs are fed to two 2-input AND gate. AND gate outputs are fed to a 2-input OR gate to generate final
output. The verilog code for this is given below. Note that, we define two intermediate variables and_opl
and and_ op2 representing two AND gate outputs through keyword wire. Wire represents a physical wire in
a circuit.

module fig2_24a(A,B,C,D,Y);
input A,B,C,D;

output Y;
wire and_opl, and_op2;·
and gl(arid_opl,A,
and g2(arid_op2,C,D); // g2 represents lower A.ND

or g3(Y,and_opl,and_op2); // g3 represents the OR gate

encbnodule

One can see that structural model tries to replicate graphi
cal layout design of a logic circuit. It does not matter if or
statement in above example is written before and statements.
This is as if one draws or collllects the OR gate first on a de
sign board and then the AND gates.

Consider, the black box testckt of Fig.
2.38 has following logic circuit in it.
Give Verilog structural code for the
same.

testckt

Logic circuit for
Example 2.16

X

y

Digital Principles and Applications

Solution The code from the above discussion can be written as follows.

/* internal connecr:1.ons, outputs of upper
*/

gate

Preparation of Test Bench We shall discuss data flow model and behavioral model ofVerilog VHDL in
subsequent chapters. But, before we wind up this chapter let us see how to prepare a test bench in Verilog to
simulate a digital circuit. For those of you with no programming background, this may appear little difficult.
We could have postponed this discussion to a later chapter, but this gives you a feel of how simulation works
or how a circuit you design can be tested. More clarity is assured as you go through discussions of subsequent
chapters.

We take up the example of simulating a simple OR gate (Fig. 2.4a) for which Verilog code is already
described. The test bench, creates an input in the form of a timing waveform and passes this to OR gate module
through a function or procedural can (passing arguments in proper order). To generate timing waveform we
use time delay available in Verilog in the form of #n where n denotes a number in decimal that gives delay
in nanosecond. Input values to a variable can be provided through syntax m'tn where m represents number of
digits, t represents type of number and n represents value to be provided.

The test bench used here generates all possible combinations of two inputs AB as 00,01,10 and 11 but at
an interval of20 ns. Note that, we have provided a 20 ns gate delay with or statement by #(20). All practical
logic circuit comes with finite gate delay, i.e. output changes according to input after certain time. To change
the gate delay to 10 ns we should write #(10) in or statement. The keyword reg is used to hold value of a
data object in a procedural assignment. The keyword initial ensures sequential execution of codes following
it, but once. We'll learn another keyword always in later chapter, which too is used for sequential execution
but for infinite time.

of 20 ns
AB=Ol

a name

endmodul.e

module·or_gate
input A,B;

output
ox,- # (20) gl (x,A,

output

E!ndmodule

Digital Logic

Execution of above Verilog code generates following timing diagram. One can see that input AB, given
by testor.A and testor.B (testor is module name of the test bench) is taking value 00,01,10,11 as expected and
retain them for 20 ns. Output of OR gate, testor.x changes according to input but after a delay of20 ns. For
first 20 ns, OR gate output is unknown as it needs 20ns (gate delay) to respond to first appearance of input
logic at A,B. Note that Verilog, in general offers four logic values in simulation 0, 1, unknown (or x) and high
impedance (or z). Unknown value is exhibited when input is ambiguous and high impedance is shown when
a wire by mistake is left unconnected or the circuit is following tri-state logic (Chapter 14, Section 6).

!Ons ilOns ,
1
120

1
ns

1
1'30ns 140ns j50ns i60ns !70ns

i I ! ! l l l I ! I I I i I f I ! l ! I i ! l f I ! ! ! I

testor.x /
~ocAI /

testor.B I I \ I

Verilog simulation of 2 input OR gate with 20ns gate delay

Write the statements between begin and end of a test bench for circuit described in
Example 2.16 with 50 ns holding time of each input combination.

Solution . Sincethe circuit hast~e~)nputs
statements would look like as follows:

11eed 23 = 8 differe11t con1binati0Ils .ofinputs.iThus ~e

Digital Principles and Applications

Delay .of ns
'bl; bl; ABC is assigned 011

II Delay of 50 ns
;b=l' bO; bO; ABC is assigned 100

IF50 II Delay of 50 ns
a=l' bl; b=l' bO; 'bl; ABC is assigned 101
l50 II Delay of 50 ns

1 bO; II ABC is assigned 110
of ns

II ABC is .assigned 111
terminates after 400 ns

end

The following timing diagram is generated by simulation of Verilog code for
2-input, 1-output device where A and B are input and x is output. Can you (i) estimate the
gate delay and (ii) identify the logic?

10ns 11qns 12on~ i39n~ [40ns 1sqn~ i6?n~ 170ns i I I I I I I ' ' ' I I l I

testand.x - I
testand.A I
testand.B I \ I

Verilog simulation for Example 2.18

Solution
(i) The unknown value of the output is approximately half of l O ns time scale. Hence, gate delay is 5ns. ·
(ii). Output goes HIGH when both the inputs go high after a delay of 5 ns. Hence, the logic underlying is AND.

PROBLEM SOLVING WITH MULTIPLE METHODS

Realize Y = AB + C using only one type of gate.

AND from NOR gate
r ------------ - I

Solution The functioilto berealized involves
AND, NOT and OR operations. We can realize

this expression using universal logic gate.
I :A.B

OR from NOR gate r--------------. j

I

,n Method-4, we realize it using NOR
g~te. We realize in~ividual logfo operations
AA:eANI>,NOTandORasdepictedfoFig.
2.2LThe solutionis given in Fig. 2.41.

I :AB+C

ID Method-'.!, . werealize it using NANO
gate. We reali;ze individual logic 9perations
like AND,NOTandOR as depicted in Fig;
2.27. The solution is given in Fig. 2.42.

I . :c
f '.' ·. -·· ---· --·----I

NOT.frQlllNOR gate

Realization of Y = AB + C
using only NOR gate

I !

Digital Logic

Thus, two NOR operations
X ==.X'Jrequiretwo.NOilgat~s, .. ~ndfour inyersigns A,B,Clj!lll<lL((l:A<fJi.)'/·t<I.X'.!r.t,equtJI¢Jo1,i,:•·~q.qR/
gat~totaling six N"ORgates•fQr rtal~tion.
byMethod~l.

'fhu§, re need two N~ gates-one for (A ·BY and another
thatthe final logic circuitofMethod-2is similar to what is obtam~:d

Digital Principles and Applications

Almost alldigitaldrcuits are designed for two-state operation, which means the signal voltages are
either at a low level or a high level. Because they duplicate mental processes, digital circuits are often
called logicdrcuits. A gate is a digital circuit with 1 or more inputs, but only l output The output is high
only for certain combinations of the input signals.

An inverter is one type of logic circuit, it produces an output that is the complement of the input. An
ORgate has 2 or more input signals; it produces ahigh output if any input is high. An ANDgate has 2 or
more input signals; it produces a high output only when all inputs are high. Truth tables often use binary
Ofor the low state and binary 1 for the high state. The number of entries in a truth table equals 2", where
n is the number of input signals.

The overbar is the algebraic symbol for the NOT operation, the plus sign is the gymbol for the OR
operation, and the. times sign is the symbol for the AND operatjon, Since the Boolean operator$ a!'e
codes for the OR gate, AND gate, and inverter, we can use Boolean algebra to analyze digital circuits.
An ANO-OR circuit always produces a sum-of-products equation, while the O~-AND circuit resultsin
a pfoduct~of-sums equation.

The NOR gate is equivalent to an OR gate followed by an inverter. De Morgan's first theorem tells .U$

that a NOR gate isequivalentto a bubbled AND gate. Because of De Morgan's first theorem, a NOR-NOR
circuitis equivalent to an OR-AND circuit.

The NAND gate represents an AND gate followed by an inverter. De Morgan's second theorem says
the NAND gate is equivalent toa bubbled OR gate. Furthermore, a NAND-NAND circuit is equivalent
to an AND-OR circuit. The NAND gate is the backbone of the 7400 TTL series because most devices in
this family are derived from the NAND-gate design. The NAND gate is a universal gate since anylogic
circuit can be built with NAND gates only.

With positive logic, binary l represents high voltage and binary O represents low voltage. Also,
positive. true stands for high voltage and positive false for low voltage. With negative logic, binary 1
stands. for low voltage and binaryO for high voltage. In this system, negative true is equivalent to low
voltage and negative false to high voltage.

With assertion-levellogi<::,we .draw gates and other devices with bubbled pins for active'-low signals.
Also, signal voltages are labeled with abbreviations of statements that describe circuit behavior. An
overbads used on a label whenever the signal is active-low.

Figure 2.43 shows three sets of equivalentgates. Changing from one to the other is accomplished by
adding or<deleting bubbles, and changing AND to OR or OR to ANO; The NORgate and NAND gate
equivalents illustrate De Morgan's first and second theorems.

Inverter

!:£>EEC w l~C=A+B+C
NOR gate

De Morgan's First Theorem

t~wi~=ABC
NANDgate

De Morg-dll's Second Theorem

A-[>-A
!D-y
;=c)-r

;=[),-r
;jJ--r

A

;~y
!=Et-y
!=GJ-v
!=Et-y

Digital Logic

Figure 2.44 shows the additional logic symbols for five basic gates along with the corresponding IEEE
rectangular symbols.

• active-low Active-low refers to the concept in
which a signal must be low to cause something
to happen or to indicate that something has
happened.

• AND gate A gate with 2 or more inputs. The
output is high only when all inputs are high.

• assert To activate. If an input line has a bubble
on it, you assert the input by making it low.
If there is no bubble, you assert the input by
making it high.

• De Morgan -s first theorem In words, the
complement of a logical sum equals the
logical product of the complements. In terms
of circuits, a NOR gate equals a bubbled AND
gate.

• De Morgan~ second theorem In words, the
complement of a logical product equals the
logical sum of the complements. In terms
of circuits, a NAND gate is equivalent to a
bubbled OR gate.

11 gate A digital circuit with one or more input
voltages but only one output voltage.

• inverter A gate with only one input and a
complemented output.

PROBLEMS

2.1 What is the output in Fig. 2.45a if the input is
low? The output if the input is high?

2.2 The input is low in Fig. 2.45b. Is the output
low or high? Is the circuit equivalent to an
inverter? If you cascade an odd number of
inverters, what kind of gate is the overall
circuit equivalent to?

2.3 Construct the truth table for Fig. 2.46a. After
you are finished, discuss the relation between

• logic circuit A digital circuit, a switching
circuit, or any kind of two-state circuit that
duplicates mental processes.

• negative true A signal is negative true when
the voltage is low.

• OR gate A gate with two or more inputs. The
output is high when any input is high.

• positive true A signal is positive true when the
voltage is high.

• product-of-sums equation A Boolean
equation that is the logical product of logical
sums. This type of equation applies to an OR
AND circuit.

• sum-of-products equation A Boolean
equation that is the logical sum of logical
products. This type of equation applies to an
AND-OR circuit.

• timing diagram A picture that shows the
input-output wavefonns of a logic circuit.

• truth table A table that shows all of the input
output possibilities of a logic circuit.

• two-state operation The use of only two
points on the load line of a device, resulting in
all voltages being either low or high.

7404

~
(a)

6

(b)

Digital Principles and Applications

the circuit of Fig. 2.46a and a 3-input OR
gate.

2.4 Construct the truth table for Fig. 2.46b.
2.5 Construct the truth table for Fig. 2.46c.

A

A
B

7432

A~6
B~ c-2.Lr-Y

(a)

(b)

7432

(c)

y

y

2.6 The circuit of Fig. 2.46b has trouble. Figure
2.47 shows its timing diagram. Which of the
following is the trouble:

a. Input inverter acts like OR gate.
b. Pin 6 is shorted to ground.
c. AND gate is used instead of OR gate.
d. Output inverter is faulty.

Pin I

Pin2

Pin 5

Pin6

Pin 8

2. 7 Construct the truth table for Fig. 2.48a. Then
discuss the relation between the circuit of Fig.
2.48a and a 3-input AND gate.

7408

A~l 3 4 6
B

2
5 Y

C

(a)

A y

(b)

I 7411 7404

;~ 13 y
C

(c)

2.8 Construct the truth table of Fig. 2.48b.
2.9 Construct the truth table for Fig. 2.48c.

2.10 Assume the circuit of Fig. 2.48b has trouble.
If Fig. 2.49 is the timing diagram, which of
the following is the trouble:

a. Input inverter is shorted.
b. OR gate is used instead of AND gate
c. Pin 6 is shorted to ground.
d. Pin 8 is shorted to + 5 V.

Pin I

Pin4

+5V
Pin 5

+5 V
Pin 6

0

Pin 8
+5V

Digital Logic

2.11 What is the Boolean equation for the output of
Fig. 2.46a?
For Fig. 2.46b? For Fig. 2.46c?

2.12 Draw the logic circuit whose Boolean equation
is

Y=A+B+C
2.13 Use the 7404 and the 7432 with pin numbers.

What is the Boolean equation for the output of
Fig. 2.46a?

2.14 For Fig. 2.46b? For Fig. 2.46c?
Draw the logic circuit described by

Y= (ABC)D
2.15 Use a 7404, 7408, and 7411 with pin nwn

bers.
Draw the logic circuit given by this Boolean
equation:

Y=ABC+ABC+ABC+ABC
Use the following devices with pin numbers:
7404, 7411, and 7432.

2.16 Construct the truth table for the 3-input NOR
gate of Fig. 2.50a.

2.17 Construct the truth table for the 4-input NOR
gate of Fig. 2.50b.

2.18 Show an equivalent NOR-NOR circuit for
Fig. 2.50c. Use the 7402 and the 7427 with
pin numbers.

J 7427

~~y
c~

Av! 7425
B

2
6

C 4 y

D 5

(a) (b)

y

A-......r-----.
B
C -------1-__.-

(c)

2.19 The circuit of Fig. 2.50c has trouble. If output
Y is stuck in the high state, which of the
following is the trouble:

a. Either input pin of the AND gate is
shorted to ground.

b. Any input of either OR gate is shorted to
ground.

c. Any input of either OR gate is shorted to
a high voltage.

d. AND gate is defective.

2.20 Construct the truth table for the 4-input NAND
gate of Fig. 2.51a.

2.21 The inputs are A
0

, A
1
, A

2
, ••• , A

7
in Fig. 2.51b.

What is the Boolean equation for the input of
the NAND gate?

2.22 Draw an equivalent NAND-NAND circuit
for Fig. 2.51c. Use the 7420 and include pin
numbers.

B
2

6
Avl 7420 _

C 4 y

D 5

(a) (b)

(c)

2.23 Suppose the final output of Fig. 2.51c is stuck
in the high state. Which of the following is the
trouble?

a. Any input to the OR gate is shorted to a
high voltage.

b. Any AND-gate input is shorted to
ground.

Digital Principles and Applications

c. Any AND-gate input is shorted to a high
voltage.

d. One of the AND gates is defective be
cause its output is always low.

2.24 What is the output in Fig. 2.3 lc for these
inputs?

a. ABCD=OOOO b. ABCD=OlOl

c. ABCD = 1100 d. ABCD = 1111

2.25 Is the output Y of Fig. 2.52 low or high for
these conditions?

a. Both switches open, A is low.

b. Both switches closed, A is high.

c. Left switch open, right switch closed, A
is low.

d. Left switch closed, right switch open, A
is high.

2.26 If all inputs are low in Fig. 2.34b, what is
the output? If all inputs are high, what is the
output?

lOkQ

y

A

2.27 What is the value of Yin Fig. 2.53 for each of
these?

a. ABCD = 0000

c. ABCD = 1000

b. ABCD=OlOl

d. ABCD = 1111

8
y

l l

2.28 In Fig. 2.54, is each of the following an active-
low or an active-high?

a. Pin 1 b. Pin 2

c. Pin 3 d. Pin 5

e. Pin 6

2.29 An 8085 microprocessor uses the following
labels with assertion-level logic. Is each signal
active-low or active-high?

a. HOLD b. RESET IN

c. RD d. WR

e. ALE f. INTR

g. INTA

2.30 When switch B of Fig. 2.54 is closed, is pin 6
high or low? For this condition, is B CLOSED
negative true or negative false?

Jk.Q JkQ

,A CLOSED I

2

8 CLOSED 7400 7404

Switch.41

Digital Logic

LABORATORY

AIM: ~~.~ii()ftliis experiment is to study
basic NAND gate and implement a bounce
free switch using basic gates.

Theory: The NAND gateimplements the
logic

Y=(A.B.C ...)'

where A, B, C, ... are inputs and Y is output.

The mechanical switches used for electri~
cal connection go through several make-break
situations before resting in a particular posi
tion. For digital circuits, this could amount to
a series of HIGH-LOW which is particularly
detrimental to sequential logic ciffuit.Jhe
following circuit presents a NAND based de
bounce switch.

'I. 7400

l. positive
2. OR
3. AND
4. Y=A
5. Y=A+B
6. Y=A ·B=AB
7. Y=A+B
8. A+B=A·B
9. ~

10. Y=A·B

A·B=A+B
12. &

Apparatus: + 5 Volt de power supply, multi
meter, bread board, and oscilloscope

Work element: IC 7400 is a quad 2-input
NAND gate. Study its pin configuration and
verify the NAND truth table. Study the de
bounce switch circuit and find out the principle
behind its working. Use two NAND gates of
IC 7400 and wire it as shown in the diagram.
Awire may be used as a switch, the other side
of\vhich is connected to a de power supply
or Ground. Observe voltage level at the oscil
loscope,· a.t various points ofthe circuit when
switching is done at the input side. Discuss
the result.Design and implement a NOR (IC
7402) gate based debounce switch.

13. There are two AND gates at the input
14. It is used to increase the number of input

AND gates.
15. Converse of positive fogic. Here binary 0

stands for high voltage and binary 1 stands
for low voltage.

16. It means drawing logic symbols to indicate
the action of each signal. If the si!:,>nal
causes something to happen when low, it
is drawn with a bubble; this is an active
low · signal. Ifa signal causes something to
happen when high, it is drawn without a
bubble; this is an active-high signal.

Combinational Logic
Circuits

+ Demonstrate the ability to use basic Boolean laws.
+ Use the sum-of-products method to design a logic circuit based on a design truth

table.
+ Be able to make Karnaugh maps and Entered variable maps and use them to simplify

Boolean expressions.
+ Use the product-of-sums method to design a logic circuit based on a design truth

table.
+ Use Quine-McClusky tabular method for logic simplification
+ Analyze hazards in logic circuit and provide solution for them.

This chapter discusses Boolean algebra and several simplification techniques. After learning the laws and
theorems of Boolean algebra, you can rearrange Boolean equations to arrive at simpler logic circuits. An
alternative method of simplification is based on the Kamaugh map. In this approach, geometric rather than
algebraic techniques are used to simplify logic circuits. Quine-McClusky tabular method provides a more
systematic reduction technique, which is preferred when a large number of variables are in consideration.

There are two fundamental approaches in logic design: the sum-of-products method and the product
of-sums method. Either method produces a logic circuit corresponding to a given truth table. The sum-of
products solution results in an AND-OR or NAND-NAND network, while the product-of-sums solution
results in an OR-AND or NOR-NOR network. Either can be used, although a designer usually selects the
simpler circuit because it costs less and is more reliable. A practical logic circuit can show hazard due to finite
propagation delay involved in each logic gate. This gives glitches or shows multiple transitions at the output.
This chapter discusses different types of hazards and ways to prevent them.

Combinational Logic Circuits

3.1 BOOLEAN LAWS ANO THEOREMS

You should know enough Boolean algebra to make obvious simplifications. What follows is a discussion of
the basic laws and theorems of Boolean algebra. Some of them will look familiar from ordinary algebra but
others will be distinctly new.

Basic laws

The commutative laws are

A+B=B+A
AB =BA

(3.1)
(3.2)

These two equations indicate that the order of a logical operation is unimportant because the same answer
is arrived at either way. As far as logic circuits are concerned. Figure 3.la shows how to visualize Eq. (,.1).
All it amounts to is realizing that the inputs to an OR gate can be transposed without changing the output.
Likewise, Fig. 3.lb is a graphical equivalent for Eq. (3.2).

The associative laws are

A + (B + C) = (A + B) + C
A(BC) = (AB)C

;=[)-r !=f:>-r
(a)

~=[)-y !=[)-r
(b)

~=e>-=D-y ;~y
(c)

B~Y
C

(d)

(e)

A=C>;=[)-B y
C

B

A

C

y

Commutative, associative, and distributive laws

(3.3)
(3.4)

Digital Principles and Applications

These laws show that the order of combining variables has no effect on the final answer. In terms oflogic
circuits, Fig. 3.lc illustrates Eq. (3.3), while Fig. 3.ld represents Eq. (3.4).

The distributive law is

A(B + C) = AB + AC (3.5)

This law is easy to remember because it is identical to ordinary algebra. Figure 3 .1 e shows the corresponding
logic equivalence. The distributive law gives you a hint about the value of Boolean algebra. If you can
rearrange a Boolean expression, the corresponding logic circuit may be simpler.

The first five laws present no difficulties because they are identical to ordinary algebra. You can use these
laws to simplify complicated Boolean expressions and arrive at simpler logic circuits. But before you begin,
you have to learn other Boolean laws and theorems.

OR Operations

The next four Boolean relations are about OR operations. Here is the first:

A+O=A (3.6)

This says that a variable ORed with O equals the variable. If you think about it, makes perfect sense. When
A is 0,

O+O =O

And when A is 1,

In either case, Eq. (3.6) is true.

Another Boolean relation is

1 + 0 = 1

A+A =A (3.7)

Again, you can see right through this by substituting the two possible values of A. First when A = 0, Eq.
(3.7) gives

O+O =O

which is true. Next, A = I results in

1 + 1 = 1

which is also true because 1 ORed with 1 produces 1. Therefore, any variable ORed with itself equals the
variable.

Another Boolean rule worth knowing is

A+ I= 1

Why is this valid? When A= 0, Eq. (3.8) gives

0 + 1 = 1

which is true. Also. A = 1 gives

1 + 1 = 1

(3.8)

This is correct because the plus sign implies OR addition, not ordinary addition. In summary,
Eq. (3.8) says this, if one input to an OR gate is high, the output is high no matter what the other input.

Combinational Logic Circuits

Finally, we have

A+ A= I (3.9)

You should see this in a flash. If A is 0, A is 1 and the equation is true. Conversely, if A is 1, A is O and
the equation still agrees. In short, a variable ORed with its complement always equals I.

AND Operations

Here are three AND relations

A· 1 =A
A ·A =A
A ·O =O

(3.10)
(3.11)
(3.12)

When A is 0, all the foregoing are true. Likewise, when A is 1, each is true. Therefore, the three equations
are valid and can be used to simplify Boolean equations.

One more AND formula is

A· A =O

This one is easy to understand because you get either

0 · l = 0

or

I· 0 = 0

(3.13)

for the two possible values of A. In words, Eq. (3.13) indicates that a variable ANDed with its complement
always equals zero.

Double Inversion and De Morgan's Theorems

The double-inversion nde is

A =A (3.14)

which shows that the double complement of a variable equals the variable. Finally, there are the De Morgan
theorems discussed in Chapter 2:

A+B =AB
AB= A +B

(3.15)
(3.16)

You already know how important these are. The first says a NOR gate and a bubbled AND gate are
equivalent. The second says a NAND gate and a bubbled OR gate are equivalent.

Duality Theorem

The duality theorem is one of those elegant theorems proved in advanced mathematics. We will state the
theorem without proof. Here is what the duality theorem says. Starting with a Boolean relation, you can
derive another Boolean relation by

1. Changing each OR sign to an AND sign
2. Changing each AND sign to an OR sign
3. Complementing any O or 1 appearing in the expression

Digital Principles and Applications

For instance, Eq. (3.6) says that

A+O=A

The dual relation is

A· 1 =A

This dual property is obtained by changing the OR sign to an AND sign, and by complementing the O to
get a 1.

The duality theorem is useful because it sometimes produces a new Boolean relation. For example, Eq.
(3 .5) states that

A(B+C) =AB+AC

By changing each OR and AND operation, we get the dual relation

A + BC = (A + B)(A + C) (3.17)

This is new, not previously discussed. (If you want to prove it, construct the truth table for each side of the
equation. The truth tables will be identical, which means the Boolean relation is true.)

Covering and Combination

The covering rule, where one term covers the condition of the other term so that the other term becomes
redundant, can be represented in dual form as

and
A +AB =A

A(A +B) =A

The above can be easily proved from basic laws because,

and

The combining rules are,

and in its dual form

A + AB = A · I +AB= A(I + B) = A · I = A
A (A + B) = A · A +AB= A + AB = A

AB+AB =A
(A + B)(A + B) = A

Eq. (3.20) can easily be proved as B + B = 1

Expanding left hand side ofEq. (3.21)

A·A+A·B+A·B+B·B =A+A(B+B)+O

= A + A · 1 = A + A = A = right hand side

Consensus Theorem

(3.18)
(3.19)

(3.20)
(3.21)

The consensus theorem finds a redundant term which is a consensus of two other terms. The idea is that if
the consensus term is true, then any of the other two terms is true and thus it becomes redundant. This can be
expressed in dual form as

AB+ AC+ BC =AB+ AC

(A + B)(A + C) (B + C) = (A + B)(A + C)

(3.22)

(3.23)

In the first expression, BC is the consensus term and thus redundant. This is because if BC= 1, then both
B = 1 and C = 1 and any of the other two terms AB or AC must be one as either A = 1 or A = 1. Similarly,

Combinational Logic Circuits

in the second expression, (B + C) is the consensus term and if this term is O then both B = 0 and C = 0. This
makes one of the other two sum terms Oas either A= 0 or A= 0.

For future reference, here are some Boolean relations and their duals:

A+B=B+A AB=BA
A+ (B + C) =(A+ B) + C A(BC) = (AB)C
A(B + C) =AB+ AC A +BC= (A+ B)(A + C)

A+O=A A·l=A
A+l =1
A+A=A

A+A =1

A=A

A-0=0
A·A=A

A· A =0

A=A

AB= A+B
A(A +B) =A

A+ B= AB
A+AB=A

A+AB=A+B

AB+AB =A

A(A +B)=AB

(A+ B) (A+ B) = A

AB+ AC+ BC= AB+ AC (A+ B) (A + C) (B + C) =(A+ B) (A + C)

Solution

Solution

Prove that, A(A' + C) (A'B + C) (A'BC + C') = 0

LHS =(AA'+AC)(A'B+C)(A'BC+C')

=AC(A'B + C) (A'BC+ C')

=(AC· A'B +AC· C) (A'BC+ C')

=AC(A'BC+ C')

=AC A'BC+AC· C'

=O=RHS

: distributive law

: since, XX' = 0

: distributive law

: since,){){' = 0

: distributive law

: since, .-IT' = 0

Simplify, Y= (A+ B) (A'(B' + C'))' + A'(B + C)

Y =(A+ B) ((A+ (B' + C')') +A'(B + C)

. = (A+ JJ).(A +BC)+ A'(B + C)

=(AA +ABC+ AB+ BBC)+ A'(B + C)

=(A +AB +ABC+BC)+A'(B + C)

=A(l + B +BC)+ BC+ A'(B + C)

+ BC +A1(B + C)

(A+ A'(B + C)) +BC

=A +B + C+BC

=A+ B + C(l + B)

=A+B+C

: De Morgan's theorem

: De Morgan's theorem

A

B

A
B

Digital Principles and Applications

A logic clip is a device that you can attach to a 14- or 16-pin DIP. This troubleshooting
tool contains 16 light-emitting diodes (LEDs) that monitor the state of the pins. When a pin
voltage is high, the corresponding LED lights up. If the pin voltage is low, the LED is dark.

Suppose you have built the circuitofFig. 3 .2a, but it doesn't work correctly. When you connect
a logic clip to the 7408, you get the readings ofFig. 3.2b (a black circle means an LED is off,
and a white one means it's on). When you connect the clip to the 7432, you get the indications of
Fig. 3.2c. Which of the gates is faulty?

e1 140 fill 140
02 13 0 92 130
e3 120 lll3 120 • =Off
04 11 0 94 110 y 0 =On
05 100 05 100
06 90 06 90
97 80 e7 80

(a) (b) (c)

Solution When you use a logic clip, all you have to do is look at the inputs and output to isolate a faulty gate. For
instance, Fig. 3.2b applies to a 7408 (quad 2-input AND gate). The First AND gate (pins l to 3) is all right because

PinJ-,-low

Pin2-high

Pin3-low

A 2-input AND gate is supposed to have a low output if any input is low.
The second AND gate (pins 4 to 6) is defective, Why? Because

Pfa4-high

Pin5-high

Pin6--low

Something is wrong with this AND gate because it produces a low output even. though both inputs are high.

If you check Fig. 3.2c (the 7432), all OR gates are normal. For instance, the first OR gate (pins! to3) is all right
because it produces a low output when the 2 inputs are low. The second OR gate (pins 4 to 6) is working. correctly
since it produces a high output when I input is high.

L All the rules for Boolean algebra are exactly the same as for ordinary algebra. (Tor F)
2. Expand using the distributive law: Y = A(B + C).
3. Simplify: Y= AQ+ AQ.

Combinational Logic Circuits

3.2 SUM-Of-PRODUCTS METHOD

Figure 3 .3 shows the four possible ways to AND two input signals that are in complemented and uncomplemented
form. These outputs are calledfimdamental products. Table 3.1 lists each fundamental product next to the
input conditions producing a high output. For
instance, AB is high when A and B are low; AB
is high when A is low and Bis high; and so on. The
fundamental products are also called minterms.
Products A' B', A'B, AB', AB are represented by
m0, mi, m2, and m3 respectively. The suffix i ofmi
comes from decimal equivalent of binary values
(Table 3.1) that makes corresponding product
term high.

A

0
0

Fundamental Products for Two
Inputs

B

0

0

Fundamental Product

AB
AB
AB AB

i =[]-AB ~ =[]-As ~ =[]-As ~ =[]-AB
00 ~ ~ ~

ANDing two variables and their complements

The idea of fundamental products applies to three or more input variables. For example, assume three
input variables: A, B, C and their complements. There are eight ways to AND three input variables and their
complements resulting in fundamental products of

ABC, ABC, ABC, ABC, ABC, AB c, ABC, ABC

j~
C

(a)

Examples of ANDing three variables and their complements

The above three variable minterms can alterna
tively be represented by mo, m1, 1112, 1113, 1114, 1115,

1116, and 1117 respectively. Note that, for n variable
problem there can be 211 number of minterms.
Figure 3.4a shows the first fundamental product,
Fig. 3.4b the second, and Fig. 3.4c the third. (For
practice, draw the gates for the remaining funda
mental products.) for twice variable case.

Table 3.2 summarizes the fundamental products
by listing each one next to the input condition that
results in a high output. For instance, when A = 1,
B = 0 and C = 0, the fundamental product results
in an output of

Y= ABC= 1 · 0 · 0 = 1

0

0

0

1

1

1
I

B

0

0

0

0

Fundamental Products for
Three Inputs

Fundamental Products

ABC

1 ABC

0 ABC

1 ABC

0 ABC
ABC

0 ABC
1 ABC

Digital Principles and Applications

Sum-of-Products Equation

Here is how to get the sum-of-products solution, given a truth table like Table 3.3. What you have to do is
locate each output 1 in the truth table and write down the fundamental product. For instance, the first output
1 appears for an input of A = 0, B = 1, and C = 1. The corresponding fundamental product is A BC. The next
output 1 appears for A = 1, B = 0, and C = 1. The corresponding fi.mdamental product is ABC. Continuing
like this, you can identify all the fundamental products, as shown in Table 3.4. To get the sum-of-products
equation, all you have to do is OR the fundamental products of Table 3.4:

- - -
Y =ABC+ ABC+ ABC+ ABC (3.24)

Alternate representation of Table 3.3,

Y = F(A, B, C) = I: m (3, 5, 6, 7)

where 'I:' symbolizes summation or logical OR operation that is performed on corresponding mintem1s and
Y = F (A, B, C) means Y is a function of three Boolean variables A, B and C. This kind of representation of a
truth table is also known as canonical sum.form.

Design Truth Table

A B C y

0 0 0 0 A

0 0 1 0 0
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 l 1 l
I 1 0 1 l
I 1 1 1 1

1

logic Circuit

After you have a sum-of-products equation, you can derive the
co1Tesponding logic circuit by drawing an AND-OR network,
or what amounts to the same thing, a NAND-NAND network.
In Eq. (3.24) each product is the output of a 3-input AND
gate. Furthermore, the logical sum Yis the output of a4-input
OR gate. Therefore, we can draw the logic circuit as shown
in Fig. 3.5. This AND-OR circuit is one solution to the design
problem that we started with. In other words, the AND-OR
circuit ofFig. 3.5 has the truth table given by Table 3.3.

We cannot build the circuit of Fig. 3.5 because a 4-in-
put OR gate is not available as a TTL chip (a synonym for
integrated circuit). But a 4-input NAND gate is. Figure 3.6
shows the logic circuit as a NAND-NAND circuit with TTL
pin numbers. Also notice how the inputs come from a bus, a

B

0
0
1
l
0
0
l
I

A
B
C

A
B
C

A
B
c

A
B
C

Fundamental Products for
Table 3.3

C y

0 0
1 0
0 0

l 1-, ABC
0 0
I I-, ABC
0 1-, ABC
I 1 -,ABC

ABC

ABC

ABC

ABC

AND-OR solution

y

Combinational Logic Circuits

group of wires carrying logic signals. In Fig. 3.6, the bus has six wires with logic signals A, B, C, and their
complements. Microcomputers are bus-organized, meaning that the input and output signals of the logic
circuits are connected to buses.

Suppose a three-valuable trnth table has a high output for these input conditions: 000, 010,
100, and 110. What is the
sum-of-products circuit?

Solution Here are the fundamental products:

ooo: ABC
010: ABC
100: Alic
110 :ABC

When you OR these products, you get

Y=ABC +ABC +ABC +ABC
The circuit of Fig. 3.6 will work if we reconnect .the
input lines to the bus as follows:

AABBCC

2 12 A :pins. I and 3

B : .pins 2 and 10
----- o--~

C : pinsB, 5,11, and 13

A : pins 9 and!

B :pins4and2

13
7410

Combinational logic circuit

Simplify the Boolean equation in Example 3.4 and describe the logic circuit.

Solution The Boolean equation is

y =ABC+ ABC+ ABC+ ABC
Since C is common to each term, factor as follows:

Again, factor to get

Now, simplify the foregoing as follows:

or

Y=(AB +AB+AB + AB)C

f;::[A(B +B)+A(B+B)]C

r= [A (I)+ A(l)Jc = (A + A)c

Y=c

y

This final equation means that you don't even need a logic circuit; All you need is a wire connecting input· C to output
Y.

The lesson is clear. The AND-OR (NAND-NAND) circuit you get with the sum-of-products method isnotnecessarily
as simple as possible. With algebra, you often can factor and reduce the .sum-ofcproducts equation to arrive at a
simpler Boolean equation, which means a simpler logic circuit. A simpler logic circuit is prefon-ed because. it usually
costs less to build.and is more reliable.

Digital Principles and Applications

4. How many fondamental products are there for two variables? How many for three
variables?

5. The AND-OR or the NAND-NAND circuit obtained with the sum-of-products method is
always the simplest possible circuit. (T or F)

3.3 TRUTH TABLE TO KARNAUGH MAP

A Karnaugh map is a visual display of the fundamental
products needed for a sum-of-products solution. For instance,
here is how to convert Table 3.5 into its Karnaugh map. Begin
by drawing Fig. 3.7a. Note the variables and complements:
the vertical column has A followed by A, and the horizontal
row has B followed by B. The first output 1 appears for A = 1
and B = 0. The fundamental product for this input condition is
AB . Enter this fundamental product on the Karnaugh map as

A

0
0
1
1

B

0
l
0
1

shown in Fig. 3.7b. This 1 represents the product AB because the 1 is in row A and column Ji.

y

0
0
1

Similarly, Table 3.5 has an output 1 appearing for inputs of A= 1 and B = 1. The fundamental product is
AB, which can be entered on the Karnaugh map as shown in Fig. 3.7c. The final step in drawing the Karnaugh
map is to enter Os in the remaining spaces (see Fig. 3.7d).

In terms of decimal equivalence each position of Karnaugh map can be drawn as shown in
Fig. 3.7b. Note that, Table 3.5 can be written using minterms as Y= L m(2, 3) and Fig. 3.7e represents that.

(a)

B B

A~

A I 2 3

(b) (c)

B B

:~
(d)

Constructing a Karnaugh map

Three-Variable Maps

Here is how to draw a Karnaugh map for Table 3.6 or for
logic equation, Y = F(A, B, C) = Lm(2,6,7). First, draw
the blank map of Fig. 3.8a. The vertical column is labeled
AB, AB, AB, and AB. With this order, only one variable
changes from complemented to uncomplemented form (or
vice versa) as you move downward. In terms of decimal
equivalence of each position the Karnaugh map is as
shown in Fig. 3.8b. Note how mintenns in the equation
gets mapped into corresponding positions in the map.

A

0
0
0
0
1
l
1
l

B

0
0
1
I
0
0
1
l

B B

A~

A I 1 1

(e)

C

0
l
0
1
0
I
0
1

y

0
0
1
0
0
0
1
I

Combinational Logic Circuits

Next, look for output ls in Table 3.6. Output ls appear for ABC inputs of 010, 110 and 111. The fundamental
products for these input conditions are ABC, ABC, and ABC Enter 1 s for these products on the Kamaugh
map (Fig. 3.8b).

The final step is to enter Os in the remaining spaces (Fig. 3.8c).

c C c C c C

AB AB 0 AB AB
AB AB 2 3 AB AB
AB AB 6 7 AB AB
AB AB 4 5 AB AB

(a) (b) (c)

Three-variable Karnaugh map

Four-Variable Maps

Many digital computers and systems process 4-bit
numbers. For instance, some digital chips will work
with nibbles like 0000, 0001, 0010, and so on. For this
reason, logic circuits are often designed to handle four
input variables (or their complements). This is why
you must know how to draw a four-variable Kamaugh
map.

Here is an example. Suppose you have a truth
table like Table 3.7. Start by drawing a blank map
like Fig. 3.9a. Notice the order. The vertical column
is AB, AB, AB, and AB. The horizontal row is
CD, CD, CD, and CD. In terms of decimal equi
valence of each position the Kamaugh map is as shown
in Fig. 3.9b. In Table 3.7, you have output ls appearing
for ABCD inputs of 0001, OllO, 0111, and 1110. The
fundamental products for these input conditions are
ABCD,ABCD,ABCD, and ABCD. After entering
ls on the Karnaugh map, you have Fig. 3.9c. The final
step of filling in Os results in the complete map of Fig. 3.9d.

6. WhatisaKarµaugh map?

A

0
0
0
0
0
0
0
0
I

B

0
0
0
0
I

0
0
0
0

7. How many entries are there on a four-variable Kamaugh map?

Entered Variable Map

c C

0 0

0

0 0

(d)

C D y

0 0 0
0 l
1 0 0
I l 0
0 0 0
0 1 0
I 0 J
1 1 1
0 0 0
0 1 0
1 0 0
I. 1
0 0
0

As the name suggests, in entered variable map one of the input variable is placed inside Kamaugh map. This
is done separately noting how it is related with output. This reduces the Karnaugh map size by one degree,

Digital Principles and Applications

ci5 CD G7J CD c:15 CD CD CD c:15 CD CD CD cl5 CD CD CD

AB AB 0 3 2 AB 0 3 2 AB 0 0 0

AB AB 4 5 7 6 AB 4 5 7 6 AB 0 0 1

AB AB 12 13 15 14 AB 12 13 15 14 AB 0 0 0

AB AB 8 9 11 10 AB 8 9 11 10 AB 0 0 0 0

(a) (b) (c) (d)

Constructing a four-variable Karnaugh map

i.e. a three variable problem that requires 23 = 8 locations in Karnaugh map will require i 3-ll = 4 locations
in entered variable map. This technique is particularly useful for mapping problems with more than four input
variables.

We illustrate the technique by taking a three variable example, truth table of which is shown in Table 3.6.
Let's choose C as map entered variable and see how output Y varies with C for different combinations of
other two variables A and B. Fig. 3.1 Oa shows the relation drawn from Table 3.6. For AB= 00 we find Y = 0
and is not dependent on C. For AB= 01 we find Y is complement of C thus we can write Y = C'. Similarly,
for AB= 10, Y = 0 and for AB= 11, Y= 1. The corresponding entered variable map is shown in Fig. 3.10b. If
we choose A as map entered variable we have table shown in Fig. 3 .1 Oc showing relation with Y for various
combinations of BC; the corresponding entered variable map is shown in Fig. 3.10d.

A B Y B B

0 0 0

o c
7i~l'
A I O 1

0 0

(a) (b)

B C Y

0 0 0

0 0

0

l A

(c)

c C

B~

Bl I A

(d)

Entered variable map of truth table shown in Table 3.6

3.4 PAIRS, QUADS, AND OCTETS

Look at Fig. 3.lla. The map contains a pair of cl5 CD CD CD cl5 CD CD CD
ls that are horizontally adjacent (next to each AB 0 0 0 0 ~1: 0 0 0
other). The first l represents the product AB CD;
the second l stands for the product ABC I5. AB 0 0 0 0 0 0 0

As we move from the first 1 to the second 1, AB 0 0 AB I 0 0 C[J)
only one variable goes from uncomplemented AB 0 0 0 0 AB o 0 0 0
to complemented form (D to D); the other
variables don't change form (A, Band C remain (a) (b)

uncomplemented). Whenever this happens, you
can eliminate the variable that changes form. Horizontally adjacent 1 s

Combinational Circuits

Proof

The sum-of-products equation corresponding to Fig. 3.1 la is

Y=ABCD + ABCD

which factors into

y = ABC(D + D)
Since D is ORed with its complement, the equation simplifies to

Y=ABC

In general, a pair of horizontally adjacent Is like those of Fig. 3.11 a means the sum-of-products equation
will have a variable and a complement that drop out as shown above.

For easy identification, we will encircle two adjacent Is as shown in Fig. 3 .11 b. Two adjacent 1 s such as
these are called a pair. In this way, we can tell at a glance that one variable and its complement will drop out of
the c01Tesponding Boolean equation. In other words, an encircled pair of ls like those of Fig. 3.1 lb no longer
stand for the ORing of two separate products, ABCD and ABCD. Rather, the encircled pair is visualized as
representing a single reduced product ABC.

Here is another example. Figure 3.12a shows a pair of 1 s that are vertically adjacent. These ls correspond
to ABC D and AB CD. Notice that only one variable changes from uncomplemented to complemented form
(B to B). Therefore, B and B can be factored and eliminated algebraically, leaving a reduced product of
ACD.

CD CD CD CD CD CD CD CD cB CD CD c75 CD CD CD CD

AB 0 0 0 0 AB 0 0

~
0 AB 0 0 0 0 AB () 0 0 0

AB 0 0 0 0 AB 0 0 0 AB 0 0 0 0 AB 0 <:CJ) 0

AB 0 0 0

~.

AB 0 0 () 0 AB 0 0 0 0 A~~ 0 0 0

AB 0 0 0 AB 0 0 0 0 AB cc=J) 0 0 AB I 0 0 0

(a) (b) (c) (d)

Examples of pairs

More . Examples

Whenever you see a pair of horizontally or vertically adjacent 1 s, you can eliminate the variable that appears
in both complemented and uncomplemented form. The remaining variables (or their complements) will be
the only ones appearing in the single-product tenn corresponding to the pair of ls. For instance, a glance
at Fig. 3.12b indicates that B goes from complemented to uncomplemented form when we move from the
upper to the lower I; t~ other variables remain the same. Therefore, the encircled pair of ls in !::ig. 3.12b,
represents the product A CD. Likewise, given the pair of 1 sin Fig. 3.12c, the only change is from D to D. So
the encircled pair of ls stands for the product ABC,

If more than one pair exists on a Kamaugh map, you can OR the simplified products to get the Boolean

equation. For instance, the lower pair of Fig. 3.12d represents the simplified product ACD; the upper pair

stands for ABD. The corresponding Boolean equation for this map is

Y= ACD + ABD

Digital Principles and Applications

The Quad

A quad is a group of four ls that are horizontally or vertically adjacent. The ls may be end-to-end, as shown
in Fig. 3.13a, or in the form of a square, as in Fig. 3.13b. When you see a quad, always encircle it because it
leads to a simpler product. In fact, a quad eliminates two variables and their complements.

cl5 CD CD CD c:15 CD CD CD cl5 CD CD CD

AB 0 0 0 0 AB 0 0 0 0 AB 0 0 0 0

AB 0 0 0 0 AB 0 0 0 0 AB 0 0 0 0

AB ~ AB 0 0 0 AB CC}) CC})
AB 0 0 0 0 Ali 0 0 AB 0 0 0 0 1

(a) (b) (c)

Examples of quads

Here is why a quad eliminates two variables and their complements. Visualize the four 1 s of
Fig. 3.13a as two pairs (see Fig. 3.13c). The first pair represents ABC; the second pair stands for ABC. The
Boolean equation for these two pairs is

Y=ABC +ABC

This factors into
Y=AB(C + C)

which reduces to
Y=AB

So, the quad of Fig. 3. l 3a represents a product whose two variables and their complements have dropped
out.

A similar proof applies to any quad. You can visualize it as two pairs whose Boolean equation leads to a
single product involving only two variables or their complements. There's no need to go through the algebra
each time. Merely step through the different ls in the quad and determine which two variables go from
complemented to uncomplemented form (or vice versa); these are the variables that drop out.

For instance, look at the quad of Fig. 3.13b. Pick any 1 as a starting point. When you move horizontally,
D is the variable that changes form. When you move vertically, B changes form. Therefore, the remaining
variables (A and C) are the only ones appearing in the simplified product. In other words, the simplified
equation for the quad of Fig. 3.13b is

Y=AC

The Octet

Besides pairs and quads, there is one more group to adjacent 1 s to look for: the octet. This is a group of eight 1 s
like those of Fig. 3.14a on the next page. An octet like this eliminates three variables and their complements.
Here's why. Visualize the octet as two quads (see Fig. 3.14b). The equation for these two quads is

Y=AC +AC

Combinational Logic Circuits

CD CD CD c75 CD CD CD c75
AB 0 0 0 0 AB 0 0 0 0

AB 0 0 0 0 AB 0 0 0 0 A~GD AB I .· · 1 I 1 A~o
AB I 1 D 1

(a) (b)

Example of octet

After factoring,

Y=A(C +C)

But this reduces to

Y=A

So the octet of Fig. 3.14a means three variables and their complements drop out of the corresponding
product.

A similar proof applies to any octet. From now on don't bother with the algebra. Merely step through the
ls of the octet and detennine which three variables change fom1. These are the variables that drop out.

8. On a Kamaugh map, tvvo adjacent ls are called a __ .
9. On a Kamaugh map, an octet contains how many ls?

3.5 KARNA UGH SIMPUFICA TIONS

As you know, a pair eliminates one variable and its complement, a quad eliminates two variables and their
complements, and an octet eliminates three variables and their complements. Because of this, after you draw
a Kamaugh map, encircle the octets first, the
quads second, and the pairs last. In this way, the
greatest simplification results.

An Example

Suppose you have translated a truth table into
the Karnaugh map shown in Fig. 3.15a. First,
look for octets. There are none. Next, look for
quads. When you find them, encircle them. Fi
nally, look for and encircle pairs. If you do this
correctly, you arrive at Fig. 3 .l 5b.

CD CD CD CD

AB o
AB o
AB

AB

0

(a)

0

0

0

CD CD CD CD

AB o
AB O o A~ol
AB l 1

(b)

0

0

0

Encircling octets, quads and pairs

The pair represents the simplified product AB D, the lower quad stands for AC, and the quad on the right
represents CD. By ORing these simplified products, we get the Boolean equation corresponding to the entire

Kamaugh map:

Y=ABD+AC+CD

Overlapping Groups

You are allowed to use the same 1 more than once.
Figure 3.16a illustrates this idea. The I representing
the fundamental product ABC D is part of the pair
and part of the octet. The simplified equation for the
overlapping groups is

Y=A + BCD (3.26)

It is valid to encircle the ls as shown in Fig.
3. l 6b, but then the isolated 1 results in a more com
plicated equation:

Y=A+ ABCD

So, always overlap groups if possible. That is,

ci5 CD CD CD

AB o o o o
0 0

(a)

use the 1 s more than once to get the largest groups you can.

Rolling the Map

Another thing to know about is rolling. Look at
Fig. 3.17a on the next page. The pairs result in
this equation:

Y=BCD +BCD (3.27)

cl5
AB 0

AB (J AB

AB 0

CD CD CD

0 0 0

0 0 (J 0 0

0 0 0

(a)

(3.25)

cl5 CD CD CD

AB 0 0 0 0

AB 0 0 0

AB 1

AB

(b)

Overlapping groups

cl5 CD CD CD

AB 0 0 0 0

AB

J
0 0

G AB 0 0

AB 0 0 0 0

(b)

Visualize picking up the Kamaugh map and
rolling it so that the left side touches the right side.
If you are visualizing correctly, you will realize
the two pairs actually form a quad. To indicate
this, draw half circles around each pair, as shown
in Fig. 3: 17b. From this viewpoint, the quad of
Fig. 3.17b has the equation

Rolling the Karnaugh map

Y=BD (3.28)

Why is rolling valid? Because Eq. (3.27) can be algebraically simplified to Eq. (3.28). The proof starts
with Eq. (3.27):

Y=BCD +BCD

This factors into
Y=BD(C+C)

which reduces to
Y=BD

But this final equation is the one that represents a rolled quad like Fig. 3.17b. Therefore, ls on the edges
of a Kamaugh map can be grouped with ls on opposite edges.

Combinational Circuits

More Examples

If possible, roll and overlap to get the largest ci5 CD CD CD
groups you can find. For instance, Fig. 3.18a

ci5 CD CD CD

shows an inefficient way to encircle groups. The AB 0 0 AB 0 0

octet and pair have a Boolean equation of AB 0 a Y=C +BCD
AB 0

You can do better by rolling and overlapping

AB

J
l 0

~ AB I 0

as shown in Fig. 3.18b; the Boolean equation AB 0 0 AB 0 0

now is (a) (b)

Y= C + BD

Here is another example. Figure 3.19a shows
an inefficient grouping of ls; the corresponding
equation is

· Rolling and overlapping

y = C + A CD+ AB CD

ci5 CD CD CD ci5 CD CD CD ci5 CD

AB 0 a AB 0

~
AB

AB 0 AB 0 AB

AB 0 0 AB 0 0 AB

AB 0 CD AB 0 C[AB

(a) (b)

Different ways of encircling groups

Ifwe roll and overlap as shown in Fig. 3.19b, the equation is simpler:

Y=C +AD +ABD

It is possible to group the 1 s as shown in Fig. 3.19c. The equation now becomes

Y=C+AD+BD

(c)

CD CD

0 f 0

0 0

0 C[

(3.29)

Compare this with the preceding equation. As you can see, the equations are comparable in simplicity.
Either grouping (Fig. 3.19b or c) is valid; therefore, you can use whichever you like.

Eliminating Redundant Groups

After you have finished encircling groups, eliminate any redundant group. This is a group whose ls are
already used by other groups. Here is an example. Given Fig. 3.20a, encircle the quad to get Fig. 3.20b. Next,
group the remaining 1 s into pairs by overlapping (Fig. 3 .20c). In Fig. 3 .20c, all the 1 s of the quad are used by
the pairs. Because of this, the quad is redundant and can be eliminated to get Fig. 3.20d. As you see, all the
ls are covered by the pairs. Figure 3.20d contains one less product than Fig. 3.20c; therefore, Fig. 3.20d is
the most efficient way to group the ls.

Digital Principles and Applications

cl5 CD CD CD CJ5 CD CD

AB 0 0 0 AB 0 0

AB 0 AB 0 AB 0 AB 0 l

AB 0 0 0 AB 0 0

(a) (b)

CD cl5 CD

0 AB 0 0

0 AB

AB

0 AB

(c)

CD CD

1 0

0

0

cl5 CD CD CD

AB o o r\ o
AB CC}) \y 0

~;: ~~
(d)

Eliminating an unnecessary group

Conclusion

Here is a summary of the Karnaugh-map method for simplifying Boolean equations:

1. Enter a 1 on the Kamaugh map for each fundamental product that produces a I output in the truth
table. Enter Os elsewhere.

2. Encircle the octets, quads, and pairs. Remember to roll and overlap to get the largest groups possible.
3. If any isolated ls remain, encircle each.
4. Eliminate any redundant group.
5. Write the Boolean equation by ORing the products corresponding to the encircled groups.

Simplification of Entered Variable Map

This is similar to Kamaugh map method. Refer to entered variable maps shown in Fig. 3.10. The groupings
for these are as shown in Fig. 3.21a and Fig. 3.21b. Note that in Fig. 3.21a C' is grouped with 1 to get a larger
group as I can be written as 1 = 1 + C'. Similarly A is grouped with 1 in Fig. 3.21b.

Next, the product term representing each group
is obtained by including map entered variable in the
group as an additional ANDed term. Thus, group 1 of
Fig. 3.21a gives B.(C') = BC' and group 2 givesAB.(1)
= AB resulting Y =BC'+ AB.

In Fig. 3.21 b, group 1 gives product term B.(A) = AB
and group 2 gives BC'.(l) = BC' so that Y= BC'+ AB.
The final expression is same for both as they represent
the same truth table (Table 3.6).

Note that, entered variable map shown Fig. 3.21c

B B

~1:~
(a)

C C :r;
(b) (c)

Simplification of entered
variable map

for a different truth table (Take it as an exercise to prepare that truth table) has only two product terms and
doesn't need a separate coverage of 1. This is because one can write 1 = C + C' and C is included in one group
while C' in other. The output of this map can be written as Y =AC+ BC'.

What is the simplified Boolean equation for the following logic equation expressed by
minterms?

Y=F(A,B,C,D)=I:.m(7,9, 10, 11, 12, 13, 14, 15)

Combinational Logic Circuits

Solution We know, each minterm makes corresponding location in I(arnaugh map 1 and thus Fig. 3.22a represents
the given equation. There are 110 octets, but there is a quad as shown in Fig. 3.22b. By overlapping, we can find two
more quads (see Fig. 3.22c). We can encircle the remaining l by making it part of an overlapped pair (Fig. 3.22d).
Finally, there are no redundant groups.

The horizontal quad of Fig. 3.22d corresponds to a simplified product AB. The square quad on the right corresponds
to AC, while the one on the left stands for AD. The pair represents BCD. By ORing these products, we get the
simplified Boolean equation:

Y=AB+AC+AD+BCD (3.30)

CD CD CD CD CD CD CD CD CDCD CD CD CD CDCD CD

AB

AB

AB

AB

0 0 0 0 AB 0 0 0 0 AB 0 0 0 0 AB 0 0 0

0 0 0 AB 0 0 1 0 AB 0 0 0 AB 0 0

l 1 l 1 AB ~ A~~ AB 1

0 1 l AB 0 1 1 1 ABO 1 1 1 AB 0 l

(a) (b) (c) (d)

Using the Karnaugh map

10. Write the sum-of-product terms for the entries in Fig. 3.18. Use Boolean algebra to simplify
the expression.

0

0

3.6 DON'T-CARE CONDITIONS Truth Table with Don't-
Care Conditions

In some digital systems, certain input conditions
never occur during normal operation; therefore, the A B C D y

corresponding output never appears. Since the output 0 0 0 0 0
never appears, it is indicated by an X in the truth table. 0 0 0 0

For instance, Table 3.8 on the next page shows a truth 0 0 l 0 0

table where the output is low for all input entries from 0 0 1 1 0

0000 to 1000, high for input entry 1001, and an X 0 1 0 0 0

for l O 10 through 1111. The X is called a don 't-care 0 1 0 0
0 l 1 0 0

condition. Whenever you see anX in a truth table, you
0 1 1 l 0

can let it equal either O or 1, whichever produces a 1 0 0 0 0
simpler logic circuit. 1 0 0 1

Figure 3.23a shows the Karnaugh map of Table 1 0 1 0 X
3.8 with don't-cares for all inputs from 1010 to 1111. 1 0 1 1 X

These don't-cares are like wild cards in poker because 1 1 0 0 X

you can let them stand for whatever you like. Figure 1 0 1 X

3.23b shows the most efficient way to encircle the l. 1 l 0 X

Notice two crucial ideas. First, the 1 is included in a 1 X

Digital Principles and Applications

quad, the largest group you can find if you visualize all X's as ls. Second, after the 1 has been encircled,
all X's outside the quad are visualized as Os. In this way, the Xs are used to the best possible advantage. As
already mentioned, you are free to do this because don't-cares coITespond to input conditions that never ap
pear.

The quad of Fig. 3.23b results in a Boolean equation of

Y=AD

The logic circuit for this is an AND gate with inputs of A and D, as shown in Fig. 3.23c. You can check
this logic circuit by examining Table 3.8. The possible inputs are from 0000 to 1001; in this range a high A
and a high D produce a high Y only for input condition 100 I.

ci5 CD CD CD ci5 CD CD CD

AB 0 0 0 0 AB 0 0 0 0

AB
A BCD

AB 0 0 0 0 0 0 0 0 tttt=o-y AB X X X X AB X 0 X

AB 0 AB 0 X X X X

(a) (b)

Don't-care conditions

Remember these ideas about don't-care conditions:

I. Given the truth table, draw a Kamaugh map with Os, Is, and don't-cares.

(c)

2. Encircle the actual ls on the Kamaugh map in the largest groups you can find by treating the don't
cares as ls.

3. After the actual ls have been included in groups, disregard the remaining don't cares by visualizing
them as Os.

Suppose Table 3.8 has high output for an input of 0000, low output, for 0001 to 1001, and
don't cares for l O 10 to 1111. What is the simplest logic circuit with this truth table?

Solution The truth table has a I output only
fortheinput condition 0000. The corresponding
fundamental product is ABCD. Figure 3.24a
shows the Karnaugh map with a 1 for the
fundamental product, Os for inputs 0001 to
1001, andXs for inputs 1010 to UlL In this
case, the don't-cares are ofno help. The best
we can do is to encircle the isolated 1, while
treating the don't-cares as Os. So, the Boolean
equation is

Y=ABCD
Figure 3.24b shows the logic circuit. The 4-

AB

AB

AB

AB

CDCD CD CD

CD 0 0 0 A B c D
0 0 0 0

X X X X ~y

0 0 X X

(a) (b)

Decoding 0000

inputAND gate produces a high output only for the input condition. A = 0, B = 0. C = 0, and D = 0.

Combinational Circuits

Give the simplest logic circuit for following logic equation where d represents don't-care
condition for following locations.

F(A, B, C, D) = I,m(7) + d(lO, 11, 12, 13, 14, 15)

Solution Figure 3.25a is the Karnaugh map.
The most efficient encircling is to group the ls
into a pair using the don't-care as shown. Since
this is the largest group possible, all remaining
don 'i cares are treated as Os. The equation for the
pair is

Y=BCD
and Fig. 3.25b is the logic circuit. This 3.input
AND gate produces a high output only for anin
put of A = 0, B = 1, C = 1, and D I because
the input possibilities range only from 0000 to

1001.

AB

AB
AB

AB

CD CDCD CD

0 0 0 0

0 0 a 0

X X X

0 0 X X

(a)

ABCD Ht=o-y
(b)

Decoding 0111

11. What is meant by a don't-care condition on a Karnaugh map? How is it indicated?
12. How can using don't-cares aid circuit simplification?

3.7 PRODUCT-Of-SUMS METHOD

With the sum-of-products method the design starts with a truth table that summarizes the desired input-output
conditions. The next step is to convert the truth table into an equivalent sum-of-products equation. The final
step is to draw the AND-OR network or its NAND-NAND equivalent.

The product-of-sums method is similar. Given a truth table, you identify the fundamental sums needed
for a logic design. Then by ANDing these sums, you get the product-of-sums equation corresponding to the
truth table. But there are some differences between the two approaches. With the sum-of-products method,
the fundamental product produces an output l for the corresponding input condition. But with the product
of-sums method, the fundamental sum produces an output O for the corresponding input condition. The best
way to understand this distinction is with an example.

Converting a Truth Table to an Equation

Suppose you are given a truth table like Table 3.9 and you want to get the product-of-sums equation. What
you have to do is locate each output O in the truth table and write down its fundamental sum. In Table 3.9, the
first output O appears for A= 0, B = 0, and C = 0. The fundamental sum for these inputs is A+ B + C. Why?
Because this produces an output zero for the corresponding input condition:

Y=A+B+C=O+O+O=O

Digital Principles and Applications

A B C y Max:term

0 0 0 0"""7A+B+C Mo
0 0 1 1 M1
0 I 0 I M2
0 1 l 0"""7A+B+C M3
I 0 0 I M4
1 0 1 I Ms
l I 0 0"""7A+B+C M6
l 1 I 1 M1

The second output O appears for the input condition of A= 0, B = I, and C = 1. The fundamental sum for
this is A + B + C. Notice that B and Care complemented because this is the only way to get a logical sum
of O for the given input conditions:

Y=A+B+C=O+I+I=O+O+O=O

Similarly, the third output O occurs for A = l, B = I, and C = O; therefore, its fundamental sum is
A +B +C:

Y=A+B+C=T+T+O=O+O+O=O
Table 3.9 shows all the fundamental sums needed to implement the truth table. Notice that each variable is

complemented when the corresponding input variable is a l; the variable is uncomplemented when the corre
sponding input variable is 0. To get the product-of-sums equation, all you have to do is AND the fundamental
sums:

Y =(A+ B + C)(A + B + C)(A + B + C)

This is the product-of-sums equation for Table 3.9.

(3.31)

As each product term was called minterm in SOP representation in POS each sum term is called maxterm
and is designated by Mi as shown in Table 3.9. Equation 3.31 in terms ofmaxtenn can be represented as

Y = F(A, B, C) = IlM(O, 3, 6)

where 'Il' symbolizes product, i.e. AND operation. This kind ofrepresentation of a truth table is also known
as canonical productform.

logic Circuit

After you have a product-of-sums equation, you can get the logic circuit by drawing an OR-AND network,
or if you prefer, a NOR-NOR network. In Eq. (3.31) each sum represents the output of a 3-input OR gate.
Furthem10re, the logical product Y is the output of a 3-input AND gate. Therefore, you can draw the logic
circuit as shown in Fig. 3.26.

A 3-input OR gate is not available as a TTL chip. So, the circuit of Fig. 3.26 is not practical. With De
Morgan's first theorem, however, you can replace the OR-AND circuit of Fig. 3.26 by the NOR-NOR circuit
ofFig. 3.27.

Combinational Logic Circuits

A A B JJ C C
7427

2

3

A--r--.....
B
c-_,_----

13

4
A-_.--.....
Jj
c-_,_----

y 5

9

1 _ __,---....
Jj

10
11

c-_,_-

Product-of-sums circuit

Conversion between SOP and POS

We have seen that SOP representation is obtained by considering ones in a truth table while POS comes
considering zeros. In SOP, each one at output gives one AND tem1 which is finally ORed. In POS, each zero
gives one OR term which is finally ANDed. Thus SOP and POS occupy complementary locations in a tmth
table and one representation can be obtained from the other by

(i) identifying complementary locations,
(ii) changing mintenn to maxtenn or reverse, and finally

(iii) changing summation by product or reverse.

Thus Table 3.9 can be represented as

Y = F(A, B, C) = ITM(O, 3, 6) = Lm(l, 2, 4, 5, 7)

Similarly Table 3.4 can be represented as

Y = F(A, B, C) = Lm(3, 5, 6, 7) = TIM(O, 1, 2, 4)

This is also known as conversion between canonical forms.

Suppose a truth table has a low output for the first three input conditions: 000, 001, and 010.
If all other outputs are high, what is the product-of-sums circuit?

Solution Theproduct-of~sums equation is

Y =(A+B+C)(A +B+ C)(A+ii +C)

circuit of Fig. 3.2Twill work if we reconnect the input lines as follows:

A: pins I, 3, andi

B: pins 2 and4

C: pins Band 11
s :pin10

: pin 5

Principles and Applications

13. A product-of-sums expression leads to what kind oflogic circuit?
14. Explain how to convert the complementary NAND-NAND circuit into its dual NOR-NOR

circuit

3.8 PRODUCT-Of-SUMS SIMPLIFICATION

After you write a product-of-sums equation, you can simplify it with Boolean algebra. Alternatively, you
may prefer simplification based on the Kamaugh map. There are several ways of using the Kamaugh map.
One can use a similar technique as followed in SOP representation but by forming largest group of zeros and
then replacing each group by a sum term. The variable going in the formation of sum term is inverted if it
remains constant with a value 1 in the group and it is not inverted if that value is 0. Finally, all the sum terms
are ANDed to get simplest POS fonn. We illustrate this in Examples 3.11 and 3.12. In this section we also
present an interesting alternative to above technique.

Sum-of-Products Circuit

Suppose the design starts with a truth table like Table 3.10. The first thing to do is to draw the Kamaugh map
in the usual way to get Fig. 3.28a. The encircled groups allow us to write a sum-of-products equation:

Y= AB +AB+AC

Figure 3.28b shows the corresponding NAND-NAND circuit.

Complementary Circuit

To get a product-of-sums circuit, begin by comple
menting each O and 1 on the Kamaugh map of Fig.
3.28a. This results in the complemented map shown
in Fig. 3.28c. The encircled ls allow us to write the
following sum-of-products equation:

y =AB+ABC

Why is this Y instead of Y? Because complement
ing the Kamaugh map is the same as complementing
the output of the truth table, which means the sum-of
products equation for Fig. 3 .28c is for Y instead of Y.

Figure 3.28d shows the corresponding NAND
NAND circuit for Y. This circuit does not produce
the desired output; it produces the complement of the
desired output.

finding the NOR-NOR Circuit

What we want to do next is to get the product-of-sums
solution, the NOR-NOR circuit that produces the

A

0
0
0
0
0
0
0
0
1
l
1
I
l
1
1
1

B

0
0
0
0
1
l
1
1
0
0
0
0
l
1
l
l

C D y

0 0 l
0 1 I
l 0 1
l 1 l
0 0 0
0 1 0
I 0 0
1 I 0
0 0 0
0 1 0
1 0 1
1 1 1
0 0 1
0 1 l
l 0 1
l l l

Combinational Logic Circuits

Cl5 CD CD CD A

AB cCIT)) B

AB 0 0 0 0
A
B

y

~~ A
ABO O I I C

(a) (b)

Cl5 CD CD CD
A

AB 0 0 0 0 B

AB cCIT)) A
y

AB 0 0 0 0 B

AB CC]) c
0 0

(c) (d)

Deriving the sum-of-products circuit

original truth table ofTable 3.10. De Morgan's first theorem tells us NAND gates can be replaced by bubbled
OR gates; therefore, we can replace Fig. 3.28d by Fig. 3.29a. A bus with each variable and its complement
is usually available in a digital system. So, instead of connecting A and B to a bubbled OR gate, as shown
in Fig. 3.29a, we can connect A and B to an OR gate, as shown in Fig. 3.29b. In a similar way, instead of
connecting A, B, and C to a bubbled OR gate, we have connected A, B, and C to an OR gate. In short,
Fig. 3.29b is equivalent to Fig. 3.29a.

The next step toward a NOR-NOR circuit is to convert Fig. 3.29b into Fig. 3.29c, which is done by sliding
the bubbles to the left from the output gate to the input gates. This changes the input OR gates to NOR gates.
The final step is to use a NOR gate on the output to produce Yinstead off, as shown in the NOR-NOR
circuit ofFig. 3.29d.

A A
B B

y y
A A
B B
c C

(a) (b)

A A

B B
y y

A A
B B
C C

(c) (d)

Deriving the product-of-sums circuit

Digital Principles and Applications

From now on, you don't have to go through every step in changing a complementary NAND-NAND
circuit to an equivalent NOR-NOR circuit. Instead, you can apply the duality theorem as described in the
following.

Duality

An earlier section introduced the duality theorem of Boolean algebra. Now we are ready to apply this theo
rem to logic circuits. Given a logic circuit, we can find its dual circuit as follows: Change each AND gate to
an OR gate, change each OR gate to an AND gate, and complement all input-output signals. An equivalent
statement of duality is this: Change each NAND gate to a NOR gate, change each NOR gate to a NAND gate,
and complement all input-output signals.

Compare the NOR-NOR circuit of Fig. 3.29d with the NAND-NAND circuit of Fig. 3.28d. NOR gates
have replaced NAND gates. Furthermore, all input and output signals have been complemented. This is an
application of the duality theorem. From now on, you can change a complementary NAND-NAND circuit
(Fig. 3.28d) into its dual NOR-NOR circuit (Fig. 3.29d) by changing all NAND gates to NOR gates and
complementing all signals.

Here is a summary of the key ideas in the preceding discussion:

1. Convert the truth table into a Karnaugh map. After grouping the ls, write the sum-of-products
equation and draw the NAND-NAND circuit. This is the sum-of-products solution for Y.

2. Complement the Karnaugh map. Group the 1 s, write the sum-of-products equation, and draw the
NAND-NAND circuit for Y. This is the complementary NAND-NAND circuit.

3. Convert the complementary NAND-NAND circuit to a dual NOR-NOR circuit by changing all
NAND gates to NOR gates and complementing all signals. What remains is the product-of-sums
solution for Y.

4. Compare the NAND-NAND circuit (Step 1) with the NOR-NOR circuit (Step 3). You can use
whichever circuit you prefer, usually the one with fewer gates.

Show the sum-of-products and product-of-sums circuits for the Karnaugh map of Fig. 3.30a.

Solution The Boolean equatio11for Fig. J.30a ott the next page is

Y=A+BCD

f'igure 3.301:iis the sum-of-prod1.1cts circuit.
After colllplementing and simplifying the Kamaugh map, we get Fig. 3.30c. The Bool~ equation for this is

=AB+AC+AD
Figure 3 .30d is the sum-of-products ciffuit fo:rthe shown earlier, we can convert the dual circriitinto a NOR-
NOR equivalent circuit to get Fig. 3.30e:

The two desigtt choices are Fig. 3,30b and 3 .30e, Fignre 3.30b is simpler.

Combinational Logic Circuits

AB 0 0 0

0

1

1 1

(a) (b) (c)

(d)

Give simplest POS form ofKarnaugh map shown in Fig. 3.30a by grouping zeros.

Solution Refer to grouping of zeros as shown in Fig. 3.31a. Three groups cover alHhe zeros that give three sum
terms. The first group has A' and C' constant witb
in tbe group that gives sum term (A+ C). Group 2
has A' and D constant giving sum term (A + JY).
Group 3 has A' and B' constant generating (A + B)
as sum term ..

The final solution is thus product oftbese three
sum terms and expressed as

Y =(A+ B) (A +C)(A+D')

Note that, the above relation can be realized by
OR-AND circuit or NOR-NOR (Fig. 330e) cir-.
cuit.

AB

AB
AB

A1i

CJ5 CD CD CD

l 1 1 1

1 1 l 1

(a)

AB

AB

CJ5 CD CD CD

0 1(2?
0

X X l

'-'"'_x_, X ~
(b)

Simplification by grouping zeros

Give simplest POS form ofKarnaugh map shown in Fig. 3.31b by grouping zeros.

Solution In a Karnaugh map if don't care conditions exist, we may consider them as zeros if that gives larger group
size. This in turn reduces number ofliterals in tbe sum term. · Refer to grouping of zeros in Fig. 33lb; We require
minimum two groups that includes all the zeros and are also largest in sizes. In group 1, only C' is constant tbat gives
only one literal in. sum term as C. Group 2 has B' .and D' constant giving sum term CB+ D). The final solution is thus
produ<:t of tbese two sum terms and expressed as

= C(B+D)

Digital Principles and Applications

3.9 SIMP[IFICATION BY QUINE-McCLUSKY METHOD

Reduction oflogic equation by Kamaugh map method though very simple and intuitively appealing is some
what subjective. It depends on the user's ability to identify patterns that gives largest size. Also the method
becomes difficult to adapt for simplification of 5 or more variables. Quine-McClusky method is a systematic
approach for logic simplification that does not have these limitations and also can easily be implemented in
a digital computer.

Determination of Prime Implicants

Quine-McClusky method involves preparation of two tables; one determines prime implicants and the other
selects essential prime implicants to get minimal expression. Prime implicants are expressions with least
number of literals that represents all the terms given in a truth table. Prime implicants are examined to get
essential prime implicants for a particular expression that avoids any type of duplication. We illustrate the
method with a 4-variable simplification problem for truth table appearing in Table 3.10. Figure 3.32 shows
prime implicant determination table for the problem.

In Stage 1 of the process, we find out all the tenns that gives output 1 from truth table (Table 3.10) and put
them in different groups depending on how many l input variable combinations (ABCD) have. For example,
first group has no l in input combination, second group has only one 1, third two 1 s, fourth three ls and fifth
four Is. We also write decimal equivalent of each combination to their right for convenience.

In Stage 2, we first try to combine first and second group of Stage I, on a member to member basis.
The rule is to see if only one binary digit is differing between two members and we mark that position by

Stage 1 Stage 2 Stage 3

ABCD ABCD ABCD

0000 (0)-v 000- (0,1)-V 0 0 - - (0,1,2,3)
00-0 (0,2)-V 0 0 - - (0,2,1,3)

0001 (1)-V
0010 (2)..J 0 0 - 1 (1,3)..J - 0 1 - (2,10,3,11)

001- (2,3)-V
(10,11,14,15)

-010 (2,10)-V 1 - 1 -
0 0 1 1 (3)-V 1 - 1 - (10,14,11,15)

101 0 (10)-V - 0 1 1 (3,11)-V 1 1 - - (12,13,14,15)

1100 (12)-V 1 0 1 - (10,11)-V 1 1 - - (12,14,13,15)

1 - 1 0 (10,14)-V
1 1 0 - (12, 13)-V

1 0 1 1 (11)-V 1 1 - 0 (12,14)-V

1 1 0 1 (13)-V
1 1 1 0 (14)-V 1 - 1 1 (11,15)-V

1 I - 1 (13,15)-V
1 1 1 1 (15)-V 1 1 1 - (14,15)-V

Determination of prime implicants

Combinational Circuits

'-'. This means con-esponding variable is not required to represent those members. Thus (0) of first group
combines with (1) of second group to form (0,1) in Stage 2 and can be represented by A'B'C' (0 0 0 -). The
logic of this representation comes from the fact that mintermA'B'C'D' (0) andA'B'C'D (1) can be combined
as A'B'C'(D' + D) = A'B'C'. We proceed in the same manner to find rest of the combinations in successive
groups of Stage 1 and table them in Fig. 3.32. Note that, we need not look beyond successive groups to find
such combinations as groups that are not adjacent, differ by more than one binary digit. Also note that each
combination of Stage 2 can be represented by three literals. All the members of particular stage, which finds
itself in at least one combination of next stage are tick (V) marked. This is followed for Stage 1 terms as well
as tem1s of other stages.

In Stage 3, we combine members of different groups of Stage 2 in a similar way. Now it will have two'-'
elements in each combination. This means each combination requires two literals to represent it. For example
(0,1,2,3) is represented by A'B' (0 0-). There are three other groups in Stage 3; (2,10,3,11) represented by
B'C, (10,14,11,15) by AC and (12,13,14,15) by AB. Note that, (0,2,1,3), (10,11,14,15) and (12,14,13,15) get
represented by A'B, AC and AB respectively and do not give any new tem1.

There is no Stage 4 for this problem as no two members of Stage 3 has only one digit changing among
them. This completes the process of detennination of prime implicants. The rule is all the tenns that are not
ticked at any stage is treated as prime implicants for that problem. Here, we get four of them from Stage 3,
namely A'B', B'C, AC, AB and none from previous stage as all the tenns there are ticked (V).

Selection of Prime Implicants

Once we are able to detennine prime implicants that covers all the tem1s of a truth table we try to select es
sential prime implicants and remove redundancy or duplication among them. For this, we prepare a table as
shown in Table 3.11 that along the row lists all the prime implicants and along columns lists all mintenns.
The cross-point of a row and column is ticked if the tenn is covered by con-esponding prime implicant. For
example, terms O and 1 are covered by A' B' only while 2 and 3 are covered by both A' B' and B' C and the cor
responding cross-points are ticked. This way we complete the table for rest of the tenns.

0 1 2 3 10 11 12 13 14 15

A'B' (0,1,2,3) '1 '1 '1 '1
B'C(2,3,l0,11) '1 '1 I '1 V

AC'(Ip,11,14'.15) '1 '1 '1 '1
AlJ (12,13,14,15) '1 '1 '1 '1

Selection of essential prime implicants from this table is done in the following way. We find minimum
number of prime implicants that covers all the minterms. We find A' B' and AB cover terms that are not cov
ered by others and they are essential prime implicants. B' C and AC among themselves cover 10, 11 which are
not covered by others. So, one of them has to be included in the list of essential prime implicants making it
three. And the simplified representation of truth table given in Table 3.10 is one of the following

Y =A'B' + B'C+ AB or Y=A'B' + AC+ AB

Simplification of the same truth table by Kamaugh map method is shown in Fig. 3.28a and we see the
results are the same.

Digital Principles and Applications

Now, how do you compare the complexity of this approach with Karnaugh map groupings? Yes, this
method is more tedious and monotonous compared to Karnaugh map method and people don't prefer it
for simplification problems with smaller number of variables. However, as we have mentioned before, for
simplification problems with large number of variables Quine-McClusky method can offer solution and
Karnaugh map does not.

Give simplified logic equation of Table 3.6 by Quine-McClusky method.

Solution Tables that determine prime implicants and selects essential prime in1plicants are shown in Figs. 3.33aand
3.33b .respectively. We find both the prime inlplicants are essential prime inlplicai1ts, The simplified logic .equation
thus is expressed as

Y=AB+BC'
Note that.we got the same expression by simplification entered. variable map shown iti Figs. 3.22a and 3.22b.

Stage2

ABC ABC

010 (2)'4 -1 0 (2,6)

l I 6 (6)'4 1 1 - (6,7)

(7)'4

7

Simplification by Quine-McClusky method for Example 3.14

15. \\That is a prime implicant? . ·.. ..
16. \\lhat~re the advantages of Quine-McClusky metl3:od?

3.1 o HAZARDS AND HAZARD COVERS

In past few sections we have discussed in detail various simplification techniques that give minimal expres
sion for a logic equation which in turn requires minimum hardware for realization of that. It may sound off
beat, but due to some practical problems, in certain cases we may prefer to include more terms than given
by simplification techniques. The discussion so far considered gates generating outputs instantaneously. But

Combinational Logic Circuits

practical circuits always offer finite propagation delay though very small, in nanosecond order. This gives rise
to several hazards and hazard covers are additional terms in an equation that prevents occurring of them. In
this section, we discuss this problem and its solution.

Static-1 Hazard

This type of hazard occurs when Y =A+ A' type of situation appears for a logic circuit for certain combination
of other inputs and A makes a transition 1 ~ 0. An A + A' condition should always generate 1 at the output,
i.e. static-I. But the NOT gate output (Fig. 3.34a) takes finite time to become 1 following 1 ~ 0 transition of
A. Thus for the OR gate there are two zeros appearing at its input for that small duration, resulting a Oat its
output (Fig. 3.34b). The width of this zero is in nanosecond order and is called a glitch. For combinational
circuits it may go unnoticed but in sequential circuit, more particularly in asynchronous sequential circuit
(discussed in Chapter 11) it may cause major malfunctioning.

A~y

A

(a)

A _; r L
y~

(b)

Static-1 hazard

r1 = NOT gate delay

r2 = OR gate delay

To discuss how we cover static- I hazard let's look at one example. Refer to Karnaugh map
shown in Fig. 3.35a, which is minimally represented by Y = BC' + AC. The corresponding circuit
is shown in Fig. 3.35b. Consider, for this circuit input B = 1 and A = 1 and then C makes transition
1 ~ 0. The output shows glitch as discussed above. Consider another grouping for the same map in Fig.
3.35c. This includes one additional term AB and now output Y =BC+ AC+ AB. The corresponding circuit
diagram is shown in Fig. 3.35d. This circuit though require more hardware than minimal representation, is
hazard free. The additional term AB ensures Y = 1 for A = I, B = I through the third input of final OR gate and
a 1 ~ 0 transition at C does not affect output. Note that, there is no other hazard possibility and inclusion of
hazard cover does not alter the truth table in anyway.

c C

AB 0 0

AB 0 0

AB 0 AB 0

(a) Y=BC+AC

A

B

C

C C

AB o o

AB%0
AB 1 1

AB O 1

(b) Circuit with static-I hazard (c) Y= BC+ AC+ AB

A -,----r----...._

C --t--r-----1L.__./

(d) Hazard free circuit

Static-1 hazard and its cover

Digital Principles and Applications

Again, a NAND gate with A and A' connected at its input for certain input combination will give static- I
hazard when A makes a transition O -+ 1 and requires hazard cover.

Static-0 Hazard

This type of hazard occurs when Y = A.A' kind of situation occurs in a logic circuit for certain combination
of other inputs and A makes a transition O -+ 1. An A.A' condition should always generate Oat the output,
i.e. static-0. But the NOT gate output (Fig. 3.36a) takes finite time to become O following a O-+ 1 transition
of A. Thus for final AND gate there are two ones appearing at its input for a small duration resulting a 1 at its
output (Fig. 3.36b). This Y= 1 occurs for a very small duration (few nanosecond) but may cause malfunction
ing of sequential circuit.

A--c;:[)-y
A

(a)

A_J
I

r1 = NOT gate delay

A : I r2 = OR gate delay -i r1 ._!:-::: ___ _

_: r2 ~
y---+--J r ~

I__.,., J,-

(b)

Static-0 hazard

Again, we take an example to discuss how we can prevent static-0 hazard. We use the same
truth table as shown in Fig. 3.35a but form group of Os such that a POS form results. Figure 3.37a
shows the minimal cover in POS form that gives Y = (B + C)(A + C') and corresponding circuit in
Fig. 3.37b. But if B = 0, A= 0 and C makes a transition 0-+ 1 there will be static-0 hazard occurring at output.
To prevent this we add one additional group, i.e. one more sum term (A+ B) as shown in Fig. 3.37c and the
corresponding circuit is shown in Fig. 3.37d. The additional term (A + B) ensures Y = 0 for A = 0, B = 0
through the third input of final AND gate and a O -+ 1 transition at C does not affect output. Again note that
for this circuit there is no other hazard possibility and inclusion of hazard cover does not alter the truth table
in anyway.

c
AB \9)
AB 1

AB 1

AB (o\

C

(a) Y= (B+C)
(A+C)

(b) Circuit with static-0 hazard

c C

AB \9) ~ AB 1

AB 1

AB (o\

(c) Y= (B+C) (A+C)
(A+B)

(d) Hazard free circuit

Static-1 hazard and its cover

Also note, a NOR gate with A and A' connected at its input for certain input combination will give static-0
hazard when A makes a transition 1-+ 0 and requires hazard cover.

Combinational Logic Circuits

Dynamic Hazard

Dynamic hazard occurs when circuit output makes multiple transitions before it settles to a final value
while the logic equation asks for only one transition. An output transition designed as 1 ~ 0 may give
1 ~ 0 ~ 1 ~ 0 when such hazard occurs and a O ~ I can behave like O ~ 1 ~ 0 ~ I. The output of logic
equation in dynamic hazard degenerates into Y = A + A'.A or Y = (A + A').A kind of relations for certain
combinations of the other input variables. As shown by these equations, these occur in multilevel circuits
having implicit static-I and/or static-0 hazards. Providing covers to each one of them dynamic hazard can be
prevented.

Check if the circuit shown in Fig. 3 .38a exhibit dynamic hazard. Show how output varies
with time if dynamic hazard occurs. Consider all the gates have equal propagation delay of r
nanosecond. Also mention how the hazard can be prevented.

Solution Thelogiccircuit can bewritten inth{: form of equation . . . (A.C +KC').C'. Cleady for A= 1, B = I we
geff = (C+C').C which shows potential dynamic hazard with an iinplicit static-I hazard. Figure 3.38b shows how
a transition l -c* 0 at input CforAB = 1 lrcauses dynamic hazard at the output.

The hazard can b~ preve~ted by using an aclditional two inpufAND gate fed by input A and B and replacing two in
put ORgate by ailiree input OR gate. The additional (third)input of OR gate will be fed by output of the new AND
gate.

What·isstatic.:.ffhazard?
Whafis dynamic hazard?

y

A ""High, ll= High

C · ·• · · ·.· .. · ·· f ·· r= Each gate delay

I l '
I !
I l
l I
I I

I
I
I
I
I

' ' J

Y---~-~-~, '
I I

r 2,: 3r
(b)

Example of dynamic hazard

Digital Principles and Applications

3.11 HDl IMPLEMENTATION MODELS

We continue our discussion of Verilog HDL description for a digital logic circuit from Chapter 2, Section
2.5. We have seen how structural gate level modeling easily maps a digital circuit and replicates graphical
symbolic representation. We have also seen how a simple test bench can be prepared to test a designed circuit.
There, we generated all possible combinations of input variables and passed it to a circuit to be tested by
providing realistic gate delays. We'll follow similar test bench but more ways to describe a digital circuit in
this and subsequent chapters.

Dataflow Modeling

Gate level modeling, though very convenient to get started with an HDL, consumes more space in describing
a circuit and is unsuitable for large, complex design. Verilog provides a keyword assign and a set of opera
tors (partial list given in Table 3 .11, some operations will be explained in later chapters) to describe a circuit
through its behavior or function. Here, we do not explicitly need to define any gate structure using and, or
etc. and it is not necessary to use intermediate variables through wire showing gate level interconnections.
Verilog compiler handles this while compiling such a model. All assign statements are concurrent, i.e. order
in which they appear do not matter and also continuous, i.e. any change in a variable in the right hand side
will immediately effect left hand side output.

Relational Operation

Less than
Less than or equal to
Greater than
Equalto
Not equal to

Logical Operation(for expressions)

Logical NOT
LogicalAND
Logical OR

A Partial List of Verilog Operator

<
<=
>

!=

Symbol

&&
II

Bit .. wise NOT
Bit'.'wise AND
Bit-wise OR

A,rl~hllleticOperation
l3i~,tY. aqditi~n
I3in;:uy suhtrac~on
Binary ,ultiplicatiort
Bit1ary divisi<>n

Symbol

&
I
/\

Symbol
+

*

Now, we look at data flow model of two circuits shown in Fig. 2.17a and Fig. 2.38. We compare these
codes with gate level model code presented in Section 2.5 and note the advantage. We see that data .flow
model resembles a logic equation and thus gives a more crisp representation.

Combinational Logic Circuits

Behavioral Modeling

In a behavioral model, statements are executed sequentially following algorithmic description. It is ideally
suited to describe a sequential logic circuit. However, it is also possible to describe combinatorial circuits
with this but may not be a preferred model in most of the occasions. It always uses always keyword followed
by a sensitivity list. The procedural statements following always is executed only if any variable within
sensitivity list changes its value. Procedure assignment or output variables within always must be of register
type, defined by reg which unlike wire is not continuously updated but only after a new value is assigned to
it. Note that, wire variables can only be read and not assigned to in any procedural block, also it cannot store
any value and must be continuously driven by output or assign statement.

Now, let us try to write behavioral code for circuit given in Fig. 2.17a. We note that, Y = AB + CD, i.e.
Y = 1 if AB = 11 or if CD = 11, otherwise Y = 0. We use if .. . else if .. . else construct to describe this circuit.
Here, the conditional expression after if, if true executes one set of instructions else executes a different set
following else or none at all.

You can compare how logic circuit described in Fig. 2.17a is realized in Verilog HDL following three
different models two of which are described in this chapter and one in previous chapter. One might find
data fl.ow model more convenient to use for combinatorial circuits. We'll learn more about it in subsequent
chapters.

Realize the truth table shown in Kamaugh Map of Fig. 3.19 using data flow model.

Note that, - operator has higher precedence over & and I; while & and I are at same level. To avoid confu
sion and improve readability it is always advised to use parentheses(...) that has second highest precedence
below bit select [...].

Digital Principles and Applications

The test bench for all the examples described in this chapter can be prepared in a mam1er similar to what
is described in Chapter 2. A simpler HDL representation to prepare a test bench will be discussed in Chapter
6.

PROBLEM SOLVING WITH MUt TIPLE METHODS

Get a minimized expression for Y=F(A, B, C) =ABC+ A BC+ ABC+ ABC

Solution We·can so!vethis usingBooleanAlgebra, KarnaughMap, Entered Variable Map and QMAlgorithm.

In Method-1 • We take help of Boolean Algebra for minimization, We see that A BC can be combined
. withall three terms using distributive law (Eq. 3.5)

Since, in Boolean algebraX =; X+ X + X(extending Eq. 3.7} we can write

Y= ABC +(ABC+ ABC+ ABC)+ ABC+ABC

From associative law (Eq. 3.3}

Y=(ABC + ABC)+(ABC+ ABC)+(ABC+ABC)

From distributive law(Eq. 3:5)

Y= AB(C + C)+ AC(B +B)+ BC(A +A)

From Eq. 3.9, since X+ X = 1

Y =AB · 1+ AC· I + BC· l
= AB BC (since,X· l =XfromEq. 3.10)

In Method-2, we use Kamaugh Map for minimization. Fig. 3.39 shows the solution by this meth
od.

A B C y AB AC

0 0 0 1
0 0 I 1
0 l 0 0
0 l 1
1 0 0 0
1 0 1 l
1 l 0 0

1 1 1
Y=AB + AC+ BC

Solution.· using· Karnaugh Map

Note how one term is·common in three groups ·formed and the similarity withMetho4- l soJutio,:i •. ·

In Method-3, . we use Entered Variable Map for minimization. figure 3 .40 shows the so!utHm t>V
method.

Since 1 + C, we need a separate group for AB = 00 as C is not explained by other two groups.
We use C embedded in 1 to make other two groups bigger and reduce the number of literals, and thus
minimize the expression.

Combinational Logic Circuits IA\ --------~,
y

1
1 l
0 0
l l
0 0
J l
0 0
l 0

BC
Y=AB+AC+BC

Solution using Entered Variable Map

In Method-4, we use QMalgorithmfor minimization. Fig. 3.41 shows prime implicants and essen
tial prime implicants. The final solution is arrived at by combining essential prime implicants.

Stage 1 Stage 2

ABC ABC

000 (0) '1 00- (0, 1)

001 (l)

"'
0-1 (1, 3)
-01 (1, 5)

011 (3)
IOI (5)

Prime implicants only from stage 2.
Theyare:
00-(A'B'), 0-1 (A'C) and-01 (B'C)

0 3 5

A'B' '1

A'C " "'
B'C

"'
All are essential
Y=A'B' + A'C+ B'C

Solution using QM Algorithm

Ev~ry Boolean equation has a dual form obtained by changing OR to AND, AND ~oOR, 0 to l,and 1 to
O.J,Vith Boolean algebra you maybe able to simplify a Boolean equation, which implies a simplified logic
circuit.

Given a truth table, you can identify the fundamental products that produce output ls. By ORing these
products, you get a sum-of-products equation for the truth table. A sum-of-products equation always
results in an AND-OR circuit or its equivalent NAND-NAND circuit

The Karnaugh method of simplifica.tion starts by converting a truth table intoaKarnaughmap.Ne}iit.
You encircle all the octets, quads, and pain,. Tl:µ§ allo'W's you t9 W¥~e ;:1 simplified Boolean .equati9u an<:l to
dra'; a simplified logic circuit. When a truth table contains don't-cares, you can treat the clon't:fares as ?s
or ls, whichever produces the greatest simplification. . .·. .· · . ···.. / . >

One way to get a product-of-sums circuit is to complement the Karnaugh map and write the simpli-
fied Boolean equation for Y . Next, you draw the NAND-NAND circuit for Y . Finally, you change the
NAND-NAND circuit into a NOR-NOR circuit by changing all NAND gates to NOR gates and comple
menting all signals.

Digital Principles and Applications

Entered variable map maps a. truth table intolower dimension space cgmpare(,l to Karnaugh map
though the simpHfication procedure is simUar. Quine-McQuskymethocl provide~ astee--py-step approach
for logic simplification and js. a preferred tool ~at involyes .large ~urnl:,er ofya:o.ables. Pr~c:tical digital
circuit requi~~s finite propagation. delay to tr~fer. infomiation from input t~ output. This 9ften leads to
hazards in the form of unwanted glitches. Hazards are. prevented by using additional gates serving al:l
hazard

" chip An integrated circuit. A piece of
semiconductor material with a micro
miniature circuit on its surface.

• consensus theorem A theorem that simplifies
a Boolean equation removing a redundant
consensus theorem.

" don't-care condition An input-output
condition that never occurs during normal
operation. Since the condition never occurs,
you can use an X on the Kamaugh map. This
X can be a O or a 1, whichever you prefer.

" dual circuit Given a logic circuit, you can find
it dual as follows. Change each AND (NAND)
gate to an OR (NOR) gate, change each OR
(NOR) gate to an AND (NAND) gate, and
complement all input-output signals.

• Entered variable map an alternative to
Karnaugh map where a variable is placed as
output.

" Hazard unwanted glitches due to finite
propagation delay of logic circuit.

" Hazard cover additional gates in logic circuit
preventing hazard.

• Quine-McClusky method a tabular method
for logic simplification.

" logic clip A device attached to a 14- or 16-pin

3.1 Draw the logic circuit for

Y=ABC+ABC

DIP. The LEDs in this troubleshooting tool
indicate the logic states of the pins.

11 Karnaugh map A drawing that shows all the
fundamental products. and the corresponding
output values of a truth table.

• octet Eight adjacent ls in a 2 x 4 shape on a
Kamaugh map.

• overlapping groups Using the same I more
than once when looping the ls of a Kamaugh
map.

• pair Two horizontally or vertically adjacent 1 s
on a Karnaugh map.

" product-of-sums equation The logical product
of those fundamental sums that produce output
ls in the truth table. The corresponding logic
circuit is an OR-AND circuit, or the equivalent
NOR-NOR circuit.

• quad Four horizontal, vertical, or rectangular
ls on a Karnaugh map.

• redundant group A group of 1 son a Kamaugh
map that are all part of other groups. You can
eliminate any redundant group.

" sum-of-products equation The logical sum
of those fundamental products that produce
output ls in the truth table. The corresponding
logic circuit is an AND-OR circuit, or the
equivalent NAND-NAND circuit.

Next, simplify the equation with Boolean
algebra and draw the simplified logic circuit.

3.2 Draw the logic circuit for

y = (A + B + C) (A + B + C)

Combinational Logic Circuits

Use Boolean algebra to simplify the equation.
Then draw the corresponding logic circuit.

3.3 In Fig. 3.42a, the output NAND gate acts like
a 2-input gate because pins 10 and 11 are tied
together. Suppose a logic clip is connected to
the 7410. Which of the three gates is defective
if the logic clip displays the data of Fig.
3.42b?

A
B

C

A

B

c

3

01
02
83
04
85
86
e1

(b)

e =Off
0 =On

9

(a)

140
139
120
119
100
90
80

81
e2
03
04
05
e6
07

@ =Off
0 =On

140
139
120
110
100
90
80

(c)

3.4 If a logic clip displays the states ofFig. 3.42c
for the circuit ofFig. 3.42a, which of the gates
is faulty?

3.5 The circuit of Fig. 3.42a has trouble. If Fig.
3.43 is the timing diagram, which of the
following is the trouble:

a. Upper NAND gate is defective.
b. Pin 6 is shorted to +5 V.

c. Pin 9 is grounded.
d. Pin 8 is shorted to +5 V.

3.6 What is the sum-of-products circuit for the
truth table of Table 3.11?

3.7 Simplify the sum-of-products equation in
Prob. 3.6 as much as possible and draw the
corresponding logic circuit.

3.8 A digital system has a 4-bit input from 0000
to 1111. Design a logic circuit that produces a
high output whenever the equivalent decimal
input is greater than 13.

3.9 We need a circuit with 2 inputs and 1 output.
The output is to be high only when 1 input
is high. If both inputs are high, the output is
to be low. Draw a sum-of-products circuit for
this.

3 .10 Draw the Karnaugh map for Table 3 .11.
3 .11 Draw the Karnaugh map for Table 3 .13.

Pin 1

Pin2

Pin 13

Pin 12

Pin3

Pin4

Pin5

Pin 6
+5V

+5V
Pin 8

Digital Principles and Applications

3.12 Show Kamaugh map for equation Y = F(A, B,
C) = I:m(l, 2, 3, 6, 7)

3 .13 Show Kama ugh map for equation Y = F(A, B,
C, D) = I:m(l, 2, 3, 6, 8, 9, 10, 12, 13, 14)

3 .14 Draw the Kamaugh map for Table 3 .11. Then
encircle all the octets, quads, and pairs you
can find.

3.15 Repeat Prob. 3.14 for Table 3.14.

3.16 What is the simplified Boolean equation for
the Kamaugh map of Table 3.13? The logic
circuit?

3.17 Given Table 3.14, use Kamaugh simplification
and draw the simplified logic circuit.

3 .18 Table 3 .15 on the next page shows a special
code known as the Gray code. For each binary
input ABCD, there is a corresponding Gray
code output. What is the simplified sum-of
products equation for Y3? For Y2? For Y1? For
Yo? Draw a logic circuit that converts a 4-bit
binary input to a Gray-code output.

A B C D y

0 0 0 0 0
0 0 0 I l
0 0 1 0 0
0 0 l l 0
0 1 0 0 0
0 1 0 1 1
0 l l 0 0
0 1 l 1 0
I 0 0 0 0
l 0 0 l 0
l 0 l 0 1
1 0 l l 1
1 1 0 0 1
1 1 0 l 1
I l 1 0 0
I 1 1 1 0

3.19 Suppose the last six entries of Table 3.11 are
changed to don't-cares. Using the Karnaugh
map, show the simplified logic circuit.

3.20 Assume the first six entries of Table 3.13 are
changed to don't-cares. What is the simplified
logic circuit?

3.21 Suppose the inputs 1010 through 1111 only ap
pear when there is trouble in a digital system.
Design a logic circuit that detects the presence
of any nibble input from 1010 to 1111.

3.22 Draw the unsimplified product-of-sums circuit
for Table 3.11.

3.23 Repeat Prob. 3.20 for Table 3.13.
3.24 Draw a NOR-NOR circuit for this Boolean

expression:

y =(A+ B + C)(A + B + C)(.f\ + B + C)

3.25 Give SOP form of Y = F(A, B, C, D) IT M(O,
3, 4, 5, 6, 7, 11, 15)

3.26 Draw Karnaugh map of Y = F(A, B, C, D) = IT
M(O, 1, 3, 8, 9, 10, 14, 15)

A B C D y

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 I 1 l
0 1 0 0
0 I 0
0 l 0 0
0 l 1
l 0 0 1
1 0 0 I l
I 0 I 0 I
l 0 l 1 0
1 0 0 0

0 1 l
0 0
I 0

Combinational Logic Circuits

A

0
0
0
0
0
0
0
0
1
1
1
I
l
1
l
1

B

0
0
0
0

l
0
0
0
0

C

0
0

I
0
0
1
1
0
0

I
0
0
l

D

0

0
l
0
l
0
I
0
1
0
1
0

0

3.27 What is the simplified NOR-NOR circuit for
Table 3.11?

3.28 Draw the simplified NOR-NOR circuit for
Table 3.13.

3.29 Figure 3.44 shows all the input waveforms for
the timing diagram of Fig. 3 .30e. Draw the
waveform for the output Y.

A

8

B

4 8 12

C

2 4 6 8 10 12 14

75
I 3 5 7 9 11 13 15

y

Gray Code

Y3 Y2 Y1 Yo

0 0 0 0
0 0 0 l
0 0 l I
0 0 1 0
0 1 0
0 1 1
0 0 1
0 0 0
1 0 0
l 0 l
I l

1 0
0 J 0
0 l

I 0 0
1 0 0 0

3.30 You are given the following Boolean
equation

Y=ABCD+ABCD +ABCD

Show the simplified NAND-NAND circuit
for this. Also, show the simplified NOR-NOR
circuit.

3.31 Table 3.16 is the trnth table offidl adder,
a logic circuit with hvo outputs called the
CARRY and the SUM. What is the simplified
NAND-NAND circuit for the CARRY output?
For the SUM output?

3.32 Repeat Prob. 3.27 using NOR-NOR circuits

Full-Adder Truth Table

A B C Cany Sum

0 0 0 0 0
0 0 1 0 l
0 1 0 0 1
0 I l 0
1 0 0 0 1
1 0 I 0
I 0 0
1 1

Digital Principles and Applications

3.33 Simplify to give POS form by grouping
zeros in Kamaugh map for equation given in
problem 3.27.

3.34 Simplify to give POS fonn by grouping
zeros in Kamaugh map for equation given in
problem 3.28.

3.35 Get simplified expression of Y = F(A, B, C, D)
= Z: m(l, 2, 8, 9, 10, 12, 13, 14) using Quine
McClusky method.

3.36 Get simplified expression of Y = F(A, B, C, D,
E)=Z:m(O, 1,2,3,4,5, 12, 13, 14,26,27,28,
29, 30) using Quine-McClusky method.

3.37 For the following Kamaugh map give SOP
and POS form that do not show static-0 or
static- I hazard.

AIM: The aim of this experiment is to verify
De Morgan's theorems

Theory: De Morgan's two theorems ate

(A + B)' = A' · B'
and (A· B)'=A' + B'

NAND gate and NOR gate can be used to
generate the left hand side of the two equations
while NOT gate, AND gate and OR gate can be
used to generate the right hand side.

C c
AB

AB o o
AB I 0

AB o

3.38 Verify with timing diagram if the following
circuit shows dynamic hazard.

A---~"
B-,----1_ -_ _,,,

C'-"'-_.,.-...__
y

Apparatus: 5 VDC Power supply,,Multi
meter,. and Bread Board

Work· element: Verify the truth table of IC
7404;7408, 7432, 7402 and 7400.Intercon"
nect them, in such a manner so that right _hand
sides of the equations_ are implemented. Find
its truth table. Compare it with truth table of
NORandNANDgates.

Combinational Logic Circuits

L False
2. Y=AB+AC

Y=Q
Four, eight

5. False
6. A Kamaugh map is a visual display· of the

fundamental products needed for a sum-of.
products solution.
Sixteen

8. Pair
9. Eight

Ht·· Xi== A. BCTi{+}BCD
Simplify as Y= BD

lL A don't-care condition is an input condition
that never occurs during normal operations,
anditis indicated withanX:

12. An X can be used to create pairs, quads,

product .. of~sUlns expression leads· directly
to an OR-AND circuit.
ChangeallNAND gates.to.NOR.gates, and
complement all signals (see Example 3,10).

15. Prime implicants are expressions with least
nUlllberofliterals that represents all the terms
given in a truth table.

16. Systemati~, . step-by-step .. approach that
can . be itnplemented in adigital computer
and providing solution for any number of
variables.

l7. A logiC high pulse of very short duration
when output should be at logic low,

18. Dynamic hazard occurs when circuit outpt1t
makes before it settles
while asks for

Data-Processing Circuits

+ Determine the output of a multiplexer or demultiplexer based on input conditions.
+ Find, based on input conditions, the output of an encoder or decoder.
+ Draw the symbol and write the truth table for an exclusive-OR gate.
+ Explain the purpose of parity checking.
+ Show how a magnitude comparator works.
+ Describe a ROM, PROM, EPROM, PAL, and PLA.

This chapter is about logic circuits that process binary data. We begin with a discussion of multiplexers,
which are circuits that can select one of many inputs. Then you will see how multiplexers are used as a design
alternative to the sum-of-products solution. This will be followed by an examination of a variety of circuits,
such as demultiplexers, decoders, encoders, exclusive-OR gates, parity checkers, magnitude comparator, and
read-only memories. The chapter ends with a discussion of programmable logic arrays and relevant HDL
concepts.

4~1 MUl.TIPLEXERS

Multiplex means many into one. A multiplexer is a circuit with many inputs but only one output. By applying
control signals, we can steer any input to the output. Thus it is also called a data selector and control inputs
are termed select inputs. Figure 4.la illustrates the general idea. The circuit has n input signals, m control
signals and 1 output signal. Note that, m control signals can select at the most 2111 input signals thus n ~ 2111

•

Data-Processing Circuits

The circuit diagram of a 4-to- l multiplexer is shown in Fig. 4.1 c and its truth table in Fig. 4.1 b. Depending
on control inputs A, Bone of the four inputs Do to D3 is steered to output Y.

Let us write the logic equation of this circuit. Clearly, it will give a SOP representation, each AND gate
generating a product term, which finally are summed by OR gate. Thus,

Y=A'B'.Do+A'B.D1 +AB'.D2+AB.D3
IfA = 0, B = 0, Y= O'O'.Do + O'.O.D1 + O.O'.D2 + O.O.D3
or, Y = 1.1.Do + l.O.D1 + O.l .D2 + O.O.D3
or, Y=D0

In other words, for AB = 00, the first AND gate to which D0 is connected remains active and equal to Do
and all other AND gate are inactive with output held at logic 0. Thus, multiplexer output Y is same as D0. If
D0 =0, Y=OandifD0 = 1, Y= 1.

Similarly, for AB= 01, second AND gate will be active and all other AND gates remain inactive. Thus,
output Y = D 1• Following same procedure we can complete the truth table of Fig. 4.1 b.

1
2
' ' Data '

input :

' n

Control input
1 2----m

A

11-to-l Output
Multiplexer

(a)

A B

0 0
0 1
1 0
1 1

(b)

y

Do
D1
D2
D3

(c)

(a) Multiplexer block diagram, (b) 4-to-1 multiplexer truth table,
(c) Its logic circuit

y

Now, if we want 5-to- l multiplexer how many select lines are required? There is no 5th combination
possible with two select lines and hence we need a third select input. Note that, with three we
can select up to 23 = 8 data inputs. Commercial multiplexers ICs come in integer power of 2, e.g.
2-to-1, 4-to-1, 8-to- l, 16-to- l multiplexers. With this background, let us look at a 16-to- l multiplexer circuit,
which may look complex but follows same logic as that of a 4-to- l multiplexer.

16-to-1 Multiplexer

Figure shows a 16-to-l multiplexer. The input bits are labeled Do to D 15. Only one of these is transmitted to
the output. Which one depends on the value of ABCD, the control input. For instance, when

ABCD=OOOO

Digital Principles and Applications

the upper AND gate is enabled while all other AND gates are disabled. Therefore, data bit Do is transmitted
to the output, giving

Y=Do

If Do is low, Y is low; if Do is high, Y is high. The point is that Y depends only on the value of Do.

lfthe control nibble (group of 4-bits) is changed to

ABCD= 1111

all gates are disabled except the bottom AND gate. In this case, D 15 is the only bit transmitted to the output,
and

Y=D1s

As you can see, the control nibble determines which of the input data bits is transmitted to the output.

Thus we can write output as

Y=A' B'C'D'.Do + A 1B 1C 1D.D1 + A 1 B1CD'.D2 + ... + ABCD'.D14 + ABCD.D1s

At this point can we answer, how would an 8 to 1 multiplexer circuit look like? First of all we need three
select lines for 8 data inputs. And there will be 8 AND gates each one having four inputs; three from select
lines and one from data input. The final output is generated from an OR gate which takes input from 8 AND
gates. The equation for this can be written as

Y=A'B'C'.Do + A 1B 1C.D1 + A'BC'.D2 + A'BC.D3 + AB'C'.D4 + AB'C.Ds + ABC'.D6 + ABC.D7

Thus, for ABC= 000, multiplexer output Y = D0; other AND gates and corresponding data inputs D 1 to D7
remain inactive. Similarly, for ABC= 001, multiplexer output Y = D 1, for ABC= 010, multiplexer output Y =

D2 and finally, for ABC= 111, multiplexer output Y = D7.

The 74150

Try to visualize the 16-input OR gate of Fig. 4.2 changed to a NOR gate. What effect does this have on the
operation of the circuit? Almost none. All that happens is we get the complement of the selected data bit
rather than the data bit itself. For instance, when ABCD = 0111, the output is

Y= D7
This is the Boolean equation for a typical transistor-transistor logic (TTL) multiplexer because it has an

inverter on the output that produces the complement of the selected data bit.

The 74150 is a 16-to-l TTL multiplexer with the pin diagram shown in Fig. 4.3. Pins 1 to 8 and 16 to 23 are
for the input data bits D0 to D 15. Pins 11, 13, 14, and 15 are for the control bits ABCD. Pin 10 is the output;
and it equals the complement of the selected data bit. Pin 9 is for the STROBE, an input signal that disables or
enables the multiplexer. As shown in Table 4.1, a low strobe enables the multiplexer, so that output Yequals
the complement of the input data bit:

Y= D,,
where n is the decimal equivalent of ABCD. On the other hand, a high strobe disables the multiplexer and
forces the output into the high state. With a high strobe, the value of ABCD doesn't matter.

A B C

,D ~· Pl

Data-Processing Circuits

D

~

.----i /

/

I

......____J)
I

/

\
1----l

I

)
I

I

......____J I -
~

I

I

I

......____J

~ -
J

I

I

......____J)
I

/

\
.----i J

\
J

I

\
----1 /

/

1st AN D gate output: A 'B'C' D~D0

2nd A ND gate output: A'B'C' D.D1

3rd AN D gate output: A 'B'C D~D2

4th AN

5th AN

6th AN

7th AN

8th AN

D gate output: A'B'C D.D3

D gate output: A'BC' D~D4

D gate output: A'BC' D.D5

D gate output: A 'BC D'.D6

D gate output: A 'BC D.D7
y

9th AN D gate output: AB'C' D~D8

10th A ND gate output: AB'C' D.D9

llthA ND gate output: AB'C D'.D10

12th A ND gate output: AB'C D.D11

13th A ND gate output: ABC' D~D12

14th A ND gate output: ABC' D.D13

15th A ND gate output: ABC D'.D14

16th A ND gate output: ABC D.D15

Sixteen-to-one multiplexer

Digital Principles and Applications

D7
74150 Truth Table

D6
Strobe A B C D y

Ds
L L L L L -

Do
L L L L H Di

D4 L L L H L -
D2

D,
-'

L L L H H -
DJ -

D2
74150

L L H L L D4
L L H L H -

Ds
D1 L L H -H L D6

Do L L H H H ~

STROBE
L H L L L Dg

L H L L H -
D.)

y L H L H L Dio -
A L H L H H D11

GND
L H H L L Di2
L H H L H Di3 -L H H H L D14

Pinout diagram of 74150 L H H H H -
Dis

H X X X X H

Multiplexer logic

Digital design usually begins with a truth table. The problem is to come up with a logic circuit that has the
same truth table. In Chapter 3, you saw two standard methods for implementing a truth table: the sum-of
products and the product-of-sums solutions. The third method is the multiplexer solution. For example, to use
a 74150 to implement Table 4.2. Complement each Youtput to get the corresponding data input:

and so forth, up to

Do= 1 = 0

D1 = 0 = I
D2 = 1 =0

D,s =I= 0

Next, wire the data inputs of74150 as shown in Fig. 4.4, so that they equal the foregoing values. In other
words, Do is grounded, D1 is connected to +5 V, D2 is grounded, and so forth. In each of these cases, the data
input is the complement of the desired Youtput of Table 4.2.

Figure 4.4 is the multiplexer design solution. It has the same truth table given in Table 4.2. If in doubt,
analyze it as follows for each input condition. When ABCD = 0000, D0 is the selected input in Fig. 4.4.
Since Do is low, Y is high. When ABCD = 0001, D 1 is selected. Since D 1 is high, Y is low. If you check the
remaining input possibilities, you will see that the circuit has the truth table given in Table 4.2.

Data-Processing Circuits

Bubbles on Signal lines

Data sheets often show inversion bubbles on some of the signal lines. For instance, notice the bubble on pin
10, the output of Fig. 4.4. This bubble is a reminder that the output is the complement of the selected data
bit.

A B C D

A B C D y 11 13 14 15
+5V

8 0 0 0 0 I Do
0 0 0 1 0 7 D1
0 0 l 0 I 6 Dz
0 0 1 1 1 5 D3 24

+Vee
0 0 0 I 4
0 0 1 I 3

D4

0 1 I 0 0 2
D5

0 1 I l 0 D6
10

1 0 0 0 l D1
74150

y
23

I 0 0 1 1
22

Ds
1 0 1 0 I D9
I 0 1 l I 21 D10
1 1 0 0 1 20 Dll 9

STROBE
l 1 0 1 1 19 D12
1 1 0 0 18 D13 12

GND
1 1 1 17

D14
16 -

D15

-

Using a 7 4150 for multiplexer
logic

Also notice the bubble on the STROBE input (pin 9). As discussed earlier, the multiplexer is active
(enabled) when the STROBE is low and inactive (disabled) when it is high. Because of this, the STROBE is
called an active-low signal; it causes something to happen when it is low rather than when it is high. Most
schematic diagrams use bubbles to indicate active-low signals. From now on, whenever you see a bubble on
an input pin, remember that it means the signal is activealow.

Universal logic Circuit

Multiplexer sometimes is called universal logic circuit because a 2n-to-l multiplexer can be used as a design
solution for any n variable truth table. This we have seen for realization of a 4 variable truth table by 16-to-l
multiplexer in Fig. 4.5. Here, we show how this truth table can be realized using an 8-to-l multiplexer. Let's
consider A,B and C variables to be fed as select inputs. The fourth variable D then has to be present as data
input. The method is shown in Fig. 4.5a. The first three rows map the truth table in a different way, similar
to the procedure we adopted in entered variable map (Section 3.3). We write all the combinations of3 select
inputs in first row along different columns. Now corresponding to each value of 4th variable D, truth table

Digital Principles and Applications

ABC 000 001 010 011 100 101 110 111
D=O 1 1 1 0 1 1 1 0
D= 1 0 I 1 0 I 1 1 1
y D' 1 1 0 1 1 1 D

8-to-l MUX D0 =D' D 1 = 1 D2 = 1 D 3 =0 D4 = 1 D5 = I D6 = 1 D7 =D
data input

(a)

D +5v
A B C

0
1
2
3 y
4
5

6
7

(b)

A four variable truth table realization using 8-to-1 multiplexer

output Y is ·written in 2nd and 3rd row. The 4th row writes Y as a function of D. In fifth row we assign data
· input values for 8-to- l multiplexer simply copying Y values obtained in previous row. This is because for
each select variable combination a multiplexer transfers a particular input to its output. In 8-to- l multiplexer,
ABC= 000 selects Do, ABC= 001 selects D1 and so on. The corresponding circuit is shown in Fig. 4.5b.

Note that, we can choose any of the four variables (A,B,C,D) of truth table to feed as input to 8-to-l
multiplexer but then mapping in first three rows of Fig. 4.5a will change. The rest of the procedure will
remain same. We show an alternative to this technique for a new problem in Example 4.2.

Nibble Multiplexers
Sometimes we want to select one of two input nibbles. In this case, we can use a nibble multiplexer like the
one shown in Fig. 4.6. The input nibble on the left is A3A2A1Ao and the one on the right is B3B2B1B0. The
control signal labeled SELECT determines which input nibble is transmitted to the output. When SELECT is
low, the four NAND gates on the left are activated; therefore,

Y3 Y2Y1 Yo= A3A2A1Ao

When SELECT is high, the four NAND gates on the right are active, and

Y3 Y2Y1 Yo =B3B2B1Bo

Figure 4.7a on the next page shows the pinout diagram of a 74157, a nibble multiplexer with a SELECT
input as previously described. When SELECT is low, the left nibble is steered to the output. When SELECT ,

Data-Processing Circuits

Nibble multiplexer

is high, the right nibble is steered to the output. The 74157 also includes a strobe input. As before, the strobe
must be low for the multiplexer to work properly. When the strobe is high, the multiplexer is inoperative.

SELECT

A3

B3

Y3
74157

A2

B2

Y2

GND

(a)

STROBE

2 5 11 14 3 5 10 13

SELECT

STROBE
15

(b)

Pinout diagram of 74157

74157

4 7 9 12

Figure 4.7b shows how to draw a 74157 on a schematic diagram. The bubble on pin 15 tells us that
STROBE is an active-low input.

Show how 4-to-l multiplexer can be obtained using only 2-to-l multiplexer.

Logic equation for 2-to-+Multiplexer:

Digital Principles and Applications

Logic equation for 4-to-1 Multiplexer: Y = A'B' Do+ A'BD1 + AB' D2 + AB.D3

This can be rewritten as, Y=A'(B'.Do + B.Di) +A(B'D2 + B.D3)

Compare this with equation of2~to-1 multiplexer. We need two 2-to-1 multiplexer to realize two bracketed terms
where B serves as select input The output of these two multiplexers can be sent to a third multiplexer as data inputs
where A serves as selectinput and we get the 4-to~ l multiplexer. Figure 4.8a shows circuit diat,rrarn for this.

(a) Realize Y=A'B + B'C' + ABC using an 8-to-l multiplexer. (b) Can it be realized with a 4-to-l multiplexer?

Solution
(a) First we express Y as a function of mintenns of three variables. Thus

Y A'B + B'C' + ABC
Y =A'B(C' + C)+B'C'(A' + A)+ ABC[As,X+X'= I]
Y = A'B'C' + A'BC' + A'BC + AB'C' + ABC

Comparing this with equation of 8 to 1 multiplexer, we find by substituting Do = D2 = D3 D4 = D1 = I and
Di = Ds = D6 = 0 we get given logic relation.

(b) Let variables A and B be used .as selector in 4 to 1 multiplexer .and C fed as input The 4-to-1 multiplexer
generates 4 minterms for different combinations of AB. We rewrite given logic equation in such a way that all
tliese terms/are present inJhe equation.

Y =A'B+B'C' +ABC
Y =A'B+ B'C'(A' +A)+ ABC [As,X +X' = I]
Y =A'B'.C' + A'B.I +AB'.C' + AB.C

Compare above with equation of a4-to-l multiplexer. We see Do= C', D1 = I, D2 C' andD3 = Cgenerate the
given logic function.

Design a 32-to- l multiplexer using two 16-to-l multiplexers and one 2-to-l multiplexer.

Solution The circuit diagram is shown in Fig. 4.8b. A 32-to-l nmltiplexerrequires log232 =.5 select lines say,
ABCDE. The Iower4 select lines BCDEchose 16-to-l multiplexeroutputs. The 2-to-1 multiplexer chooses one of the

output of two 16-to-l multiplexers depending on what appears in the 5th selectliue, A.

B BCDE

0
A

y y

(a) (b)

Realization of higher order multiplexers using lower orders

Data-Processing Circuits

1. A circuit with many inputs but only one output is called a __ .
2. What is the significance of the bubble on pin lO of the multiplexer in Fig. 4.5?

4.2 DEMUlTIPU:XERS

Demultiplex means one into many. A demultiplexer is a logic circuit with one input and many outputs. By
applying control signals, we can steer the input signal to one of the output lines. Figure 4.9a illustrates the
general idea. The circuit has 1 input signal, m control or select signals and n output signals where n :::; 2111

•

Figure 4.9b shows the circuit diagram of a 1-to-2 demultiplexer. Note the similarity of multiplexer and
demultiplexer circuits in generating different combinations of control variables through a bank of AND gates.
Figure 4.9c lists some of the commercially available demultiplexer I Cs. Note that a demultiplexer IC can also
behave like a decoder. More about this will be discussed in next section.

Input

Control input
1 2 m

---{

(a)

1
2

Output

n

A

D IC No.

74154

74138

74155

(b)

DEMUX Decoder
Type Type

1-to-16 4-to-16

1-to-8 3-to-8

l-to-4 2-to-4

(c)

(a) Demultiplexer block diagram, (b) Logic circuit of 1-to-2 demultiplexer,
(c) few commercially available ICs

1-to-16 Demultiplexer

Figure 4.10 shows a l-to-16 demultiplexer. The input bit is labeled D. This data bit (D) is transmitted to the
data bit of the output lines. But which one? Again, this depends on the value of ABCD, the control input.
When ABCD = 0000, the upper AND gate is enabled while all other AND gates are disabled. Therefore, data
bit Dis transmitted only to the Yo output, giving Yo= D. If Dis low, Yo is low. If D is high, Yo is high. As you
can see, the value of Y0 depends on the value of D. All other outputs are in the low state. If the control nibble
is changed to ABCD = 1111, all gates are disabled except the bottom AND gate. Then, D is transmitted only
to the Y1s output, and Y1s = D.

The 74154

The 74154 is a l-to-16demultiplexer with the pin diagram ofFig. 4.11. Pin 18 is for the input DATAD, and
pins 20 to 23 are for the control bits ABCD. Pins l to 11 and 13 to 17 are for the output bits Yo to Y15• Pin 19
is for the STROBE, again an active-low input. Finally, pin 24 is for V cc and pin 12 for ground.

Digital Principles and Applications

A B C D

V V V' V
DATAD

I
I

I

I

1-to-t 6 demultiplexer

Table 4.3 shows the truth table of a 74154. First, notice the STROBE input. It must be low to activate the
74154. When the STROBE is low, the control inputABCD determines which output lines are low when the
DATA input is low. When the DATA input is high, all output lines are high. And, when the STROBE is high,
all output lines are high.

Strobe Data A B C D

L L L L
L L L H

L L L H L
L L L H H

L H L L
L H L H
L H H L
L H H H
H L L L
H L L H
H L H L
H L H H
H H L L
H H L H
H H H L
H H H H
X X X X
X X X X

H H X X X X

Data-Processing Circuits

ABC D

20 21 22 23
1

Yo
2

Y1
3

Y2
4

Y3
5

Y4
6

Ys
7

74154 18 8
y6

DATA Y7 74154 9
Ys 19 10 STROBE Y9

11
Y10

13 yll
14

Y12
15 y
16 13
-Y14

17 y
15

Pinout diagram of 7 4154 Logic diagram of 7 4154

Figure 4.12 shows how to draw a 74154 on a schematic diagram. There is one input DATA bit (pin 18)
under the control of nibble ABCD. The DATA bit is automatically steered to the output line whose subscript is
the decimal equivalent of ABCD. Again, the bubble on the STROBE pin indicates an active-low input. Notice
that DATA is inverted at the input (the bubble on pin 18) and again on any output (the bubble on each output
pin). With this double inversion, DATA passes through the 74154 unchanged.

In Fig. 4.13a, what does the Y12 output equal for each of the following conditions:

a. R is high, Tis high, ABCD = 0110.
b. R is low, Tis high, ABCD = llOO.
c. R is high, Tis high, ABCD = 1100.

Solution
Since1(and Tare bothhigh,the STROBE is low and the 7 4154:is active. Because AB CD "" 0110, the input data
is steered to .theY6 output lint: (pill)). ;rile .Y\2 oµtputxemaills in the high. state (seeTable4.3);

b. Here, the .STROBE is high andthe}4154 is inactive. 'fhe Xr2 9utputis bigµ.
c. \VithJ? and Tbothhigh, tµe STROBEislow and the74154is actixe. Since ABC[)=

steered to the Y12 output (pin· 14).

Show how two l-to-16 demultiplexers can be connected to get a l-to-32 demultiplexer.

Solution Figure 4J 3b shows fhe circuit diagram. Al ,-to-32 demultiplexer has 5 select vllriableRA.lfCpE. four.of

the~J~C:DE) ar~f ed to nvo l-to-16 de!13Ul~ple':{er. :b11d thr fifth (A) i~ us~dt0, ~:eft~n~ of ~esJ nvo multirl.e:>1:li!r
thr?ughstrobe inpptifA ~ 0,th~top 7I4154is7hos~naridBCDE directs datato.one.<>fth~ 15 outpt1~tth~tIC. If
A = i,the bottorn: IC is chosen and depending on valueofBCDEdata is directed to one ofthe15outputs this IC.

@ Digital Principles and Applications

A B CD

20 21 22 23 A BCDE 1
Yo ! 2
Yi

3
Y2 Yo

_fl___fl_ 4
Y3

DATA Y1

t1 tz t3 t4 18 5
Y4 74154

DATA 6
Y5 STROBE 15 Y1s 7 y6

8
Y7

R 19 74154 9
Ys BCDE

T STROBE 10
Y9 ! 11

13
Yw 0 Y16

14
yil DATA I Y17
Y12 D

15 74154
Y13

16
Y14 STROBE 15 Y31

17
Y15

(a) (b)

:Alogicdtcuiftth one inp~t and many outputs is called a __ . .
Forthe74154 demultiplexer, what must the logic levels ABCD be in order to steer the DATA
inputsignalto outputline Y10?

5. IfAJJ<;P = LHLH, DATA= and STROBE = H, what wHI the logic level be at Ys on a
74154?

4.3 l-OF-16 DECODER

A decoder is similar to a demultiplexer, with one exception-there is no data input. The only inputs are the
control bits ABCD, which are shown in Fig. 4.14. This logic circuit is called a l-of-16 decoder because only
1 of the 16 output lines is high. For instance, when ABCD is 0001, only the Y1 AND gate has all, inputs high;
therefore, only the Y1 output is high. If ABCD changes to O 100 only the Y4 AND gate has all inputs high; as
a result, only the Y4 output goes high.

If you check the other ABCD possibilities (0000 to 1111), you will find that the subscript of the high output
always equals the decimal equivalent of ABCD. For this reason, the circuit is sometimes called a binary-to~
decimal decoder. Because it has 4 input lines and 16 output lines, the circuit is also known as a 4-line to
16-line decoder.

Normally, you would not build a decoder with separate inverters and AND gates as shown in
Fig. 4.14. Instead, you would use an IC such as the 74154. The 74154 is called a decoder-demultiplexer,
because it can be used either as a decoder or as a demultiplexer.

Data-Processing Circuits

A B C D

v· v· ru. ru
u-
n-
u-
u-
u-
u-
-

-u-
n-
u-
u-

1-of-16 decoder

You saw how to use a 74154 as a demultiplexer in Sec. 4.2.To use this same IC as a decoder, all you have
to do is ground the DATA and STROBE inputs as shown in Fig. 4.15. Then, the selected output line is in the
low state (see Table 4.3). This is why bubbles are shown on the output lines. They remind us that the output
line is low when it is active or selected. For instance, if the binary input is

ABCD=Olll

then the Y7 output is low, while all other-outputs are high.

Digital Principles and Applications

ABC D

20 21 22 23
l

Yo
2

Y1
3

Y2
4

Y3
5

Y4
6 Ys

18 7 y6
DATA 8 Y7

19
74154 9 Yg

STROBE 10
Y9

II
Yw -

13
Y11

14 Y12
15 Y13
16

Y14
17

Y15

Using 7 4154 as decoder

Figure 4.16 illustrates chip expansion. We have expanded two 74154s to get a 1-of-32
decoder. Here is the way.the circuit works. BitX drives the first 74154, and the complement of
X drives the second 74154. When Xis low, the first 74154 is active and the second is inactive.

74154 74154

Yo
2

Yo
2

Y1 Yi

19 }'. 3
19 y: 3

STROBE/ 4 STROBE/ 4
X

18
DATA

3 5 18
DATA

3 5
Y4 Y4
Ys

6
Y5 6

20 7 20 7 A A y6 A y6 21 8 21 8 B 22 B Y7 22 B Y7
C C Yg 9 C Yg 9

23 10 2t3 10 D D Y9 D Y9
Y10 11

Yw
11

Yu
13

Yu
13

Y12
14

f12
14

Y13
15

Y13
15

Y14
16

Y14
16

Y15
17

Y15
17

Chip expansion

Data-Processing Circuits

The ABCD input drives both decoders but only the first is active; therefore, only one output
line on the first decoder is in the low state.

On the other hand, when Xis high, the first 74154 is disabled and the second one is enabled.
This means the ABCD input is decoded into a low output from the second decoder. In effect,
the circuit ofFig. 4.16 acts like a l-of-32 decoder.

In Fig. 4.16, all output lines are high, except the decoded output line. The bubble on each
output line tells anyone looking at the schematic diagram that the active output line is in the
low state rather than the high state. Similarly, the bubbles on the STROBE and DATA inputs

of each 7 4154 indicate active-low inputs.

Show how using a 3-to-8 decoder and multi-input OR gates following Boolean expressions
can be realized simultaneously.

Fi (A, B, C) = l:m(O, 4, 6); F2(A, B, C) = l:m(O, 5); F2(A, B, C) = l:m(l, 2, 3, 7)

Solution Since .• attlltl.iecocli;:r (}ll;tpll;tWtlget a}\ ttltl Illinterrns.we.use. thelll.as .i,howniµ Fig, 4l,17 .to.getthtl req~red
Boolean. functions.

BCD-TO-DECIMAL DECODERS

BCD is an abbreviation for binary-coded decimal. The BCD code expresses each digit in a decimal number
by its nibble equivalent. For instance, decimal number 429 is changed to its BCD form as follows:

4
t

0100

Digital Principles and Applications

2
t

0010

9
t

1001

To anyone using the BCD code, 0100 0010 1001 is equivalent to 429.

As another example, here is how to convert the decimal number 8963 to its BCD form:

8
t

1000

9
t

1001

6
t

0110

3
t

0011

Again, we have changed each decimal digit to its binary equivalent.

Some early computers processed BCD numbers. This means that the decimal numbers were changed into
BCD numbers, which the computer then added, subtracted, etc. The final answer was converted from BCD
back to decimal numbers.

Here is an example of how to convert from the BCD form back to the decimal number:

0101
t
5

0111
t
7

1000
t
8

As you can see, 578 is the decimal equivalent of010I 0111 1000.

One final point should be considered. Notice that BCD digits are from 0000 to 1001. All combinations
above this (1010 to 1111) cannot exist in the BCD code because the highest decimal digit being coded is 9.

BCD-to-Decimal Decoder

The circuit of Fig. 4.18 is called a l-of-10 decoder because only 1 of the 10 output lines is high. For instance,
when ABCD is 0011, only the Y3 AND gate has all high inputs; therefore, only the Y3 output is high, If ABCD
changes to 1000, only the Y8 AND gate has all high inputs; as a result, only the Y8 output goes high.

If you check the other ABCD possibilities (0000 to 1001), you will find that the subscript of the high
output always equals the decimal equivalent of the input BCD digit. For this reason, the circuit is also called
a BCD-to-decimal converter.

The 7445

Typically, you would not build a decoder with separate inverters and AND gates, as shown in Fig. 4.18.
Instead, you would use a TTL IC like the 7445 ofFig. 4.19. Pin 16 connects to the supply voltage V cc and pin
8 is grounded. Pins 12 to 15 are for the BCD input (ABCD), while pins I to 7 and 9 to 11 are for the outputs.
This IC is functionally equivalent to the one in Fig. 4.18, except that the active output line is in the low state.
All other output lines are in the high state, as shown in Table 4.4. Notice that an invalid BCD input (1010 to
1111) forces all output lines into the high state.

The decoded outputs of a 7445 can be connected to light-emitting diodes (LEDs), as shown
in Fig. 4.20. If each resistance is I kQ and each LED has a forward voltage drop of2 V, how
much current is there through a LED when it is conducting? (See Chapter 13 for a discussion
of LEDs.)

A

11\7

No. A

0 L
l L
2 L

L
4 L

L
L
L

8 H
9 H

H
H
H
H
H
H

Data-Processing Circuits

B C D

1\7 ' 1\7 1\7

n-
u-
u-
n-
n-
u-

1-of-10 decoder

7445 Truth Table

Inputs

B C D Yo

L L L L
L L H H
L H L H
L H H H
H L L H H
H L H H H
H H L H H
H H H H H
L L L H H
L L H H H
L H L H H
L H H H H
H L L H H
H L H H H
H H L H E
H H H H H

7445

Pinout diagram of
7445

16

A
12

B
13

C
14

D
15

8

-

a. ABCD=OIOI.
b. ABCD = 1001.
c. ABCD = 1100.

Digital Principles and Applications

7445
.,,..,,. .,,..,,.

Yo 2 3 4 5 6 7 8 9

Vee Y1
3

Y2
4

Y3
5

Y4
6

Ys
7 y6
9

Y7
10

Ys
11

GND Y9

Circuit for Example 4.7

The LEDs of Fig. 4.20 are numbered O through 9. Which of the LEDs is lit for each of the
following conditions:

A LED emits radiation when forward-biased. Why? Because free electrons recombine with holes near the
junction. As the free electrons fall from a higher energy level to a lower one, they give up energy in the form

Data-Processing Circuits

of heat and light. By using elements like gallium, arsenic, and phosphorus, a manufacturer can produce LEDs
that emit red, green, yellow, blue, orange and infrared (invisible) light. LEDs that produce visible radiation
are useful in test instruments, pocket calculators, etc.

Seven-Segment Indicator

Figure 4.21 a shows a seven-segment indicator, i.e. seven
LEDs labeled a through g. By forward-biasing different
LEDs, we can display the digits O through 9 (see Fig.
4.21b). For instance, to display a 0, we need to light up
segments a, b, c, d, e, and/ To light up a 5, we need
segments a, c, d,f, and g.

Seven-segment indicators may be the common-anode
type where all anodes are connected together (Fig.
4.22a) or the common-cathode type where all cathodes
are connected together (Fig. 4.22b). With the common
anode type of Fig. 4.22a, you have to connect a current
limiting resistor between each LED and ground. The
size of this resistor determines how much current flows
through the LED. The typical LED current is between I

(a)

It
LI

I
I

I I

LI
I

(b)

L
_I
i

i I

t
I

Seven-segment indicator

and 50 mA. The common-cathode type of Fig. 4.22b uses a current-limiting resistor between each LED and
+Vee·

The 7446

a b c d e f g

(a)

a b c d e f g

(b)

(a) Common-anode type, (b) Common-cathode type

A seven-segment decoder-driver is an IC decoder that can be used to drive a seven-segment indicator. There
are two types of decoder-drivers, corresponding to the common-anode and common-cathode indicators. Each
decoder-driver has 4 input pins (the BCD input) and 7 output pins (the a through g segments).

Figure 4.23a shows a 7446 driving a common-anode indicator. Logic circuits inside the 7446 convert the
BCD input to the required output. For instance, if the BCD input is 0111, the internal logic (not shown) of the
7446 will force LEDs a, b, and c to conduct. As a result, digit 7 will appear on the seven-segmentindicator.

Notice the current-limiting resistors between the seven-segment indicator and the 7446 of
Fig. 4.23a. You have to connect these external resistors to limit the current in each segment to a safe value
between I and 50 mA, depending on how bright you want the display to be.

Digital Principles and Applications

13 12 11 10 9 15 14

7446 Decoder/driver
-~- --li I ~--~---~--~--- I i

~
BCD input

(a)

BCD input

'TBCD'

7-Segment
indicator

7448
Decoder/driver

(b)

(a) 7446 decoder-driver, (b) 7448 decoder-driver

The 7448

Figure 4.23b is the alternative decoding approach. Here, a 7448 drives a common-cathode indicator. Again,
internal logic converts the BCD input to the required output. For example, when a BCD input of O I 00 is used,
the internal logic forces LEDs b, c,f, and g to conduct. The seven-segment indicator then displays a 4. Unlike
the 7446 that requires external current-limiting resistors, the 7448 has its o,vn current-limiting resistors on
the chip. A switch symbol is used to illustrate operation of the 7446 and 7448 in Fig. 4.23. Switching in the
actual IC is of course accomplished using bipolar junction transistors (BJTs).

Sketc~ tile ~~gmentsina seven-s~gment indic~tor.
Each segment of a seven-segment indicator is.what type ·of d~vice?

4;6··· ENCODERS

An encoder converts an active input signal into a coded output signal. Figure 4.24 illustrates the general idea.
There are n input lines, only one of which is active. Internal logic within the encoder converts this active input
to a coded binary output with m bits.

Data-Processing Circuits

Decimal-to-BCD Encoder

Figure 4.25 shows a common type of encoder-the decimal-to-BCD
encoder. The switches are push-button switches like those of a pock
et calculator. When button 3 is pressed, the C and D OR gates have
high inputs; therefore, the output is

ABCD=OOil

If button 5 is pressed, the output becomes

ABCD=OlOI

When switch 9 is pressed,

ABCD= 1001

The 74147

Figure 4.26a is the pinout diagram for a 74147, a
decimal-to-BCD encoder. The decimal input, X1 to X9,
connect to pins 1 to 5, and 10 to 13. The BCD output
comes from pins 14, 6, 7, and 9. Pin 16 is for the supply
voltage, and pin 8 is grounded. The label NC on pin 15
means no connection (the pin is not used).

Figure 4.26b shows how to draw a 74147 on a
schematic diagram. As usual, the bubbles indicate
active-low inputs and outputs. Table 4.5 is the truth table
ofa 74147. Notice the following. When allXinputs are
high, all outputs are high. When X9 is low, the ABCD
output is LHHL (equivalent to 9 if you complement the
bits). When X8 is the only low input, ABCD is LHHH

X4

X5

x6

X7

+5V

l :

:

11

12

13

4 __J_
:

5 __J_

6 __J_

7 __J_

8 __J_

9 __J_

:

...

X1

X2

X3

X4

n inpots { : Eocod~

- T
l I

y
I

A B

L.-y---1

m outputs

Encoder

~- y
B B

Decimal-to-BCD encoder

Vee
16

GND
8

A
14

7445
2

Xs 74147 B
6

Xs 3 X 7
6 C

B 4 X D
9

7

C 5 Xs

GND le
X9

(a) (b)

(a) Pinout diagram of 74147, (b) logic diagram

Digital Principles and Applications

Outputs

X1 X2 X3 X4 A B C D

H H H H H H H H H H H H H
X X X X X X X X L L H H L
X X X X X X X L H L H H H
X X X X X X L H H H L L L
X X X X X L H H H H L L H
X X X x L H H H H H L H L
X X X L H H H H H H L H H
X X L H H H H H H H H L L
X L H H H H H H H H H L H
L H H H H H H H H H H H L

(equivalent to 8 if the bits are complemented). When X7 is the only low input, ABCD becomes HLLL
(equivalent to 7 if the bits are complemented). Continue like this through the rest of the truth table and you
can see that an active-low decimal input is being converted to a complemented BCD output.

Incidentally, the 7 414 7 is called a priority encoder because it gives priority to the highest-order input. You
can see this by looking at Table 4.5. If all inputs X1 through X9 are low, the highest of these, X9, is encoded
to get an output of LHHL. In other words, X9 has priority over all others. When X9 is high, X8 is next in line
of priority and gets encoded if it is low. Working your way through Table 4.5, you can see that the highest
active-low from X9 to X0 has priority and will control the encoding.

What is the ABCD output of Fig. 4.27 when button 6 is pressed?

Solution When all switches are open, the X1 to X9 inputs are pulled up to the high state (+ 5 V). A glance at Table
4.5 .indicates thatthe ABCD output is HHHH at this time.

When switch 6 is pressed, the X6 input is grounded. Therefore, all X inputs are high, except for X6. Table 45
indicates that the ABCD output is HLLH, which is equivalent to 6 when the output bits are complemented.

+5V

All resistors are l kQ 16
J_L_ 11 X Vee
2_L_ 12 I

Xz 74147
13 A

14

l X3
6

2 X4 B

3 X5
C

7

4
x6

9 X D
5 7

10 Xs
X 9 GND

- 8
-

Data-Processing Circuits

Design a priority encoder the truth table of which is shown in Fig. 4.28a. The order of priority
for three inputs is X1 > X2 > X3. However, if the encoder is not enabled by Sor all the inputs

are inactive the output AB= 00.

Solution Figure 4.28b and .Fig, '4.28cshow the Karnaugh map for output A and B respectively. Note that, we have
used a differentnotation.forinput variables Ill these maps. Compare this with notations presented in previous chapters.
You will find a variab.le with pri:rne is presented by O and if it is not primed is represented by 1. Then taking groups
of Is we get the design equations as shown in the figure. The logic circuits for output A and B can be directly drawn

from tllese equations.

Intput Output

s XI Xz X3 A B

0 X X X 0 0

I 1 X X 0 I
1 0 1 X 1 0

1 0 0 I 1 1

1 0 0 0 0 0

S .. l'i
01 11 rn

SX1 01 11 xx 00 XzX3 00 2 3
00 0 0 0 0 00 0 0

01 0 0 ·0 01 0 0

11 0 0 0 1 11 0 0 l 0

10 0 0 0 I 10 0 0 0

A SXiX3 + s.1\Xz B = SX1 + SXzX3
(a) (b) (c)

Design of a priority encoder

12. What is an encoder?
I3. What type of encoder is the TTL 74147?

4.7 EXCLUSIVE-OR GATES

The exclusive-OR gate has a high output only when an odd
number of inputs is high. Figure 4.29 shows how to build
an exclusive-OR gate. The upper AND gate forms the
product AB, while the lower one produces AB. There
fore, the output of the OR gate is

Y=AB+AB

Here is what happens for different inputs. When A and
B are low, both AND gates have low outputs; therefore,
the final output Y is low. If A is low and B is high, the
upper AND gate has a high output, so the OR gate has high

A

B

Exclusive-OR gate

y

output. Likewise, a high A and a low B result in a final output that is high. If both inputs are high, both AND
gates have low outputs and the final output is low.

Table 4.6 shows the truth table for a 2-input exclusive-OR gate. The output is high when A or Bis high, but
not when both are high. This is why the circuit is known as an exclusive-OR gate. In other words, the output
is a 1 only when the inputs are different.

Digital Principles and Applications

A

0
0
1
1

Exclusive-OR Truth Table

B

0

0
1

y

0
I
l
0

;==j[)-r
Logic symbol for
exclusive-OR gate

Figure 4.30 shows the symbol for a 2-input exclusive-OR gate. Whenever you see this symbol, remember
the action-the output is high if either input is high, but not when both are high. Stated another way, the
inputs must be different to get a high output.

Four Inputs

Figure 4.3 la shows a pair of exclusive-OR gates
driving an exclusive-OR gate. If all inputs (A to D)
are low, the input gates have low outputs, so the fi
nal gate has a low output. If A to C are low and D
is high, the upper gate has a low output, the lower
gate has a high output, and the output gate has a
high output.

Ifwe continue analyzing the circuit operation for
the remaining input possibilities, we can work out
Table 4. 7. Here is an important prope1ty of this truth
table. Each ABCD input with an odd number of ls
produces an output I. For instance, the first ABCD
entry to produce an output 1 is 000 l; it has an odd

A
B

C
D

y

(a)

!~y
(b)

Four-input exclusive OR gate

'-",::·· ·.. . _.,
able 4.7 · 4-lnput Exclusive-OR Gate

Comment A B C D y

Even 0 0 0 0 0
Odd 0 0 0 l I
Odd 0 0 0 1
Even 0 0 1 l 0
Odd 0 0 0 1
Even 0 0 0
Even 0 0 0
Odd 0 1 l l
Odd 0 0 0 l
Even 0 0 l 0
Even 0 I 0 0
Odd 0 1 1 I
Even 0 0 0
Odd 0 1
Odd 1 0 I
Even l 0

Data-Processing Circuits

number of 1 s. The next ABCD entry to produce an output 1 is 001 O; again, an odd number of Is. An output
1 also occurs for these ABCD inputs: 0100, 0111, 1000, 1011,1101, and 1110, each having an odd number
of ls.

Figure 4.3 la illustrates the logic for a 4-input exclusive-OR gate. In this book, we will use the abbreviated
symbol given in Fig. 4.31 b to represent a 4-input exclusive-OR gate. When you see this symbol, remember
the action-the gate produces an output 1 when the ABCD input has an odd number of ls.

Any Number of Inputs

Using 2-input exclusive-OR gates as building blocks, you can produce exclusive-OR gates with any number
of inputs. For example, Fig. 4.32a shows a pair of exclusive-OR gates. There are 3 inputs and l output. If you
analyze this circuit, you will find it produces an output 1 only when the 3-bit input has an odd number of ls.
Figure 4.32b shows an abbreviated symbol for a 3-input exclusive-OR gate.

(a) (b)

(c) (d)

Exclusive-OR gate with several inputs

As another example, Fig. 4.32c shows a circuit with 6 inputs and 1 output. Analysis of the circuit shows
that it produces an output 1 only when the 6-bit input has an odd number of 1 s. Figure 4.32d shows an
abbreviated symbol for a 6-input exclusive-OR gate.

In general, you can build an exclusive-OR gate with any number of inputs. Such a gate always produces
an output I only when the n-bit input has an odd number of Is.

14. When is the output of an exclusive-OR gate high?
15. Draw the logic symbol for an exclusive-OR gate.

4~8 PARITY GENERATORS AND CHECKERS

Even parity means an n-bit input has an even number of ls. For instance, 110011 has even parity because
it contains four ls. Odd parity means an n-bit input has an odd number of ls. For example, 110001 has odd
parity because it contains three ls.

Here are two more examples:

Principles and Applications

1111 0000 1111 0011 even parity

1111 0000 1111 0111 odd parity

The first binary number has even parity because it contains ten ls; the second binary number has odd
parity because it contains eleven 1 s. Incidentally, longer binary numbers are much easier to read if they are
split into nibbles, or groups of four, as done here.

Parity Checker

Exclusive-OR gates are ideal for checking the parity of a
binary number because they produce an output 1 when the
input has an odd number of 1 s. Therefore, an even-parity in
put to an exclusive-OR gate produces a low output, while an
odd-parity input produces a high output.

For instance, Fig. 4.33 shows a 16-input exclusive-OR
gate. A 16-bit number drives the input. The exclusive-OR
gate produces an output 1 because the input has odd parity
(an odd number of ls). If the 16-bit input changes to another
value, the output becomes O for even-parity numbers and 1
for odd-parity numbers.

Parity Generation

10101 100100 01100

Exclusive-OR gate
with 16 inputs

In a computer, a binary number may represent an instruction that tells the computer to add, subtract, and so
on; or the binary number may represent data to be processed like a number, letter, etc. In either case, you
sometimes will see an extra bit added to the original binary number to produce a new binary number with
even or odd parity.

For instance, Fig. 4.34 shows this 8-bit binary number:

X1X6XsX4 X3X2X1 Xo

Suppose this number equals O I 00 0001. Then, the mun
ber has even parity, which means the exclusive-OR gate
produces an output of 0. Because of the inverter,

Xs= 1

and the final 9-bit output is 1 01000001. Notice that this has
odd parity.

Suppose we change the 8-bit input to O 110 0001. Now, it
has odd parity. In this case, the exclusive-OR gate produces
an output 1. But the inve1ter produces a 0, so that the final
9-bit output is O O 110 0001. Again, the final output has odd
parity.

The circuit given in Fig. 4.34 is called an odd-parity gen
erator because it always produces a 9-bit output number
witn odd parity. If the 8-bit input has even parity, a 1 comes

8-bit number

I 1

~
X. Instruct10n or data btts

9-bit number with odd parity

Odd-parity generation

Data-Processing Circuits

out of the inverter to produce a final output with odd parity. On the other hand, if the 8-bit input has odd
parity, a O comes out of the inverter, and the final 9-bit output again has odd parity. (To get an even-parity
generator, delete the inverter.)

Application

What is the practical application of parity generation and checking? Because of transients, noise, and other
disturbances, 1-bit errors sometimes occur when binary data is transmitted over telephon,' lines or other
communication paths. One way to check for errors is to use an odd-parity generator at the iansmitting end
and an odd-parity checker at the receiving end. If no 1-bit errors occur in transmission, the received data will
have odd parity. But if one of the transmitted bits is changed by noise or any other disturbance, the received
data will have even parity.

For instance, suppose we want to send 0100 0011. With an odd-parity generator like Fig. 4.34, the data
to be transmitted will be O O 100 0011. This data can be sent over telephone lines to some destination. If no
errors occur in transmission, the odd-parity checker at the receiving end will produce a high output, meaning
the received numqer has odd parity. On the other hand, if a 1-bit error does creep into the transmitted data,
the odd-parity checker will have a low output, indicating the received data is invalid.

One final point should be made. Errors are rare to begin with. When they do occur, they are usually 1-bit
e1rnrs. This is why the method described here catches almost all of the errors that occur in transmitted data.

The 74180

Figure 4.35 shows the pinout diagram for a 74180, which is a TTL parity generator-checker. The input data
bits are X7 to X0; these bits may have even or odd parity. The even input (pin 3) and the odd input (pin 4)
control the operation of the chip as shown in Table 4.8. The symbol I stands for summation. In the left input
column of Table 4.8, I of H's (highs) refers to the parity of the input dataX7 toX0. Depending on how you
set up the values of the even and odd inputs, the I even and I odd outputs may be low or high.

For instance, suppose even input is high and odd input is low. When the input data has even parity (the
first entry of Table 4.8), the I even output is high and the I odd output is low. When the input data has odd
parity, the I even output is low and the 1: odd output is high.

EVEN INPUT

ODD INPUT

I: EVEN OUTPUT

I:ODDOUTPUT

GND

74180

Pinput diagram of 7 4180

Inputs

I of H's at Even

74180 Truth Table

Outputs

Odd I even Iodd

H
L
L H
H L
L L
H H

Digital Principles and Applications

lfyou change the control inputs, you change the operation. Assume that the even input is low and the odd
input is high. When the input data has even parity, the 2: even output is low and the 2: odd output is high.
When the input data has odd parity, the I even output is high and the I odd output is low.

The 74180 can be used to detect even or odd parity. It can also be set up to generate even or odd parity.

+ 5V 1 2 8 9 10lu li2113

t1 ODD INPUT
3

EVEN INPUT 74180 p
:[ODD OUTPUT

16

Using a 74180 to generate odd parity

xa!!'p.e .1-:12 Show how to connect a 74180 to geJ1erate a 9-bit output with odd parity.

Solution Figure 4.36 shows one solution. The ODD INPUT (pin 4) is connected to +5 V, and the EVEN INPUT
(pin 3) is grounded. Suppose the input data X7 ... Xo has even parity. Then, the third entry of Table 4.8 tells us the .:E
ODD OUTPUT (pin 6) is high. Therefore, the 9-bit number Xs ... Xo coming out of the circuit has odd parity.

On the other hand, supposeX7 ••• Xo has odd parity. Then the fourth entry of Table 4.8 says that the L odd output
is low. Again, the 9-bit number Xg ... Xi> coming out at the bottom of Fig. 4.36 has odd parity.

The following conclusion may be drawn. Whether the input data has even or odd parity, the 9-bit number being
generated in Fig. 4.36 always has odd parity.

16. What does it mean to say that an n-bit binary number has even parity?
17. Exclusive-OR gates are useful as parity generators. (Tor F)

4.9 MAGNITUDE COMPARATOR

Magnitude comparator compares magnitude two n-bit binary numbers, say X and Yand activates one of these
three outputs X = Y, X > Y and ,:r < Y. Figure 4.37a presents block diagram of such a comparator. Fig. 4.37b
presents truth table when two I-bit numbers are compare<l and its circuit diagram is shown in Fig. 4.3 7c. The
logic equations for the outputs can be written as follows, where G, L, E stand for greater than, less than and
equal to respectively.

(X> Y): G =XY' (X < Y): L =X'Y (X= Y): E =X'Y' + XY = (XY' + X'Y)' = (G + L)'

}-1
n~2

Xo

n-bit
comparator

y•-1
11-2

Yo

(a)

Data-Processing Circuits

(X> Y) Input Output

(X= Y)
X y X>Y X=Y X<Y

X

0 0 0 0 1
(X< Y) 0 1 0 1 0

1 0 1 0 0
1 1 0 0 1 y

(b) (c)

(a) Block diagram of Magnitude comparator, (b) Truth table, (c) Circuit
for 1-bit comparator

X=Y

Now, how can we design a 2-bit comparator? We can fom1 a 4-variable (X: X1X0 and Y: Y1 Yo) truth table
and get logic equations through any simplification technique. But this procedure will become very complex
ifwe try to design a comparator for 3-bit numbers or more. Here, we discuss a simple but generic procedure
for 2-bit comparator design, which can easily be extended to make any n-bit magnitude comparator. We shall
use the truth table of I -bit comparator that generates greater than, less than and equal terms.

Let's first define bit-wise greater than terms (G): Gi = Xi Y{, Go= XoYo'
Then, bit-wise less than term (L): Li =Xi'Yi, L0 =Xo'Yo
Therefore, bit-wise equality tenn (£): E1 = (Gi + Li)', Eo =(Go+ Lo)'

From above definitions we can easily write 2-bit comparator outputs as follows.

(X= Y) = Ei.Eo

The logic followed in arriving at these equations is this; X = Y when both the bits are equal.
X> Y ifMSB of Xis higher (Gi = 1) than that of Y. If MSB is equal, given by E 1 = 1, then LSB of X and Y is
checked and if found higher (G0 = I) the condition X > Y is fulfilled. Similar logic gives us the X < Y term.

Thus for any two n-bit numbers X: X11 _ 1 X,,_z .. . Xo and Y: Y11 _i Yn-2· . .Yo

We can write, (X= Y) =En-i En-2···Eo

(X> Y) = Gn-1 + En-I Gn-2 + ... +En-I En-2··· Ei Go

(X < Y) = Ln-1 + En-ILn-2 + ... + En-i En-2··· E1Lo

where E;, G; and L; represent for ith bit X; = Y; , X; > Y; and X; < Y; terms respectively.

The block diagram ofIC 7485, which compares two 4-bit numbers is shown in Fig. 4.38a. This is a 16 pin
IC and all the pin numbers are mentioned in this functional diagram. Note that the circuit has three additional
inputs in the form of (X = lJin, (X> lJin and (X < lJin· What is the use of them? They are used when we need
to connect more than one IC 7485 to compare numbers having more than 4-bits. But these inputs are oflower
priority. They can decide the output only when 4-bit numbers fed to this IC are equal. For example, if X =
0100 and Y= 0011, (X> Y)0 ut will be high and other outputs will be low irrespective of the value appearing at
(X= lJin, (X> lJin and(X< lJin· When IC 7485 is not used in cascade we keep (X= Y)i11 = 1, (X> lJin =O and
(X< lJin=O.

Digital Principles and Applications

X y
..--------, ..--------,
X3X2X1Xo Y3 Yz Y1 Yo X3X2X1Xo Y3 Y2Y1 Yo

! ! ! 1 ! l ! !
15131210 1 1411 9

4
IC 7485 3

5 6 72

15131210 1 1411 9 15131210 l 1411 9
4 ~X> Y) 4

IC 7485 3 X-Bm IC 7485 3

5 6 72 (X~ ;~
5 6 72

Vcc(16)
GND(8)

(X> Y)out (X= Y)out (X < Y)out

(a)
(X> Y)out (X = Y)out (X < Y)out

(b)

(a) functional diagram of IC 7485, (b) 8-bit comparator from two 4-bit
comparators

Show how two IC 7485 can be used to compare magnitude of two 8-bit numbers.

+5v

//

Solution Refer to Fig. 4.38h for iolution. The numbersto compare are x. ;Xo mtd Y: Y1. Y6: .. Yo. We nfed
two IC 7485s each one comparing 4 bits. The most significant bits (suffix 7 ,6,5,4) are given higher;priority and tbe
final output is tllken from that IC 7485 which compares them.

18. How many outputs a magnitude comparator generates?
19. How many IC 7485s ate needed to compare two 12-bit numbers?

4. to READ-ONl Y MEMORY

A read-only mem01y (which is abbreviated ROM and rhymes with Mom) is an IC that can store thousands of
binary numbers representing computer instructions and other fixed data. A good example of fixed data is the
unchanging information in a mathematical table. Since the numerical data do not change, they can be stored
in a ROM, included in a computer system, and used as a "look-up" table when needed. Some of the smaller
RO Ms are also used to implement truth tables. In other words, we can use a ROM instead of sum-of-products
circuit to generate any Boolean function.

Diode ROM

Suppose we want to build a circuit that stores the binary num
bers shown in Table 4.9. To keep track of where the numbers
are stored, we will assign addresses. For instance, we want to
store 0111 at address 0, 1000 at address 1, 1011 at address 2, and
so forth. Figure 4.39 shows one way to store the nibbles given
in Table 4.9. When the switch is in position O (address 0), the
upper row of diodes are conducting current (they act as closed

6
7

Diode ROM

Nibble

0111
1000
1011
llOO
0110
1001
0011
1110

Data-Processing Circuits

switches). (See Chapter 14 for a discussion of diodes.) The output of the ROM is thus

Y3 Y2 Y1 Yo = 0111

When the switch is moved to position I, the second row is activated and

Y3 Y2 Y1 Yo = I 000

As you move the switch to the remaining positions or addresses, you get a Y3 ••• Yo output that matches
the nibbles given in Table 4.9.

0

2

3
+5V

4
5

7 6

Diode ROM

On-Chip Decoding

Rather than switch-select the addresses as shown in Fig. 4.39, a manufacturer uses on-chip decoding. Figure
4.40 illustrates the idea. The 3-input pins (A, B, and C) supply the binary address of the stored number. Then,
a l-of-8 decoder produces a high output to one of the diode rows. For instance, if

ABC= 100

the l-of-8 decoder applies a high voltage to the ABC line, and the ROM output is

Y3Y2Y1 Yo= 0110

Digital Principles and Applications

If you change the binary address to

ABC= 110

the ROM output changes to

Y3 Y2 Y1 Yo= 0011

With on-chip decoding, n inputs can select 211 memory locations (stored numbers). For instance, we need
3 address lines to access 8 memory locations, 4 address lines for 16 memory locations, 8 address lines for
256 memory locations, and so on.

Commercially Available ROMs

A binary number is sometimes called a word. In a computer, binary numbers or words represent instructions,
alphabet letters, decimal numbers, etc. The circuit given in Fig. 4.40 is a 32-bit ROM organized as 8 words

A B C

Alic

On-chip decoding

______________ o_a _ _ta_-P_ro_ce_ss_in_g_C_in_cu_it_s ______________ ~

with 4 bits at each address (an 8 x 4 ROM). The ROM given in Fig. 4.40 is for instructional purposes only
because you would not build this circuit with discrete components. Instead, you would select a commercially
available ROM. For instance, here are some TTL ROMs:

7488: 256 bits organized as 32 x 8

74187: 1024 bits organized as 256 x 4

74S370: 2048 bits organized as 512 x 4

As you can see, the 7488 can store 32 words of8 bits each, the 74187 can store 256 words of 4 bits each,
and the 74S370 can store 512 words of 4 bits each. If you want to store bytes (words with 8 bits), then you
can parallel the 4-bit ROMs. For example, two parallel 74187s can store 256 words of8 bits each.

One way to change the stored numbers of a ROM is by adding or removing diodes. With discrete circuits,
you would have to solder or unsolder diodes to change the stored nibbles. With integrated circuits, however,
you can send a list of the data to be stored to an IC manufacturer, who then produces a mask (a photographic
template of the circuit). This mask is used in the mass production of your ROMs. As a rule, ROMs are used
only for large production runs (thousands or more) because of manufacturing costs.

Generating Boolean Functions

Because the AND gates of Fig. 4.40 produce all the fundamental products and the diodes OR some of these
products, the ROM is generating four Boolean functions as follows:

Y3 = ABC+ABC +ABC+ABC+ABC
Y2 =ABC+ ABC+ ABC+ ABC

Y1 =ABC+ ABC+ ABC+ ABC+ ABC
Y0 =ABC+ ABC+ ABC+ ABC

This means that you can use a ROM instead of a logic circuit to implement a truth table.

(4.1)

(4.2)

(4.3)

(4.4)

For instance, suppose you start with a truth table like the one in Table 4.10. There are four outputs: Y3, Y2,

Y1, and Y0. A sum-of-products solution would lead to four AND-OR circuits, one for Eq. (4.1), a second for
Eq. (4.2), and so on. The ROM solution is different. With a ROM you have to store the binary numbers of
Table 4.9 (same as Table 4.10) at the indicated addresses. When this is done, the ROM given in Fig. 4.40 is
equivalent to a sum-of-products circuit. In other words, you can use the ROM instead of an AND-OR circuit
to generate the desired truth table.

Truth Table

A B C Y3 Y2 Y1 Yo

0 0 0 0 l I 1
0 0 l I 0 0 0
0 1 0 1 0 1 1
0 1 1 1 l 0 0
1 0 0 0 1 1 0
I 0 1 1 0 0 1
l l 0 0 0 1 l
I I 1 I 1 1 0

Digital Principles and Applications

Programmable ROMs

A programmable ROM (PROM) allows the user instead of the manufacturer to store the data. An instrument
called aP ROM programmer stores the words by "burning in." Here is an example ofhow a PROM programmer
works. Originally, all diodes are connected at the cross points. For instance, in Fig. 4.40 there would be a
total of32 diodes (8 rows and 4 columns). Each of these diodes has afi1sible link (a small fuse). The PROM
programmer sends destructively high currents through all diodes to be removed. In this way, only the desired
diodes remain connected after programming a PROM. Programming like this is permanent because the data
cannot be erased after it has been burned in.

Here are some commercially available PROMs:

74Sl88: 256 bits organized as 32 x 8

7 4S287: · 1024 bits organized as 256 x 4

74S472: 4096bits organized as 512 x 8

PRO Ms such as these are useful for small production runs. For instance, if you are building only a few
hundred units (or maybe even just one), you would choose a PROM rather than a ROM.

Since PROMs are useful in many applications, manufacturers produce these chips in high volume.
Furthermore, the PROM is a universal logic solution. Why? Because the AND gates generate all the
fundamental products; the user can then OR these products as needed to generate any Boolean output. One
disadvantage of PRO Ms is the limit on number of input variables; typically, PRO Ms have 8 inputs or less.

Simplified Drawing of a PROM

It is cumbersome to draw large PROMs as illustrated in Fig. 4.41, because of the large number of diodes.
An alternative, streamlined drawing procedure for PROMs like the one in Fig. 4.40 is shown in Fig. 4.41. In
this simplified drawing, the solid black
bullets indicate connections to the AND
gate inputs. Each bullet represents a fixed
connection that cannot be changed. Fur
thermore, each AND gate has 3 inputs,
indicated by the bullet on .its input line.
Similarly, each OR gate has 8 inputs,
as indicated by the x 's on its input line,
but each x is a fusible link that can. be ·
removed.

Notice that the input side of Fig. 4.41
is a fixed AND array, meaning the inputs
to the AND gates are not programmable
in a PROM. On the other hand, the out
put side of the circuit is programmable
because each connection at the input of
each OR gate is a fusible link. A fixed
AND array and a programmable OR ar
ray are characteristic of all PRO Ms. To
begin with, every AND-gate output is
connected to every OR-gate input. Since

A B C

Programmable OR array

Fixed AND array

Y3 Y2 Y1 Yo

Streamlined drawing of PROM

Data-Processing Circuits

the AND gates produce all eight possible combinations
of the input variables A, Band C, it is possible to produce
any Boolean function at the OR-gate outputs.

Programming a PROM

Generating a Boolean function at the output of a PROM
is accomplished by fusing (melting) fusible links at the
input to the OR gates in Fig. 4.41. For example, suppose
we want to generate the function Yo = ABC. Simply fuse
(melt) 7 of the AND-gate outputs connected to the Yo
OR-gate input and leave the single AND-gate output
ABC connected. A portion of Fig. 4.41 is shown in Fig.
4.43 with the proper fusible link remaining for Y0.

As a second example, suppose we want to generate the
function Y1 = AB . We must include all terms containing
AB, since

ABC +ABC= AB(C + C)=AB

The two top fusible links must be included, while the

Programmable OR array

1----11---1--,iE---1-ABC

1-----1e----,...__,..._...,._]BC

1----11---+---l'---+-ABC

l----11---+---1'---t-ABC

1-----;,1E---l!E---ll---+-ABC

1---.;i1E---llt'---ll---+-ABC

1-----1e---_,._---1f---+-ABC

1----11----;tE---1'---J!:-- ABC

Boolean function from
PROM

remaining six are broken, as shown in Fig. 4.42. Continuing in this fashion, you can see that Y2 = A and Y3
=AB.

Erasable PROMs

The erasable PROM (EPRO.M) uses metal-oxide-semiconductor field-effect transistors (MOSFETs). Data is
stored with an EPROM programmer. Later, data can be erased with ultraviolet light. The light passes through
a quartz window in the IC package. When it strikes the chip, the ultraviolet light releases all stored charges.
The effect is to wipe out the stored contents. In other words, the EPROM is ultraviolet-light-erasable and
electrically reprogrammable.

Here are some commercially available EPROMs:

2716: 16,384 bits organized as 2048 x 8

2732: 32,768 bits organized as 4096 x 8

The EPROM is useful in project development. With an EPROM, the designer can modify the contents
until the stored data is perfect. When the design is finalized, the data can be burned into PROMs (small
production runs) or sent to an IC manufacturer who produces ROMs (large production runs).

20. What is a ROM?
21. What does it mean to say that a particular ROMjs
22. What is a PROM?

Digital Principles and Applications

• 4.11 PROGRAMMABLE ARRAY LOGIC I
Programmable array logic (PAL) is a programmable array of logic gates on a single chip. PALs are another
design solution, similar to a sum-of-products solution, product-of-sums solution, and multiplexer logic.

Programming a PAL

A PAL is different from a PROM because it has a programmable AND array and a fixed OR array. For
instance. Fig. 4.43 shows a PAL with 4 inputs and 4 outputs. The x's on the input side are fusible links, while
the solid black bullets on the output side are fixed connections. With a PROM programmer, we can burn in
the desired fundamental products, which are then ORed by the fixed output connections.

A B C D

Fixed OR array

Programmable AND array

Y3 Y2 Y1 Yo

ce::~ti;:f}I) Structure of PAL

Here is an example of how to program a PAL. Suppose we want to generate the following Boolean
functions:

Data-Processing Circuits

Y3 = ABC D + A.BCD + ABCD + ABCD

Y2 = ABCD +A.BCD+ ABCD
Y, = ABC +ABC+ABC+ABC

Yo =ABCD

(4.5)

(4.6)
(4.7)

(4.8)

Start with Eq. (4.5). The first desired product is A.BCD. On the top input line of Fig. 4.44 we have
to remove the first x, the fourth x, the fifth x, and the eighth x. Then the top AND gate has an output of
ABCD.

By removing xs on the next three input lines, we can make the top four AND gates produce the fundamental
products ofEq. (4.5). The fixed OR connections on the output side imply that the first OR gate produces an
output of

1:3 = ABCD + ABCD + ABCD + ABCD

A B C D

ti R-7 \7 v Fixed OR array

i,

Programmable AND array

Example of programming a PAL

Digital Principles and Applications

Similarly, we can remove xs as needed to generate Y2, Y1, and Y0. Figure 4.44 shows how the PAL looks
after the necessary xs have been removed. If you examine this circuit, you will see that it produces the Y
outputs given by Eqs. (4.5) to (4.8).

Commerdaily Available PAls

The PAL given in Fig. 4.43 is hypothetical. Commercially available PALs typically have more inputs. For
instance, here is a sample of some TTL PALs available from National Semiconductor Corporation:

10H8; 10 input and 8 output AND-OR

16H2: 6 input and 2 output AND-OR

14L4: 14 input and 4 output AND-OR-INVERT

For these chip numbers, H stands for active-high output and Lfor active-low output. The 10H8 and the
16H2 produce active-high outputs because they are AND-OR PALs. The 14L4, on the other hand, produces
an active-low output because it is an AND-OR-INVERT circuit (one that has inverters at the final outputs).

Unlike PROMs, PALs are not a universal logic solution. Why? Because only some of the fundamental
products can be generated and ORed at the final outputs. Nevertheless, PALs have enough flexibility to
produce all kinds of complicated logic functions. Furthermore, PALs have the advantage of 16 inputs
compared to the typical limit of 8 inputs forPROMs.

23. What is a PAL?
24. A PAL has an AND array and an OR array. Which one is fixed and which is programmable?

4.12 PROGRAMMABLE LOGIC ARRAYS

Programmable logic arrays (PLAs), along with ROMs and PALs, are included in the more general
classification ofICs called programmable logic devices (PLDs). Figure 4.45 illustrates the basic operation of
these three PLDs. In each case, the input signals are presented to an array of AND gates, while the outputs
are taken from an array of OR gates.

The input AND-gate array used in a PROM is fixed and cannot be altered, while the output OR-gate array
isji,sible-linked, and can thus be programmed. The PAL is just the opposite: The output OR-gate array is
fixed, while the input AND-gate array is fusible-linked and thus programmable. The PLA is much more
versatile than the PROM or the PAL, since both its AND-gate array and its OR-gate array are fusible-linked
and programmable. It is also more complicated to utilize since the number of fusible links are doubled.

A PLA having 3 input variables (ABC) and 3 output variables (XYZ) is illustrated in Fig. 4.46. Eight AND
gates are required to decode the 8 possible input states. In this case, there are three OR gates that can be used
to generate logic functions at the output. Note that there could be additional OR gates at the output if desired.
Programming the PLA is a two-step process that combines procedures use~ with the PROM and the PAL.

As an example, suppose it is desired to use a PLA to recognize each of the 10 decimal digits represented
in binary form and to correctly drive a 7-segment display. The 7-segment indicator was presented in Sec.
4.5. To begin with, the PLA must have 4 inputs, as shown in Fig. 4.47a. Four bits (ABCD) are required to
represent the 10 decimal numbers (see Table 1.1). There must be 7 outputs (abcdefg), 1 output to drive each

Input

Fixed
AND
Array

Input

,__ _____ Fusible

PROM

OR
Array

Fusible ,__ ____ _ Fixed
OR

Array
AND
Array

PAL

Input

Fusible 1--------1 Fusible
AND OR
Array Array

PLA

Data-Processing Circuits

A B C
Output

Output

Output
Programmable AND array

Programmable OR array
,---------"---

X Y Z

of the 7 segments of the indicator. Let's assume that our PLA is capable of driving the 7-segment indicator
directly. (This is not always a valid assumption, and a buffer amplifier may be needed to supply the proper
current for the indicator.)

To begin with, all fusible links are good. The circuit in Fig. 4.47b shows the remaining links after
programming. The input AND-gate array is programmed (fusible links are removed) such that each AND
gate decodes one of the decimal numbers. Then, with the use of Fig. 4.47c, links are removed from the output
OR-gate array such that the proper segments of the indicator are illuminated. For instance, when ABCD =
LHLH, segments afgcd are illuminated to display the decimal number 5. You should take the time to examine
the other nine digits to confirm proper operation.

One final point. Many PLDs are programmable only at the factory. They must be ordered from the
manufacturer with specific programming instructions. There are, however, PLDs that can be programmed
by the user. These are said to be field-programmable, and the letter F is often used to indicate this fact. For
instance, the Texas Instruments TIFPLA840 is a field-programmable PLA with 14 input variables, 32 AND
gates, and 6 OR gates; it is described as a 14 x 32 x 6 FPLA.

Wbatis aPLA'l
How does a PLA differ from a PAL?

27. In Fig. 4.47, ABCD =LLHH. What segments are activated?

Digital Principles and Applications

a
A

b
a

B p C .rjf L d
C A e e/ g f
D

l
g d

(a) (c)

A B C D

v· ~i ~· R7
0

I

2

3

4

5

6

7

8

9

a b c d e f g
(b)

7-segment decoder using PLA

4.13 TROUBLESHOOTING WITH A LOGIC PROBE

Chapter 3 introduced the logic clip, a device that connects to a 14 or 16-pin TC. The logic clip contains 16
LEDs that monitor the state of the pins. When a pin voltage is high, the corresponding LED lights up. When
the pin voltage is low, the LED is dark.

Figure 4.48 shows a logic probe, which is another troubleshooting tool you will find helpful in diagnosing
faulty circuits. When you touch the probe tip to the output node as shown, the device lights up for a high state
and goes dark for a low state. For instance, if either A or B, or both. arc low, then Yis high and the probe lights
up. On the other hand, if A and B are both high, Y is low and the probe is dark.

Data-Processing Circuits

Among other things, the probe is useful for locating short
circuits that occur in manufacturing. For example, during the
stuffing and soldering of printed-circuit boards, an undesirable
splash of solder may connect two adjacent traces (conducting
lines). Known as a solder bridge, this kind of trouble can short
circuit a node to the ground or to the supply voltage. The node
is then stuck in a low or high state. The probe helps you to find
short-circuited nodes because it stays in one state, no matter
how the inputs are changing.

4.14 HDl IMPLEMENTATION OF DAT A
PROCESSING CIRCUITS

Bright or dark

Using a logic probe

We start with hardware design of multiplexers using Verilog code. The data flow model provides a different
use of keyword assign in the fom1 of

assign X = S ? A : B;

This statement does following assignment. If, S = 1, X = A and if S = 0, X = B. One can use this statement
or the logic equation to realize a 2 to 1 multiplexer shown in Fig. 4.2(a) in one of the following ways.

module mux2tol(A,D0,D1,Y);
input A,DO,Dl; /* Circuit shown
in Fig. 4.3(a) */
output Y;
assign Y=(-A&D0) I (A&Dl);

endmodule

module mux2tol(A,DO,Dl,Y);
input A,DO,Dl; /* Circuit shown in
Fig. 4.3(a)*/
output Y;
assign Y= A? Dl DO; /*Conditional
assignment*/

endmodule

The behavioral model can be used to describe the 2 to 1 multiplexers in following two different ways, one
using if ... else statement and the other using case statement. The case evaluates an expression or a variable
that can have multiple values each one corresponding to one statement inthe following block. Depending on
value of the expression, one of those statements get executed. The behavioral model of2 to 1 multiplexer in
both is given below:

module mux2tol(A,DO,Dl,Y);
input A,DO,Dl; /* Circuit shown
in Fig. 4.3(a)*/

output Y;
reg Y;
always@ (A or DO or Dl)

if {A==l) Y=Dl;
else Y=DO;

endmodule

module mux2tol(A,D0,Dl,Y);
input A,DO,Dl; /* Circuit shown
in Fig. 4.3(a) */
output Y;
reg Y;
always@ (A or DO or Dl)

case (A)
0 : Y=DO;
1 : Y=Dl;

endcase
endmodule

Digital Principles and Applications

Design a 4 to 1 multiplexer, shown in Fig. 4.l(c) using conditional assign and case
statements.

The codes are given next. We have used nested condition for assign statement. If AP 1, coµdition
(B ? . D2) is evaluated. Then if B = 1, Y =. D3. And this is whatis given in l(c). Similarly, the other
combinations of A and B are evaluated and Y is assigned a. value from D2 to DO. For case statement we C<)llcatenp,ted
A and B by using operator . } and generated four possible combim.itions, For a particular value of AB, stateme11t
corresponding to one ofthemgets executed.

module mux4to1
inputA,B,DO,Dl,D2,
output Y; / t::
in . 4. 1 (cJ * I
assign Y = A ? { B ? D3
D1 : DO);

endmodule

BUS Representation in HDl

,D3,Y); module mux4tol(A,
input A,B,DO,Dl,D2,
output

We introduce concept of BUS or vector representation in HDL description through design of a 1 to 4
demultiplexer that can also serve as a 2 to 4 decoder. The data input of former is treated as enable input of
later. We consider S as a select input defined by two binary digits S[l] and S[O]. Output Y is 4 bit long, one of
which goes high for a particular combination of select inputs if data(enable) input is high. The Verilog code
for this demultiplexer/decoder is given below:

module demuxlto4(S,D,Y);
input (1:0J S;
input
output f3 : 0] Y;
reg [3:0] Y;
always @ (S or D)

({ S}} //Concatenation of D and S to
: Y= 4'b0001; tion,

, S=OO,
3'b101 Y= 4
3'b110 : Y=4'

Y=OOlO
Y=OlOO
Y=lOOO

3 bits,
to

3'b111 : Y= 4'
default: Y= 4'b0000; combinations D=O, then Y=OOOO

end.case
endmodule

moduJ.e
i.ri.put
il'lpUt
output

Data-Processing Circuits

A verilog HDL code for a digital circuit is given as follows. Can you describe the function it
performs? Can it be related to any logic circuit discussed in this chapter?

reg :OJ Y;
always @ . {A<or B or C)

if. {A<B}

else if (A>B) Y=3'b010;
else Y=C;

end.module

SoltJ:iOn The drcuit described by the HDLcompares two 4-bit numbefSA andB and generates a 3 bitoutput Y. It
has alsoa3 bit inputC. If A isless than B, output Y = 001 and does not depend onC Similarly, if A is greater than B,
Y = plOirrespective ofC. Butifthese two conditions are not me~ i.e. . = B then Y = C.

Ifw~ considerthree bits ofYrepresent (starting from MSB) A= B, A> Band A < B respectivelythen, this circuit
represents a 4-bit magnitude qJmparator where. C represents comparator output of previous stage. that is (}f Jower
significance, If numbers of this stage are equal then the value at C that represents equal, greater less than

<:or1d1t1011 of previotis stage nu1nbers is reflected by Y. This is similar. to IC 7485 discussed in Section

PROBLEM SOLVING WITH MUl TIPlE METHODS

Show how data processing circuits can be used to compare two 2-bit numbers, A 1 Ao and B 1 B0 to
generate two outputs, A> Band A= B.

Solution We can use multiplexers, decoder or simply a 4-bit comparator. The truth table of the above problem
is shown in fig. 4.49.

ln.Method-1, ··• we use two 16 to 1 multiplexers to realize > B and A B as shownin Fig. 4.50.
The numbers A 1A0 and B1 Bo ~re used a:, ;a;ele<:tion inputs as shown. For every selection of input, the

00 00 0 1
00 01 0 0
00 10 0 0
00 1 I 0 0

OI 00 l 0
Ol 01 0 1
0 1 10 0 0
01 1 l 0 0

10 00 1
10 01 l
10 10 0
rn I 1 0

Truth table Solution using 16 · tq. l multiplexers

Digital Principles and Applications

corresponding data input goes to the output. The input assignment comes straight from the truth· table
in Fig. 4.49 for the two cases.

In Method-2, we use two 8 to 1 multiplexers to realize A> Band A= Bas shown in Fig. 4.51.The
numbers A1A0 and B1 are used as selection inputs while Bo is part of the data input. We form pair of
combinations of the truth table for constant A 1 A0B1 and B0 variable. This helps to find out how output
varies with Bo.

In Method-3, we use one 4 to 16 decoder and two multi-input OR gates to realize A > B andA= B
as shown in Fig.4.52. We sum selected minterms, as required from the truth table, from. the set of all
the minterms generated by the decoder.

A1AoB1 Bo A>B A=B
0

0 0 0 0 0 (0) 6 (Bo)
0

0 0 0 1 B' 0 00
A>B

0 0 1 0 g (0) g(O)
0

0 0 1 l 0
1

0 1 0 0 6 (Bo) ?(Bo)
B' 0

0 1 0 l
A1AoB1

0 1 1 0 8 (0) 0 (0)
0 1 1 1 0

1 0 0 0 l (I) 8(0)
B'

1 0 0 1 l
00
Bo

1 0 l 0 0 (0) l (B') 0 A=B
1 0 1 1 0 0 0, 0

B'
1 I 0 0 1 (1) 0 (0)

10

1 l 0 1 1 0. Bo

?(Bo) A1A0 B1.

Solution using 8 to 1 multiplexers

Though we are not presenting them as a
separate method, the AND bank (inside de
coder) and OR bank combination concept
presented here can be used to obtain solu
tion from programmable logic devices such
as PLA, PAL, etc.

Ai
Ao
B1
Bo

0000 t------~.,.....--0001 ,__ _______ _

00101--------'-l--
OOll 1------'----'-l--
OIOO t----e----..,.-+---
0101 1----1--------
0110 1----1--------
0111 --------10001----i...~---H.;...._-
1001 1----ri.----H--

1010 J---+H-----H+--

1011 1----+t+-----
ll 00 1-----ttt..-------;-r1--

1101 --------t--H--
1110 1---+H-H.----H'+-
ll 11 1----H+I-H----H-~

A>B A=B

Solution using 4 to 16
decoder

15 13 12 JO 1 14 11 9
4 0

IC 7485 3

2 0
In Method:..4, we follow a straightfor- ,_.;...__~5 __ ~6;;.._ ______ -'---'
ward approach to use a 4-bit comparator{IC
7485 : Fig. 4.38a}for the purpose as shown A=B
in Fig. 4.53. We keep the higher two bits 'O' Solution using 4-bit comparator
and 'A = B input' high so that it essentially
becomes a 2-'bit comparator generating all three outputs A > B, A = B and A < B of which only first
. two are useful here.

Data-Processing Circuits

Amultiplexer is a circuit with many inputs but only one output. The 16-to-1 multiplexer has 16 input
bits, 4 control bits, and 1 output bit. The 4 control bits select and steer 1 of the 16 inputs to the output. The
multiplexer is a universal logic circuit because it can generate any truth table.

A demultiplexer has one input and many outputs. By applying control signals, we can steer the input
signal fo · one of the output lines. A decoder is similar to a demultiplexer, except that there is no data input.
The control bits are the only input. They are decoded by activating one of the output lines.

BCD is an abbreviation for binary-coded decimal. The BCD code expresses each digit in a decimal
number by its nibble equivalent. A BCD-to-decimal decoder converts a BCD input to its equivalentdecimal
value. A seven-segment decoder converts a BCD input to an output suitable for driving a seven-segment
indicator.

An encoder converts an input signal into a coded output signal. An example is the decimal-to-BCD
encoder. An exclusive-OR gate has a high output only when a~ odd number of inputs are high. Exclusive:
OR gates are useful in parity generators-checkers.

Magrutude comparators are useful in comparing two binary numbers. It generates three outputs that
give if one number is greater, equal or less than the other number. Cascading magnitude comparators we
can compare two numbers of any size.

A ROM is a read-only memory. Smaller RO Ms are used to implement truth tables. ROMs are expensive
because they require a mask for programming. PROMs are user-programmable and ideal for small
production runs. EPROMs are not only user-programmable, but they are also erasable and reprogrammable
during the design and development cycle. PALs are chips that.are programmable arrays of logic. Unlike
the PROM with its fixed AND array and programmable OR array, a PAL has programmable AND array
and a fixed OR array. The PAL has the advantage ofhaving up to 16 inputs in commercially available
devices. In the PLA both the AND array and the OR array are programmable. The PLA is a much more
versatile programmable logic device (PLD) IC than the PROM or the PAL.

• active low The low state is the one that causes
something to happen rather than the high
state.

• BCD A binary-coded decimal.
• data selector A synonym for multiplexer.
• decoder A circuit that is similar to a

demultiplexer, except there is no data input.
The control input bits produce one active
output line.

• demultiplexer A circuit with one input and
many outputs.

• EPROM An erasable programmable read
only memory. With this device, the user can
erase the stored contents with ultraviolet light
and electrically store new data. EPROMs are
useful during project development where
programs and data are being perfected.

" even parity A binary number with an even
number of 1 s.

• exclusive-OR gate A gate that produces a high
output only when an odd number of inputs is
high.

• LED A light-emitting diode.
• logic probe A troubleshooting device that

indicates the state of a signal line.
" Magnitude comparator compares two binary

numbers and signals if one is greater, equal or
less than other.

• multiplexer A circuit with many inputs but
only one output.

• odd parity A binary number with an odd
number of 1 s.

• PAL A programmable array logic (sometimes
written PLA, which stands for programmable

Digital Principles and Applications

logic array). In either case, it is a chip with
a programmable AND array and a fixed OR
aITay.

11 parity generation An extra bit that is generated
and attached to a binary number, so that the
new number has either even or odd parity.

" PLA A programmable logic array.
" PLD A programmable logic device.
" PROM A programmable read-only memory. A

type of chip that allows the user to program it
with a PROM programmer that bums fusible

4.1 In Fig. 4.2, if ABCD = 1001, what does Y
equal?

4.2 In Fig. 4.4, if ABCD = llOO, what does Y
equal?

4.3 We want to implement Table 3.12 of the
preceding chapter using multiplexer logic.
Show a circuit, similar to the one in Fig. 4.4,
that can do the job.

A B C Y1 Yo

0 0 0 0 0 0 J 0
0 0 0 I I 0 I 0
0 0 1 0 0 0 0 0
0 0 I 0 1 0 0
0 0 0 0 0 0 0
0 0 I 0 0 0 0
0 1 I 0 1 0 0 0
0 I 1 1 1 0 0 0
I 0 0 0 0 I 0 l
l 0 0 l 0 0 0 I
1 0 1 0 0 0 0 0
1 0 l 0 0 0 0
J 0 0 0 0 0 0
1 1 0 1 0 1 0 1
1 I I 0 l 0 1 0
1 I 1 0 0 1 0

links at the diode cross points. Once the data
is stored, the programming is permanent.
PROMs are useful for small production runs.

" ROM A read-only memory. An IC that. can
store many binary numbers at locations called
addresses. RO Ms are expensive to manufacture
and are used only for large production runs
where the cost of the mask can be recovered
by sales.

• strobe An input that disables or enables a
circuit.

4.4 Show how to connect a 74150 to implement
this Boolean equation:

y = ABCD + ABCD + ABCD

4.5 Draw a circuit with four 74150s that has a
truth table like the one in Table 4.11.

4.6 Table 4.12 shows the Gray code. Show how
four 7 4150s may be connected to convert
from binary to Gray code. Show how the
same can be realized by four 74151 ICs (8-to
l multiplexer).

A Yo

0 0 0 0 0 0
0 0 0 1 0 1
0 0 l 0 0 0 1
0 0 1 0 0 0
0 0 0 0 I 0

,Q 0 1 0 1
0 1 0 0 I 1
0 l l 1 0 1 0
l 0 0 0 1 0
J 0 0 I I l
l 0 1 0 I 1 l
1 0 1 l 1 1 0
1 0 0 l 0 l 0
l l 0 1 I 0 1 I
I I 1 0 0 0 1
1 1 1 0 0 0

Data-Processing Circuits

4.7 In Fig. 4.12, if ABCD = 0101, which is the
active output line when the strobe is high?
When it is low?

4.8 Input signals R and T are low in Fig. 4.13.
Which is the active output line when ABCD =
0011? To have the Y9 output line active, what
input signals do you need?

4.9 Suppose a logic probe shows that pin 19,
given in Fig. 4.13, is always high. Which of
the following may possibly cause trouble:

a. Pin 20 is grounded.
b.Pin 18 has a sine wave instead of
pulses.

c. The R input is grounded.
d. The T input is connected to +5 V.

4.10 Are the output signals of Fig. 4.15 active low
or active high? For the IC to decode the ABCD
input, does the strobe have to be low or high?

4.11 In Fig. 4.16, supposeX= 1 andABCD = 0110.
Which is the active chip and which is the
active output line?

4.12 Design a circuit that realizes following two
functions using a decoder and two OR gates.

F 1(A,B) = L m(0,3) and
F2(A,B) =Lm(l,2)

4.13 Design a circuit that realizes following three
functions using a decoder and three OR
gates.

F1(A,B,C) = L m(l,3,7),
F2(A,B,C) = L m(2,3,5) and
F3(A,B,C) = L m(O, 1,5,7)

4.14 Convert the following decimal numbers into
their BCD equivalents:

a. 32 b. 634
C. 4898

4.15 Convert the following BCD numbers into their
decimal equivalents:

a. 0110 0111
b. 1000 0001 0011
C. 0111 0010 0101 1001

4.16 In Fig. 4.18, what is the high output line when
ABCD=Ol01?

4.17 In Fig. 4.20, which is the low output when
ABCD = 0111?

4.18 Figure 4.54 shows a group of chips numbered
0 through 9. Each chip has an active-low
STROBE input. Which chip is active for each
of these conditions:

ChipO Chip 1 Chip2 ··········· Chip9
I 111 II

STROBE STROBE 111111 STROBE
+5V

Yo I 11111
16

Vee Y1 111111

Yz 111111

12 Y3 111 I I
A

13 Y4 1111
B

14 Ys 111
C y6 11 15
D Y7 I

8
Yg

GND Y9

-

Digital Principles and Applications

a. ABCD = 0000.
b. ABCD = 0010.
c. ABCD = 1001.

4.19 The ABCD input of Fig. 4.54 initially equals
1111. For this condition, all output waveforms
start high in the timing diagram of Fig. 4.55.
Another circuit not shown is supposed to
produce the following input values of ABCD:
0000, 0001, 0010, 0011, 0100, 0101, 0110,
0111, 1000, and 1001.

Yo

Y, --U LJ
Y2

Y3

Y4

Ys

y6

Y7

Yg

Y9

The timing diagram tells us that something
is wrong with the logic circuit of Fig. 4.54.
Which of the following is a possible trouble:

a. Pin 16 is not connected to the supply
voltage. b. Pin 8 is open.

c. Pin 12 is short-circuited to the ground.
d.Pin 15 is short-circuited to +5 V.

4.20 ln Fig. 4.21, which of the segments have to be
active to display the following digits:

a. 2 b. 6

C. 8

4.21 In Fig. 4.23a, V cc = +5 V, all resistors are 1
k.Q, and each LED has a voltage drop of 2
V. Approximately how much cun-ent is there
through an active segment?

4.22 In Fig. 4.25, what is the output when button 7
is pressed? When button 3 is pressed?

4.23 In Fig. 4.27, if button 8 is pressed, which
is the input pin that goes into the low state?
What does the ABCD output equal?

4.24 In Fig. 4.32d, what does Y equal for each of
the following inputs:

a. 000110 b. 011001
C. 011111 d. 111100

4.25 In Fig. 4.33, what does Y equal for the
following inputs:

a. 1111 0000 1111 0000
b. 0101 1010 1100 0111
C. 1110 1011 1101 0001
d. 0001 0101 0011 0110

4.26 In Fig. 4.56, the 8-bit register is a logic circuit
that stores byte A 1 ... A0. What does byte Y1

... Yo equal for each of these conditions:

a. A1 ... Ao= 1000 0111 and INVERT= 0.
b. A1 ... Ao= 0011 1100 and INVERT= I.
c. A7 ... Ao= 1111 0000 and INVERT= 0.
d. A7 ... Ao= 1110 0001 and INVERT= 1.

8-bit register

4.27 In Fig. 4.57 on the next page, each register
is a logic circuit that stores a 6-bit number.
The left register stores A5 ••• Ao and the right
register stores B5 ..• B0. What value does the
output signal labeled EQUAL have for each of
these:

Data-Processing Circuits

A register B register
A5 A4 A3 A2 A 1 A0 B5 B4 B3 B2 B1 B0

TFFr~~~o

EQUAL

a. A 7 ••• Ao is less than B1 ... Bo.
b. A1 ... Ao equals B1 ... Bo.
c. A1 ... Ao is greater than B1 ... B+

4.28 In Fig. 4.58, what does X8 equal for each of
the following X7 ••• Xo inputs:

a. 0000 1111 b. 1111 0001
C. 1010 1110 d. 1011 1100

4.29 In Fig. 4.58, what changes can you make to
get a 9-bit output with even parity?

4.30 In Fig. 4.58, assuming the circuit is working
all right, what will the logic probe indicate for
each of the following:

a. Input data has even parity.
b. Input data has odd parity.
c. Pins 3 and 4 are grounded.

4.31 Write the (X > Y) equation for a 4-bit
comparator.

4.32 Show how magnitude of two IO-bit numbers
can be compared using IC 7485.

4.33 Suppose a ROM has 8 input address lines.
How many memory locations does it have?

4.34 Two 74S370s are connected in parallel. To
address all memory locations, how many bits
must the binary address have?

4.35 In Fig. 4.40, if ABC= 011, what does Y3Y2Y1 Yo
equal?

4.36 Draw a ROM circuit similar to the one in Fig.
4.40 that produces these outputs:

Y3 =ABC

Y2 ABC+ABC

Yi= ABC+ ABC+ ABC

Yo =ABC+ ABC+ ABC+ ABC

+5 V 1 2 8 9 10 11 12 13
14

: ODDINPUT
EVEN INPUT 74180

7

~ODD OUTPUT

Digital Principles and Applications

4.37 Draw a PROM circuit similar to the one in Fig.
4.41 that generates the Y3 to Yo output given in
Table 4.11.

4.38 What is the Boolean equation for Y3 in Fig.
4.59 on the previous page? For Y2? For Yi?
For Yo?

4.39 Draw a 4-input and 4-output PAL circuit that
has the truth table of Table 4.11.

A B C D

Ri Ri Kl ~

Programmable AND array

4.40 Write. the Boolean expression for the output
Y3 in Fig. 4.42.

4.41 The input to the PLA in Fig. 4.47 is ABCD
= 0011. What segments of the indicator are
illuminated and what decimal number is
displayed? What if ABCD = 1001? What
about 1111?

4.42 Will there be any ambiguity ifsegmentgofthe
7-segment indicator in Fig. 4.47 is defective
(burned out)? What numbers are displayed?

Fixed OR array

Data-Processing Circuits

AIM:. The· aim of this. experiment is to dis
play one of two BCD numbers in a 7-..segment
display,

Theory: .·. BCffm.~bt!rs ca!lbe se
lected by activating select line of a multiplexer.

The multiplexer output then is one of the two
BCD numbers. These outputs can be connect
ed tO four inputs of a ?-segment decoder/driv
er. The outputs of this driver can be connected
to a ?-segment display to display.the decimal
equivalent of the BCD number selected.

Apparatus: 5 V DC Power supply, Multime
ter, and Bread Board

L Multiplexer
2. It means that active low.
3. Demultiplexer
4. ASCD= HLHL

It will be high since STROBE is high.
6. The outputs are active low.

Y10 is low; all other outputs are high.
8. BCD stands for binary-coded decimal.

Work element: Verify the truth table of
multiplexerIC 74157. Note that STROBE is an
input .and find its use. The common select line
applies to all four 2-to- l multiplexers. Verify
the truth table ofIC7446 for BCD inputs. Select

~
BCD input

resistance values to be connected in the range
220 to 1000 ohm. This is to ensure that entire
power supply voltage does not drop across the
LED of display. Interconnect properly all the
different units and verify.

9. LED stands for light-emitting diode.
IO. See Fig. 4.21.
11. Each segment is an LED.
12. An encoder converts an active input

signal into a coded output signal, for
instance, decimal to binary.

13. The TTL 74147 is a decimal-to-binary
encoder.

Digital Principles and Applications

14. The output for an exclusive-OR gate is 22. PROM stands for programmable read-
high only when an odd number of inputs only memory.
are high. 23. PAL stands for programmable array

15. See Fig. 4.30. logic.
16. There are an even number of ls (highs). 24. The AND array is programmable; the
17. True. OR array is fixed.
18. Three:X= Y,X> YandX< Y. 25. PLA stands for programmable logic
19. Three. array.
20. ROM stands for read-only memory. 26. In a PLA, both the AND array and the
21. A 512 x 8 ROM is arranged as 512 OR array are programmable.

eight-bit words. 27. Decimal 3; segments abcdg

Number Systems and Codes

+ Convert decimal numbers to binary and convert binary numbers to decimal
+ Convert binary and decimal numbers to octal and convert octal numbers to binary

and decimal
+ Convert binary and decimal numbers to hexadecimal and convert hexadecimal

numbers to binary and decimal
+ Describe the ASCII code, excess-3 code, and Gray code
+ Understand Error Detection and Correction Code

5.1 BINARY NUMBER SYSTEM

The bina,y number system is a system that uses only the digits O and I as codes. All other digits (2 to 9) are
thrown away. To represent decimal numbers and letters of the alphabet with the binary code, you have to
use different strings of binary digits for each number or letter. The idea is similar to the Morse code, where
strings of dots and dashes are used to code all numbers and letters. What follows is a discussion of decimal
and binary counting.

Decimal Odometer

To understand how to count with binary numbers, it helps to review how an odometer (miles indicator of a
car) counts with decimal numbers. When a car is new, its odometer starts with

00000

After 1 km the reading becomes

00001

Digital Principles and Applications

Successive kms produce 00002, 00003, and so on, up to

00009

A familiar thing happens at the end of the tenth km. When the units wheel turns from 9 back to 0, a tab on
this wheel forces the tens wheel to advance by 1. This is why the numbers change to

00010

Reset-and-Carry

The units wheel has reset to O and sent a carry to the tens wheel. Let's call this familiar action reset and cany
The other wheels of an odometer also reset and carry. For instance, after 999 kms the odometer shows

00999

What does the next km do? The units wheel resets and caiTies, the tens wheel resets and carries, the
hundreds wheel resets and carries, and the thousands wheel advances by 1, to get

01000

Binary Odometer

Visualize a binary odometer as a device whose wheels have only two digits, 0 and 1. When each wheel turns,
it displays 0, then 1, then back to 0, and the cycle repeats. A four-digit binary odometer starts with

0000 (zero)

After 1 mile, it indicates

0001 (one)

The next mile forces the units wheel to reset and carry, so the numbers change to

0010 (two)

The third mile results in

OOll (three)

After 4 miles, the units wheel resets and carries, the
second wheel resets and carries, and the third wheel ad
vances by 1:

0100 (four)

Table 5.1 shows all the binary numbers from OOOOto
l ll 1, equivalent to decimal O to 15. Study this table care
fully and practice counting from 0000 to 1111 until you
can do it easily. Why? Because all kinds oflogic circuits
are based on counting from 0000 to 1111.

The word bit is the abbreviation for binary digit. Table
5.1 is a list of 4-bit number from 0000 to 1111. When a
binary number has 4 bits, it is sometimes called a nib
ble. Table 5.1 shows 16 nibbles (0000 to llll). A binary
number with 8 bits is known as a byte; this has become
the basic unit of data used in computers. You will learn

Binary

OHO
0111
1000
1001
1010
nm
HOO
1101
1110
llll

4-Digit Binary Numbers

Decimal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

NumberSystems and Codes

more about bits, nibbles, .and bytes in later chapters. For now memorise these definitions:

bit =X

nibble = XXXX

byte = XXXXXXXX

where the X may be a O oral.

1. What is the binary number~or dycimal 13?
2. Whatis the decimal.equivalent ofbim1ry 1001?
3. How many binary digits (bits)are required to represent decimal 15?

5.2 BINARY-TO-DECIMAL CONVERSION

Table 5.1 lists the binary numbers from 0000 to 111 L But how do you convert larger binary numbers into
their decimal values? For instance, what does binary 101001 represent in decimal numbers? This section
shows how to convert a binary number quickly and easily into its decimal equivalent.

Positional Notation and Weights

We can express any decimal integer (a whole number) in units, tens, hundreds, thousands, and so on. For
instance, decimal number 2945 may be written as

2945 = 2000 + 900 + 40 + 5

In powers of 10, this becomes

2945 = 2(103) + 9(102
) + 4(101) + 5(10°)

The decimal number system is an example of positional notation, each digit position has a weight or
value. With decimal numbers, the weights are units, tens, hundreds, thousands, and so on. The sum of all the
digits multiplied by their weights gives the total amount being represented. In the foregoing example, the 2
is multiplied by a weight of 1000, the 9 by a weight of 100, the 4 by a weight of 10, and the 5 by a weight of
1 ; the total is

2000 + 900 + 40 + 5 = 2945

Binary Weights

In a similar way, we can rewrite any binary number in terms of weights. For instance, binary number 111
becomes

111=100+10+1

In decimal numbers, this may be rewritten as

7=4+2+1

(5.1)

(5.2)

Writing a binary number as shown in Eq. (5 .1) is the same as splitting its decimal equivalent into units, 2s,
and 4s as indicated by Eq. (5.2). In other words, each digit position in a binary number has a weight. The least

Digital Principles and Applications

significant digit (the one on the right) has a weight of 1. The
second position from the right has a weight of 2; the next, 4;
and then 8, 16, 32, and so forth. These weights are in ascending
powers of 2; therefore, we can write the foregoing equation as

7= 1(22)+ 1(21)+ 1(2°)

Whenever you look at a binary number, you can find its deci
mal equivalent as follows:

1. When there is a 1 in a digit position, add the weight of
that position.

2. When there is a O in a digit position, disregard the weight

Bit Position

1 •• (Right most)

3

of that position. For example, binary number 101 has a decimal equivalent of

4+0+1=5

As another example, binary number 1101 is equivalent to

8+4+0+1=13

Still another example is 1100 l, which is equivalent to

16 + 8 + 0 + 0 + 1 = 25

Streamlined Method

We can streamline binary-to~decimal conversion by the following procedure:

1. Write the binary number.

Binary System

Weight

1
2
4
8

16
32
64

128

2. Directly under the binary number write 1, 2, 4, 8, 16 ... , working from right to left.
3. If a zero appears in a digit position, cross out the decimal weight for that position.
4. Add the remaining weights to obtain the decimal equivalent.

As an example of this approach, let us convert binary 101 to its decimal equivalent:

STEP 1 101
STEP 2 4 2 1
STEP 3 4 2 1
STEP4 4 + 1 = 5

As another example, notice how quickly 10101 is converted to its decimal equivalent:

1 0 1 0 1

16 g 4 2 1 -+ 21

Fractions

So far, we have discussed binary integers (whole numbers). How are binary fractions converted into
corresponding decimal equivalents? For instance, what is the decimal equivalent of0.101? In this case, the
weights of digit positions to the right of the binary point are given by t, t, t,

1
~ , and so on. In powers of 2,

the weights are

______________ N_u_m_b_er_S_y_st_em_s_a_n_d_C_od_e_s _____________ ~

or in decimal form:

0.5 0.25 0.125 0.0625 etc.

Here is an example. Binary fraction 0.101 has a
decimal equivalent of

0.1 0 1

0.5 + O+ 0.125 = 0625

Another example, the decimal equivalent of
0.1101 is

0.1 1 0 1

0.5 + 0.25 + 0 + 0.0625 = 0.8125

Mixed Numbers

For mixed numbers (numbers with an integer
and a fractional part), handle each part accord
ing to the rules just developed. The weights for a
mixed number are

etc. 23 22 21 20 · T 1 T 2 T 3 etc.

i
Binary point

For future reference, Table 5.3 lists powers of
2 and their decimal equivalents and the numbers
ofK and M. The abbreviation K stands for 1024.

Powers of 2

1
2
4
8
16
32
64
128
256
512

1,024
2,048
4,096
8,192
16,384
32,768
65,536
131,072
262,144
524,288

1,048,576
2,097,152
4,194,304

Abbreviation

64K
128K
256K
5I2K

l,024K=lM
2,048K=2M
4,096K::4M

Therefore, lK means 1024. 2K stands for 2048, 4K represents 4096, and so on. The abbreviation M stands
for 1,048,576, which is equivalent to 1024K (1024 x 1024 = 1,048,576). A memory chip that stores 4096 bits
is called a "4K memory." A digital device might have a memory capacity of 4,194,304 bytes. This would be
referred to as a "4-megabyte (Mb) memory."

0

%

Convert binary 110.001 to a decimal number.

0.125 .'"'"7 6.125

What is the decimal value of binary l O 11.11?

2

A computer has a 2 Mb memory. What is the decimal equivalent of 2 Mb?

Digital Principles and Applications

Solution

This means that the computer can store 2,097,152 bytes iri its· memory.

4. What is the decimal equivalent of 1()010?
5. What is the binary equivalentof35'?
6. A binary number has 9 bits. What is the binary weight of the most significantbit'?

5.3 DECIMAL-TO-BINARY CONVERSION

One way to convert a decimal number into its binaiy equivalent is to reverse the process described in the
preceding section. For instance, suppose that you want to convert decimal 9 into the corresponding binary
number. All you need to do is express 9 as a sum of powers of 2, and then write 1 s and Os in the appropriate
digit positions:

As another example:

Double Dabble

9=8+0+0+1

-:-7 1001

25 = 16 + 8 + 0 + 0 + 1

-:-7. 11001

A popular way to convert decimal numbers to binary numbers is the double~dabble method. In the double
dabble method you progressively divide the decimal number by 2, writing down the remainder after each
division. The remainders, taken in reverse order, form the binary number. The best way to understand the
method is to go through an example step by step. Here is how to convert decimal 13 to its binary equivalent

Step 1 Divide 13 by 2, writing your work like this:

6
2)13 I -:-7 (first remainder)

The quotient is 6 with a remainder of 1.

Step 2 Divide 6 by 2 to get

3
2)6
2)13

This division gives 3 with a remainder of 0.

0 -:-7 (second remainder)

l -:-7 (first remainder)

Number Systems and Codes

Step 3 Again you divide by 2:

I
2 f3 0 ~ (second remainder)

2)6 I~ (first remainder)

2)13 1 ~ (first remainder)

Here you get a quotient of I with a remainder of I.

Step 4 One more division gives

0
I r (fourth ,emainde,) 2)1

2)3
1

2)6 0 Read down

2)13
I

In this final division 2 does not divide into 1; thus, the quotient is O with a remainder of 1.

Whenever you arrive at a quotient of O with a remainder of 1, the conversion is finished. The remainders
when read downward give the binary equivalent. In this example, binary 1101 is equivalent to decimal 13.

There is no need to keep writing down 2 before each division because you are always dividing by 2. Here
is an efficient way to show the conversion of decimal 13 to its binary equivalent:

0

~1 1

3 Read down

6
2)13

Fractions

As far as fractions are concerned, you multiply by 2 and record a carry in the integer position. The carries read
downward are the binary fraction. As an example, 0.85 converts to binary as follows:

0.85 x 2 = 1.7 = 0.7 with a carry of I

0.7 x 2 = 1.4 = 0.4 with a carry of 1

0.4 x 2 = 0.8 = 0.8 with a carry ofO

0.8 x 2 = 1.6 = 0.6 with a carry of 1

0.6 x 2 = 1.2 = 0.2 with a carry of 1

0.2 x 2 = 0.4 = 0.4 with a carry of 0

Read down

Reading the carries downward gives binary fraction 0.110110. In this case, we stopped the conversion
process after getting six binary digits. Because of this, the answer is an approximation. If more accuracy is
needed, continue multiplying by 2 until you have as many digits as necessary for your application.

Digital Principles and Applications

Useful Equivalents

Table 5.4 shows some decimal-binary equivalences. This will be useful in the future. The table has an
important property that you should be aware of. Whenever a binary number has all 1 s (consists of only 1 s),
you can find its decimal equivalent with this formula:

Decimal = 211
-

1

where n is the number of bits. For instance, 1111 has 4 bits; therefore, its decimal equivalent is

Decimal = 24 - 1 = 16 -'- I = 15

Decimal

l
3
7

15
31
63

127
255
511

1,023
2,047
4,095
8,191

16,383
32,767
65,535

As another example, 1111 1111 has 8 bits, so

Decimal-Binary Equivalences

11
111
1111
I 1111

Binary

11 1111
111 lll I
Ill! 1111
1 llll 1111
111111 llll
111 llll Ill!
ll 11 11 ll 1111
l llll llll 1111
ll llll 11111111
Ill 1111 1111 llll
1111 1111 llll 1111

Decimal= 28 - 1 =256-1 = 255

BCD-8421 and BCD-2421 Code

Binary Coded Decimal (BCD) refers to rep
resentation ofdigits 0-9 in decimal system
by 4-bit unsigned binary numbers. The usual
method is to follow 8421 encoding which
employs conventional route of weight place
ments like 8 representing the weight of the 4th.
place (as 24-1 = 8), 4, i.e. 23- 1 of the 3rd place,
2, i.e. 22- 1 of the 2nd place and 1, i.e. 21- 1

of the 1st place. The 2421 code is similar to
8421 code except for the fact that the weight
assigned to 4th place is 2 and not 8. The deci
mal numbers 0-9 in these two codes then can
be represented as shown in Table 5.5.

BCD-8421 and BCD-2421 Code

Decimal

0
1
2
3
4
5
6
7
8
9

BCD-8421

0000
0001
0010
0011
0100
0101
0110
Olll
1000
1001

BCD-2421

0000
0001
0010
0011'
0100
1011
HOO
1101
1110
llll

Number Systems and Codes

As an example, decimal number 29 in BCD-8421 is written as 00101001 (0010 representing 2 and 1001
representing 9) while in BCD-2421, it is written as 00101111 (0010 representing 2 and 1111 representing
9).

and

Convert decimal 23.6 to a binary number.

Split decimal 23.6 into an integer of 23 · and a fraction of 0.6, arid apply double dabble to each

0 1

1 0

2

5 1

11 I
2)23

0,6 x 2 = 1.2 = 0.2 with a carry ofl

0.2 x 2 = 0.4 = 0.4with a carry ofO

0.4 x 2 = 0.8 = 0.8 with a carry ofO

0.8 x 2 = L6 = 0.6 with a carry ofl

0.6 x 2 = 0.2 0.2 vvith a carry of 1

Read down

Read down

The binary number is 10111.1001 L This 10-bit numberis an approximation of decimal 21.6 because we terminated
the conversion of the fractional part after 5 bits.

Solution

A digital computer processes binary numbers that are 32 bits long. If a 32-bit number has all
1 s, what is its decimal equivalent?

Decimal a:231 - =(28)(28)(28)(28)-· I

= (256)(256)(256)(256)-l 4,294,967,295

7. Whatis double dabble?
A binafy nmnber is composed of twelve Ts. What is its decimal equivalent?

9. What is the binary number for decimal 255?

5.4 OCTAL NUMBERS

The base of a number system equals the number of digits it uses. The decimal number system has a base of
10 because it uses the digits O to 9. The binary number system has a base of 2 because it uses only the digits
0 and I. The octal number system has a base of 8. Although we can use any eight digits, it is customary to
use the first eight decimal digits:

0, 1,2,3,4,5,6, 7

Digital Principles and Applications

(There is no 8 or 9 in the octal number code.) These digits, 0 through 7, have exactly the same physical
meaning as decimal symbols; that is, 2 stands for••, 5 symbolizes , and so on.

Octal Odometer

The easiest way to learn how to count in octal numbers is to use an octal odometer. This hypothetical device
is similar to the odometer of a car, except that each display wheel contains only eight digits, numbered O to
7. When a wheel turns from 7 back to 0, it sends a carry to the next-higher wheel.

Initially, an octal odometer shows

0000 (zero)

The next 7 kms produces readings of

0001 (one)

0002 (two)

0003 (three)

0004 (four)

0005 (five)

0006 (six)

0007 (seven)

At this point, the least-significant wheel has run out of digits. Therefore, the next km forces a reset and
carry to obtain

0010 (eight)

The next 7 kms produces these readings: 0011, 0012, 0013, 0014, 0015, 0016, and 0017. Once again, the
least-significant wheel has run out of digits. So the next km results in a reset and carry:

0020 (sixteen)

Subsequent kms produce readings of 0021, 0022, 0023, 0024, 0025, 0026, 0027, 0030, 0031, and so on.

You should have the idea by now. Each km advances the least-significant wheel by one. When this wheel
runs out of octal digits, it resets and carries. And so on for the other wheels. For instance, if the odometer
reading is 6377, the next octal number is 6400.

Octal-to-Decimal Conversion

How do we convert octal numbers to decimal numbers? In the octal number system each digit position
corresponds to a power of 8 as follows:

g3 g2 gI gO. g-1 g-2 g-3

i
Octal point

Therefore, to convert from octal to decimal, multiply each octal digit by its weight and add the resulting
products. Note that s0 = I.
For instance, octal 23 converts to decimal like this:

2(8 1) + 3(8°) = 16 + 3 = 19

Number Systems and Codes

Here is another example. Octal 257 converts to

2(8 1)+5(81)+7(8°)= 128+40+7= 175

Decimal-to-Octal Conversion

How do you convert in the opposite direction, that is, from decimal to octal? Octal dabble, a method similar
to double dabble, is used with octal numbers. Instead of dividing by 2 (the base of binary numbers), you
divide by 8 (the base of octal numbers) writing down the remainders after each division. The remainders in
reverse order form the octal number. As an example, convert decimal 17 5 as follows:

0
8)2
8 }"TI
8)175

You can condense these steps by writing

0

2

21
8)175

Thus decimal 175 is equal to octal 257.

Fractions

2 ~ (third remainder)

5 ~ (second remainder)

7 ~ (first remainder)

2~ ·1 Read down

With decimal fractions, multiply instead of divide, writing the carry into the integer position. An example of
this is to convert decimal 0.23 into an octal fraction.

0.23 x 8 = 1.84 = 0.84 with a carry of 11
0.84 x 8 = 6.72 = 0.72 with a carry of6 Read down

0.72 x 8 = 5.76 = 0.76 with a carry of5
etc.

The carries read downward give the octal fraction 0.165. We terminated after three places; for more
accuracy, we would continue multiplying to obtain more octal digits.

Octal-to-Binary Conversion

Because 8 (the base of octal numbers) is the third power of 2 (the base of binary numbers), you can convert
from octal to binary as follows: change each octal digit to its binary equivalent. For instance, change octal 23
to its binary equivalent as follows:

2 3
t t

010 Oll

Here, each octal digit converts to its binary equivalent (2 becomes O 10, and 3 becomes O 11). The binary
equivalent of octal 23 is O 10 011, or O 10011. Often, a space is left between groups of 3 bits; this makes it
easier to read the binary number.

Digital Principles and Applications

As another example, octal 3574 converts to binary as follows:

3
J,

011

5
J,

101

7
J,

111

4
J,

100

Hence binary O 11101111100 is equivalent to octal 3574. Notice how much easier the binary number is to
read ifwe leave a space between groups of3 bits: 011 101 111 100.

Mixed octal numbers are no problem. Convert each octal digit to its equivalent binary value. Octal 34.562
becomes

Binary-to-Octal Conversion

3
J,

011

4 5
J, J,

100 101

6
J,

110

2
J,

010

Conversion from binary to octal is a reversal of the foregoing procedures. Simply remember to group the bits
in threes, starting at the binary point; then convert each group of three to its octal equivalent (Os are added at
each end, if necessary). For instance, binary number 1011.01101 converts as follows:

1011.01101 ~ 001
J,
1

011. 011
J, J,
3 3

010
J,
2

Start at the binary point and, working both ways, separate the bits into groups of three. When necessary,
as in this case, add Os to complete the outside groups. Then convert each group of three into its binary
equivalent. Therefore:

1011.01101 = 13.32

The simplicity of converting octal to binary and vice versa has many advantages in digital work. For one
thing, getting information into and out of a digital system requires less circuitry because it is easier to read
and print out octal numbers than binary numbers. Another advantage is that large decimal numbers are more
easily converted to binary if first converted to octal and then to binary, as shown in Example 5.6.

What is the binary equivalent of decimal 363?

Solution One approach is double dabble. Another approach is octal dabble, followed by octal-to~binary conversion.
Here is how the second method works:

:J
Next, convert octal 553 to its binary equivalent:

5
J,

101 101

3
J,

The double-dabble approach would produce the same answer, hut it is tedious because you h,aye to divide by 2
times before the conversion terminates.

Number Systems and Codes

10. What are the digits used in the octal number system?
What is the oc~l,numberfor .binary. l ll? What is the decimal number. for binary 111?

5.5 HEXADECIMAL NUMBERS

Hexadecimal numbers are used extensively in
microprocessor work. To begin with, they are much
shorter than binary numbers. This makes them easy to
write and remember. Furthermore, you can mentally
convert them to binary whenever necessary.

The hexadecimal number system has a base of 16.
Although any 16 digits may be used, everyone uses 0
to 9 and A to F as shown in Table 5.6. In other words,
after reaching 9 in the hexadecimal system, you continue
counting as follows:

A,B,C,D,E,F

Hexadecimal Odometer

The easiest way to learn how to count in hexadecimal
numbers is to use a hexadecimal odometer. This
hypothetical device is similar to the odometer of a car,
except that each display wheel has 16 digits, numbered 0
to F. When a wheel turns from F back to 0, it sends a carry
to the next higher wheel.

Initially, a hexadecimal odometer shows

0000 (zero)

The next 9 kms produces readings of

0001 (one)

0002 (two)

0003 (three)

0004 (four)

0005 (five)

0006 (six)

0007 (seven)

0008 (eight)

0009 (nine)

Decimal

0
l
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Hexadecimal Digits

Binwy

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal

0
l
2
3
4
5
6
7
8
9
A
B
C
D
E
F

The next 6 kms gives

OOOA (ten)

OOOB (eleven)

oooc (twelve)

OOOD (thirteen)

OOOE (fourteen)

OOOF (fifteen)

Digital Principles and Applications

At this point, the least-significant wheel has run out of digits. Therefore, the next km forces a reset and
carry to obtain

0010 (sixteen)

The next 15 kms produces these readings: 0011, 0012, 0013, 0014, 0015, 0016, 0017, 0018, 0019, 001A,
OOIB, OOlC, 001D, OOlE, and OOlF. Once again, the least significant wheel has run out of digits. So, the next
km results in a reset and carry:

0020 (thirty-two)

Subsequentkmsproducereadingsof0021,0022,0023,0024,0025,0026,0027,0028,0029,002A,002B,
002C, 002D, 002E, and 002F.

You should have the idea by now. Each km advances the least-significant wheel by one. When this wheel
runs out of hexadecimal digits, it resets and carries, and so on for the other wheels. For instance, here are
three more examples:

Number

835C

A47F

BFFF

Hexadecimal-to-Binary Conversion

Next number

835D

A480

cooo

To convert a hexadecimal number to a binary number, convert each hexadecimal digit to its 4-bit equivalent
using the code given in Table 5.5. For instance, here's how 9AF converts to binary:

9 A F
J, J, J,

1001 1010 1111

As another example, C5E2 converts like this:

C 5 E 2
J, J, J, J,

1100 0101 1110 0010

Binary-to-Hexadecimal Conversion

To convert in the opposite direction, from binary to hexadecimal, again use the code from Table 5.5. Here are
two examples. Binary 1000 llOO converts as follows:

1000
J,

8

Binary 1110 1000 1101 0110 converts like this:

1110 1000
J, J,

E 8

llOO
J,

1101
J,

D

C

0110
J,

6

Number Systems and Codes

In both these conversions, we start with a binary number and wind up with the equivalent hexadecimal
number.

Hexadecimal-to-Decimal Conversion

How do we convert hexadecimal numbers to decimal numbers? In the hexadecimal number system each
digit position corresponds to a power of 16. The weights of the digit positions in a hexadecimal number are
as follows

163 162 16 1 16° . 16-1 16-2 16-3

i
Hexadecimal point

Therefore, to convert from hexadecimal to decimal, multiply each hexadecimal digit by its weight and add
the resulting products. Note that 16° = 1.

Here's an example. Hexadecimal F8E6.39 converts to decimal as follows:

F8E6 = F(163) + 8(162) + E(16 1) + 6(16°) + 3(16-1) + 9(16-2)

= 15(163) + 8(162) + 14(161) + 6(16°) + 3(16-1) + 9(16-2)

= 61,440 + 2048 + 224 + 6 + 0.1875 + 0.0352

= 63,718.2227

Decimal-to-Hexadecimal Conversion

One way to convert from decimal to hexadecimal is the hex dabble. The idea is to divide successively by 16,
writing down the remainders. Here's a sample of how it's done. To convert decimal 2479 to hexadecimal, the
first division is

154

16)2479

15 ~F

In this first division, we get a quotient of 154 with a remainder of 15 (equivalent to F). The next step is

9 lO~A

154

16)2479

15 ~F

Here we obtain a quotient of9 with a remainder of 10 (same as A). The final step is

0

9

154

16)2479

9~9 l
lO~A

15~F

Therefore, hexadecimal 9AF is equivalent to decimal 2479.

Read down

Notice how similar hex dabble is to double dabble. Notice also that remainders greater than 9 have to be
changed to hexadecimal digits (10 becomes A, 15 becomes F, etc.).

Digital Principles and Applications

Using Appendix 1 *

A typical microcomputer can store up to 65,535 bytes. The decimal addresses of these bytes are from O to
65,535. The equivalent binary addresses are from

0000

1111

0000

1111
0000

1111

0000

1111

The first 8 bits are called the upper byte, and the second 8 bits are the lower byte.

If you have to do many conversions between binary, hexadecimal, and decimal, learn to use Appendix 1. It
has four headings: binwy, hexadecimal, upper byte, and lower byte. For any decimal number between O and
255, you would use the binary, hexadecimal, and lower byte columns. Here is the recommended way to use
Appendix 1. Suppose you want to convert binary 0001 1000 to its decimal equivalent. First, mentally convert
to hexadecimal:

0001 1000 ~ 18 (mental conversion)

Next, look up hexadecimal 18 in Appendix 1 and read the corresponding decimal value from the lower
byte column:

18 ~ 24 (look up in Appendix 1)

For another example, binary 1111 0000 converts like this:

1111 0000 ~ FO ~ 240

The reason for mentally converting from binary to hexadecimal is that you can more easily locate a
hexadecimal number in Appendix 1 than a binary number. Once you have the hexadecimal equivalent, you
can read the lower-byte column to find the decimal equivalent.

When the decimal number is greater than 255, you have to use both the upper byte and the lower byte in
Appendix 1. For instance, suppose you want to convert this binary number to its decimal equivalent:

1110 1001 0 ll l 0100

First, convert the upper byte to its decimal equivalent as follows:

1110 1001 ~ E9 ~ 59,648 (upper byte)

Second, convert the lower byte to its decimal equivalent:

0111 0100 ~ 74 ~ 116 (lower byte)

Finally, add the upper and lower bytes to obtain the total decimal value:

59,648 + 116 = 59,764

Therefore, binary 1110 1001 0111 0100 is equivalent to decimal 59,764.

Once you get used to working with Appendix 1, you will find it to be a quick and easy way to
convert between the number systems. Because it covers the decimal numbers from Oto 65,535, Appendix 1
is extremely useful for microprocessors where the typical memory addresses are over the same decimal
range.

* A number of hand calculators will convert binary, octal, decimal and hexadecimal numbers.

Number Systems and Codes

A computer memory can store thousands of binary instructions and data. A typical
microprocessor has 65,536 addresses, each storing a byte. Suppose that the first 16 addresses
contain these bytes:

OOll llOO

1100 llOl

0101 Olll

0010 1000

1111 0001

0010 1010

1101 0100

0100 0000

Olll 0111

llOO 0011

1000 0100

0010 1000

0010 0001

OOll 1010

OOll lllO

0001 1111

Convert these bytes to their hexadecimal equivalents.

Solution Here are the stoted bytes and their hexadecimal equivalents:

00101000

llUOOOl

00101010

HOfOlOO
01000000

Digital Principles and Applications

that it contains 3C. Either way, we obtain the .same information. But notice how much easier it
think 3C than it is to say, write, and thinkOO H 1100. In otherwords, hexadecimal numbers are tm1ch,easiiehFornec1nle

to work with.

Convert the hexadecimal numbers of the preceding example to their decimal equivalents.

Solution The first address contains 3C, which converts like this:

3(16 1)+C{l6°)=48+ 12=60

Even easier, look up the decimal equivalent of 3C in Appendix 1, and you get 60. Either by powers of 16 or with
reforence to Appendix 1, we can convert the other memory contents to get the following:

Memory contents Hexadecimal equivalents Decimal equivalents

0011 llOO 3C 60

1100 1101 CD 205

01010111 57 87

00101000 28 40

ll lJ 0001 Fl 241

00101010 2A 42

1101 0100 D4 212

01000000 40 64

om om 77

1100 0011 C3

10000100 84

00101000 28

00100001 21

0011 1010 3A

oonn10 3E

0001 llll 1F

Convert decimal 65,535 to its hexadecimal and binary equivalents.

Solution Use hex dabble as follows:

0

15

255

4095
16)65,535

..
1.5 ... ~.F ··1··

15~F

15~F

15~F

Therefore, decimal 65,535 is equivalent to hexadecimal FF'FE

Next, convert from hexadecimal to binary as follows:

F

llll

F
i

Illl

F
i

1111

Read down

This means that hexadecimal FFFF is equivalent to binary 1111 1111 · 1111 1111.

Number Systems and Codes

Show how to use Appendix l to convert decimal 56,000 to its hexadecimal and binary
equivalents.

Solution Th([! first thing to dois tolocate the largest decimal number equal to 56.000 or less in Appendix 1. The
number is 55,808, which converts like this:

55,80K-,i. DA (upper byte)

Next, you need to subtract this upper byte from the originalnumber:

56,000 55,808 = 192 (difference)

This difference is always less than 256 and represents the lower byte, which Appendix 1 converts as follows:

192 -,i. co
Now, combine the upper and lower byte to obtain

DACO

which you can mentally convert to binary:

DACO -,i. 1101 1010 llOO 0000

Convert Table 5.4 into a new table with three column headings: "Decimal," "Binary," and
"Hexadecimal."

Solution This is easy. Convert each group of bits to its hexadecimal equivalent as shown in Table 5.7.

Decimal-Binary-Hexadecimal Equivalences

Decimal Binary,

1 1
3 11
7 111

15 1 lll
31 11 lll
63 111111

127 1111111
255 11111111
511 111111 lll

1,023 lll 1111 ll l
2,047 lllllllllll
4,095 111111111111
8,191 lll 11111 lll ll

16,383 ll ll 1111111111
32,767 111111111111 l ll
65,535 111111111 ll lll ll

What are the symbols used in hexadecimalnumbers?
Whatis the binary equivalent of hexadecimal 3C?
What is the decimal equivalent of hexadecimal 3C?

hexadecimal

l
3
7
F
IF
3F
7F
FF
lFF
3FF
7FF
FFF
IFFF
3FFF
7FFF
FFFF

Digital Principles and Applications

To get information into and out of a computer, we need to use some kind of alphanumeric code (one for let
ters, numbers, and other symbols). At one time, manufacturers used their own alphanumeric codes, which
led to all kinds of confusion. Eventually, industry settled on an input-output code known as the American
Standard Code for Information Interchange (ASCII, pronounced ask' -ee). This code allows manufacturers to
standardize computer hardware such as keyboards, printers, and video displays.

Using the Code

The ASCII code is a 7-bit code whose format is

X6X5X4X3X2X1Xo

where each Xis a O or a 1. Use Table 5 .8 to find the ASCII code for the uppercase and lowercase letters of the
alphabet and some of the most commonly used symbols. For example, the table shows that the capital letter
A has an X05X4 of 100 and anX3X2X1Xo ofOOOl. The ASCII code for A is, therefore,

1000001

For easier reading, we can leave a space as follows:

100 0001 (A)

The letter a is coded as

110 0001 (a)

More examples are

110 0010 (b)

ASCII Code

010

SP

$
%
&

(
)

*
+

X6X5X4

JOO 101

@ p
A Q
B R
C
D
E
F
G
H
I
J
K
L
M
N
0

110 ill

p
a q
b r
C

d
e
f
g
h

j
k
l

m
n
0

Number Systems and Codes

1100011 (c)

110 0100 (d)

and so on.

Also, study the punctuation and mathematical symbols. Some examples are

010 0100 ($)

010 1011 (+)

011 1101 (=)

In Table 5.7, SP stands for space (blank). Hitting the space bar of an ASCII keyboard sends this into a
microcomputer:

010 0000 (space)

Parity Bit

The ASCII code is used for sending digital data over telephone lines. As mentioned in the preceding chapter,
1-bit errors may occur in transmitted data. To catch these errors, a parity bit is usually transmitted along with
the original bits. Then a parity checker at the receiving end can test for even or odd parity, whichever parity
has been prearranged between the sender and the receiver. Since ASCII code uses 7 bits, the addition of a
parity bit to the transmitted data produces an 8-bit number in this format:

X1X6X5X4 X3X2X1Xo
i

Parity bit

This is an ideal length because most digital equipment is set up to handle bytes of data.

EBCDIC as Alphanumeric Code

There exists few others but relatively less used alphanumeric codes. The EBCDIC is an abbreviation of
Extended Binary Coded Decimal Interchange Code. It is an eight-bit code and primarily used in IBM make
devices. Here, the binary codes ofletters and numerals come as an extension of BCD code. The bit assignments
of EBCDIC are different from the ASCII but the character symbols are the same.

With an ASCII keyboard, each keystroke produces the ASCII equivalent of the designated

character. Suppose that you type PRINT X. What is the output of an ASCII keyboard?

A computer sends a message to another computer using an odd-parity bit. Here is the
message in ASCII code, plus the parity bit:

1100 1000

0100 0101

0100 1100

0100 1100

0100 1111

What do these numbers mean?

Digital Principles and Applications

Solution First, notice that each 8-bit number has odd parity, an indication that no I-bit.errors occurred during
transmission. Next, use Table 5.7 to translate the ASCII.characters. If you do this correctly, you get a message of

HELLO.

15. \\'hat is the ASCII code?
16. What symbol is represented by the ASCII code 100 0000?
17. \\'hat ASCIIcode is used for the percent sign, % ?

5.7 THE EXCESS-3 CODE

The excess-3 code is an important 4-bit code sometimes used with binary-coded decimal (BCD) numbers. To
convert any decimal number into its excess-3 fonn, add 3 to each decimal digit, and then convert the sum to
a BCD number.

For example, here is how to convert 12 to an
excess-3 number. First, add 3 to each decimal digit:

+3

4

Second, convert the sum to BCD fom1:

4
j,

1
+3

5

5
j,

0100 0101

So, 0100 0101 in the excess-3 code stands for

decimal 12.

Table 5.9 shows the excess-3 code: In each case,
the excess-3 code number is 3 greater than the BCD
equivalent. Such coding helps in BCD arithmetic as
9's complement of any excess-3 coded number can
be obtained simply by complementing each bit. Take
for example decimal number 2. Its 9's complement is
9- 2 = 7. Excess-3 code of2 is 0101. Complementing
each bit we get 1010 and its decimal equivalent is 7.
To convert BCD to excess-3 we need an adder and for
the reverse we need a subtractor. These circuits are
discussed in the next chapter. Incidentally, if you need
an integrated circuit (IC) that converts from excess
3 to decimal, look at the data sheet of a 7443. This
transistor-transistor logic (TTL) chip has four input

Take another example; convert 29 to an excess-3
number:

2 9
+3 +3
- -

5 12

j, j,

0101 llOO

After adding 9 and 3, do not carry the 1 into the
next column; instead, leave the result intact as 12,
and then convert as shown. Therefore, 0101 1100 in
the excess-3 code stands for decimal 29.

0000
0001
0010
OOll
0100
0101
0110
0111
1000
1001

0011
0100
0101
OHQ
0111
1000
1001
1010
1011
1100

lines for the excess-3 input and IO output lines for the decoded decimal output.

Number Systems and Codes

5.S

The advantage of such coding will be understood from this example. Let an object move along a track and
move from one zone to another. Let the presence of the object in one zone is sensed by sensors ABC. If
consecutive zones are binary coded then zone-0 is represented by ABC= 000, zone- I by ABC= 001, zone-
2 by ABC= 010 and so on, as shown in Fig. 5.la. Now consider, the object moves from zone-1 to zone-2.
Both BC has to change to sense that movement. Suppose, sensor B (may be an electro-mechanical switch)
reacts slightly late than sensor C. Then, initially ABC= 000 is sensed as if the object has moved in the other
direction from zone-1 to zone-0. This problem can be more prominent if the object moves from zone-3 (ABC
= 011) to zone-4 (ABC= 100) when all three sensors has to change its value. Note that, if zones are gray
coded (Fig. 5.lb) such problem does not appear as between two consecutive zones only one sensor changes
its value.

0 -
Zone No. 0 1 2 3 4 5 6 7

Sensor ABC 000 001 010 011 100 101 110 111
(Binary coded)

(a)

o-
Zone No. 0 1 I 2 3 4 5 6 7

Sensor ABC 000 001 011 010 110 111 101 100
(Gray coded)

(b)

Object moving along a track with sensors: (a) Binary coded, (b) Gray coded

The disadvantage with gray code is that it is not good for arithmetic operation. However, comparing truth
tables of binary coded numbers and gray coded numbers (Table 5.18) we can design binary to gray converter
as shown in Fig. 5.2a and gray to binary converter as shown in Fig. 5.2b. Let's see how these circuits work
by taking one example each.

(MSB)B3 G3 G3 B3

G2 Bz
B2

Bi GI
Bi

(LSB)B0 Go

(a) (b)

(a) Binary to Gray converter, (b) Gray to Binary converter

Consider, a binary number B3B2B i Bo= IO ll. Following the relation shown in Fig. 5.2a we get, G3 = B3 =
1, G2 = B3 ffi B2 = 1 ffi O = 1, G1 = B2 ffi B 1 = 0 ffi 1 = 1 and Go = B 1 ffi Bo= 1 ffi 1 = 0, i.e. G3 G2 G1 Go = 1110
and we can verify the same from truth table.

Digital Principles and Applications

Similarly, for a gray coded number say, G3 G2 G1 Go
= 0111 from Fig. 5.2b we get, B3 = G3 = 0, B2 = G3
EB G2 = 0 EB 1 = 1, Bi= B2 EB G1 = 1 EB l = 0 andBo
= B1 EB G0 = 0 EB 1 = 1, i.e. B3B2B1B0 = 0101. Again
this conversion can be verified from Table 5.10 that
shows the Gray code, along with the corresponding
binary numbers. Each Gray-code number differs from
any adjacent number by a single bit. For instance, in
going from decimal 7 to 8, the Gray-code numbers
change from 0100 to 1100; these numbers differ only
in the most significant bit. As another example, deci
mal numbers 13 and 14 are represented by Gray-code
numbers 1011 and 1001; these numbers differ in only
one digit position (the second position from the right).
So, it is with the entire Gray code; every number dif
fers by only 1 bit from the preceding number.

Besides the excess-3 and Gray codes, there are oth
er binary-type codes. Appendix 5 lists some of these
codes for future reference. Incidentally, the BCD code
is sometimes referred to as the 8421 code because the

5
6
7
8
9

10
11
12
13
14
15

0000
0001
OOil
0010
OllO
Olll
0101
0100
1100
1101
1111
lllO
1010
1011
1001
1000

0110
OUJ
1000
1001
1010
1011
1100
1101
lllO
nn

weights of the digit positions from left to right are 8, 4, 2, and 1. As shown in Appendix 5, there are many
other weighted codes such as the 7421, 6311, 5421, and so on.

5.9 TROUBLESHOOTING WUHA lOGIC PULSER

Figure 5.3 shows a typical logic pulser, a trouble
shooting tool that generates a brief voltage pulse
when its push-button switch is pressed. Because of
its design, the logic pulser (on the left) senses the
original state of the node and produces a voltage
pulse of the opposite polarity. When this happens,
the logic probe (on the right) blinks, indicating a
temporary change of output state.

Thevenin Circuit

Figure 5.4a shows the Thevenin equivalent circuit
for a typical logic pulser. The Thevenin voltage is

Push-button switch

Using a logic pulser and a
logic probe

a pulse with an amplitude of 5 V; the polarity automatically adjusts to the original state of the test node. As
shown, the Thevenin resistance or output impedance is only 2Q. This Thevenin resistance is representative;
the exact value depends on the particular logic pulser being used. Typically, a TTL gate has an output resis
tance between 12Q (low state) and 70Q (high state). When a logic pulser drives the output ofa NAND gate,
the equivalent circuit appears as shown in Fig. 5.4b. Because of the low output impedance (2Q) of the logic
pulser, most of the voltage pulse appears across the load (12 to 70Q). Therefore, the output is briefly driven
into the opposite voltage state.

+5~_f1__

or

+5~--u--

+5~_f1__

or

+5~--u--

Number Systems and Codes

(a)

(c)

2Q

r
2 Q Test

= =

node

rt to
und

2Q

2Q

(b)

+5V

(d)

Short to
supply Test

node

(a) Thevenin equivalent of logic pulser, (b) Logic pulser driving NAND-gate
output, (c) Node stuck in high state

Testing Any Node

You can use a logic pulser to drive any node in a circuit, whether input or output. Almost always, the load
impedance of the node being driven is larger than the output impedance of the logic pulser. For this reason,
the logic pulser can usually change the state of any node in a logic circuit. Also, the pulse width is kept very
short (fractions of a microsecond) to avoid damaging the circuit being tested. (Note: Power dissipation is
what damages ICs. A brief voltage pulse produces only a small power dissipation.)

Stuck Nodes

When is a logic pulser unable to change the state of a node? When the test node is shorted to ground or to
the supply voltage. For instance, Fig. 5.4c shows the test node shorted to ground. In this case, all the voltage
pulse is dropped across the internal impedance of the logic pulser; therefore the test node is stuck at O V, the
low state.

On the other hand, the test node may be shorted to the supply voltage as shown in Fig. 5.4d. Most power
supplies are regulated and have impedances in fractions of 1 Q. For this reason, most of the voltage pulse
is again dropped across the output impedance of the logic pulser, which means that the test node is stuck at
+5V.

Finding Stuck Nodes

If a circuit is faulty, you can use a logic pulser and logic probe to locate stuck nodes. Here's how. Touch both
the logic pulser and the logic probe to a node as shown in Fig. 5.3. If the node is stuck in either state, the logic
pulser will be unable to change the state. So, if the logic probe does not blink, you have a stuck node. Then,
you can look for solder bridges on any trace connected to the stuck node, or possibly replace the IC having
the stuck node.

Digital Principles and Applications

5.10 ERROR DETECTION AND CORRECTION

Error Detection and Correction (EDAC) techniques are used to ensure that data is correct and has not been
corrupted, either by hardware failures or by noise occurring during transmission or a data read operation from
memory. There are many different error correction codes in existence. The reason for different codes being
used in different applications has to do with the historical development of data storage, the types of data
errors occurring, and the overhead associated with each of the error-detection techniques. We discuss some
of the popular techniques here with details of Hamming code.

Parity Code

We have discussed parity generation and checking in detail in Section 4.8. When a word is written into
memory, each parity bit is generated from the data bits of the byte it is associated with. This is done by a tree
of exclusive-OR gates. When the word is read back from the memory, the same parity computation is done on
the data bits read from the memory, and the result is compared to the parity bits that were read. Any computed
parity bit that does not match the stored parity bit indicates that there was at least one error in that byte (or in
the parity bit itself). However, parity can only detect an odd number of errors. If even number of errors occur,
the computed parity will match the read parity, so the error will go undetected. Since memory errors are rare
if the system is operating correctly, the vast majority of errors will be single-bit errors, and will be detected.

Unfortunately, while parity allows for the detection of single-bit errors, it does not provide a means of
determining which bit is in error, which would be necessary to correct the error. Thus the data needs to be
read again if an error is detected. Error Correction Code (ECC) is an extension of the parity concept.

Checksum Code

This is a kind of error detection code used for checking a large block of data. The checksum bits are generated
by summing all the codes of a message and are stored with data. Usually the block of data summed is of
length 512 or 1024 and the checksum results are stored in 32 bits that allow overflow. When data is read, the
summing operation is again done and checksum bits generated are matched with the stored one, If they are
unequal, then an error is detected. Obviously, it can fool the detection system if error occurring at one place
is compensated by the other.

Cycle Redundancy Code (CRC)

CRC code is a more robust error checking algorithm than the previous two. The code is generated in the
following manner. Take a binary message and convert it to a polynomial, then divide it by another predefined
polynomial called the key. The remainder from this division is the CRC. This is stored with the message.
Upon reading the data, memory controller does the same operation, i.e. divides the message by the same key
and compares with CRC stored. If they differ, then the data has been wrongly read or stored. Not all keys are
equally good. The longer the key, the better is the error checking. On the other hand, the calculations with
long keys can get quite complex. Two of the polynomials commonly used are:

CRC-16 =x16 + x15 + x2+ 1

CRC-32 = X32 + X26 + X23 + X22 + X16 + X12 + XJ 1 + X10 + Xg + X7 + X5 + X4 + X2 + x + 1

Usually, series of exclusive-OR gates are used to generate CRC code. We shall see in the next chapter that
t~e sum term arising out of addition is essentially an exclusive-OR operation.

Number Systems and Codes

Hamming Code

Introduced in 1950 by R W Hamming, this scheme allows one bit in the word to be corrected, but is unable to
correct events where more than one bit in the word is in error. These multi-bit errors can only be detected, not
corrected, and therefore will cause a system to malfunction. Hamming code uses parity bits discussed before
but in a different way. For n number of data bits, if number of parity bits required here ism, then

2m;:::m+n+ 1

In the memory word, (i) all bit positions that are of the form i are used as parity bits (like 1, 2, 4, 8, 16,
32 ...) and (ii) the remaining positions are used as data bits (like 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18 ...)

Thus code will be in the form of

Pl P2 D3 P4D5 D6D7 P8 D9 DlO Dll ...

where Pl, P2, P4, P8 ... are parity bits and D3, D5, D6, D7 ... are data bits.

We discuss Hamming code generation with an example. Consider the 7-bit data to be coded is O 110101.
This requires 4 parity bits in position 1, 2, 4 and 8 so that Hamming coded data becomes 11-bit long. To
calculate the value of PI, we check parity of zeroth binary locations of data bits. This is shown in 3rd row of
Fig. 5.5 for this example. Zeroth locations are the places where address ends with a 1. These are D3, D5, D9
and D 11 for 7-bit data. Since we have total odd number of 1 s in these 4 positions P 1 = I. This is calculated as
done in case of parity generation (refer to Section 4.8) by series of exclusive-OR gates through the equation

Pl= D3 EB D5 EB D9 EB Dll

Similarly for P2, we check locations where we have 1 in address of the 1st bit, i.e. D3, D6, D7, D 10 and
D 11. Since there are even number of 1 s, P2 = 1. Proceeding in similar manner and examining parity of 2nd
and 3rd position, we get P4 = 0 and P8 = 0.

0001 0010 OOll 0100 0101 0110 01 ll 1000 1001 1010 1011
Pl P2 D3 P4 D5 D6 D7 PS D9 DlO Dll

Data word (without parity) 0 1 .. 1 0 1 0 1
Pl 1 0 1 0 l 1

P2 0 0 1 0 0 I
P4 0 l 1 0

PS 0 l 0 l
Data with parity 1 0 0 0 1 l 0 0 1 0 1

Calculation of Parity Bits

Next we discuss how error in a Hamming coded data is detected and if it is in single bit, how it is corrected.
We continue with the previous example and consider that the data is incorrectly read in position D 11 so that
11-bit coded data is 10001100100. Figure 5.6 describes the detection mechanism. First of all, we check the
parity of zeroth position and find it to be even. Since Pl = 1, the parity check fails and this is equivalent to
generating a parity bit at the output (last column) following the equation

Parity Pl check bit= D3 EB D5 EB D9 EB Dll EB Pl

This is similar to parity checker in Section 4.8. Note that, in addition to data bits, we have also included the
corresponding parity bit to the input of exclusive-OR gate tree. Proceeding similarly for other positions, we

Digital Principles and Applications

find that except for P4 all other parity checks fail. Note that, even a single failure detects an error. However,
to correct the error, we use the output of last column 1011 (in the order PS P4 P2 Pl) and find its decimal
equivalent which is 11. So the data of location 11, which is D 11 needs to be corrected.

Pl P2 D3 P4 D5 D6 D7 PS D9 Dl0 Dll Parity Parity
check bit

Received data word I 0 0 0 I 1 0 0 I 0 0

Pl I 0 1 0 I 0 Fail 1

P2 0 0 1 0 0 0 Fail 1

P4 0 1 I 0 Pass 0

PS 0 1 0 0 Fail 1

Error detection and correction

Note that, this method detects error in more than one position unlike.the first method but overhead is more.
In simple parity method, we add I additional bit for 7-bit data whreas it is 4 in this method. Also note, by
further increasing this overhead, error in more than one position can also be corrected. However, more than
one-bit error is unlikely for memory read. With overhead for one-bit correction, ifthere occurs error in more
than one-bit positions, then the data needs to be read once again from the memory.

18. Can parity code detect even number of errors?
19. What is the full form ofCRC?
20. What is the advantage of Hamming code'?
21. Whatis error detection-correction overhead?

PROBLEM SOLVING WITH MUti8PlEMETH00S

Add two gray coded numbers O 100 and O 111 and express the result in gray code.

Solution Since gray coded numbers are not suitable for arithmetic operations, we h.ave to co;nvert the numbers
to some Other form, perform the addition and then convert the resu!rto gray £Ode. \Ve first show how it Can be done
through lookup tables. It would require storage oflargeJook:µp tables,ifthenumbers.are large in value. Next, we
show the converter-based approach which only needs the implementation ofconversion equations.

In Method-1, ·.· we take help of first two columns of Table 5.9 ~~dconvert these two numb.~rs t? ~eci
mal, add the decimal numbers. and then again use the table to; get corresponding gray coded number:
This is shown in Fig. 5.7a. ·

In Method-2, we take help oflast two c.olU1U11s of Table 5,,9 ~d convert th!;lse two numbers.to 1:>inary.,
perform binary addition and. then again use the table. to get corresponding gray coded number. This is
shown in Fig. 5.7b.

·'" Method-3,.. we take help. of gray to. binary. conversion.relati?n sho;vn inFig. 5.2ba11d pot1yert
these two numbers to binary, perform binary addition and then use binary to gray conversion relation'
shown in Fig. 5.2a to get corresponding gray coded number. This is shown in Fig. 5.7c.

UsingTable.5.9
Gray

0100

Olll

From Fig. 5.2b

Binary
0111

+0101

1100

Gra)'to Biliary Conversion:

GfG2G1Go"" 0100:
ForG]G2G1Go =0110:

.From .Fig, 5.2a

Binarytl) Gray C?t1V(:rsio11:
ForB3 l12 B! lfo = 1100:

Number Systems and Codes

B3 =63

lJ3=0

B3=0

(73=B3

B3 = 1

Binary
1100

(b) Addition using Method-2

B2=B3$G2

B2=0$= l

B2=0$ l=

=B3@B2

.B2= 1 $=0

B1 @G1

B1 = l $ 0 = 1
B1 = 1 @1 =O

G1=B2E!3B1

B1 = 1 $0= 1

(c}Addition using.Methodc3

Gray
1010

Bo=B1 $Go
Bo= l $0= I

Bo= 0 EB 1 = I

Go.= Bi@ Bo
Bo= 0@ 0 = 0

Binary
0111

+0101

1100

Gray
1010

To c?hverffrom ~in~ to decimal nµInbers, add the "'.eight of each bi.t position (1, 2, 4, s, ...) when .there is
a.1 in that po~ition. With fractions, the binary weights are J,{J, _,.,and so on. To convert from decimal
to bin.iry, ~ do~ble da~ble for integers and the multiply-bY:.2method for fractions.

Th! b~se.of ~ n~ber systein equats the number of digits it uses, The decimal number systeIU has a base
oUO,while the binary number system has a base of 2. The octal number system has a base of8. Auseful
model for counting is the octalodometer•When a display wheel turns from 7back to 0, it sends a carry to
the next-higher wheel.

Hexadecimal numbers have a base of 16. The model for counting is. the hexadecimalodometer, whose
wheels reset and carry beyond F. He)lt~~eciIUaln~bers are ~asytoconvert mentallyinto thefrb'
equivalents. For this reason, people prefetusinghexadecimalnunibers because they aremuchsharter
the corresponding binary numbers.

The ASCII code is an alphanumeric code widely used for transferring data into cu,~,v~u

~ 7-bi.t 5ode i~ used to. represe11t alphabet letters, numpers, and other symbols. The excess-3
the Gray code are two other codes that are used.

A logic pulser can temporarily change the state of a node under test.If the original state is low, the logic
pulser drives the node briefly into the high state. If the state is high, the logic pulser drives the node briefly

Digital Principles and Applications

into the low state. The output impedance of a logic pulser is so low that it can drive almo$t. any normal
node in a logic circuit When a node is shorted to ground or to the supply voltage, thelogic pulseds unable
to change the voltage level; this is a confirmation of the shorted condition.

Parity code, Checksmn code, and CRC code have been discussed for error detectioncodeand Banµning
code for error detection and correction. These techniques are used to ensure that datais correct and has
not been corrupted, either by hardware failures or by noise occurring during transmission or a data read
operation from memory.

• base The number of digits or basic symbols in
a number system. The decimal system has a
base of 10 because it uses 10 digits. Binary has
a base of 2, octal a base of 8, and hexadecimal
a base of 16.

• binary Refers to a number system with a base
of 2, that is, containing two digits.

• bit An abbreviated fom1 of binary digit.
Instead of saying that 10110 has five binary
digits, we can say that it has 5 bits.

• byte A binary number with 8 bits.
• checksum code A error detection code

generating sum of a block of data.
• CRC code Cyclic Redundancy Code is a

polynomial key based error detection code.
• digit A basic symbol used in a number system.

The decimal system has 10 digits, 0 through
9.

• error detection and correction A method
of detection of e1Tor in a group of bits and
correction of the same.

• hamming code A parity bit based error
detection and correction code.

5.1 What is the binary number that follows
01101111?

5.2 How many bits are there in 2 bytes?

" hexadecimal Refers to number system with a
base of 16. The hexadecimal system has digits
0 through 9, followed by A through F.

• logic pulser A troubleshooting device that
generates brief voltage pulses. The typical
logic pulser has a push-button switch that
produces a single pulse for each closure. More
advanced logic pulsers can generate a pulse
train with a specified number of pulses.

• nibble An binary number with 4 bits.
" octal Refers to a number system with a base

of 8, that is, one that uses 8 digits. Normally,
these are 0, 1, 2, 3, 4, 5, 6, and 7.

" parity code An error detection code using one
additional parity bit.

• weight Refers to the decimal value of each
digit position of a number. For decimal
numbers, the weights are 1, 10, 100, 1000,
. .. , working from the decimal point to the left.
For binary numbers the weights are 1, 2, 4, 8,
... to the left of the binary point. With octal
numbers, the weights become l, 8, 64, ... to
the left of the octal point.

5 .3 How many nibbles are there in each of these:
a. 1001
b. 11110000

Number Systems and Codes

C. 110011110000
d. 1111000011001001

5.4 Give the decimal equivalents for each of the
following binary numbers:

a. 110101 b. 11001.011
5.5 Convert the following binary numbers to their

decimal equivalents:
a. 1011 1100 b. 11111111

5.6 What is the decimal equivalent of 1000 1100
1011 0011?

5. 7 A computer has 128K of memory. How many
bytes does this represent?

5.8 Conve11 the following decimal numbers to
binary numbers: 24, 65, and 106.

5.9 What binary number does decimal 268 stand
for?

5.10 Convert decimal 108.364 to a binary number.
5.11 Calculate the binary equivalent for 5280.

5.12 Convert the following octal numbers to
decimal equivalents:

a. 65 b. 216
C. 4073

5.13 What is the decimal equivalent of octal
325.736?

5.14 Convert these decimal numbers to octal
numbers:

a. 4096 b. 65535
5.15 What is the octal equivalent of decimal

324.987?
5 .16 Convert the following octal numbers to binary

numbers: 34,567, 4673.
5 .17 Convert the following binary numbers to octal

numbers:
a. 10101111
b. 1101.0110111
C. 1010011.101101

5.18 What are the hexadecimal numbers that follow
each of these:

a. ABCD b. 7F3F
c. BEEF

5.19 Convert the following hexadecimal numbers
to binary numbers:

a. E5 b. B4D
C. 7AF4

5.20 Convert these binary numbers into hexadecimal
numbers:

a. 1000 1100 b. 0011 0111
c. 1111 0101 0110

5.21 Convert hexadecimal 2F59 to its decimal
equivalent.

5 .22 What is the hexadecimal equivalent of decimal
62359?

5.23 Give the value of Y3Y2Y1 Yo in Fig. 5.8 for each
of these:

a. All switches are open
b. Switch 4 is closed
c. Switch A is closed
d. Switch F is closed

5.24 A computer has the following hexadecimal
contents stored at the addresses shown:

Address
2000
2001
2002
2003
2004
2005

Hexadecimal contents
D5
AA
96
DE
AA
EB

What are the binary contents at each address?

5.25 Give the ASCII code for each of these:
a. 7 b. W
C. f d. y

5.26 Suppose that you type LIST with an ASCII
keyboard. What is the binary output as you
strike each letter.

Digital Principles and Applications

+5V

·~
•,-1\/1/\

•>-W.
~
.~
.~
,L.J\AA

VVv

'LA.., ..f'v
~"v
~\
~./'v
~A

~\
~v
Ml

A

'V V I
resistors All

are 101&
I \ I

y7430 y7430

5.27 In Example 5.15, a computer sends the word
HELLO to another computer. The characters
are coded in ASCII with an odd-parity bit.
Here is how the word is stored in the memory
of the receiving computer:

Address Alphanumeric Hexadecimal
contents

2000 H cs
2001 E 45
2002 L 4C
2003 L 4C
2004 0 4F

The transmitting computer then sends the word
GOODBYE. Show how this word is stored in
the receiving computer. Use a starting address
of 2000 and include a parity bit.

5.28 Express decimal 5280 in excess-3 code.

0 -1 -2
3

4 ~
~

5

6

7 . ·-8

9
A-
~

B

C
D--E
F_

.. ~ I
y7430 97430

5.29 Here is an excess-3 number:

0110 1001 1100 0111

What is the decimal equivalent?

5.30 What is the Gray code for decimal 8?
5.31 Convert Gray number 1110 to its BCD

equivalent.

5.32 Figure 5.9 shows the decimal-to-BCD encoder
discussed in Sec. 4.6. Answer the following
questions:

a. If all switches are open and the logic
pulser is inactive, what voltage level
does the logic probe indicate?

b. If switch 6 is closed and the logic pulser
is inactive, what does the logic probe
indicate?

______________ N_u_m_b_er_S_y_st_em_s_a_n_d_C_o_de_s _____________ ~

c. If all switches are open and the logic
pulser is activated, what does the logic
probe do?

5.33 The push-button switch of the logic pulser
shown in Fig. 5.9 is pressed. Suppose that the
logic probe is initially dark and remains dark.
Indicate which of the following are possible
sources of trouble:

a. 74147 defective
b. Pin 9 shorted to ground
c. Pin 9 shorted to +5 V
d. Pin 10 shorted to ground

5.34 The instruction register shown in Fig. 5.10
on the next page is a logic circuit that stores
a 16-bit number, /1 5 ... Io. The first 4 bits,
/is ... I12, are decoded by a 4 to 16-line
decoder. Determine whether the logic probe
indicates low, high, or blink for each of these
conditions:

a. I1s ... /12 = 0000 and logic pulser inac
tive

b. /is ... / 12 = 1000 and logic pulser inac
tive

All resistors are 1 kQ
1-1-..
2-1-..
3-1-..
4-1-..
5-1-..
6-1-..
7-1-..
8-1-..
9-1-..

-

c. I1s ... / 12 = 1000 and logic pulser active
d. I1s ... 112 = 1111 and logic pulser active

5.35 The logic pulser and logic probe shown in Fig.
5.10 are used to check the pins of the 7404
for stuck states. Suppose pin 8 is stuck in the
high state. Indicate which of the following are
possible sources of trouble:

a. No supply voltage anywhere in circuit
b. Pin I ofIC2 shorted to ground
c. Pin 2 ofIC4 shorted to the supply volt

age
d. Pin 3 ofIC5 shorted to ground
e. Pin 4 ofIC8 shorted to the supply volt

age

5 .36 Find Hamming code of data 11001.
5.37 Find Hamming code of data 1000111.
5.38 If an error occurs in the 3rd data bit, how will

it be corrected for data of problem 5.37?
5.39 How many parity bits are needed to Hamming

code (a) 16-bit data and (b) 24-bit data.

+SV

16
11 x Vee
12 I

X2 74147 14
13 X3 A

X4 B
6

2
X5 7

3 x6 C

4
X1 D

9
5 Xg

10
X9 GND

8
-

Digital Principles and Applications

Instruction register

I15 114 113 I12 lo

·~ ·~ ·~ R7 7404

2 4 6 8
I

' ' 6
4

9 ICI
IO
12 8
13

I

'
3 6
4

9 IC2
10
12 8
13

I
2
3
4

6
-

9 IC3
<. 10

12 8 o~c 13

41,,.,; 1
2 J'("_,,. 3 6

~~ 0
4

9 IC4 ._,~
10 vo~
12 8
13

1
6

3
4

9 IC5
l()

12 8
Li

l
2
3 6
4

9 IC6
JO
12 8
13

l

3 6
4

9 IC7
JO
12
13

8

l
2
3 6
4

9 IC8
JO
12
13

8

____________ __:_N:.:u::.:.m::.be::.r.:S!.:.ys:::te:.:m::_s~a'.:nd:_:C::::o~de::::s'.._ ____________ ~

AIM: The aim of this experiment is to gener
ate and

Theor ··.· ·. obtained by ex~
elusive-OR ofdata bits:Theeven parity .makes
the.number ofls even after tfie:addition of the
parity code while odd . . ~a~tai~s}t as
odd, The parity~. the bit .·.. .·. < s;even or odd,
is a}so checked by exclusive-OKof incoming
data. Thus the .same circuit can he used both
for parity generation and checking after
priate configuration.

·· Apparatus:
tet, ·and Bread Board

Work element: Verify. the truth table of
IC 74180, the 8~bit parity gen~:ator/cll~cker.
Connect as shown to use it as parity
generator. Submit 5 different numbers and
check the parity?f the coded data, i.e. data
plusp~~bit.Configure it in such a way that
itbecomes .a parity checker and then check the
parity ofthese 5 numbers. IC 7486 is a quad 2-
input exclusive-OR gate with pin configuration
similar to 7400 or 7408. Use this to generate

and compare the result with 74180.
find how 7- and 9-bit long data can be

coded.

13. 0011 1100
14. 60
15. ASCll stands for American Standard Code

for Infor:nation. faterchange, a code used. to
represent alphanumeric information.

16.@
0100101

18.No
19. Cycle RedundancyCode
20. It can detect as well as correct one.:.bit

error.
21. Additional bits to be included with data bits

for this purpose.

Arithmetic Circuits

+ Add and subtract unsigned binary numbers
+ Show how numbers are represented in unsigned binary form, sign-magnitude form,

and 2's complement (signed binary) form
+ Add and subtract signed binary (2's complement) numbers
+ Describe the half-adder, full-adder, and adder-subtractor
+ Design a fast adder circuit that user parallelism to speed up the responses
+ Describe how an Arithmetic Logic Unit can be operated
+ Explain the means by which multiplication and division are performed on typical

8-bit microprocessors

Circuits that can perform binary addition and subtraction are constructed by combining logic gates. These
circuits are used in the design of the arithmetic logic unit (ALU). The electronic circuits are capable of very
fast switching action, and thus an ALU can operate at high clock rates. For instance, the addition of two
numbers can be accomplished in a matter of nanoseconds! This chapter begins with binary addition and
subtraction, then presents two different methods for representing negative numbers. You will see how an
exclusive OR gate is used to construct a half-adder and a full-adder. You will see how to construct an 8-bit
adder-subtracter using a popular IC. A technique to design a fast adder is discussed in detail followed by
discussion on a multifunctional device called Arithmetic Logic Unit or ALU. Finally, an outline to perform
binary multiplication and division is also presented.

_________________ A_n_·th_m_e_ti_c_C_irc_u_it_s ________________ @)
6.1 BINARY ADDITION

Numbers represent physical quantities. Table 6.1 shows
the decimal digits and the corresponding amount of
pebbles. Digit 2 stands for two pebbles (..), 5 for five
pebbles (.....), and so on. Addition represents the
combining of physical quantities. For instance:

2+3=5

symbolizes the combining of two pebbles with three
pebbles to obtain a total of five pebbles. Symbolically,
this is expressed

•• + ••• = •••••

Four Cases to Remember

Pebbles

None

•
••

•••
••••

•••••
••••••

•••••••
••••••••

•••••••••

The Decimal Digits

Symbol

0

2
3
4
5
6

7
8

9

Computer circuits don't process decimal numbers; they process binary numbers. Before you can understand
how a computer perfonns arithmetic, you have to learn how to add binary numbers. Binary addition is the
key to binary subtraction, multiplication, and division. So, let's begin with the four most basic cases of binary
addition:

O+O =O (6.1)

0 + 1 = 1 (6.2)

l + 0 = 1 (6.3)

1+1 =10 (6.4)

Equation (6.1) is obvious; so are Eqs. (6.2) and (6.3) because they are identical to decimal addition. The
fourth case, however, may bother you. If so, you don't understand what Eq. (6.4) represents in the physi
cal world. Equation (6.4) represents the combining of one pebble and one pebble to obtain a total of two
pebbles:

• +. = ••

Since binary 10 stands for ee, the binary equation

l + 1 = 10

makes perfect sense. From now on, remember that numbers, whether binary, decimal, octal, or hexadecimal
are codes for physical amounts. If you're in doubt about the meaning of a numerical equation, convert the
numbers to pebbles to see if the two sides of the equation are equal.

Subscripts

The foregoing discussion brings up the idea of subscripts. Since we already have discussed four kinds of
numbers (decimal, binary, octal, and hexadecimal), we have four different ways to code physical quantities.
How do we know which code is being used? In other words, how can we tell when l O is a decimal, binary,
octal, or hexadecimal number?

Most of the time, it's clear from the discussion which kind of numbers are involved. For instance, if we
have been discussing nothing but binary numbers for page after page, you can count on the next 10 being

(;) _____________ D_ig_ita_l_P_rin_c_ip_le_s_an_d_A_pp_l_ica_t_io_ns ____________ _

binary 10, which represents ee in the physical world. On the other hand, if a discussion uses more than one
type of number, it may be helpful to use subscripts for the base as follows:

2 ~ binary

8 ~ octal

10 ~ decimal

16 ~ hexadecimal

For instance, 11 2 represents binary 11,238 stands for octal 23, 45 10 for decimal 45, and F416 for hexadeci
mal F4. With the subscripts in mind, the following equations should make perfect sense:

12 + 12 = 102

78 + 18 = 108

910 + 110 = 1010

F16+ 116 = 1016

larger Binary Numbers

Column-by-column addition applies to binary as well as decimal numbers. For example, suppose you have
this problem in binary addition:

11100

+ 11010

?

Start by adding the least-significant column to get

11100
+11010

0

Next, add the bits in the second column as follows:

11100

+ 11010

10

The third column gives

The fourth column results in

11100
+ 11010

110

Carry~ 1

11100

+ 11010

0110

Arithmetic Circuits

Notice the carry into the final column; this carry occurs because 1 + I = 10. As in decimal addition, you
write down the O and carry the I to the next-higher column.

Finally, the last column gives

Carry-"? 1

11100
+ 11010

110110

In the last column, 1 + 1 + 1 = 10 + 1 = 11.

8-Bit Arithmetic

That's all there is to binary addition. If you can remember the four basic rules, you can add column by column
to find the sum of two binary numbers, regardless of how long they may be. In first-generation microcomput
ers (Apple II, TRS-80, etc.), addition is done on two 8-bit numbers such as

A7 A6 A5A4 A3A2 A1A0

+ B7B6 B5B4 B3B2 B1B0

?

The most-significant bit (MSB) of each number is on the left, and the least-significant bit (LSB) is on the
right. For the first number, A7 is the MSB and Ao is the LSB. For the second number, B7 is the MSB and Bo
is the LSB. Try to remember the abbreviations MSB and LSB because they are used frequently in computer
discussions.

Add these S-bit numbers: 010 I O 111 and 0011 0 l O I. Then, show the same numbers in hexa
decimal notation.

Solution This is the problem:

0101 0111
+0011 0101

?

If you add the bits in each column as previously discussed, you will obtain

0101
+0011

1000

0111
0101

1100

Many people prefer hexadecimal notation because it's a faster code to work with. Expressed in hexadecimal numbers,
the foregoing addition is

57
+35

SC

used to signify hexadecimal numbers, so the foregoing addition may be written as

57H
+35H

SCH

Digital Principles and Applications

Add these 16-bit numbers: 0000 1111 l O l O ll 00 and 0011 1000 0111 1111. Show the
com:sponding hexadecimal and decimal numbers.

Solution Start at the right and add the bits, column by column:

Binary Hexadecimal Decimal

0000 Ill I 1010 1100 OFACH 4,012

-'-00ll 1000 Ol ll 1111 + 387FH + 14,463

0100 1000 0010 1011 482BH 18,475

(Note: Remember Appendix I: it takes most of the work out of conversions between number systems.)

Repeat Example 6.2, showing how a first-generation microcomputer does the addition.

Solution First-generation microcomputers like the Apple II have an 8-bit microprocessor (a digital IC that performs
binary arithmetic on 8-bit numbers). To add 16-bit numbers, a first-generation microcomputer adds the lower 8 bits in
one operation and then the upper 8 bits in another operation.

Here is how it works for numbers of the preceding example. The original problem is

Upper bytes Lower bytes
l l

0000 1111

+ 001 I 1000

1010 1100

Olll 1111

'!

The microcomputer starts by adding the lower bytes:

1010 1100
+0111 Jill

10010 101 l

Notice the carry into the final column. The microcomputer will store the lower byte (0010 1011). Then, it will.do
another addition of the upper bytes, plus the carry, as follows:

1 t- Carry

0000 111 I
+ 0011 1000

0100 1000

The microcomputer then stores the upper byte. To output the total answer, the microcomputer pulls the upper and
lower sums out of its memory to get

0100 1000 0010 1011

which is equivalent to 482BH or 18,475, the same as we found in the preceding example.

1. Write the four rules for binary addition.
2. What kind of number is 179FH?
3. \Vhat is the meaning of I l h? Of 111 10?

Arithmetic Circuits

6.2 BINARY SUBTRACTION

Let's begin with four basic cases of binary subtraction:

0-0 =O

1-0 = 1

1-1 =O

10-1=1

(6.5)

(6.6)

(6.7)

(6.8)

Equations (6.5) to (6.7) are easy to understand because they are identical to decimal subtraction. The
fourth case will disturb you if you have lost sight of what it really means. Back in the physical world, Eq.
(6.4) represents

··-· =.
Two pebbles minus one pebble equals one pebble.

For larger binary numbers, subtract column by column, the same as you do with decimal numbers. This
means that you sometimes have to borrow from the next-higher column. Here is an example:

Subtract the L'SBs to get

1101
-1010

?

1101
-1010

To subtract the bits of the second column, borrow from the next-higher column to obtain

Borrow -ct 1

1001
-1010

1

In the second column from the right, subtract as follows: 10 -1 = 1, to get

Borrow -ct 1

Then subtract the remaining columns:

Borrow -ct

1001
-1010

11

I
1001

-1010

0011

After you get used to it, binary subtraction is no more difficult than decimal subtraction. In fact, it's easier
because there are only four basic cases to remember.

Digital Principles and Applications

Show the binary subtraction of 12510 from 20010.

Solution First, use Appendix 1 to convert the numbers as follows:

200 ~ C8H ~ llOO 1000

125 ~ 7DH ~ 0111 1101

So, here is the problem:

Column-by-column subtraction gives:

1100 1000
-0111 1101

?

1100 1000
- 0111 1101

0100 1011
In hexadecimal notation, the foregoing appears as

4. Write the four rules for binary subtraction.

C8H
-7DH

4BH

6.3 UNSIGNED BINARY NUMBERS

In some applications, all data is either positive or negative. When this happens, you can forget about + and
- signs, and concentrate on the magnitude (absolute value) of numbers. For instance, the smallest 8-bit num
ber is 0000 0000, and the largest is 1111 1111. Therefore, the total range of 8-bit numbers is

0000 0000 (OOH)

to

1111 1111 (FFH)

This is equivalent to a decimal Oto 255. As you can see, we are not including+ or - signs with these
decimal numbers.

With 16-bit numbers, the total range is

0000 0000 0000 0000 (OOOOH)

to

1111 1111 1111 1111 (FFFFH)

which represents the magnitude of all decimal numbers from Oto 65,535.

Data of the foregoing type is called unsigned binary because all of the bits in a binary number are used
to represent the magnitude of the corresponding decimal number. You can add and subtract unsigned binary

Arithmetic Circuits

numbers, provided certain conditions are satisfied. The following examples will tell you more about unsigned
binary numbers.

limits

First-generation microcomputers can process only 8 bits at a time. For this reason, there are certain restric
tions you should be aware of. With 8-bit unsigned arithmetic, all magnitudes must be between O and 255.
Therefore, each number being added or subtracted must be between O and 255. Also, the answer must fall in
the range ofO to 255. If any magnitudes are greater than 255, you should use 16-bit arithmetic, which means
operating on the lower 8 bits first, then on the upper 8 bits (see Example 6.3).

Overflow

In 8-bit arithmetic, addition of two unsigned numbers whose sum is greater than 255 causes an ove1ifow, a
carry into the ninth column. Most microprocessors have a logic circuit called a canyfiag; this circuit detects
a carry into the ninth column and warns you that the 8-bit answer is invalid (see Example 6.7).

Show how to add 1501 o and 851 o with unsigned 8-bit numbers.

Solution With Appendix 1, we obtain

150 -,, 96H -,, 1001 0110

85 -+ 55H -,, 0101 0101

Next, we can add these unsigned numbers to get

Again, Appendix l gives

1001 0110
+0101 0101

1110 1011

96H
+55H

EBH

1110 1011 -"'7 EBH -"'7 235

Show how to subtract 8510 from 15010 with unsigned 8-bit numbers.

Solution Use the same binary numbers as in the preceding example, but subtract to get

Again, Appendix 1 gives

1001 0110
-0101 0101

0100 0001

96H
-55H

41H

0100 000 l -"'7 41H -"'7 65

In the two preceding examples, everything was well behaved because both decimal answers
were between O and 255. Now, you will see how an overflow can occur to produce an invalid
8-bit answer.

Show the addition of 17510 and 11810 using unsigned 8-bit numbers.

Digital Principles and Applications

Solution

175
+ 118

293

The answer is greater than 255. Here is what happens when we try to add 8-bit numbers:

Appendix I gives

An 8-bit microprocessor adds like this:

175 -;. BFH -;. 1010 1111

118 ~ 76H ~ Olll 0110

1010 1111
+0111 0110

Overflow ~ 1 0010 0101

With 8-hit arithmetic. only the lower 8 bits are used. Appendix J gives

0010 0101 ~ 25H -;. 37

AFH
+ 76H

125H

As you see, the 8-bit answer is wrong. It is true that if you take the overflow into account, the answer is valid, but
then you no longer are using 8-bit arithmetic. The point is that somebody (the programmer) has to worry about the
possibility of an overflow and must take steps to correct the final answer when an overflow occurs. If you study as
sembly-language programming, you will leammore about overflows and what to do about them.

In summary, 8-bit arithmetic circuits can process decimal numbers between O and 255 only. If there is any chance
of an overflow during an addition, the programmer has to write instructions that look at the carry flag and use l 6~bit
arithmetic to obtain the final answer. This means operating on the lower 8 bits, and then the upper 8 bits and the over
flow (as done in Example 6.3).

5. What is the carry flag in a microprocessor?
6. What is the largest decimal number that can be represented with an 8-bit unsigned binary

number?

6.4 SIGN-MAGNITUDE NUMBERS

What do we do when the data has positive and negative values? The answer is important because
it determines how complicated the arithmetic circuits must be. The negative decimal numbers are
-1, -2, -3, and so on. The magnitude of these numbers is 1, 2, 3, and so forth. One way to code these as bi
nary numbers is to convert the magnitude to its binary equivalent and prefix the sign. With this approach, the
sequence-I, -2, and-3 becomes-001, -010, and-011. Since everything has to be coded as strings ofOs and
ls, the+ and- signs also have to be represented in binary fonn. For reasons given soon, 0 is used for the+
sign and 1 for the - sign. Therefore, -001, -010, and-011 are coded as 1001, 1010, and lOll.

The foregoing numbers contain a sign bit followed by magnitude bits. Numbers in this form are called
sign-magnitude numbers. For larger decimal numbers, you need more than 4 bits. But the idea is still the
same: the MSB always represents the sign, and the remaining bits always stand for the magnitude. Here are

________________ A_rit_hm_et_ic_C_irc_u_it_s _______________ (;)

some examples of converting sign-magnitude numbers:

+7 ~ 0000 0111

-16 ~ 1001 0000

+25 ~ 0000 0000 0001 1001

-128 ~ 1000 0000 1000 0000

Range of Sign-Magnitude Numbers

As you know, the unsigned 8-bit numbers cover the decimal range ofO to 255. When you use sign-magnitude
numbers, you reduce the largest magnitude from 255 to 127 because you need to represent both positive and
negative quantities. For instance, the negative numbers are

1000 0001 (-1)

to

1111 1111 (-127)

The positive numbers are

0000 0001 (+ 1)

to

0111 1111 (+127)

The largest magnitude is 127, approximately half of what is for unsigned binary numbers. As long as your
input data is in the range of -127 to + 127, you can use 8-bit arithmetic. The programmer still must check
sums for an overflow because all 8-bit answers are between -127 and+ 127.

If the data has magnitudes greater than 127, then 16-bit arithmetic may work. With 16-bit numbers, the
negative numbers are from

1000 0000 0000 0001

to

1111 1111 1111 1111

and the positive numbers are from

0000 0000 0000 0001

to

0111 1111 1111 1111

(-1)

(-32, 767)

(+1)

(+32, 767)

Again, you can see that the largest magnitude is approximately half that of unsigned binary numbers. Un
less you actually need + and - signs to represent your data, you are better off using unsigned binary.

The main advantage of sign-magnitude numbers is their simplicity. Negative numbers are identical to
positive numbers, except for the sign bit. Because of this, you can easily find the magnitude by deleting
the sign bit and converting the remaining bits to their decimal equivalents. Unfortunately, sign-magnitude
numbers have limited use because they require complicated arithmetic circuits. If you don't have to add or
subtract the data, sign-magnitude numbers are acceptable. For instance, sign-magnitude numbers are often
used in analog-to-digital (AID) conversions (explained in a latter chapter).

Digital Principles and Applications

7. What is the decimal number range that can be represented with an 8-bit sign-magnitude
binary number?

8. In sign-magnitude form, what is the decimal. value of 1000 1101? Of 0000 1101?

6.5 2'S COMPLEMENT REPRESENTATION

There is a rather unusual number system that leads to the simplest logic circuits for performing arithmetic.
Known as 2~, complement representation, this system dominates microcomputer architecture and program
mmg.

1 's Complement

The I's complement of a binaiy number is the number
that results when we complement each bit. Figure 6.1
shows how to produce the I's complement with log
ic circuits. Since each bit drives an inverter, the 4-bit
output is the l's complement of the 4-bit input. For in
stance, if the input is

X :02X1Xo = 1000

the l's complement is

X:1X2X1Xo = 0111

Inverters produce the 1 's
complement.

The same principle applies to binary numbers of any length: complement each bit to obtain the l's comple
ment. More examples of l's complements are

1010 ~ 0101

1110 1100 ~ 0001 0011

00 11 1111 0000 0 ll O ~ 1100 0000 1111 1001

2' s Complement

The 2's complement is the binary number that results when we add l to the l's complement. As a fonnula:

2' s complement = l's complement + 1

For instance, to find the 2' s complement of 1011, proceed like this:

1011 ~ 0100 (l's complement)

0100 + 1 = 0101 (2's complement)

Instead of adding 1, you can visualize the next reading on a binary odometer. So, after obtaining the l's
complement O 100, ask yourself what comes next on a binary odometer. The answer is O IO 1.

Arithmetic Circuits

Here are more examples of the 2's complements:

Number ~ l's complement ~

1110 1100 ~ 0001 0011 ~

1000 0001 ~ 0111 1110 ~

0011 0110 ~

Back to the Odometer

1100 1001 ~

2' s complement

0001 0100

0111 1111

1100 1010

The binary odometer is a marvelous way to understand 2's complement representation. By examining the
numbers of a binary odometer, we can see how the typical microcomputer represents positive and negative
numbers. With a binary odometer, all bits eventually reset to Os. Some readings before and after a complete
reset look like this:

1000 (-8)

1001 (-7)

1010 (-6)

1011 (-5)

1100 (-4)

1101 (-3)

1110 (-2)

1111 (-1)

0000 (0)

0001 (+1)

0010 (+2)

OOll (+3)

0100 (+4)

0101 (+5)

0110 (+6)

0111 (+7)

Binary 1101 is the reading 3 miles before reset, 1110 occurs 2 miles before reset, and 1111 indicates 1 mile
before reset. Then, 0001 is the reading 1 mile after reset, 0010 occurs 2 miles after reset, and OOH indicates
3 miles after reset.

Positive and Negative Numbers

"Before" and "after" are synonymous with "negative" and "positive." Figure 6.2 illustrates this idea with the
number line of basic algebra: 0 marks the origin, positive numbers are on the right, and negative numbers are
on the left. The odometer readings are the binary equivalents of decimal numbers: 1000 is the binary equiva
lent of -8, 1001 stands for - 7, 1010 stands for -6, and so on.

The odometer readings in Fig. 6.2 demonstrate how positive and negative numbers are stored in a typical
microcomputer. Here are two important ideas to notice about these odometer readings. First, the MSB is the
sign bit: 0 represents a + sign, and 1 stands for a - sign. Second, the negative numbers in Fig. 6.2 are the 2's
complements of the positive numbers, as you can see in the following:

Digital Principles and Applications

Magnitude Positive Negative

1 0001 1111

2 0010 1110

3 0011 1101

4 0100 1100

5 0101 lOll

6 0110 1010

7 Olll 1001

8 1000

Except for the last entry, the positive and negative numbers are 2's complements of each other.

1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

-8 -7 -6 -5 --4 -3 -2 -1 0 +l +2 +3 +4 +5 +6 +7

Representing decimal numbers as 2's complements

In other words, you can take the 2' s complement of a positive binary number to find the corresponding
negative binary number. For instance:

3 ~ OOll

-3 f- 1101

After taking the 2's complement of 0011, we get 1101, which represents -3. The principle also works in
reverse:

-7 ~ 1001

+7 f- 0111

After taking the 2' s complement of 1001, we obtain O 111, which represents + 7.

What does the foregoing mean? It means that taking the 2's complement is equivalent to negation, chang
ing the sign of the number. Why is this important? Because it's easy to build a logic circuit that produces the
2's complement. Whenever this circuit takes the 2's complement, the output is the negative of the input. This
key idea leads to an incredibly simple arithmetic circuit that can add and subtract.

In summary, here are the things to remember about 2' s complement representation:

I. Positive numbers always have a sign bit of 0, and negative numbers always have a sign bit
of 1.

2. Positive numbers are stored in sign-magnitude form.
3. Negative numbers are stored as 2's complements.
4. Taking the 2's complement is equivalent to a sign change.

Converting to and from 2's Complement Representation

We need a fast way to express numbers in 2' s complement representation. Appendix 2 lists all
8-bit numbers in positive and negative form. You will come to love this Appendix if you have to work a Jot
with negative numbers. By reading either the positive or negative column, you can quickly convert from
decimal to the 2' s complement representation, or vice versa.

Arithmetic Circuits

Here are some examples of using Appendix 2 to convert from decimal to 2's complement representation:

+23-+ 17H-+0001 0111

-48-+ DOH-+ 1101 0000

-93-+ A3H-+ 1010 0011

Of course, you can use Appendix 2 in reverse. Here are examples of converting from 2's complement
representation to decimal:

0111 0111 -+ 77H -+ + 119

1110 1000 -+ E8H -+ -24

1001 0100 -+ 94H -+ -108

A final point. Look at the last two entries in Appendix 2. As you see, + 127 is the largest positive number
in 2's complement representation, and-128 is the largest negative number. Similarly, in the 4-bit odometer
discussed earlier, + 7 was the largest positive number, and -8 was the largest negative number. The largest
negative number has a magnitude that is one greater than the largest positive number. This slight asymmetry
of 2's complement representation has no particular meaning, but it is something to keep in mind when we
discuss overflows.

A first-generation microcomputer stores 1 byte at each address or memory location, Show
how the following decimal numbers are stored with the use of2's complement representation:
+20, -35, +47, -67, -98, + 112, and-125. The first byte starts at address 2000.

Solution With Appendix 2, we have

Address Binary contents Hexadecimal Decimal contents

contents

2000 0001 0100 14H +20

2001 1101 1101 DDH -35

2002 0010 llll 2DH +47

2003 1011 1101 BDH -67

2004 1001 lllO 9EH -98

2005 0111 0000 70H +112

2006 1000 0011 83H -125

The computer actually stores binary 0001 0100 at address 2000. Instead of saying 0001 0100, however, we may
prefer to say that it stores 14H. To anyone who knows the hexadecimal code, 14H, means the same thing as 0001
0100, but 14H is much easier to say. To the person on the street who knows only the decimal code, we would say that
+20 is stored at address 2000.

As you see, understanding computer operation requires knowledge of the different codes being used. Get this into
your head, and you are on the way to understanding how computers work.

Express -19, 7 50 in 2' s complement representation. Then show how this number is stored
starting at address 2000. Use hexadecimal notation. to compress the data.

Solution The number-19,750 is outside the range of Appendix 2,·so we have to fall back on Appendix L Start by
converting; the magnitude to binary· fo11ll, With Appendix 1, we have

19,750 ~ 4D26H ~ 0100 1101 0010 0110

Digital Principles and Applications

Now, take the 2' s complement to obtain the negative value:

IOll OOIO 1101 IOOI + l = 1011 0010 1101 I010

This means that

-19,750-+ IOll 0010 1101 1010

In hexadecimal notation, this is expressed

!011 0010 1101 1010-+ B2DAH

The memory of a first-generation microcomputer is organized in bytes. Each address or memory location contains
l byte. Therefore, a first-generation microcomputer has to break a 16-bit number like B2DA into 2 bytes: an upper
byte of B2 and a lower byte of DA The lower byte is stored at the lower address and the upper byte, at the next-higher
address like this:

Address

2000

2001

Binary contents

1101 1010

1011 0010

Hexadecimal contents

DA

B2

The same approach, lower byte first and upper byte second, is used with first-generation microcomputers such as

the Apple II and TRS-80.

9. What is the 1' s complement representation of 1101 011 O?
10. What is the 2's complement representation of 1101 0110?

6.6 2'S. COMPLEMENT ARITHMETIC

Early computers used sign-magnitude numbers for positive and negative values. This led to complicated
arithmetic circuits. Then an engineer discovered that 2' s complement representation could simplify arithme
tic hardware. (This refers to the electronic, magnetic, and mechanical devices of a computer.) Since then, 2's
complement representation has become a universal code for processing positive and negative numbers.

Help from the Binary Odometer

Addition and subtraction can be visualized in terms of a binary odometer. When you add a positive number,
this is equivalent to advancing the odometer reading. When you add a negative number, this has the effect of
turning the odometer backward. Likewise, subtraction of a positive number reverses the odometer, but sub
traction of a negative number advances it. As you read the following discussion of addition and subtraction,
keep the binary odometer in mind because it will help you to understand what's going on.

Addition

Let us take a look at how binary numbers are added. There are four possible cases: both numbers positive, a
positive number and a smaller negative number, a negative number and a smaller positive number, and both
numbers negative. Let us go through all four cases for a complete coverage of what happens when a computer
adds numbers.

Arithmetic Circuits

Case 1 Both positive. Suppose that the numbers are +83 and + 16. With Appendix 2, these numbers are
converted as follows:

+83-; 0101 0011

+ 16-; 0001 0000

Then, here is how the addition appears:

+83
+16

0101 0011
+ 0001 0000

99 0110 OOll

Nothing unusual happens here. Column-by-column addition produces a binary answer of 0110 0011.
Mentally convert this to 63H. Now, look at Appendix 2 to get

63H-; 99

This agrees with the decimal sum.

Case 2 Positive and smaller negative. Suppose that the numbers are +125 and-68. With Appendix 2, we
obtain

+ 125 -; 0111 1101

-68-; 1011 1100

The computer will fetch these numbers from its memory and send them to an adding circuit. The numbers
are then added column by column, including the sign bits to get

125 0111 1101
+ (-68) + 1011 1100

57 1 OOll 1001 -; 0011 1001

With 8-bit arithmetic, you disregard the final carry into the ninth column. The reason is related to the bi
nary odometer, which ignores final carries. In other words, when the eighth wheel resets, it does not generate
a carry because there is no ninth wheel to receive the carry. You can convert the binary answer to decimal as
follows:

0011 1001-; 39H

39H-;+57

(mental conversion)

(look in Appendix 2)

Case 3 Positive and larger negative. Let's use +37 and -115. Appendix 2 gives these 2's complement
representations:

Then the addition looks like this:

+37-; 0010 0101

-115-; 1000 1101

+37
+ (-115)

-78

0010 0101
+ 1000 1101

1011 0010

Digital Principles and Applications

Next, verify the binary answer as follows:

1011 0010 ~ B2H

B2H ~-78

(mental conversion)

(look in Appendix 2)

Incidentally, mentally converting to hexadecimal before reference to the appendix is an optional. step.
Most people find it easier to locate B2H in Appendix 2 than 1011 00 I 0. It only saves a few seconds, but it
adds up when you have to do a lot of binary-to-decimal conversions.

Case 4 Both negative. Assume that the numbers are --43 and -78. In 2's complement representation, the
numbers are

-43 ~ 1101 0101

-78 ~ 1011 0010

The addition is

-43 1101 0101
+ (-78) + 1011 0010

-121 1 1000 0111 ~ 1000 0111

Again, we ignore the final carry because it's meaningless in 8-bit arithmetic. The remaining 8 bits convert
as follows:

1000 0111 ~ 83H

83H ~ -121

This agrees with the answer we obtained by direct decimal addition.

Conclusion

We have exhausted the possibilities. In every case, 2's complement addition works. In other words, as long
as positive and negative numbers are expressed in 2's complement representation, an adding circuit will au
tomatically produce the correct answer. (This assumes the decimal sum is within the -128 to+ 127 range. If
not, you get an overflow, which we will discuss later.)

Subtraction

The format for subtraction is

Minuend
- Subtrahend

Difference

There are four cases: both numbers positive, a positive number and a smaller negative number, a negative
number and a smaller positive number, and both numbers negative.

The question now is how can we use an adding circuit to do subtraction. By trickery, of course. From
algebra, you already know that adding a negative number is equivalent to subtracting a positive number. If
we take the 2's complement of the subtrahend, addition of the complemented subtrahend gives the correct
answer. Remember that the 2' s complement is equivalent to negation. One way to remove all doubt about this
critical idea is to analyze the four cases that can arise during a subtraction.

Arithmetic Circuits

Case 1 Both positive. Suppose that the numbers are +83 and+ 16. In 2' s complement representation, these
numbers appear as

+83 ~ 0101 0011

+16 ~ 0001 0000

To subtract+ 16 from +83, the computer will send the + 16 to a 2' s complementer circuit to produce

-16 ~ 1111 0000

Then it will add +83 and-16 as follows:

83
+ (-16)

67

The binary answer converts like this:

0101 0011
+ 1111 0000

1 0100 0011 ~ 0100 0011

0100 0011 ~ 43H
43H~+67

Case 2 Positive and smaller negative. Suppose that the minuend is +68 and the subtrahend is
-27. In 2's complement representation, these numbers appear as

+68 ~ 01'00 0100

-27 ~ 1110 0101

The computer sends -27 to a 2's complementer circuit to produce

+27 ~ 0001 1011

Then it adds +68 and +27 as follows:

+68
+27

95

0100 0100
+ 0001 1011

0101 1111

The binary answer converts to decimal as follows:

0101 1111 ~ 5FH

5FH~+95

Case 3 Positive and larger negative. Let's use a minuend of+ 14 and a subtrahend of -108. Appendix 2
gives these 2's complement representations:

+14 ~ 0000 1110

-108 ~ 1001 0100

The computer produces the 2' s complement of -108:

+108 ~ 0110 1100

Then it adds the numbers like this:

14
+108

122

0000 1110
+ 0110 1100

0111 1010

Digital Principles and Applications

The binary answer converts to decimal like this:

0111 1010 ~ 7AH

7AH ~+122

Case 4 Both negative. Assume that the numbers are -43 and - 78. In 2' s complement representation, the
numbers are

-43 ~ 1101 0101

-78 ~ 1011 0010

First, take the 2' s complement of - 78 to get

+78 ~ 0100 1110

Then add to obtain

Then

Overflow

-43
+78

35

1101 0101
+ 0100 1110

1 0010 0011 ~ 0010 0011

0010 0011 ~ 23H

23H ~+35

We have covered all cases of addition and subtraction. As shown, 2's complement arithmetic works and is
the standard method used in microcomputers. In 8-bit arithmetic, the only thing that can go wrong is a sum
outside the range of -128 to + 127. When this happens, there is an overflow into the sign bit, causing a sign
change. With the typical microcomputer, the programmer has to write instructions that check for this change
in the sign bit.

Let's take a look at overflow problems. Assume that both input numbers are in the range of-128 to+ 127.
If a positive and a negative number are being added, an overflow is impossible because the answer is always
less than the larger of the two numbers being added. Trouble can arise only when the arithmetic circuit adds
two positive numbers or two negative numbers. Then, it is possible for the sum to be outside the range of
-128 to + 127. (Subtraction is included in the foregoing discussion because the arithmetic circuit adds the
complemented subtrahend.)

Case 1 Two positive numbers. Suppose that the numbers being added are + 100 and +50. The decimal
sum is + 150, so an overflow occurs into the MSB position. This overflow forces the sign bit of the answer to
change. Here is how it looks:

100
+50

150

0110 0100
+ 0011 0010

1001 01 IO

The sign bit is negative, despite the fact that we added two positive numbers. Therefore, the overflow has
produced an incorrect answer.

Arithmetic Circuits

Case 2 Two negative numbers. Suppose that the numbers are -85 and -97. Then

-85
+ (-97)

182

1010 1011

+ 1001 1111

1 0100 1010 ~ 0100 1010

The 8-bit answer is 0100 1010. The sign bit is positive, but we know that the right answer should contain
a negative sign bit because we added two negative numbers.

What to Do with an Overflow

Overflows are a software problem, not a hardware problem. (Software means a program or list of instructions
telling the computer what to do.) The programmer must test for an overflow after each addition or subtrac
tion. A change in the sign bit is easy to detect. All the programmer does is include instructions that compare
the sign bits of the two numbers being added. When these are the same, the sign bit of the answer is compared
to either of the preceding sign bits. If the sign bit is different, more instructions tell the computer to change
the processing to 16-bit arithmetic. You will learn more about overflows, 16-bit arithmetic, and related topics
if you study assembly-language programming.

How would an 8-bit microcomputer process this:

18,357
-12,618

?

Solution It would use double-precision arithmetic, synonymous with 16-bit arithmetic. This arithmetic is used with
16-bit numbers in this form:

X1sX1+¥13A'12 X!!XwX9X"s X7X(,Xs,\"4 X:,X2X1Xo

Numbers like these have an upper byte Xis ... Xs and a lower byteX7 ... Xo. To perform. 16-bit arithmetic, an 8-bit
microcomputer has to operate on each byte separately. The idea is similar to Example 6.3,where the lower bytes were
added and then the upper bytes.

Here is how it is done, WithAppendix 1, we have

18,357-+ 47B5H-+ 0100 0111 IOll 0101

12,618-+ 314AH-+ 0011 0001 0100 1010

The 2's complemeritof 12,618.is

--12,618-+ CEB6H-+ 1100 mo 10!1 OllO

The addition is carried out in two steps of 8-bit arithmetic. First, the lower bytes are added:

1011 0101
+ 1011 0110

l 0110 1011-+ XsX1X6X5X4 X3X2X1Xo
The computer will store X7 ... Xo. The carry Xg is used in the addition of the upper bytes.

Now, the computer adds the upper bytes plus the carry as follows:

1 <c- Xs
0100 0111

+ 1100 1110

1 0001 0110 -+ 0001 0110

Digital Principles and Applications

To obtain the final answer, the two 8-bit answers are combined:

0001 0110 0110 1011

Notice that the MSB is 0, which means that the answer is positive. With Appendix 1, we can convert this answer
to decimal form:

0001 OllO OllO 1011 -;. 166BH -;.+5739

11. What is the standard method for doing binary arithmetic in nearly all microprocessors?
12. How is 2's complement representation used to perfonnsubtraction?

6.7 ARITHMETIC BUILDING BLOCKS

We are on the verge of seeing a logic circuit that performs 8-bit arithmetic on positive and negative numbers.
But first we need to cover three basic circuits that will be used as building blocks. These building blocks are
the half-adder, the full-adder, and the controller inverter. Once you understand how these work, it is only a
short step to see how it all comes together, that is, how a computer is able to add and subtract binary numbers
of any length.

Half-Adder

When we add two binary numbers, we start with the least
significant column. This means that we have to add two
bits with the possibility of a carry. The circuit used for this
is called a half-adder. Figure 6.3 shows how to build a half
adder. The output of the exclusive-OR gate is called the
SUM, while the output of the AND gate is the CARRY. The
AND gate produces a high output only when both inputs
are high. The exclusive-OR gate produces a high output if
either input, but not both, is high. Table 6.2 shows the
truth table of a half-adder.

When you examine each entry in Table 6.2, you are
struck by the fact that a half-adder performs binary
addition.

As you see, the half-adder mimics our brain pro
cesses in adding bits. The only difference is the half
adder is about a million times faster than we are.

Full-Adder

A

0
0
l

B

0

0

CARRY=AB

SUM=AB+AB

Half-adder Truth Table

CARRY SUM

0 0
0 1
0 1
l 0

For the higher-order columns, we have to use afi1ll-adder, a logic circuit that can add 3 bits at a time. The
third bit is the carry from a lower column. This implies that we need a logic circuit with three inputs and two
outputs, similar to the full-adder shown in Fig. 6.4a. (Other designs are possible. This one is the simplest.)

Arithmetic Circuits

Table 6.3 shows the truth table of a full-adder. You can easily check this truth table for its validity. For
instance, CARRY is high in Fig. 6.4a when two or more of the ABC inputs are high; this agrees with the
CARRY column in Table 6.3. Also, when an odd number of high ABC inputs drives the exclusive-OR gate,
it produces a high output; this verifies the SUM column of the truth table.

A

0
0
0
0
1
1
1
1

A BC

(tJ !;,~{~&;IJ Full-Adder Truth Table

B C

0 0
0 1
l 0
1 1
0 0
0 l
1 0
1 l

CARRY

SUM

(a)

CARRY

0
0
0
1
0
1
l
1

AB
c 00

0 0
1 0

SUM

0
I
I
0
l
0
0
1

Carry=AB+ BC+ AC

C
AB

0
1

00 0 1 1 1 1 0
0 I 0 1
1 0 1 0

SUM = A (±) B Et> C

(b)

(a) Full-adder, (b) Karnaugh map of Table 6.3

When you examine each entry in Table 6.3, you can see that a full-adder performs binary addition on 3
bits.

From this truth table we get Karnaugh map as shown in Fig. 6.4b that gives following logic equations,

CARRY=AB+BC+AC and SUM=A EBB$ C.

A general representation of full-adder which adds i-th bit A; and B; of two numbers A and Band takes carry
from (i-l)th bit could be

C; = A;B; + B;C;-1 + A;CH or C; = A;B; + (A; +B;)C;-1 and S; =A;$ B; $ C;_1

where, C; and S; are carry and sum bits generated from the fall adder. The second representation of C; has an
interesting meaning. The first term gives, if both A; and Bi are 1 then C; = 1. The second term gives if any of
A; or B; is 1 and ifthere is carry from previous stage, i.e. C;_1 = 1 then also C; = 1. That this is the case, we can
verify from full adder truth table and this understanding is useful in design of fast adder in Section 6.9.

Digital Principles and Applications

Controlled Inverter

Figure 6.5 shows a controlled inverter. When INVERT is low, it transmits the 8-bit input to the output; when
INVERT is high, it transmits the l's complement. For instance, if the input number is

A1--·Ao=OllO 1110

Controlled inverter

a low INVERT produces

Y1···Yo=OI10 1110

But a high INVERT results in

Y1 ... Yo= 1001 0001

The controlled inverter is important because it is a step in the right direction. During a subtraction, we first
need to take the 2's complement of the subtrahend. Then we can add the complemented subtrahend to obtain
the answer. With a controlled inverter, we can produce the l's complement. There is an easy way to get the
2 's complement, discussed in the next section. So, we now have all the building blocks: half-adder, full-adder,
and controlled inverter.

13. What are the it1pt1tsJndotltptitsof iihalf-ad~er?

14. What are tµ.e inputs and ol.l.tpµts of.a, fulkad,der?J ... ··.· .. ·••· .. ·••· ··•• ·· ··•·· · <· ..
15. The SUM output of a full-adder is easily implemented using an exclusive-OR gate. (Tor F) ··

6.8 THE ADDER .. SUBTRACTER .

We can connect full-adders as shown in Fig. 6.6 to add or subtract binary numbers. The circuit is laid out from
right to left, similar to the way we add binary numbers. Therefore, the least-significant column is on the right,
and the most-significant column is on the left. The boxes labeled FA are full-adders. (Some adding circuits
use a half-adder instead of a full-adder in the least-significant column.)

The CARRY OUT from each full-adder is the CARRY IN to the next-higher full-adder. The numbers be~
ing processed are A7 ... Ao and B7 ... Bo, and the answer is S7 ... S0. With 8-bit arithmetic, the final carry is
ignored for reasons given earlier. With 16-bit arithmetic, the final carry is the carry into the addition of the
upper bytes.

Addition
Here is how an addition appears:

Arithmetic Circuits

Binary adder-subtracter

A7At,A5Ai A3A2A1Ao
+ B1B6B5B4 /hlJ.iBiBo

S1S6S5S4 S3S2S1So
During an addition, the SUB signal is deliberately kept in the low state. Therefore, the binary number B7

... Bo passes through the controlled inverter with no change. The full-adders then produce the correct output
sum. They do this by adding the bits in each column, passing carries to the next higher column, and so on.
For instance, starting at the LSB, the full-adder adds Ao, Bo, and SUB. This produces a SUM of So and a
CARRY OUT to the next-higher full-adder; The next-higher full-adder then adds A 1, B 1, and the CARRY IN
to produce S1 and a CARRY OUT. A similar addition occurs for each of the remaining full-adders, and the
correct sum appears at the output lines.

For instance, suppose that the numbers being added are + 125 and -6 7. Then, A 7 ... Ao = 0111 1101 and
B7 ••• B0 = 1011 1101. This is the problem:

0111 1101
+ 1011 1101

?

Since SUB = 0 during an addition, the CARRY IN to the least-significant column is 0:

0 ~ SUB
0111 1101

+ 1011 1101

?

The first full-adder performs this addition:

0 + 1 + 1 = 0 with a carry of l

The CARRY OUT of the first full-adder is the CARRY IN to the second full-adder:

1 ~ Carry
0111 1101

+ 1011 1101

0

Digital Principles and Applications

In the second column

1 + 0 + 0 = 1 with a carry of 0

The carry goes to the third full-adder:

0 ~ Carry
0111 1101

+ lOll 1101

10
In a similar way, the remaining full-adders add their 3 input bits until we arrive at the last full-adder:

1 ~ Carry
Olll 1101

+ 1011 1101

0011 1010

When the CARRY IN to the MSB appears, the full-adder produces

1 + 0 + 1 = 0 with a carry of 1

The addition process ends with a final carry:

0111 1101
+ IOI1 1101

l 0011 1010

During 8-bit arithmetic, this last carry is ignored as previously discussed; therefore, the answer is

S7 ... So = 0011 IO 10

This answer is equivalent to decimal +58, which is the algebraic sum of the numbers we started with: +125
and-67.

Subtraction

Here is how a subtraction appears:

A1A6AsA4
+ B1B6BsB4

A3A1A1Ao
B3B2B1Bo

During a subtraction, the SUB signal is deliberately put into the high state. Therefore, the controlled
inverter produces the l's complement of B7 ••• B0. Furthermore, because SUB is the CARRY IN to the first
full-adder, the circuit processes the data like this:

1 ~ SUB

A3A2A1Ao
-- --
B3B2B1Bo

When A7 ... A0 = 0, the circuit produces the 2's complement of B7 •.. B0 because 1 is being added to the l's
complement B7 ... B0. When A 7 ... A0 does not equal zero, the effect is equivalent to adding A 7 ... A0 and the
2's complement of B7 . .. Bo.

Arithmetic Circuits

Here is an example. Suppose that the numbers are +82 and +17. Then A7 ... Ao= 0101 0010 and B7 ...

Bo= 0001 000 I. The controlled inverter produces the l's complement ofB, which is 1110 1110. Since SUB
= 1 during a subtraction, the circuit performs the following addition:

1 f- SUB
0101 0010

+ 1110 1110

1 0100 0001
For 8-bit arithmetic, the final carry is ignored as previously discussed; therefore, the answer is

S7 · .. So= 0100 0001

Upper Lower

3 8 3 8
5 5

+5V +5V

7483
13 14

7483
12 12

13

- 15 2 6 9 - 15 2 6 9

S7 s6 Ss S4 S3 S2 S1 So

Fig.6:7 Two 7483s can add or subtract bytes

This answer is equivalent to decimal +65, which is the algebraic difference between the numbers we
started with: +82 and+ 17.

Show how to build an 8-bit adder-subtracter with TTL circuits.

Solution The 7483 is a TTL circuit witb four full-adders. This means that it can add nibbles. To add bytes, we need
to use two 7483s as shown in Fig. 6.7. The CARRY OUT (pin 14) of the lower 7483 is used as the CARRY IN (pin
13) to the upper 7483. This allows the two 7483s to add 8-bit numbers. Two 7486s form the controlled inverter needed
for subtraction.

The 74LS83, 74283, and 72LS283 are all TTL 4-bit adder ICs. They .are pin-for-pin compatible, except that tbe
'2.83 an<i 'LS283 have +Vee on pin 16 and GROUND on pin 8. The 74HC283 is.the CMOS version of the same 4-bit
adder.

The 74181, 74LS181, and 74LS381 are TTLALUs, and the 74HC381 is the CMOS equivalent. Each is capable of
adding two 4-bit binary numbers as well as performing numerous other logic operations.

Digital Principles and Applications

~9 FAST ADDER.

Fast adder is also called parallel adder or carry look ahead adder because that is how it attains high speed
in addition operation. Before we go into that circuit, let's see what limits the speed of an adder. Consider, the
worst case scenario when two four bit numbers A: 1111 and B: 0001 are added. This generates a carry in the
first stage that propagates to the last stage as shown next.

Carry: 111

A: 1111
B: 0001

10000

Addition such as these (Fig. 6.6) is called serial addition or ripple carry addition. It also reveals from the
adder equation (given in Section 6.8) result of every stage depends on the availability of carry from previous
stage. The minimum delay required for carry generation in each stage is two gate delays, one coming from
AND gates (1st level) and second from OR gate (2nd level). For 32-bit serial addition there will be 32 stages
working in serial. In worst case, it will require 2 x 32 = 64 gate delays to generate the final carry. Though each
gate delay is of nanosecond order, serial addition definitely limits the speed of high speed computing. Parallel
adder increases the speed by generating the carry in advance (look ahead) and there is no need to wait for the
result from previous stage. This is achieved by following method.

Let us use the second equation for carry generation from previous section, i.e.

C; = A;B; + (A;+ B;)C;-1

This can be written as, C; = G; + PPi-!

where, G; = A;B; and P; =A;+ B;

G; stands for generation of carry and P; stands for propagation of carry in a particular stage depending on
input to that stage. As explained in previous section, ifA;B; = 1, then ith stage will generate a carry, no matter
previous stage generates it or not. And if A;+ B; = 1 then this stage will propagate a carry if available from
previous stage to next stage. Note that, all G; and P; are available after one gate delay once the numbers A
and B are placed.

Starting from LSB, designated by suffix O ifwe proceed iteratively we get,

Co =Go+ P0.C_1 [C_1 will normally be O ifwe are not using it as subtractor or cascading it.]

C1 = G1 +Pi.Co= G1 + PJ-(Go+ Po.C_1) = G1 + Pi.Go+ P1Po.C_1 [Substituting Co]

Similarly,

etc.

C2 = G2+ P2.C1 = G2+ P2.(G1 + Pi.Go+ P1Po,C_1)

= G2 + P2.G1 + P2P1.Go +P2P1Po.C_1
C3 = G3 + P3.C2 = G3 + PJCG2+ P2.G1 + P2P1.Go + P2P1P0.C_1)

= G3 + P3G2 + P3P2.G1 + P3P2P1.Go + P3P2P1Po.C-1

[Substituting Ci]

[Substituting C2]

The equations look pretty complicated. But do we gain in any way? Note that, these equations can be real
ized in hardware using multi-input AND and OR gates and in two levels. Now, for each carry whether Co or
C3 we require only two gate delays once the G; and P; are available. We have already seen they are available
after 1 gate delay. Thus parallel adder (circuit diagram for 2-bit is shown in Fig. 6.8a) generates carry within

Arithmetic Circuits

1 + 2 = 3 gate delays. Note that, after the carry is available at any stage there are two more gate delays from
Ex-OR gate to generate the sum bit as we can write S; = G; EB P; EB C;_1.

Thus serial adder in worst case requires at least (2n + 2) gate delays for n-bit addition and parallel adder
requires only 3 + 2 = 5 gate delays for that. One can imagine the gain for higher values of n. However, there
is a caution. We cannot increase n indiscriminately for parallel adder as every logic gate has a capacity to
accept at most a certain number of inputs, termed/an-in. This is a characteristic of the logic family to which
the gate belongs. More about this is discussed in Chapter 14. The other disadvantage of parallel adder is in
creased hardware complexity for large n. In Fig. 6.8b we present functional diagram and pin connections of
a popular fast adder, IC 74283.

A3 12
A2 14
A1 3
Ao 5 10 S3

13 S2
IC 1 S1 B3 11 74283

B2 15 4 So

Bi 2
Bo 6 9 cout

C;n-7
Vcc:(16)

C1 So
GND(8)

(a) (b)

(a) Logic circuit for 2-bit fast adder, (b) Functional diagram of IC 74283

Now, how do we add two 8-bit numbers using IC 74283? Obviously, we need two such devices and Cout

of LSB adder will be fed as C;n of MSB unit. This way each individual 4-bit addition is done parallely but
between two ICs carry propagates by rippling. To avoid carry ripple between two ICs and get truly parallel
addition the following approach can be useful. Let each individual 4-bit adder unit generate two additional
outputs Group Carry Generate (G3-0) and Group Carry Propagate (P3-0). They are defined as follows

G3-0 = G3 + P3G2 + P3P2.G1 + P3P2P1.Go

P3-0 = P3P2P1Po

~ ______________ D_ig_it_al_P_n_·nc_ip_le_s_a_n_d_A_pp_li_ca_ti_·on_s ____________ _

so that

C3 = G3_0 + P3_0 C1 [From equation of C3 in previous discussion]

Now, let us see how this is useful in 8-bit parallel addition. For the 4-bit adder adding MSB taking C3 as
carry input, we can similarly write

[C3 is equivalent to c_1 input for this adder]

where

Thus

or

G7-4 = G7 + P1G6 + P1P6.Gs + P1 P6P5.G4

P7-4 = P1P ff> sP 4

C7 = G7-4 + P7-4(G3--0 + P3_0 C1)

C7 = G7-4 + P7-4G3_0 + P7~3--0 C1

[substituting C3]

What do we get from above equation? Group carry generation and propagation terms are available from
respective adder blocks (G3_0, P3_0 from LSB and G7-4, P 7-4 from MSB) after 3 and 2 gate delays respec
tively. This comes from the logic equations that define them with Gi, Pi available after 1 gate delay.

Once these group-carry terms are available, we can generate C7 from previous equation by designing a
small Look Ahead Carry (LAC) Generator circuit. This requires a bank of AND gates (here one 2 input and
one 3 input) followed by a multi-input OR gate (here, three input) totaling 2 gate delays. Thus final carry is
available in 3 + 2 = 5 gate delays and this indeed is what we were looking for in parallel addition. In next
section we discuss a versatile IC 74181 that while performing 4-bit addition generates this group carry gen
eration and propagation terms. LAC generator circuits are also commercially available; IC 74182 can take up
to four pairs of group carry terms from four adder units and generate final carry for 16 bit addition.

Before we go to next section can you answer after how many gate delays the sum bits (S15 ..• S0) of 16 bit
fast adders will be available?

Show how final carry is generated for a parallel adder when two numbers added are A: 1111
and B: 000 l.

Solution First it calculates, G; and P; parallely.

Go = 1.1 = l, G1 = 1.0 = 0, G3 = 1.0=0.

and

Note that

Po =l+l=l,P1=l+O=l,

C1 =O.

Then substituting thesein equation of C3 we get final carry as

C3 = G3 + P3G2 + P3P2.G1+ P3 P2P1.Go + P3P2P1Po.C1
= 0 +LO+ 1.1.0 + Ll.1.1 + 1.1.Ll.O

=O+O+O+l+O

=1

16. What is the savings in time in a parallel adder?
17. What is the maximum number of inputs for an OR gate in a 4-bit parallel adder?

_______________ A_n_'th_m_e_tic_C_i~_c_ui_ts _______________ @)
6.10 ARITHMETIC LOGIC UNIT

Arithmetic Logic Unit, popularly called ALU is multifunctional device that can perfonn both arithmetic
and logic function. ALU is an integral part of central processing unit or CPU of a computer. It comes in
various forms with wide range of functionality. Other than normal addition, subtraction it can also perform
increment, decrement operations. As logic unit it performs usual AND, OR, NOT, EX-OR and many other
complex logic functions. It also comes with PRESET and CLEAR options, invoking which all the function
outputs are made 1 and O respectively. Normally, a mode selector input (M) decides whether ALU perfonns
a logic operation or an arithmetic operation. In each mode different functions are chosen by appropriately
activating a set of selection inputs.

S3

S2

S1

So

S3 S2S1 So

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 I 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Input A

A3A2A1Ao

1 l 1 1
1921232

3

4 IC 74181
5

6 14 16 17 15

A= B Cout G3_0 P3_0

(a)

M= I
(Logic

Function)

F=A'
F=(A+B)'
F=A'B
F=O
F=(AB)'
F=B'

F=A ©B
F=AB'
F=A'+B
F=(A ©B)'
F=B
F=AB
F=l
F=A+B'
F=A+B
F=A

(b)

lnputB

B3 Bz B1 Bo

18 20 22

1311109

F3 F2 F1 Fo

8

7

M=O

M

Vcc(24)
GND(12)

(Arithmetic Function)
Cin = I (For C;0 = 0, add 1 to F)

F=A
F=A+B
F=A+B'
F=minus 1
F=Aplus(AB')
F =(A+ B) plus (AB')
F = A minus B minus I
F=AB'rninus 1
F = A plus (AB)
F=AplusB
F= (A+ B') plus (AB)
F=ABminus 1
F=AplusA
F = (A + B) plus A
F=(A +B')plusA
F=A minus 1

(a) Functional representation of ALU IC 74181, (b) Its truth table

Digital Principles and Applications

In this section, we take up one very popular discrete ALU device from TTL family for discussion. IC
74181 is a 4-bit ALU that can generate 16 different kinds of outputs in each mode selected by four selection
inputs S3, S2, S1 and So. The functional diagram of this IC with pin numbers and corresponding truth table is
shown in Fig. 6.9(a) and Fig. 6.9(b) respectively. Note that this truth table considers data inputs A and Bare
active high. A similar but different trnth table is obtained if data is considered as active low.

Well, the truth table is pretty exhaustive though one might wonder what could be the utility of functions like
(A+ B) plus AB'. But a careful observation shows one important function missing, that of a comparator. Is it truly
so? No, it can be obtained in an indirect way. The Cout is activated (active low) by addition as well as subtractio.n
because subtraction is carried out by 2 's complement addition. Note that, if the result of an arithmetic operation
is negative it will be available in 2 's complement form. The A= B output is activated when an the function outputs
are 1, i.e. F 3 ... F0 = 1111. Output A= B, together with Cout can give functions like A> Band A <B. Note that
A = B is an open collector output; thus when more than 4-bits are to be compared this output of different ALU
devices are wire-ANDed, simply by knotting outputs together to get the final result. To know more about
open collector gates refer to Section 14.5 of Chapter 14.

The outputs Cout, G3_0 and P3_o are useful when addition and subtraction of more than 4-bits are performed
using more than one IC 74181 as discussed in previous sections.

Logic operations are done bit-wise by making M = l and choosing appropriate select inputs. Note that,
carry is inhibited for M = 1. Let us see how AND operation between two 4-bit numbers 1101 and O 111 is to be
performed. Enter input A3 .. Ao = 1101 and B 3 .. Bo = 0111. Make S3 .. S0 = 1011 and of course M = I to choose
logic function. The output is shown as F3 . .F0 = 00 ll.

For arithmetic operations M = 0 to be chosen and we have to appropriately place Cin (active low), if any.
For example, ifwe want to add decimal numbers 6 with 4 we have to place 0110 for 6 at A and 0100 for 4 at
B. Then with S3 .. S0 = 1001 (from truth table) and Cin = 1 (active low) the output generated is F3 .. F0 = 1010
which is decimal equivalent of 10.

(a) Show how A > B output can be generated in IC 74181 ALU. (b) Also show how A ;=:: B condition can be
checked.

Solution

(a) If A > B, then :function A minus B will be positive and the result will not be in 2's complement form and more
importantly will generate a carry. Refer to discussion and examples in Section 6.6 0112 's complement arithmetic.
The final result for such snbtraction is obtained by disregarding the carry. But here by checking output carry
whether active we can conclude if A> B.
Thus to check A> B put M= 0 (arithmetic operation), S3 .. So = 0110 (gives A minusB),Cjn O (Cj11 = l gives A
minus B minus I) and check carry is generated, i.e. Cout = 0 (active), which givesA > B.

(b) A similar reasoning shows by making Cm= I in above and checking if Cout = 0 we can verify .A 2:'. B condition.

Show how bits of input A shifted to left by one unit appear at output Fin IC 74181.

Solution We know shifting to left by one unit is equivalent to multiplication by two. Again multiplication by two can
be achieved by adding the number with itselfonce. Thus make data input at A, M= 0 (arithmetic operation), qn = 1
and S3 .. So = 1100 (gives A plus A) and we have A shifted by 1 unit to left at function output F.

Arithmetic Circuits

18. What is an ALU?
19. How do you CLEAR all outputs ofIC 74181?

6.11 BINARY MULTIPUCATION AND DIVISION

Typical 8-bit microprocessors like the 6502 and the 8085 use software multiplication and division. In other
words, multiplication is done with addition instructions and division with subtraction instructions. Therefore,
an adder-subtracter is all that is needed for addition, subtraction, multiplication, and division.

For example, multiplication is equivalent to repeated addition. Given a problem such as

8x4=?

the first number is called the multiplicand and the second number, the multiplier. Multiplying 8 by 4 is the
same as adding 8 four times:

8+8+8+8=?

One way to multiply 8 by 4 is to program a computer to add 8 until a total of four 8s have been added. This
approach is known as programmed multiplication by repeated addition.

There are other software solutions to multiplication and division that you will learn about if you study
assembly-language programming.

There are ICs available that will multiply two binary numbers. For instance, the 74284 and the 74285 will
produce an 8-bit binary number that is the product of two 4-bit binary numbers. These I Cs are very fast, and
the total multiplication time is only about 40 nanoseconds (ns)!

20. Explain how one can do division of binary numbers.

6~12 ARITHMETIC CIRCUITS USING HO[

We first describe a full adder circuit and create a test bench to test it. Please refer to discussion of Section 6.7.
[f A and B are the binary digits to be added and C is the Carry input then output Sum and Carry (represented
by sm and er in following Verilog code) is expressed by equations

Sum: sm =AB+ BC+ CA and Carry: er= A EBB EB C

We have used a test bench that generates all possible combinations of A, B and C by arithmetic addition
and takes less space than test bench described in Chapter 2. The output sum (sm) and carry (er) for this is
shown in simulation waveform. One can see this verifies truth table of a full adder.

Cj) ______________ D_ig_ita_l_P_rin_c_ip_le_s_a_nd_A_p_p_lic_a_fio_n_s ____________ _

mociul.etestFUllAdder;
regA:,B,
wire sm, er;

fal(A,B,C,sm,cr);
simulation begins

{A,B,C
$finish;

end
endmodule

module fulladder(A,B,
input A,B,C;
output sm,cr;
assign sm
assign
endmodu1e

(A&BJ I

[Ons
I

testFullAdder.sm

testFullAdder.cr

testFulV\dder.A

testFulJAdder.B

testFullAdder. C
. -

f20ns
' I I '

I

!

l40ns
1 i I

I

\

t with fal

of fulladder

160,ns, j80ns 11oons il20ns
' I ' ' ' I ! I f C '

I \

_ _} \ {

{

\ I

I \ I \

Show Verilog design of 4-bit ripple cany adder.

Solution The code is given as follows.
the right depends on the compiler. Based
implements a4-bit ripple carry adder in different manner.

lll()dul.e. adder4bit (surr,,<:out,a,
input [3:0] a,b; Tr,;o 4 bit data to be

input cin;
output
output

generated in flrst three fulladder
fulladder*/
faO(a[O],b OJ,cin,sum[O],cint[OJ);

instantiates fulladder

to

modul.e adder4bit
(sum,cout,a,b,cin);
input [3:01 a,b;

t

I
jI4~ns

I I

I

I

_______________ A_n_"fh_m_e_tic_C_ir_c_ui_ts _______________ ~

fal(a[l],b[l],cint[O],sum[l],cint[l]);

,b[2],cint11],sum[2],cint[2]);

fa3(a[3],b[3],cint[2],sum[3J,cout);

endmoduie

module fulladder(A,B,C,sm,cr);

input A,B,C;

output sm,cr;

assign sm = (A&B) I (B&C) l (C&A);

ass;i.gncr =
endmodule

input
output [3:0] sum;

output cout;

assign {cout,sum}

endmodule

PROBLEM SOLVING WITH MULTIPLE METHODS

Show how a half-adder can be realized.

a+ b + cin;

Solution The half-adder truth table and logic equations are reproduced from Section 6. 7 in Fig. 6.lOa.

A B C

0 0 0
0 l 0
l 0 0
1 1 1

fa)

S=A·B'+A'B
= {A·B' + A'B)"
= ((A·B')'-(A'B)')'
= ((A'+B)-(A+B')'
= (A'B'+AB)'
= (A'B')'{AB)'
=; (A+B}(AB)'
= (AB)'A+(AB)'B

s
0
1
1
0

= ((AB)'!+(AB)'B)"
= (((AB)'A)',((AB)'B))')'

C=AB

S=AEfJB
=AB'+A'B

: double co111plement

: double complement
: from Eq. 2.1
· from Eq. 2.2

: since XX= 0
: from Eq. 2.1
; from Eq. 2,2

· double complement
:. from Eq,. 2.1

A-_,_,-----..

B--,,. _ _./

(d)

C

(a) Truth tablE?' and logic equation for half-adder, (b) Realization using
AND and exclusive-OR gate, (c) Derivation of AND and exclusive-OR
relation, (d) Realization using only NAND gates

Digital Principles and Applications

In Method-1, the logic relations can directly be realized using AND and exclusive-ORgate as
shown in Fig. 6.1 Ob.

In Method-2, we show how itcan be realized using only one type of basic gates, say NANI)gate.
The derivation is shown in Fig. 6.1 Oc and the realization is shown in Fig. 6.1 Od.

It is left as an exercise to find how it can be realized using only NOR gates.

In Method-3, we show how it can be realized using two 4 to .1 multiplexers. We make use of th,e truth
table to assign data inputs to the multiplexers while A and B are used as select inputs. The realization
is shown in Fig. 6.1 la.

001----,.--,.-~-

000 000 0 01 C 1 Ol . S
0 10 l 10
l 11 0 l1 oo· .. cBO ······s B I B' 1

0I ______ .__._

101------<1!--!--11 ,__ ___ ,____,,.........,__

A B

A B A B A A s
(a) (b) (c)

Realization using (a) 4 to 1 multiplexers, (b) 2 to 1 multiplexers,
(c) Decoder, OR gate

In Method-4, we show how it can be realized using two 2 to l multiplexers. Let the only selected
input to the multiplexers be A.

We note from the equation, if A = 0, C = 0 and if A = l, C = B

if A = 0, C = B and if A = l, C = B'

The realization from these is shown in Fig. 6.1 lb where Bis used in the data input,

In Method-5, we show how it can berealized using a 2 to 4 decoder and OR gate. The decoder gen
erates all the four minterms A'B', A'B, AB' and AB. Carry output is generated directly from AB. Sum
output is generated OR-ingA'B and AB'. The realization is shown in Fig. 6.llc.

Numbers represent physical quantities. As long as you know the number code being used; those strange
looking answers in other number systems make perfect sense. Subscripts can be used as a reminder of the
base of the number system.

The unsigned 8-bit numbers are from 0000 0000 to 1111.1111, equivalent to deci:rrialOto 255. The un
signed 16-bit numbers are from decimal Oto 65,535. Overflows occur when a sum exceeds the range ofthe
number system. With 8-bit arithmetic, an overflow occurs when the unsigned sum exceeds 255.

Sign-magnitude numbers use the MSB as a sign bit, with O for the + sign and 1 for the - sigri. The rest
of th~ bits are for the magnitud~ of th,e number, For this reason, 8~bit numbers cover the decimill range of
-127 to +127, while 16,bit numbers cover -32,767 to +32,767.

Arithmetic Circuits

The 2's complement representationis the most widespread code for positive and negative numbers.
Positive numbers are coded as sign-magnitude numbers, and negative numbers are coded as 2's comple
ments. The key feature of this nuII1ber:5Y'S~et).li$.that taking the 2's complement of a number is equivalent
to changing its sign. This charasteFi§ticaUmvs uslo subtract numbers by adding the 2's cm:nplementoftht;?
subtrahend. The advantage is simpler arithmetic hardware.

The half-adder has two inputs and two outputs; it adds 2 bits at a time. The full-adder has three inputs
and two outputs; it adds 3 bits at a time. By connecting a controlled inverter and full-adders, we can build
an adder~subtracter. This circuit can perform addition, subtraction, multiplication, and division.

A fast adder brings parallelism in <1ddition process, more specifically by generating the carry using extra
hardware through a look. ahead logic. An Arithmetic Logic Unit is a versatile device, which can generate
many useful arithmetic and logic functions with appropriate selection of inputs. Cascading ofthese dee
vices is usually possible for working with larger sized numbers.

• arithmetic logic unit A device that can
perform both arithmetic and logic function
based on select inputs.

• full-adder A logic circuit with three inputs
and two outputs. The circuit adds 3 bits at a
time, giving a sum and a carry output.

• half-adder A logic circuit with two inputs and
two outputs. It adds 2 bits at a time, producing
a sum and a carry output.

• hardware The electronic, magnetic, and
mechanical devices used in a computer or
digital system.

• LSB Least-significant bit.
• look ahead carry Carry that need not ripple

from one stage to other and is obtained through
a look ahead logic after the binary numbers are
placed in adder unit; useful in fast addition.

• magnitude The absolute or unsigned value of
a number.

6.1 Give the sum in each of the following:

a. 3s + 7 s = ? b. 5s + 6s = ?

• microprocessor A digital IC that combines the
arithmetic and control sections of a computer.

• MSB Most-significant bit
" parallel addition A method of binary addition

where carry generation at a particular stage
does not depend on availability of carry from
previous stage.

• overflow An unwanted carry that produces an
answer outside the valid range of the numbers
being represented.

• ripple carry Carry that ripples from one stage
to other in serial addition.

• serial addition A method of binary addition
where carry sequentially propagates from one
stage to next stage.

• software A program or programs. The
instructions that tell a computer how to
process the data.

" 2's complement The binary number that results
when 1 is added to the l's complement.

6.2 Work out each of these binary sums:
a. 0000 1111 + 0011 0111
b. 0001 0100 + 0010 1001
C. 0001 1000 1111 0110 +

0000 1111 0000 1000

Digital Principles and Applications

6.3 Show the binary addition of 75010 and 53810
using 16-bit numbers.

6A Subtract the following: 0100 1111 -0000
0101.

6.5 Show this subtraction in binary form: 4710
-2310.

6.6 Indicate which of the following produces an
overflow with 8-bit unsigned arithmetic:

a. 4510 + 7810 b. 34s + 56s
C. CF16 + 6716

6.7 Express each of the following in 8-bit sign
magnitude form:

a. +23 b. +123
C. -56 d. -107

6.8 Convert each of the following sign-magnitude
numbers into decimal equivalents:

a. 00110110
b. 1010 1110
C. 1111 1000
d. 1000 1100 0111 0101

6.9 Express the l's complement of each of the
following in hexadecimal notation:

a. 23H b. 45H
c. C9H d. FDH

6.10 What is the 2's complement of each of these:
a. 0000 1111
b. 0101 1010
C. 1011 1110
d. 1111 0000 1111 0000

6.11 Use Appendix 2 to convert each of the
following to 2's complement representation:

a. +78 b. -23
C. -90 d. ~121

6.12 Decode the following numbers into decimal
values, using Appendix 2:

a. FCH
C. 9AH

b. 34H
d. B4H

6.13 Show the 8-bit addition of these decimal
numbers in 2's complement representation:

a. +45, +56 b. +89, -34
C. +67,'-98

6.14 Show the 8-bit subtraction of these decimal
numbers in 2's complement representation:

a. +54, +65 b. +68, -43
C. +16, -38 d. -28, ~5

6.15 Suppose that FD34H is the input to a 16-bit
controlled inverter. What is the inverted output
in hexadecimal notation? In binary?

6.16 Expressed in hexadecimal notation, the two
input numbers in Fig. 6.6 are 7FH and 4DH.
What is the output when SUB is low?

6.17 The input numbers in Fig. 6.6 are 0001 0010
and 1011 1111. What is the output when SUB
is high?

6.18 Show how two IC 74283s can be connected
to add two 8-bit numbers. Find the worst case
delay.

6.19 Show how a parallel adder generates sum and
carry bits while adding two numbers 1001 and
1011. What is the final result?

6.20 How A < B function is performed in IC
74181?

6.21 Show how 7 can be subtracted from 13 using
IC 74181.

6.22 Describe a program that multiplies 9 x 7 using
repeated addition.

Arithmetic Circuits

AIM: The aim of this experiment is to per
form addition and subtraction · of two 8-bit
data.

Theory: Two's complement arithmetic
complements the number.to be subtracted and
adds one to it. Then this is added with the other
number to perform subtraction. The addition is
straight forward. IC 7483 is a 4-bit full adder
with canyin input at pin 13.The exclusive-OR
gate is useful to :find complement of a binary
number.

Upper

3 8
5

+5V
5

+SV

7483
13 14

12

- 15 2 6 9

S1 s6 S5 S4

See Eqs. (6.l) through (6.4).
2. This is the hexadecimal number l79F.
3, Binaryl11; decimal Ul
4. See Eqs, (6.5) through (6.8).
5. It is used to indicate an overflow.
6. 255
7. -127to+l27
8. -13; +13
9. 0010 1001

10. 0010 1010
ll. 2'scomplement
12. Take the complement of the subtrahend

andadd.itto the minuend.
13, Inputs: A and B; outputs: SUM and

CARRY

12

Apparatus: .5 VDC Power supply, Multime
ter, and Bread Board

Work element: Verify the truth table of IC
7483. Connect two 7483 to perform 8-bit addi
tion as shown. The exclusive-OR gate passes
the same data to adder when SUB = 0 and a
fOmplement of the data when SUB = 1 where
assertion of SUB stands for subtraction. Add
and subtract :five pair of numbers and compare
with theoretical result.

Lower

3 8

7483
13

14. Inputs: A, B, and CARRY IN; outputs:
SUM and CARRY

15. T; see Fig. 6.4.
16. Parallel adder requires 5 gate delays and

serial adder (2n + 2) gate delays for n-bit
addition.

17. Five.
18. ALU is . short form of Arithmetic Logic

{Jnit, a digital hard\Vare that cart perf611l'l
both arithmetic and logic operations.

19. Substitute M"" 1 and S3 .. S0 = OOlL
20. Itrealized only by repeatedly substracting

one numberfrom·the other.

Clocks and Timing Circuits

+ State the purpose of a clock in a digital system and demonstrate an understanding of
basic terms and concepts related to clock waveforms

+ Discuss the operation of the Schmitt trigger and its applications
+ Recognize the astable and the monostable 555 timer circuits and compare the

behavior of the two circuits
+ Describe the retriggerable and nonretriggerable monostables

The heart of every digital system is the system clock. The system clock provides the heartbeat without which
the system would cease to function. In this chapter we consider the characteristics of a digital clock signal
as well as some typical clock circuits. Schmitt triggers are used to produce nearly ideal digital signals from
otherwise noisy or degraded signals. Propagation delay is the time required for a signal to pass from the
input of a circuit to its output. You will see how to utilize logic gate propagation delay time to construct a
pulse-forming circuit. A monostable is a basic digital timing circuit that is used in a wide variety of timing
applications. We consider a number of different commercially available monostable circuits and examine
some common applications.

7.1 CLOCK WAVEFORMS

Up to this point, we have been considering static digital logic levels, that is, voltage levels that do not change
with time. However, all digital computer systems operate by "stepping through" a series oflogical operations.
The system signals are therefore changing with time: they are dynamic. The concept of a system clock was in
troduced in Chapter. 1. It is the clock signal that advances the system logic through its sequence of steps. The

Clocks and Timing Circuits

square wave shown in Fig. 7. la is a typical clock waveform
used in a digital system. It should be noted that the clock need
not be the perfectly symmetrical wavefonn shown. It could
simply be a se1ies of positive (ornegative) pulses as shown in
Fig. 7.lb. This waveform could of course be considered an
asymmetrical square wave with a duty cycle other than 50
percent. The main requirement is that the clock be perfectly
periodic, and stable.

-J r- Clock cycle time

(a)

-J J- Clock cycle time

_fL_JLJULJl_
(b)

Notice that each signal in Fig. 7.1 defines a basic timing Ideal clock waveforms
interval during which logic operations must be performed.
This basic timing interval is defined as the clock cycle time, and it is equal to one period of the clock wave
fonn. Thus all logic elements must complete their transitions in less than one clock cycle time.

Synchronous Operation

Nearly all of the circuits in a digital system (computer) change states in .STnchronism with the system clock.
A change of state will either occur as the clock transitions from low to high or as it transitions from high to
low. The low-to-high transition is frequently called the positive transition (PT), as shown in Fig. 7.2. The PT
is given emphasis by drawing a small arrow on the rising edge of the clock waveform. A circuit that changes
state at this time is said to be positive-edge-triggered. The high-to-low transition is called the negative
transition (NI), as shown in Fig. 7.2. The NT is emphasized by drawing a small arrow on thefalling edge of
the clock wavefom1. A circuit that changes state at iliis time is said to be negative-
edge-triggered. Virtually all circuits in a digital system are either positive-edge- __f-i_JL
triggered or negative-edge-triggered, and thus are synchronized with the system PT NT PT NT
clock. There are a few exceptions. For instance, the operation of a push button
(RESET) by a human operator might result in an instant change of state that is
not in synchronism with the clock. This is called an asynchronous operation.

What is the clock cycle time for a system that uses a 500-kHz clock? An 8-MHz clock?

Solution The clock cyqleis simply one period of the clock. For the 500-kHz clock,

l
Cycle time =

500
x = 2 µs

For the 8-MHz clock,

Cycle time = I25 ns

Characteristics

The clock waveform drawn above the time line in Fig. 7.3a is a perfect, ideal clock. What exactly
are the characteristics that make up an ideal clock? First, the clock levels must be absolutely stable.
When the clock is high, the level must hold a steady value of +5 V, as shown between points a and b
on the time line. When the clock is low, the level must be an unchanging O V, as it is between points
b and c. In actual practice, the stability of the clock is much more important than the absolute
value of the voltage level. For instance, it might be perfectly acceptable to have a high level of
+4.8 V instead of+ 5.0 V, provided it is a steady, unchanging, +4.8 V.

+5 V ---·

ov

Digital Principles and Applications

+5 v---·-
ov-

_ __,_ _ _.__.,__ __ __,_ ___ Time

a b C

_ __,_ _ _,__..__ __ _._ __ __.,. Time
a b C

(a) Ideal waveform

+5 V --:f.sv-·:::::.- -
I
I

0 V
0.5 V __ . :

--- I I

~ I-fr

I
I
I
I

(b) Oscilloscope trace

I. --
1 ,,,----

tr-I I-
--~--------~---- Time

a b
(c) Expanded oscilloscope trace

Clock waveforms

The second characteristic deals with the time required for the clock levels to change from high to low
or vice versa. The transition of the clock from low to high at point a in Fig. 7.3a is shown by a vertical line
segment. This implies a time of zero; that is, the transition occurs instantaneously-it requires zero time.
The same is true of the transition time from high to low at point bin Fig. 7.3a. Thus an ideal clock has zero
transition time.

A nearly perfect clock waveform might appear on an oscilloscope trace as shown in Fig. 7.3b. At first glance
this would seem to be two horizontal traces composed of line segments. On closer examination, however,
it can be seen that the waveform is exactly like the ideal waveform in Fig. 7.3a if the vertical segments are
removed. The vertical segments might not appear on the oscilloscope trace because the transition times are so
small (nearly zero) and the oscilloscope is not capable of responding quickly enough. The vertical segments
can usually be made visible by either increasing the oscilloscope "intensity," or by reducing the "sweep
time."

Figure 7.3c shows a portion of the wavefonn in Fig. 7.3b expanded by reducing the "sweep time" such
that the transition times are visible. Clearly it requires some time for the waveform to transition from low to
high-this is defined as the rise time tr- Remember, the time required for transition from high to low is de
fined as the fall time If It is customary to measure the rise and fall times from points on the wavefonn referred
to as the JO and 90 percent points. In this case, a 100 percent level change is 5.0 V, so 10 percent of this is 0.5
V and 90 percent is 4.5 V. Thus the rise time is that time required for the waveform to travel from 0.5 up to
4.5 V. Similarly, the fall time is that time required for the waveform to transition from 4.5 down to 0.5 V.

Finally, the third requirement that defines an ideal clock is its frequency stability. The frequency of the
clock should be steady and unchanging over a specified period of time. Short-term stability can be specified
by requiring that the clock frequency (or its period) not be allowed to vary by more than a given percentage
over a short period of time-say, a few hours. Clock signals with short-tenn stability can be derived from
straightforward electronic circuits as shown in the following sections.

Long-term stability deals with longer periods of time~perhaps days, months, or years. Clock signals
that have long-term stability are generally derived from rather special circuits placed in a heated enclosure
(usually called an "oven") in order to guarantee close control of temperature and hence frequency. Such
circuits can provide clock frequencies having stabilities better than a few parts in 109 per day.

Clocks and Timing Circuits

Propagation Delay Time

Propagation delay tp is the time between a PT (or an NT) at the input of
a digital circuit and the resulting change at the output. For all practical
purposes, the time difference between fifty percent level of the input and
corresponding output wavefonns is used to calculate propagation delay.
The box in Fig. 7.4 on the next page represents any TTL logic gate in
the 74LSXX family. Notice that the waveform at the output is delayed
in time from the input waveform, tpLH is the delay time when the output
is transitioning from low to high. fpHL is the delay time when the output
is transitioning from high to low. At temperatures below 75°C, tpHL is
only slightly larger than lpLH· For the 74LSXX devices, we will simply
assume they are equal, and for simplicity let's define propagation delay
as

Propagation delay = tp "" tpLH"" tpHL

The Texas Instruments data book gives a typical value of Ip"" 9 ns for

vJ _1

I I

v, i 1~-----'i~I __ _
tplll --,...: :- -: :- tpl/l

I I I 1

74LSXX devices. For comparison, the high-speed CMOS has slightly longer delay times. For example, the
74HC04 inverter has tP = 24 ns, which is typical.

The total propogation delay through a 74HC04 inverter is known to be 24 ns. What is the
maximum clock frequency that can be used with this device?

Solution An alternative way of posing the question is: How fast can the inverter operate? Remember, the circuit
must complete. any change of state within one clock cycle time. So,

Clock cycle time ;:: tp

The maxiimun clock frequency is then

1 1
Frequency = t P = 24 x

10
_9 = 4 L 7 MHz

Pulse-Forming Circuits

It is sometimes necessary to use a series of narrow pulses in place of the
rectangular clock waveform. Two such wavefo1ms are shown in Fig.
7 .5. The positive pulses occurring at the leading edge of the clock will
define the PTs, while the negative pulses occurring at the falling edge
will define the NTs. By taking advantage of the propagation delay time
through a gate, it becomes a simple matter to change the rectangular
clock into a series of pulses. There are numerous circuits that will change
the clock into a pulse train, and here are two possibilities.

cL.tll_S1S1Sl_
p~

N~

In Fig. 7 .6a, the clock (CLK) is applied to a NAND gate and an AND gate at the same time. The output of
the NAND gate (A) is delayed by Ip. The output of the AND gate (PT) is high only when both its inputs are
high. This is shown as the shaded region on the waveforms in Fig. 7.6b. The output (PT) is also delayed by
tP through the AND gate, and it appears as a positive pulse. Each output pulse (PT) is delayed by Ip from the
leading edge of CLK, and each pulse has a width equal to tP' Any digital circuit that incorporates the pulse
forming block in Fig 7 .6a is said to be positive-edge-triggered, since it will change states in synchronism

(a)

CL§L_
A•

I
I
I
I

tp~ -

PT tp

(b)

~
(c)

Digital Principles and Applications

PT CLK PT

(a)

~
(b)

with the PT of the clock. The box in Fig. 7.6c is a general symbol for a positive-edge-triggered circuit. The
small triangle inside the box is called a dynamic input indicator, which simply means the circuit is sensitive
to PTs.

In Fig. 7.7a, CLK is applied to a NAND gate and an OR gate simultaneously. The output of the NAND
gate (A) is delayed by tr The output of the OR gate (NT) is low only when both its inputs are low. This is the
shaded region on the waveforms. The output (NT) is also delayed by tp through the OR gate, and it appears
as a negative pulse. Each output pulse has a width of tP and each is delayed by tp from the falling edge of
CLK. Any digital circuit that incorporates this pulse-forming circuit is said to be negative-edge-triggered
since it will change states in synchronism with the NT of the clock. The box in Fig. 7.7b is a general symbol
for a negative-edge-triggered circuit. The small triangle is the dynamic input indicator, and the bubble shows
that the input is active-low. The small triangle on the output indicates that NT is normally high, and is active
when low. This triangle has the exact same meaning as the bubble. In fact, the IEEE standard uses these
symbols interchangeably. You will see both symbols used in industry and on manufacturers' data sheets. Just
remember, they both mean the same thing-active low!

It should be obvious that an inverter at the output of the AND gate in Fig. 7.6a will produce a series of
negative pulses that synchronize with the leading edge ofCLK. Similarly, an inverter at the output of the OR
gate in Fig. 7. 7 a will produce a series of positive pulses in synchronization with the falling edge of CLK.
These circuits, or variations of them, are used extensively with edge-triggered flip-flops-the subject of the
next chapter. If you care to look ahead at the flip-flop symbols, you will see the dynamic indicator and the
bubbled dynamic indicator used extensively.

Clocks and Circuits

l. Explain the meaning of positive-edge-triggered and negative-edge-triggered.
2. What is a dynamic input indicator'?
3. What is the logic symbol for an input sensitive to NTs?

7 .2 TTL CLOCK

A 7404 hexadecimal inverter can be used to construct an excellent TTL-compatible clock, as shown in
Fig. 7.8. This clock circuit is well known and widely used. Two inverters are used to constrnct a two-stage
amplifier with an overall phase shift of 360° between pins 1 and 6. Then a portion of the signal at pin 6 is
fed back by means of a crystal to pin 1, and the circuit oscillates at a frequency detennined by the crystal.
Since the feedback element is a crystal, the frequency of oscillation is very stable. Here's how the oscillator
works.

Inverter 1 has a 330-Q feedback resistor (R 1) connected from output (pin 2) to input (pin 1). This forms a
current-to-voltage amplifier with a gain of A 1 = V0 I Ii= R 1. In this case, the gain is A 1 = -330 V / A, where
the negative sign shows 180° of phase shift. For instance, an increase of 1 mA in I;, will cause a negative
going voltage of 1 mA x 330 = 330 m Vat V,,.

Inverter 2 is connected exactly as is inverter 1. Its gain is A2 = -R2. The two amplifiers are then ac-coupled
with 0.01-µF capacitor to form an amplifier that has an overall gain of A= A 1 x A2 = R 1R2. Notice that the
overall gain has a positive sign, which shows 360° of phase shift. In this case, A = 330 x 330 = 1.09 x 105

V / A. For instance, an increase of 45 µA at Ji will result in a positive-going voltage of 5. 0 V at pin 6 of inverter
2. Now, if a portion of the signal at pin 6 is fed back to pin 1, it will augment I; (positive feedback) and the
circuit will oscillate.

A series-mode crystal is used as the feedback element to return a portion of the signal at pin 6 to pin 1. The
crystal acts as a series RLC circuit, and at resonance it ideally appears as a low-resistance element with no
phase shift. The feedback signal must therefore be at resonance, and the two inverters in conjunction with the
crystal form an oscillator operating at the crystal resonant frequency.

With the feedback element connected, the overall gain is sufficient to drive each inverter between
saturation and cutoff, and the output signal is a periodic waveform as shown in Fig. 7.8. Typically, the output
clock signal will transition between O and +5 V, will have rise and fall times of less than 10 ns, and will be
essentially a square wave. The frequency of this clock signal determined by the crystal, and values between
1 and 20 MHz are common.

Inverter 3 is used as an output buffer amplifier and is capable of driving a load of 330 Q in parallel with
100 pF while still providing rise and fall times ofless than 10 ns.

A TTL clock circuit as shown in Fig. 7.8 is said to provide a 5-MHz clock frequency with a
stability better than 5 parts per million (ppm) over a 24-h time period. What are the frequency
limits of the clock?

Solution A stapility of5 parts per mHlion means that a· I-MH~ clock will have a frequency of l,000,000 plus .or
minus 5 Hz. So, this clock will have a frequency ofS,000,000 plus or minus 25 Hz. Over any 24-h period the .clock
frequency will be somewhere between 4,999,975 and 5,000,025 Hz:

Digital Principles and Applications

R1 330Q Crystal R2 = 330 Q

2 5 6
#I #2 - Vo

i I 0.01 µF

l. -7404 l. _7404 +Vee J1JU
6 6

II 10 GND
#3 Clock

output

Simulated load

TTL clock circuit

4. Why must the crystal in Fig, 7.8 be a series mode and not a parallel mode?
5. Are the l 00-pF and 330-Q loads necessary in Fig. 7 .8?

7.3 SCHMITT TRIGGER

A Schmitt trigger is an electronic circuit that is used to detect whether a voltage has crossed over a given
reference level. It has two stable states and is very useful as a signal-conditioning device. Given a sinusoidal
waveform, a triangular wave, or any other periodic waveform, the Schmitt trigger will produce a rectangular
output that has sharp leading and trailing edges. Such fast rise and fall times are desirable for all digital
circuits.

Figure 7.9 shows the transfer function
(V0 versus V;) for any Schmitt trigger. The
value of Vi that causes the output to jump
from low to high is called the positive-
going threshold voltage VT+· The value
of Vi causing the output to switch from
high to low is called the negative-going
threshold voltage VT-·

The output voltage is either high or
low. When the output is low, it is neces
sary to raise the input to slightly more
than VT+ to produce switching action.
The output will then switch to the high
state and remain there until the input is
reduced to slightly below Vy_. The output

V
0

High state
I
I
I
I

+

Low state--~-....

o---~-~------11;
Vr_ Vr+

0

Schmitt-trigger transfer characteristic

will then switch back to the low state. The arrows and the dashed lines show the switching action.

Clocks and Timing Circuits

The difference between the two threshold voltages is known as hysteresis. It is possible to eliminate
hysteresis by circuit design, but a small amount of hysteresis is desirable because it ensures rapid switching
action over a wide temperature range. Hysteresis can also be a very beneficial feature. For instance, it can be
used to provide noise immunity in certain applications (digital modems for example).

The TTL 7414 is a hex Schmitt-trigger inverter. The hex means there are six Schmitt-trigger circuits in one
DIP. In Fig. 7.lOa, the standard logic symbol for one of the Schmitt-trigger inverters in a 7414 is shown along
with a typical transfer characteristic. Because of the inversion, the characteristic curve is reversed from that
shown in Fig. 7.9. Looking at the curve in Fig. 7.10b, when the input exceeds 1.7 V, the output will switch to
the low state. When the input falls below 0.9 V, the output will switch back to the high state. The switching
action is shown by the arrows and the dashed lines.

The TTL 74132 is a quad 2-input NAND gate that employs Schmitt-trigger with a similar hysteresis
characteristics as described before for 7414. Figure 7.10c shows the standard logic symbol for one Schmitt
trigger NAND gate.

Vo

(V)

3.4
I I
I I

V;~V0

I I
I I

t t In~
~Output

Input 2

(a) 0.2 (c)
0

0.9 1.7
--!----'--''------ V;

0
(b)

(a) Logic symbol of Schmitt-trigger inverter, (b) 7 414 hysteresis characteristics,
and (c) Logic symbol of Schmitt-trigger 2-input NAND gate

A sine wave with a peak of 2 V drives one of the inverters in a 7414. Sketch the output

voltage.

Solution When the sinusoid exceeds 1. 7 V, the output goes from high to fow; The output stays in the low state until
the input sinusoid drops below 0.9 V. Then the output jumps back to the high state. Figure 7 .11 shows the input and
output waveforms. This illustrates the signal-conditioning action of the SchmitHrigger inverter, It has changed the
sine wave into a rectangular pulse with fast rise and fall times. The same action would occur for any other periodic

waveform.

Noisy Signals

The hysteresis characteristic of a Schmitt trigger is very useful in changing noisy signals, or signals with
slow rise times, into more nearly ideal digital signals. A noisy signal is illustrated in Fig. 7 .12a. Applying this
signal to the input of a 7404 inverter will produce multiple pulses at its output, as shown in Fig. 7.12b. Each
time the input signal crosses the threshold of the 7404, it will respond, and the multiple output transitions are
the result. When used with an edge-triggered circuit, this will produce numerous unwanted PTs and NTs. The

Digital Principles and Applications

0.2 V ----
O ---------------------

(a) A noisy signal

I
I

':+--1 -=====:::t-t.
(c)

(b)

Schmitt trigger will eliminate these multiple transitions, as shown in Fig. 7. l 2c. When the input rises above
Vr+, the output will go low. However, the output will not again change state until the input falls below Vr-·
Thus, multiple triggering is avoided! A Schmitt trigger is occasionally incorporated in an IC, for instance, the
74121, which is discussed in the next section.

Clocks and Circuits

6. What is the meaning of hysteresis when appliedto a Schmitt trigger'?
7. What is the difference between an inverting and a noninverting Schmitt trigger?
8. Schmitt triggers can be used as simple inverters. What is another good application for a Schmitt

trigger?

7.4 555 TIMER-ASTABLE

The 555 timer is a TTL-compatible integrated circuit (IC) that can be used as an oscillator to provide a clock
waveforn1. It is basically a switching circuit that has two distinct output levels. With the proper external
components connected, neither of the output levels is stable. As a result, the circuit continuously switches
back and forth between these two unstable states. In other words, the circuit oscillates and the output is a
periodic, rectangular waveform. Since neither output state is stable, this circuit is said to be astable and is
often referred to as a fi·ee-running multivibrator or as table multivibrator. The frequency of oscillation as
well as the duty cycle are accurately controlled by two external resistors and a single timing capacitor. The
internal circuit diagram ofLM 555 timer is shown in Fig. 7.13(a). Note that the two comparators inside have
two different reference voltages V ccf3 and 2 Vccf3 for comparisons, if V ccf3 is the voltage between pin 1
and 8. Also note how they are connected to + and - input of the comparator. The Set Reset flip-fl.op sets or
resets the output based on these comparator outputs in its usual operation. If required, it can be separately
reset by asserting pin 4. More about this flip-flop will be discussed in next chapter. In this section, we show
how 555 can be connected to get an astable multivibrator and in next section, we will discuss how it can be
used in monostable mode.

The logic symbol for an LM555 timer connected as an oscillator is shown in Fig. 7 .13. The timing capacitor
C is charged toward+ V cc through resistors RA and Rs. The charging time t1 is given as

t1 = 0.693(RA + Rs)C

This is the time during which the output is high as shown in Fig. 7.13.

The timing capacitor C is then discharged toward ground (GND) through the resistor Rs. The discharge
time t2 is given as

t2 = 0.693RsC

This is the time during which the output is low, as shown in Fig. 7.13.

The period T of the resulting clock waveform is the sum of t1 and t2. Thus

T= ti+ t2 = 0.693(RA + 2Rs)C

The frequency of oscillation is then found as

1 1.44
f = T = (RA +2Rs)C

Determine the frequency ofoscillation for the 555 timer in Fig. 7.13, givenR.1 =Rs= 1 kQ and

C= 1000 pF.

(a)

Digital Principles and Applications

t1 = 0.693 (RA+ Ra) C

t2 = 0.693 RaC

1.44
t=-----

(RA + 2Ra) C

t7 Ra
Duty cvcle = --- = --"--

. t1 + t2 RA + 2Ra

SET/RESET
FLIP-FLOP 4

+Vee

8 7

2 Rs
------; 3 LM 555 6 1----e----'

o"~{M ~~~-5~
(b) Logic diagram

,-._ 10 1->.---l---------l---l 1-L,

2,
.,.,
<.)

§
·u
"' §-- 0.1
<.)

I

u 0.01 ------~ --............

10 100 lk 10k 100k
f- free-running frequency (Hz)

(c) Nomograph

C

(a) Internal diagram of LM 555, (b) LM 555 in astable mode, (c) Nomograph

Solution Using the relationship given above, we obtain

1.44
f = [1000 + 2(1000)} X 10-9 480 kHz

The output of the 555 timer when connected this way is a periodic rectangular wavefonn but not a
square wave. This is because t1 and t2 are unequal, and the waveform is said to be asymmetrical. A mea-

Clocks and Timing Circuits

sure of the asymmetry of the wavefonn can be stated in terms of its duty cycle. Here we define the duty
cycle to be the ratio of t2 to the period.

Thus

Duty cycle = --"-
ti +t2

As defined, the duty cycle is always a number between 0.0 and. LO but is often expressed as a percent
For instance, if the duty cycle is 0.45 (or45percent), the signal is at GNDlevel 45 percent of the time and
at high level 55 percent of the time.

(a) Given Rs 750 Q, determine values for RA and C in Fig. 7.13 to provide a 1.0-MHz clock that has a duty cycle
of 25 percent.

(b) What change in the circuit shown in Fig. 7 .13 gives duty cycle approximately 50%?

Solution

(a) A I-MHz clock has a period of 1 µs. A duty cycle of25 percent requires ti= 0.75 µ.sand t2 = 0.25 µs. Solving
the expression

for R.4 yields
Rs 2 750 . 7 ·o ,.... RA = = - Rs = - - 2 x 50 = 1.::i o ""

Duty cycle 0.25

Solving t2 = 0.693 RsC for C yields

C= . t2
0.693Rs

·'-6
0.25 x10 = 480 F
0.693 x750 . p

(b) Connect a diode across Rs pointing from pin 7 to 6 so that it conducts while charging capacitor C and make RA
= Rs. Then while charging, Rs is bypassed as diode is forward biased but discharging is through Rs as diode
remains reverse biased and does not conduct. Thus we get same charging and discharging currenCNegiecting
small voltage drop across forward biased diode we approximately gate 50% duty cycle,

The nomogram given in Fig. 7. l 3b can be used to estimate the free-running frequency to be achieved
with various combinations of external resistors and timing capacitors. For example, the intersection of the
resistance line 10 kQ =(RA+ 2Rs) and the capacitance line 1.0 µF gives a free-running frequency of just over
100 Hz. It should be noted that there are definite constraints on timing component values and the frequency
of oscillation, and you should consult the 555 data sheets.

9. Whatis an astable circuit?
10. A 555 timer can be connected to form an oscillator. (Tor F)
11. The oscillation frequency in astable 555 is (directly, inversely) proportionalto the external

timing capacitor.

~ Digital Principles and Applications

7.5 555 TIMER-MONOSTABLE

With only minimal changes in wiring, the 555 timer discussed in Sec. 7.4 can be changed from a free-running
oscillator (astable) into a switching circuit having one stable state and one quasistable state. The resulting
1110nostable circuit is widely used in industry for many different timing applications. The normal mode of
operation is to trigger the circuit into its quasistable state, where it will remain for a predetermined length
of time. The circuit will then switch itself back (regenerate) into its stable state, where it will remain until it
receives another input trigger pulse. Since it has only one stable state, the circuit is characterized by the term
monostable multivibrator, or simply monostable.

The standard logic symbol for a monostable is shown in Fig. 7.14a. The input is labeled TRIGGER, and
the output is Q. The complement of the Q output may also be available at Q. The input trigger circuit may
be sensitive to either a PT or an NT. In this case, it is negative-edge-triggered. Usually the output at Q is low
when the circuit is in its stable state.

A typical set of waveforms showing the proper operation of a monostable circuit is shown in
Fig. 7.14b. In this case, the circuit is sensitive to an NT at the trigger input, and the output is low when the
circuit rests in its stable state. Once triggered, Q goes high and remains high for a predetermined time t and
then switches back to its stable state until another NT appears at the trigger input.

Dl-
TRlGGER~

(a) Logic symbol

TR1GGER
1
~~

Q I I
I

Q~~~
(b) Waveforms

Monostable circuit

A 555 timer wired as a monostable switching circuit (sometimes called a one-shot) is shown in Fig. 7.15
on the next page. In its stable state, the timing capacitor C is completely discharged by means of an internal
transistor connected to Cat pin 7. In this mode, the output voltage at pin 3 is at ground potential.

A negative pulse at the trigger input (pin 2) will cause the circuit to switch to its quasistable state. The
output at pin 3 will go high and the discharge transistor at pin 7 will tum off, thus allowing the timing
capacitor to begin charging toward V cc·

When the voltage across Creaches 2/3 Vee, the circuit will regenerate back to its stable state. The discharge
transistor will again tum on and discharge C to GND, the output will go back to GND, and the circuit will
remain in this state until another pulse arrives at the trigger input. A typical set of waveforms is shown in
Fig. 7.15b.

The output of the monostable can be considered a positive pulse with a width

t= 1.1 RAC

Take care to note that the input voltage at the trigger input must be held at+ Vee, and that a negative pulse
should then be applied when it is desired to trigger the circuit into its quasistable or timing mode.

Find the output pulse width for the timer in Fig. 7.15 given RA = IO kQ and C = 0.1 µF.

Clocks and Timing Circuits

+5 V to +15 V
,-, -----R.-e-se-t--.------e----o+f'cc
I
I
I
I
I

: Trigger
Normally~

"on" RL
load

Normally
"'off'
load

Output

4 8
2

LM555

3

-

Discharge 7------

6
Threshold

Control

5
voltage

o.oi
µF

C

1111 1111

I
I

Vcc=5V
Time=O.l ms/DIV
RA 9.1 k..Q
C=O.l µF

I

I

I 1 I

111r 1111 1111 1111

I I
I I

Top trace: input 5 V/DlV
Middle trace: output 5 V/DIV
Bottom trace: capacitor voltage

2 V/DIV

(a) Monostable (b) Monostable waveforms

100

G:' 10
2,
~

~ ·u
"' g. 0.1 1---+t--cri-
u
I

u O.ot ,____,..._,,..._.__,.+---+>--1--.....-----1

0.001 '---'-'-----'"---"--~~-~~
lOµs lms lOOms IOs

100 µs 10 ms I s 100 s

(c) Time delay, t = 1.1 R;1C

LM555 connected as a monostable circuit

Solution The pulse width is found as

Find the value of C necessary to change the pulse width in Example 7. 7 to 10 ms.

Solution The timing equation can be solved for C as

=0.909µF

Digital Principles and Applications

The nomograph shown in Fig. 7. l 5c can be used to obtain a quick, if not very accurate, idea of the sizes of
RA or C required for various pulse-width times. You can quickly check the validity of the results of Example
7.8 by following the RA= IO kQ line up to the C = 0.1 µF line and noting that pulse-width time is about 1
ms.

Once the circuit is switched into its quasistable state (the output is high), the circuit is immune to any other
signals at its trigger input. That is, the timing cannot be interrupted and the circuit is said to be nonretriggerable.
However, the timing can be interrupted by the application of a negative signal at the reset input on pin 4. A
voltage level going from + V cc to GND at the reset input will cause the timer to immediately switch back to
its stable state with the output low. As a matter of practicality, if the reset function is not used, pin 4 should
be tied to + V cc to prevent any possibility of false triggering.

12. What is a monostable?
13. A 555 timer can be connected as a one-shot (Tor F)
14. Is the stable output state of a 555 timer connected in a monostable mode high or low?

7.6 MONOSTABLES WITH .INPUT lOGiC

The basic monostable circuit discussed in the previous section provides an output pulse of predetermined
width in response to an input trigger. Logic gates have been added to the inputs of a number of commercially
available monostable circuits to facilitate the use of these circuits as general-purpose delay elements. The
74121 nonretriggerable and the 74123 retriggerable monostables are two such widely used circuits.

The logic inputs on either of these circuits can be used to allow triggering of the device on either a high
to-low transition (NT) or on a low-to-high transition (PT). Whenever the value of the input logic equation
changes from false to true, the circuit will trigger. Take care to note that a transition from false to true must
occur, and simply holding the input logic equation in the true state will have no effect.

The logic diagram, truth table, and typical waveforms for a 74121 are given in Fig. 7.16. The inputs to the
74121 are A1, A2 , and B. The trigger input to the monostable appears at the output of the AND gate. Here's
how the gates work:

1. If Bis held high, an NT at either A1 or A2 will trigger the circuit (see Fig. 7.16c). This corresponds to
the bottom two entries in the truth table.

2. If either A1 or A2, or both are held low, a PT at B will trigger the circuit (see Fig. 7.16d).

This corresponds to the top two entries in the truth table. A logic equation for the trigger input can be
written as

T= (A1 + A2)BQ

Note that for T to be true (high), either A I or A2 must be true-that is, either X1 or A2 at the gate input
must be low. Also, since Q is low during the timing cycle (in the quasistable state), it is not possible for a
transition to occur at T during this time. The logic equation for T must be low if Q is low. In other words,
once the monostable has been triggered into its quasistable state, it must time out and switch back to its stable
state before it can be triggered again. This circuit is thus nonretriggerable.

Clocks and Timing Circuits

.------Vee

C
R

11 10

6
Q

t= 0.69 RC

-l I
SL

A1

L

X

t
H

A2 B Result

X t Trigger

L t Trigger

H H Trigger

f H Trigger

74121
Note: Triggering can occur only when Q is H

GND

7

(a) Logic diagram

- 1--, r----1
A1 0 y

I

1
0--

Q

A
2
6 _ _,_ __ ~i---u-----

,
I

B l -~---11------
0

I
} I I

TO~~
1 I I

Qo~~
(c) Negative triggering

(not in timing cycle)

L=Low
H=High
X= Don't care
t = Low to high transition
t High to low transition

(b) Truth table

- 1
A10----------

- 1----------
A2 0

B I n o--\1--------
r 1 A
o__J,'~-------
1 ,.,..., _--.

Qo__J--c-r::..i~~~~
(d) Positive triggering

74121 nonretriggerable monostable

The output pulse width at Q is set according to the values of the timing resistor R and capacitor C as

t= 0.69RC

For instance, if C = 1 µF and R = 10 kQ, the output pulse width will be t = 0.69 x 104 x 10-6 = 6.9 ms.

The 74121 monostable in Fig. 7.16 is connected withR = 1 kQ and C= 10,000 pF. Pins 3 and
4 are tied to GND and a series of positive pulses are applied to pin 5. Describe the expected
waveform at pin 6, assuming that the input pulses are spaced by (a) 10 µsand (b) 5 µs.

The logic diagram and truth table for a 74123 retriggerable monostable are given in Fig. 7.18. There are
actually two circuits in each 16-pin DIP, and the pin numbers are given for one of them. The input logic is

Q 1
0 -j 6.9 µs 1-

(a) Triggers on every pulse at B

Digital Principles and Applications

BI
0

Q 1
0

-I 5µs I-

-j 6.9 µs 1-
(b) Triggers on every other pulse at B

simpler than for the 74121. The inputs are A, B, and R, and the truth table summarizes the operation of the
circuit. The fi~t entry in the truth table shows that the circuit will trigger if R and B are both high, and an
NT occurs at A .

The second truth table entry states the circuit will trigger if A is held low, R is held high, and a PT occurs
atB.

In the third truth table entry, if A is low and B is high, a PT at R will trigger the circuit.

The last two truth table entries deal with direct reset of the circuit. Irrespective of the values of A or B, if
the R input has an NT, or is held low, the circuit will immediately reset.

The logic equation for the trigger input to the monostable can be written T = AB R. Notice that the state
of the output Q does not appear in this equation (as it does for the 7 4121). This means that this circuit will
trigger ever)' time there is a PT at T. In other words, this is a retriggerable monostable!

The output pulse width at Q for the 74123 is set by the values of the timing resistor Rand the capacitor C.
It can be approximated by the equation

t = 0.33RC

The waveforms in Fig. 7.19c show a series of negative pulses used to trigger the 74123. Notice carefully
that the circuit triggers (Q goes high) at the first high-to-low transition on A, but that the next two negative
pulses on A retrigger the circuit and the timing cycle t does not begin until the very last trigger!

The 74123 in Fig. 7.18 is connected with A at GND, R at +Vee, R = 10 kQ, and C =
10,000 pf. Describe the expected waveform at Q, assuming that a series of positive pulses
are applied at Band the pulses are spaced at (a) 50 µsand (b) 10 µs.

Solution The -Output pulse widtbwill be aboµt

t=033x I04 xl0.,..s=33µs

11; The circuit xvill trigger and tim<:out \Vith every pulse l!.S s.hownin Fig. 7..l9a.
b. The.circuit will trigger with the first pulse and then retrigger with every following pulse. The timing cycle will

be re.set with eyery input pulse, and Qwill simply remain high since the drcuhwill never be alloxved to time out
(see Fig.7.19b).1f the pulses at Bare stopped, Q will be allowed to time out and will go fow 33 µs aft;erthe last
pulseatB.

Q I
0

T (1/2)
74123

R
3

R

13

Q

4

Q

Clocks and Timing Circuits

t=0.33 RC

-l 1-
..JL A

t
L

L

X

X

B

H

t
H

X

X

R Q

H Trigger

H Trigger

t Trigger H=High

L Reset L=Low
X= Don't care

t Reset + = Low to high transition
t = High to low transition

(a) Logic diagram (b) Truth table

-J 33µs f-
(a)

- 1
A 0

B I
0

-1-~---~------
Ro :

I

Q ~_j ~ t ~'----

(c) Waveforms

74123

B~~~
: :...-t-1

Q~_j jTl-
-1 33µs 1-

(b)

15. The 74121 is a (retriggerable, nonre¢ggerable)monostahle.
16. The input logic used with a 7 4-12 lutilizes a Schmitt .trigger. (Tor .F)
17. The output pulse wilith of a 74121 is RCmultiplied by __ _

Digital Principles and Applications

7.7 PULSE-FORMING CIRCUITS

The monostable circuits discussed in the previous sections have pulse-width times that are predictable to
around 10 percent. As such, they do not represent precise timing circuits, but they do offer good short-term
stability and are useful in numerous timing applications.

One such application involves the production of a pulse that occurs after a given event with a predictable
time delay. For instance, suppose that you are required to generate a I-ms pulse exactly 2 ms after the
operation of a push-button switch. Look at the waveforms in Fig. 7 .20b. If the operation of the switch occurs
when the waveform labeled SWITCH goes high, the desired pulse is shown as OUTPUT. In this case, the
delay time t I will be set to 2 ms, and the time of the pulse width t2 will be I ms.

The two monostables in the 74123 shown in Fig. 7.20a are connected to provide a delayed pulse. The first
circuit provides the delay time as t1 = 0.33R I x C1, while the second circuit provides the output pulse width as
t2 = 0.33R2 x C2. The PT at the INPUT triggers the first circuit into its quasistable state, and its output at ~
goes low. After timing out t1, Q1 goes high, and this transition triggers the second circuit into its quasistable
state. The OUTPUT thus goes high until the second circuit times out t2, and then it returns low.

The input to the circuit in Fig. 7.20a is changed to a 100-kHz square wave. It is desired to
produce a 1-µs pulse 2 µs after every positive transition of the input as shown in Fig. 7 .21.
Find the proper timing capacitor values, given that both timing resistors are set at 500 n.

Solution Th.e capacitor value for the pulse width is found using t = 0.33 RC Thus:

1.0-6
C= =6000pF

0.33x500

The pulse delay capacitor is twice this value, or 0.012 µF.

Glitches

Whenever two or more signals at the inputs of a gate are undergoing changes at the same time, an undesired
signal may appear at the gate output-this undesired signal is called a glitch. For example, in Fig. 7.22a, the
gate output at X should be low except during the time when A = B = C = I as shown. However, there is the
possibility of a glitch appearing at the output at two different times. At time T1, if C happens to go high before
A and B go low, a narrow positive spike will appear at the gate output-a glitch! Similarly, a glitch could
occur at time T2 if B happens to go high before A goes low.

A glitch is an unwanted signal generated usually because of different propagation delay times through
different signal paths, and they generally cause random errors to occur in a digital system. They are to be
avoided at all costs, and a logic circuit designer must take them into account. One method of avoiding glitches
in the instance shown in Fig. 7.22a is to use a strobe pulse.

It is a simple matter to use a pulse delay circuit such as the one shown in Fig. 7.20 to generate a strobe pulse.
Consider using the waveform A in Fig. 7 .22a as the input to the pulse delay circuit, and set the monostable
times to generate a strobe pulse at the midpoint of the positive half cycle of A, as shown in Fig. 7.22b. If the
inputs to the AND gate are now A, B, C, and the strobe pulse, the output will occur only when A = B = C = l,
and a strobe pulse occurs. The glitches are completely eliminated!

An interesting variation of the pulse delay circuit in Fig. 7.20 is shown in Fig. 7.23a. Here, we have simply
connected the Q output of the second circuit back to the input of the first circuit. This is a form of positive

Clocks and Timing Circuits

6

Q2
5

OUTPUT
T (112) INPUT

QI
T (112)

74123_ 74123_
QI 4

R

(a) A 74123 with DIP pin numbers

SWITCH
1

0 I
I

QI
I

LJ 0 I
I
I

OUTPUT n 0
l-11-I t2J--

(b) Delayed pulse at OUTPUT

Q2
R

Delayed pulse generator

j-lOµs--1
,-----,

100 kHz INPUT
0 i l..-2µs i - I

1 I I I

OUTPUT
0

-fl-1µs n

A _n_n__n_s1_
A _n_n__n_s1_

I I

I I I I

AD-B~
BC X C I I __ I: L

I I

X f t fl
T1 T2

AD-E X

STROBf::

STROBE I I

B~

C I L
I

X I fL
(a) Glitches at T1 and T2 (b) Use of STROBE to remove glitches

Digital Pn'ncip/es and Applications

feedback. As a result, the circuit will oscillate-it becomes astable and generates a rectangular waveform as
shown in Fig. 7.23. Here's how it works. The first circuit triggers into its quasistable state. When it times
out t1, the positive transition at Qi will trigger the second circuit. When it times out t2, the positive transition
at Q2 will retrigger the first circuit and the cycle will repeat.

+Vee +Vee

R, R2

14 6 7

Q, Q2
5

OUTPUT
T (1/2) T (1/2)

74123_ 74123_ 12
Q,

4
Q2

R R

(a) Two monostable circuits connected to form an astable free-running oscillator

- 1
QI 0

I22 0

- l OUTPUT-02 - 0
!-t,+t2-J

(b) Waveforms

Independent adjustment of high and low levels of the output waveform is possible by setting the delay
times of each individual monostable. Take care to note that since each circui~ is edge-triggered, if a transition
is missed by either circuit, oscillation will cease!

18. Whatis a glitch?
19. What is a strobe pulse?

PROBLEM SOLVING WITH MULTIPLE MEJHODS

Design a 100 kHz pulse generator with 40 percent duty cycle.

Clocks and Timing Circuits

Solutiou We can.use 55$ timerwor:l<.irig inastablemQ4e to generate tbis,Also, we can use monostable circuits
7412 lor 74123 and>pQsitive feeelhack for.this.•

If tL are tH are the times within T, during whiclipulse remain LO Wand HIGH respectively

Thus,

Duty cycle = _ti_= = 0.4
ti+tH T

ti =0.4x 10 =4 µs
tH = T·- ti= J0,..,4=6 µs

In Method-1, we sbow .. the c~Jculation required for 555 based pulse generator that uses a cir~uit as
shown in Fig,7,13a,

tL = 0.693 RsC

IJf =0.693(RA +Rs)C
RA+RB . RA 6
-=-.,..;;;.. = 1 +-=- Thus,Rs=2RA

Rn Rs 4
Taking ratio,

lf we choose, RA =.WOO Q then Rs= 2000 Q

Substituting this in say, ti calculation: 4 x 10-6 = 0.693.x2000 x C

or, C ="2:9nf

In M~thod~2, ·.we show the calculation required for74l23..based pulse generator..thatuses.a.circuit
as shownin Fig,7.23a.

Select say Ci =

In Method•3; . we .show the calculation required for 74121based pulse generator that uses a circuit
similar to Fig. 7.23a where retriggerable 74123 is replaced by non-retriggerable 74121. From Section
7.6,

= 0.69 R1C1 = 4 µs
tH = 0.69 R2C2 = 6 µs
ThenRl= 5.8 kQ and R2 = 8.7 kQ

Asystem.·clocksignal··.isa.periodic warveJEori::n(us1lalll;r:a1squai,e.\lt,t,~e)thathai:;.stablehig}:1carldlQw'le'!l¢J:s,fg(
very $~Ott rise and fall times, <lrl4 good frequency. . . circuit widely used tp. 15~n,.er.1tea g~;le,..
stable, TIL-compatible clock wa:eforrn isthe crystal-controlled .circuit shown in

ASc~mitt triggerisa switchingdrct1it llaving two mp:ut thresholdvoltage levels.
and isusefulin cleaning up noisy signals; ·

Digital Principles and Applications

The 555 timer is a digital tiliring circuitthatcan be connected as either a monostable or an astable circuit
It is widely used in a number of different applications. The 7412land 74123 monostable circuits boili>have
logic circuits at their inputs that increase th~ numbl:!r of possibleapp!ications.

A pulse delay circuit,and a free-running astable with adjustable duty cycle are only a few of the many
circuits that can be constructed iviili .the use of basic m<'mostable vircuits.

• astable Having two output states, neither of
which is stable.

" asynchronous Referring to random events,
not coordinated closely with a system clock.

" clock A periodic waveform (usually a square
wave) that is used as a synchronizing signal in
a digital system.

" clock cycle time The time period of a clock
signal.

" clock stability A measure of the frequency
stability of a waveform; usually given in parts
per million (ppm).

• contact bounce Opening and closing of a set of
contacts as a result of the mechanical bounce
that occurs when the device is switched.

" dynamic inp11t indicator A small triangle used
on an input signal line to indicate sensitivity
to signal transitions-edge triggering.

" fall time The time required for a signal to
transition from 90 percent of its maximum
value down to 10 percent of its maximum.

• glitch Very narrow positive or negative pul::e
that appears as an unwanted signal.

• monostable A circuit that has two output
states, only one of which is stable.

• NT Negative transition.

7.1 Calculate the clock cycle time for a system that
uses a clock that has a frequency of:

" negative-edge trigger An input sensitive to
high-to-low signal transitions.

" one-shot Another term for a monostable
circuit.

" PT Positive transition.
" positive-edge trigger An input sensitive to

low-to-high signal transitions.
" propagation delay time The time required for

a signal to propagate through a circuit, input
to output.

" rise time The time required for a signal to
transition from 10 percent of its maximum
value up to 90 percent of its maximum.

" Schmitt trigger A bistable circuit used to
produce a rectangular output waveform.

• TTL clock A circuit that generates a clock
waveform that is compatible with standard
TTL logic circuits.

11 1 Opercent point A point on a rising or falling
waveform that is equal to 0.1 times its highest
value.

" 90 percent point A point on a rising or falling
wavefonn that is equal to 0.9 times its highest
value.

11 555 timer A digital timing circuit that can be
connected as either an astable or a monostable
circuit.

a. 10MHz
C. 750 kHz

b. 6MHz

7.2 What is the clock frequency if the clock cycle
time is 250 ns?

Clocks and Timing Circuits

7 .3 What is the maximum clock frequency that can
be used with a logic gate having a propagation
delay of75 ns?

7.4 You are selecting logic gates that will be
used in a system that has a clock frequency
of 8 MHz. What is the maximum allowable
propagation delay?

7.5 What would be the 10 and 90 percent points
on the waveform in Fig. 7.3c if the amplitude
goes from Oto +4.5 V?

7.6 Find the upper and lower frequency limits of
a 5-MHz clock signal that has a stability of 10
ppm.

7. 7 A TTL clock uses a series-mode crystal having
a resonant frequency of 3.5 MHz. The circuit
provides a 24-h stability of 8 ppm. Calculate
the oscillator frequency limits.

7.8 The TTL clock shown in Fig. 7.8 uses a crystal
that has frequency of7 .5 MHz. Draw the clock
output waveform if+ V cc is set at+ 5 V. What
is the stability in ppm if the upper limit on the
clock frequency is 7,499,900 Hz?

7.9 The NAND gate in Example 7.2 has a
propagation delay of 50 ns, and A is a 15-MHz
clock. Make a careful sketch of the waveform
at the Y output. Assume that B is always high.
(Hint: Be sure to consider the propagation
delay time.)

7.10 Draw the input and output waveforms for the
Schmitt trigger in Fig. 7 .10, assuming that the
input voltage is V= 3.0 cos lOOOt.

7 .11 Draw carefully the waveforms at points A, B,
and C in Fig. 7.24.

2-MHz A
sine wave ----<
oscillator

C
(2.5 V peak)

7.12 Draw the transfer curve for a Schmitt trigger
if Vr+ = +1.0 V, Vr- = -1.0 V, high state= +5
V de, and low state = 0 V de.

7 .13 Draw the output voltage for the Schmitt trigger
in Prob. 7.12 if Vi= 2 sin mt V.

7 .14 Determine the frequency of oscillation for
the 555 timer in Fig. 7.13, given RA =RB=
47 kQ and C = 1000 pF. Calculate the values
of ti and t2, and carefully sketch the output
waveform.

7 .15 Detennine the frequency of oscillation for the
555 timer in Fig. 7 .13, given R.4 = 5000 Q, RB
= 7500 Q, and C = 1500 pF. Calculate values
for t1 and t2, and carefully sketch the output
waveform.

7 .16 Use the nomogram in Fig. 7.13b to find (RA
+ 2RB), given C = 0.1 µF and that the desired
frequency is 1 kHz. Check the results by using
the formula given for the frequency.

7 .17 Calculate the duty cycle for the circuit in Prob.
7.13. For Prob. 7.14.

7 .18 Derive the expression

Duty cycle= RBl(R.4 + 2RB)

7 .19 It is desired to have a duty cycle of 25 percent
for the circuit in Prob. 7 .15. Find the correct
values for the hvo resistors.

7 .20 Calculate the output pulse width for the timer
in Fig. 7 .15 for a 4, 7-kQ resistor and a 1.5-µF
capacitor.

7 .21 Calculate the output pulse width for the circuit
in Problem 7.20, assuming that the resistor is
halved.

7 .22 Calculate the output pulse width for the circuit
in Problem 7.20, assuming that the capacitor
is doubled.

7.23 Find the capacitor value necessary to generate
a 15-ms pulse width for the monostable in Fig.
7.15, given RA= 100 kQ.

7.24 A 500-Hz square wave is used as the trigger
input for the circuit described in Example 7. 7.

Digital Principles and Applications

Make a careful sketch of the input and output
wavefonns (similar to those in Fig. 7.15b).

7.25 Repeat Prob. 7.24, assuming that the trigger
input is changed to a 1-kHz square wave.

7.26 In the 74121 in Fig. 7.16, R = 47 kQ and C =

10,000 pF. Calculate the output pulse width.
7.27 Redraw the 74121 logic diagram in Fig. 7.16a

and show how to connect the circuit such that
it will trigger on the positive transitions of
a square wave. For R = 51 kQ, detem1ine a
value of C such that the output pulse will have
a width of750 µs.

7 .28 Repeat Prob. 7 .27, but make the circuit trigger
on negative transitions of the square wave.

7.29 Using the circuit described in Prob. 7.27,
make a careful sketch of the input and output
wavefom1s, assuming the input square wave
has a frequency of:

a. 1 kHz b. 5 kHz

7.30 In the 74123 in Fig. 7.19, R = 47 kQ and C=
10,000 pF. Calculate the output pulse width.

7.31 Redraw the 74123 logic circuit shown in Fig.
7 .18 and show how to connect the circuit such
that it will trigger on positive transitions of a
square wave. Given R = 51 kQ, determine a
value of C such that the output pulse will have
a width of750 µs.

7.32 Repeat Problem 7.31, but make the circuit
trigger on negative transitions of the square
wave.

AIM: The aim of this experiment istoimple
ment • a 100 · kHz pulse generator with 40 per
cent duty cycle.

The<>ry: Refer to Fig.).13b. The 555.based
ptllsegeneratorfollowsthe following two rela
tions.

t1 = 0.693 RsC
tu= 0.693(RA +Rs)C

7.33 Using the circuit described in Prob. 7.31,
make a careful sketch of the input and output
waveforms if the input square wave has a
frequency of:

a. 1 kHz b. 5 kHz

7.34 The input to the circuit in Fig. 7.20 is a 250-
kHz square wave. Determine the proper
timing capacitor values to generate a string of
positive-going, 0.1-µs pulses, delayed by 2.0
µs from the rising edges of the input square
wave. Assume R1 = R2 = l kQ.

7.35 Draw the waveforms, input and output, for
the circuit in Fig. 7.20, given that both timing
resistors are 470 Q, C1 = 0.1 µF, C2 = 0.01 µF,
and the input waveform has a frequency of 20
kHz.

7.36 Show how to use the circuit in Fig. 7.20 to
generate a 0.2-µs strobe pulse centered on the
positive half cycle of a 200-kHz square wave
(similar to Fig. 7.22b). Draw the complete
circuit and calculate all timing resistor and
capacitor values. Assume R1 = R2 = 1 kQ.

7.37 Calculate values for the timing resistors and
capacitors in Fig. 7.23 to generate a clock
waveform that has:

a. A frequency of 100 kHz and a duty cycle
of 25 percent

b. A frequency of 500 kHz and a duty cycle
of 50 percent

Refer to Fig. 7.23a. 7412Jessentiallyisamo~
nostable and can be used in positive feedback.
It follows the relation

t1 = 0.33 R1 Ci

tu= 0.33 R2C.2

Apparatus: 5 VDC Power supply, Multime
ter, Bread Board, a.ndQscilloscope.

______________ c_to_ck_s_a_n_d_Ti_m_in_g_C_irc_u_its ______________ (;)

4
2

Work element: Study the working
555 and 74123, and understand the di:tltere,nt
input outputs. From above relations, calculate
the resistance and capacitance· values. See the
waveform in oscilloscope. Calculate duty cy-

1. An inpt1! is sensitiv~ t~ Pis, an~. the drcllit
output changes synchronously with PTs:
The·circuit output changes in synchronism
withNTs.

2. It means that a Circuit inputis sensitive to
PTs. (See Fig. 7.6b.)

3. The logic symbolfor an input sensitive to
NTs isa bubblein_fro~tof a dynamic input
indicator. (See Fig. 7.7b.)

4. A. series mode ___ ()ff~rslow .. impedanct?
at resonance, thus providing positive
feedback for ·oscillation .. A.parallel mode
offers high . impedance at resonance, and
thus provides insufficient. feedback to
ptoduce··oscilfation.
Unnecessa:fy,
condition,

61 · lf ;1:1e~s th~t .. tM: circuit lias>two input
tl)re~~~ld • voltage .• l~veis-:--an upper ..•
tllr:s~~ld an~ •. a ~~\¥er threshold, By
fOnttast,. a: simple inverter has only a single
threshold voltage level.

·Noninvemnt:>the input····and output··. are
both high (or. both low) at the same time

6

5
Q2 OUTPUT

T (112)
74123 __ 12

Q2

the oscilloscope reading and compare
theoretical value. Conduct similar exer

cise for 74123 based circuit as shown. Repeat
the experiment with other combinations of re
sistance andcapacitance values.

(110 phase shi:ft):Inverting: 180° phase shift
between input and outpi1t

8. Schmitt ~g~ers ca11 be ?s~d fo clean up a
noisy signal or t~ cha11ge a signalhaving
a slow rise time into one having a fast rise
time.
A circuit has two output states, neithe! of
which is stable.

10. True
11. Inversely
12. A circuit has two output states, one of

which is stable.
True
The stable state is low.
Nonretriggerable
True
0.69
Glitclies are the unwanted pulses appearing
atthe output of a gate when ,two or mote
inputs change state simultaneously.
Astrobe pulse·isa pulsetimedtodiminate
glitches.

Flip-Flops

+ Describe the operation of the basic RS flip-flop and explain the purpose of the
additional input on the gated (clocked) RS flip-flop

+ Show the truth table for the edge-triggered. RS flip-flop, edge-triggered D flip-flop,
and edge-triggered JK flip-flop

+ Discuss some of the timing problems related to flip-flops
+ Draw a diagram of a JK master-slave flip-flop and describe its operation
+ State the cause of contact bounce and describe a solution for this problem
+ Describe characteristic equations of Flip-Flops and analysis techniques of sequential

circuit
+ Describe excitation table of Flip-Flops and explain conversion of Flip-Flops as synthesis

example

The outputs of the digital circuits considered previously are dependent entirely on their inputs. That is, if
an input changes state, output may also change state. However, there are requirements for a digital device
or circuit whose output will remain unchanged, once set, even if there is a change in input level(s). Such
a device could be used to store a binary number. A flip-flop is one such circuit, and the characteristics of
the most common types of flip-flops used in digital systems are considered in this chapter. Flip-flops are
used in the construction of registers and counters, and in numerous other applications. The elimination of
switch contact bounce is a clever application utilizing the unique operating characteristics of flip-flops. In a
sequential logic circuit flip-flops serve as key memory elements. Analysis of such circuits are done through
truth tables or characteristic equations of flip-flops. The analysis result is normally presented through state

Flip-Flops

table or state transition diagram and also through timing diagram. Conversion of flip-flop from one kind to
another can be posed as a synthesis problem where flip-flop excitation tables are very useful.

8.1 RS FUP-flOPS

Any device or circuit that has two stable states is said to be bistable. For instance, a toggle switch has two
stable states. It is either up or down, depending on the position of the switch as shown in Fig. 8.la. The switch
is also said to have memo,y since it will remain as set until someone changes its position.

Aflip-fiop is a bistable electronic circuit that has two stable states-that is, its output is either O or +5
V de as shown in Fig. 8.1 b. The flip-flop also has memory since its output will remain as set until something
is done to change it. As such, the flip-flop (or the switch) can be regarded as a memory device. In fact, any
bistable device can be used to store one binary digit (bit). For instance, when the flip-flop has its output set
at O V de, it can be regarded as storing a logic O and when its output is set at + 5 V de, as storing a logic l. The
flip-flop is often called a latch, since it will hold, or latch, in either stable state.

Basic Idea

+Vee

I Output

1
~

-Vee

~t

J
State O State 1

(a) Toggle switch

Output

OVdc

l -• l

Output

+
+5 Vdc

-•
State O State 1

(b) Flip-flop

Bistable device~

One of the easiest ways to construct a flip-flop is to connect two inverters in series as shown in Fig. 8.2a. The
line connecting the output of inverter B (INV B) back to the input of inverter A (INV A) is referred to as the
feedback line.

For the moment, remove the feedback line and consider V1 as the input and V3 as the output as shown in
Fig. 8.2b. There are only two possible signals in a digital system, and in this case we will define L = 0 = 0
V de and H = 1 = + 5 V de. If V1 is set to O V de, then V3 will also be O V de. Now, if the feedback line shown in
Fig. 8.2b is reconnected, the ground can be removed from Vi, and V3, will remain at O Vdc. This is true since
once the input of INVA is grounded, the output of INV B will go low and can then be used to hold the input
ofINV A low by using the feedback line. This is one stable state-V3 = 0 Vdc.

Conversely, if Vi is +5 Vdc, V3 will also be +5 Vdc as seen in Fig. 8.2c. The feedback line can again be
used to hold Vi at + 5 V de since V3 is also at + 5 V de. This is then the second stable state- V3 = + 5 V de.

NOR-Gate latch

The basic flip-flop shown in Fig. 8.2a can be improved by replacing the inverters with either NAND or NOR
gates. The additional inputs on these gates provide a convenient means for application of input signals to

Digital Principles and Applications

Feedback line

(a) Bistable circuit

V1 =OVdc V2 =+5 Vdc V3 = 0 Vdc

(b)

V1 = +5 V de V2 = 0 V de
+Vee INVA"X>-------lJNVB

V3 =+5 Vdc

(c)

Bistable circuit

switch the flip-flop from one stable state to the other. Two 2-input NOR gates are connected in Fig. 8.3a to
fom1 a flip-flop. Notice that if the two inputs labeled R and Sare ignored, this circuit will function exactly as
the one shown in Fig. 8 .. 2a.

5 v;;-J.. v3
R S .

NORA NORB

(a)

NORB

(b)

NOR-gate flip-flop

This circuit is redrawn in a more conventional form in Fig. 8.3b. The flip-flop actually has two outputs,
defined in more general terms as Q and Q. It should be clear that regardless of the value of Q, its complement
is Q. There are two inputs to the flip-flop defined as R and S. The input/output possibilities for this RS flip
flop are summarized in the truth table in Fig. 8.4. To aid in understanding the operation of this circuit, recall
that an H = I at any input of a NOR gate forces its output to an L = 0.

I. The first input condition in the truth table is R = 0 and S = 0. Since a O at the input of a NOR gate has
no effect on its output, the flip-flop simply remains in its present state; that is, Q remains unchanged.

2. The second input condition R = 0 and S = I forces the output of NOR gate B low. Both inputs to NOR
gate A are now low, and the NOR-gate output must be high. Thus a I at the S input is said to SET the
flip-flop, and it switches to the stable state where Q = 1.

Flip-Flops

3. The third input condition is R = I and S = 0. This
condition forces the output of NOR gate A low, and
since both inputs to NOR gate B are now low, the
output must be high. Thus a 1 at the R input is said
to RESET the flip-flop-'-and it switches to the stable
state where Q = 0 (or Q = 1).

4. The last input condition in the table, R = 1 and S =

1, is forbidden, as it forces the outputs of both NOR
gates_!o the low state. In other words, both Q = 0
and Q = 0 at the same time! But this violates the

R s

0

0

0

Q Action

No change

SET

0 RESET

? Forbidden

Truth table for a NOR
gate RS flip-flop

basic definition of a flip-flop that requires Q to be the complement of Q, and so it is generally agreed
never to impose this input condition. Incidentally, if this condition is for some reason, imposed and the
next input is R = 0, S = 0 then the resulting state Q depends on propagation delays of two NOR gates.
If delay of gate A is less, i.e. it acts faster, then Q = 1 else it is 0. Such dependence makes the job of a
design engineer difficult, as any replacement of a NOR gate will make Q unpredictable. That's why R
= 1, S = 1 is forbidden and truth table entry is ? .

It is also important to remember that TTL gate inputs are quite noise-sensitive and therefore should
never be left unconnected (floating). Each input must be connected either to the output of a prior
circuit, or if unused, to GND or + V cc-

Use the pinout diagram for a 54/7427 triple 3-input NOR gate and show how to connect a
simple RS flip-flop.

Solution One possible arrangement is shown in Fig. 8.5. Notice that pins 3 and 4 are tied together, as are pins 10
and 11; thus no input leads are left unconnected and the two gates simply function as 2-input gates. The third NOR
gate is not used. (It can be a spare or can be used elsewhere.)

54/7427
... __ .,

+Vee

2 13

R

Q

54/7427

Digital Principles and Applications

The standard logic symbols for an RS flip-flop are shown in Fig. 8.6 along with its truth table. The truth
table is necessary since it describes exactly how the flip-flop functions.

R s Q

!l
0 0 Last state n: 0 I

0 0
Q

? (Forbidden) -
IEEE symbol Logic symbol

(a) (b) Truth table

RS flip-flop

NANO-Gate latch

A slightly different latch can be constructed by using NAND gates as shown in Fig. 8.7. The truth table for
this NAND-gate latch is different from that for the NOR-gate latch. We will call this latch an RS flip-flop.
To understand how this circuit functions, recall that a low on any input to a NAND gate will force its output
high. Thus a low on the S input will set the latch (Q = 1 and Q = 0). A low on the R input will reset it
(Q = 0). If both R and S are high, the flip-flop will rem~n in its previous state. Setting both Rand S low
simultaneously is forbidden since this forces both Q and Q high.

:n: R s Q

s IEEE symbol Last state

R n
0

0 0

0 0 ? (Forbidden)

Logic symbol

(a) NAND gate latch (b) (c) Truth table

is flip-flop

Show how to convert the RS flip-flop in Fig. 8.7 into an RS flip-flop.

Solution By placing an inverter at each input as shown in Fig. 8.8, the 2 inputs are now R and S, and the resulting
circuit behaves exactly as the RS flip-flop in Fig. 8.6. A single 54/7400 (quad 2-input NAND gate) is used.

Simple latches as discussed in this section can be constructed from NAND or NOR gates or obtained as medium
scale integrated circuits (MSI). For instance, the 74LS279 is a quad RS latch. The pinout and truth table for this
circuit are given in Fig. 8.9. Study the truth table carefully, and you will see that the latches behave exactly like the
RS flip-flop discussed above.

Flip-Flops

s Q R s Q

0 0 Last state

n 0

0 0
Q

? (Forbidden)
R

(a) 54/7400 (b) Logic symbol (c)

An RS flip-flop (latch)

Vee
16

R :S\ S2 R S1

(a) Pinout 74S279A

The NOR-gate flip-flop in Fig. 8.3 is seen to be
an active-high circuit because an H = I at either the S
or R input is required to change the output Q. On the
other hand, the NAND-gate flip-flop in Fig. 8.7 can
be considered an active-low circuit because an L = 0
at either input is required to change Q. The NAND
gates in Fig. 8. 7 can be changed to bubbled-input OR
gates as shown in Fig. 8.10. This circuit is equivalent
to the NAND-gate latch in Fig. 8.7 and functions in
exactly the same way. However, the bubbled inputs
more clearly express circuit operation.

R Q

GND

0 0 0 ? Forbidden

0 X

X 0

0 0

? Forbidden

X=Don'tcare

(b) Truth table

Quad SET-RESET latch

Rs flip-flop

Bubbled OR-gate equivalent of
Fig. 8.7

Digital Principles and Applications

8.2 GA TED fUP-fLOPS

Two different methods for constructing an RS flip-flop were discussed in Sec. 8.1. The NOR-gate realization
in Fig. 8.3b is an exact equivalent of the NAND-gate realization in Fig. 8.8a, and they both have the exact
same symbol and truth table as given in Fig. 8.6. Both of these RS flip-flops, or latches, are said to be
transE_arent; that is, any change in input infom1ation at R or S is transmitted immediately to the output at Q
and Q according to the truth table.

Clocked RS Flip-Flops

The addition of two AND gates at the R and S inputs as shown in Fig. 8.1 I· will result in a flip-flop that can be
enabled or disabled. When the ENABLE input is low, the AND gate outputs must both be low and changes in
neither R nor Swill have any effect on the flip-flop output Q. The latch is said to be disabled.

When the ENABLE input is high, information at the R and S inputs will be transmitted directly to the
outputs. The latch is said to be enabled. The output will change in response to input changes as long as the
ENABLE is high. When the ENABLE input goes low, the output will retain the information that was present
on the input when the high-to-low transition took place.

In this fashion, it is possible to strobe or clock the flip-flop in order to store information (set it or reset it) at
any time, and then hold the stored information for any desired period oftime. This flip-flop is called a gated
or clocked RS jlip:flop. The proper symbol and truth table are given in Fig. 8.11 b. Notice that there are now
three inputs--R, S, and the ENABLE or CLOCK input, labeled EN. Notice also that the truth-table output is
not simply Q, but Q11 + 1• This is because we must consider two different instants in time: the time before the
ENABLE goes low Q11 and the time just after ENABLE goes low Q11+ 1. When EN= 0, the flip-flop is disabled
and R and Shave no effect; thus the truth table entry for R and Sis X (don't care).

s

ENABLE

R

Explain the meaning of Q11 the truth table in Fig. 8.11 b.

(a) Logic diagram

EN s R Q11+I

0 0 Q11 (no change)

0 0

0

? (Illegal) U o

Q

0 X X Q
11

(no change)

(b) IEEE symbol and truth table

Clocked RS flip-flop

Solution For the nip-flop to operate properly, there must be a PT on the EN input. While EN is high, the information
on R and S causes the latch to set or reset. Then when EN transitions back to low, this infom1ation is retained in the
latch, When this NT occurred, both Rand S inputs ;were low (0), and thus there was no change of state. In other words,
the value of Q at time n + l is the same as it was at time n. Remember that time n occurs just before the NT on EN,
and time n + I, occurs just after the transition.

The logic diagrams shown in Fig. 8. l2a and b illustrate two different methods for realizing a clockRS flip-flop.
Both realizations are widely used in medium- and large-scale integrated circuits, and you will find them easy to
recognize. You might like to examine the .logic diagrams for a 54LS109 or a 54LS74, for instance.

s

EN

R

Flip-Flops

s

EN

R
(a) (b)

Two different realizations for a clocked RS flip-flop

Figure 8.13 shows the input wavefom1s R, S, and EN applied to a clocked RS !lip-flop. Explain
the output waveform Q.

ti f2 f3 14 t5 16 t7 Is
Time --------------------

' I ! !

EN l _l-i ~--~h ... ' __ _ 0 .---- ... -
l
I
I

R : 0--..,..,-~ ·n....._ __ _

s 0

Q l
0

I
l .__ __ .,__,rL_n....._ ___ _

Solution Between t2 and t3 both R and S change states, but since EN is low, the flip-flop is still disabled and Q
remains at I.

Between t3 and 16, the flip-flop will respond to any change in Rand S since EN is high. Thus at t3 Q goes low, and
at t4 it goes back high. No change occurs atts. At t6 the value Q = 1 is latched and no changes in Q occur between ft,
and t1 even though both R and S change.

Between t7, and ts no change in Q occurs since both Rand Sare low. Initially, the flip-flop is reset (Q 0). At time
t1 EN goes high; the flip-flop is now enabled, and it is immediately set (Q = l) since R = 0 and S = 1. At time t2 EN
goes low and the flip-flop is disabled and latches in the stable state Q = 1.

Clocked D Flip-Flops

The RS flip-flop has two data inputs, R and S. To store a high bit, you need a high S; to store a low bit, you need
a high R. Generation of two signals to drive a flip-flop is a disadvantage in many applications. Furthermore,
the forbidden condition of both R and S high may occur inadvertently. This has led to the D flip-flop, a circuit
that needs only a single data input.

Figure 8.14 shows a simple way to build a D (Data) flip-flop. This flip-flop is disabled when EN is low, but
is transparent when EN is high. The action of the circuit is straightforward, as follows. When EN is low, both
AND gates are disabled; therefore, D can change value without affecting the value of Q. On the other hand,

Digital Principles and Applications

when EN is high, both AND gates are enabled. In this case, Q
is forced to equal the value of D. When EN again goes low, Q
retains or stores the last value of D.

There are many ways to design D flip-flops. In general, a D
flip-flop is a bistable circuit whose D input is transferred to the
output when EN is high. Figure 8.15 shows the logic symbols
used for any type of D flip-flop. A D Flip-flop

In this section we're talking about the kind of D flip-flop in
which Q can follow the value of D while EN is high. In other words, if the data bit changes while EN is high,
the last value of D before EN return low is the value of D that is stored. This kind of D flip-flop is often called
aD latch.

Figure 8.15b shows the truth table for a D latch. While (EN) is low, Dis a don't care (X); Q will remain
latched in its last state. When EN is high, Q takes on the last value of D. If D is changing while EN is high,
it is the last value of D that is stored.

=fi-o~
[J-Q ~

IEEE symbol Logic symbol

(a) D flip-flop logic symbol

EN D Qn+I

0 X Q
11

(last state)

0 0

(b) Truth table

D Flip-flop logic symbol

The idea of data storage is illustrated in Fig. 8.16.
Four D latches are driven by the same clock signal.
When the clock goes high, input data is loaded into the
flip-flops and appears at the output. Then when the clock
goes low, the output retains the data. For instance, sup
pose that the data input is

D3D2D1Do = 0111

When the clock goes high, this word is loaded into
the D latches, resulting in an output of

D3

DEN

Q Q

Q3

D2 Di

DEN DEN

Q Q Q Q

Q2 QI

Do

Clock

DEN

Q Q

Qo

Q3Q2Q1Qo = 0111 Storing a 4-hit word

After the clock goes low, the output data is retained,
or stored. As long as the clock is low, the D values can change without affecting the Q values.

The 7475 in Fig. 8.17 is a TTL MSI circuit that contains four D latches; it's called a quad bistable latch.
The 7475 is ideal for handling 4-bit nibbles of data. If more than one 7475 is used; words of any length can
be stored.

4. What does an entry X mean ina flip-flop truth table?
5. What could you do to disable the flip-flop in Fig. 8.11?
6. \Vhich flip-flop is easier to use, the RS of the D, as a clocked or gated latch to store data?

Flip-Flops

+Vee
7 6 3 2

D3 D2 D1 Do 4
Vee EN 1

7475

12
GND EN2

13
Q3 Q3 Q2 Q2 QI QI Qo Qo

-

9 8 10 11 15 14 16
(a)

EN D

Q

(b)

4-bit bistable latch: (a) Pinout, (b) Logic diagram (each latch)

8.3 EDGE-TRIGGERED RS f UP-fl OPS

The simple latch-type flip-flops presented in Sec. 8.1 are completely transparent; that is, the output Q
immediately follows any change of state at the input (R, S, or D). The gated or clocked RS and D flip-flops in
Sec. 8.2 might be considered semitransparent. That is, the output Q will change state immediately provided
that the EN input is high. If any of these flip-flops are used in a synchronous system, care must be taken to
ensure that all flip-flop inputs change state in synchronism with the clock. One way of resolving the problem
for gated flip-flops is to allow changes in R, S, and D input levels only when EN is low (or require fixed levels
at R, S, and D any time EN is high). At the very least, these are highly inconvenient restrictions, and at the
worst they may in fact be impossible to realize. From the previous chapter, we know that virtually all digital
systems operate in a synchronous mode. Thus the edge-triggered flip-flop was developed to overcome these
rather severe restrictions.

Positive-Edge-Triggered RS Flip-flops

In Fig. 8.18a, the clock (C) is applied to a positive pulse-forming circuit (discussed in Sec. 7.1). The PTs
developed are then applied to a gated RS flip-flop. The result is a positive-edge-triggered RS flip-flop, with the
IEEE symbol given in Fig. 8.18b. The small triangle inside the symbol (dynamic input indicator) indicates
that Q can change state only with PTs of the clock (C). Each PT of the clock in Fig. 8.18c produces a very
narrow PT that is applied to the AND gates. The AND gates are active only while the PT is high (perhaps
25 ns), and thus Q can change state only during this short time period. In t11is manner Q changes state in
synchronism with the PTs of the clock.

Principles and Applications

(a) Logic diagram

C s R Q,,+J Action

+ 0 0 Q,, No change

+ 0 0 RESET

+ 0 SET

t ? Illegal

(c) Truth table

C

fr: tl-Q
(b) IEEE symbol

PT ---J'--_,._____.,___...c__...,_ __
10 t1 t, t3 t4 i

I
I

Q----'
(d) Positive-edge-triggered RS flip-flop

Positive-edge-triggered RS flip-flop

This flip-flop is easy to use in any synchronous system! Another way of expressing its behavior is to say
the flip-flop is transparent only during PTs; it is not transparent for the remainder of the time. In other words,
S and R inputs affect Q only while the positive pulse is high, and they need to be static only during this very
short time.

The truth table for the edge-triggered RS flip-flop is given in Fig. 8.18c. The small vertical arrows under
C (clock) mean that changes of state (Q) occur according to the R and S levels, but only during PTs of the
clock. Look at the wavefonns in Fig. 8.18d. Note that when Q changes state, it does so in exact synchronism
with PTs of the clock C.

Use the positive-edge-triggered RS flip-flop truth table to explain Q changes of state with time

in Fig. 8.18d.

Solution Here's what happens at each pointin time:

Time t0: S = O,
0

R = 0, no change in Q(Q remains O)
Time t1: S = 1, R = O, Q changes from O to l
Time t2: S = O, R = l, Q resets to 0
Time t3: S = 1,R = 0, Q sets to 1
Time t4: S = O, R = 0, no change in Q(Q remains 1)

Notice that either R or S, or both, are allowed to change state at any time, whether C is high or low. The only time
both R and S must be stable (unchanging) is during the short PTs of the dock.

Negative-Edge-Triggered RS Flip-Flops

The symbol in Fig. 8.19a is for a negative-edge-triggered RS flip-flop. The truth table in Fig. 8.19b shows that
Q changes state according to the R and S inputs, but only during NTs of the clock. On the IEEE symbol, the
small bubble on the clock input (C) means active-low. This bubble, along with the dynamic input indicator,

C s R Q11+ l Action

n: t 0 0 Qll No change

t 0 1 0 RESET

t 0 SET
Q

t ') Illegal

(a) IEEE symbol (b) Truth table

Negative-edge-triggered RS flip-flop

means negative-edge triggering. This flip-flop behaves exactly like the positive-edge-triggered RS flip-flop,
except that changes inoutput Qare synchronized with NTs of the clock (C).

Use the negative-edge-triggered RS flip-flop truth table to explain Q changes of state with

time in Fig. 8.20.

Solution Here's what happens at each point in time:

Time to: S= 0, R = 0, no change in Q(Q remains 0)

Time t1: S = 1, R = 0, Q changes from O to 1

Time t2: S = 0, R =l, Q resets to 0

Time t3: S=l, R =O, Q sets to 1

Time t4: S = O, R = O, no change in Q(Q remains 1)

Notice that either R or S, or both, are allowed to change state at
any time, whether C is high or low. The only time both R and S must

be stable (unchanging) is during the short NTs of the clock.

7. What does it mean to say that a flip-flop is transparent?
8. What is positive-edge triggering?

C

PT

to

s
R

Q

9. How does an RS latch differ from an edge-triggered RS flip-flop?

8.4 EDGE-TRIGGERED D fUP-flOPS

ti t2 t3 t4
I
I

Although the D latch is used for temporary storage in electronic instruments, an even more popular kind of
D flip-flop is used in digital computers and systems. This kind of flip-flop samples the data bit at a unique
point in time.

Figure 8.21 shows a positive pulse-forming circuit at the input of a D latch. The narrow positive pulse
(PT) enables the AND gates for an instant. The effect is to activate the AND gates during the PT of C, which
is equivalent to sampling the value of D for an instant. At this unique point in time, D and its complement
hit the flip-flop inputs, forcing Q to set or reset (unless Q already equals D). Again, this operation is called
edge triggering because the flip-flop responds only when the clock is in transition between its two voltage
states. The triggering in Fig. 8.21 occurs on the positive-going edge of the clock; this is why it's referred to
as positive-edge triggering.

Digital Principles and Applications

C D Qn+I

0 X Q
11

(last state)

t O 0

+
(a) Circuit diagram (c) Truth table

Positive-edge-triggered D flip-flop

The truth table in Fig. 8.21 b summarizes the action of a positive-edge-triggeredD flip-fl.op. When the clock
is low, D is a don't care and Q is latched in its last state. On the leading edge of the clock (PT), designated by
the up arrow, the data bit is loaded into the flip-flop and Q takes on the value of D.

When power is first applied, flip-flops come up in random states. To get some computers started, an
operator h<1s to push a RESET button. This sends a CLEAR or RESET signal to all flip-flops. Also, it's
necessary in some digital systems to preset (synonymous with set) certain flip-flops.

Figure 8.22 shows how to include both functions in a D flip-flop. The edge triggering is the same as
previously described. Depressing the RESET button will set Q to I with the first PT of the clock. Q will
remain high as long as the button is held closed. The first PT of the clock after releasing the button will set
Q according to the D input. Furthermore, the OR gates allow us to slip in a high PRESET or a high CLEAR
when desired. A high PRESET forces Q to equal 1; a high CLEAR resets Q to 0.

+Vee

RESET~

D

PRESET

CLEAR

PRESET and CLEAR functions

The PRESET and CLEAR are called asynchronous inputs because they activate the flip-flop independently
of the clock. On the other hand, the D input is a synchronous input because it has an effect only with PTs of
the clock.

Figure 8.23a is the IEEE symbol for a positive-edge-triggered D flip-flop. The clock input has a small
triangle to serve as a reminder of edge triggering. When you see this symbol, remember what it means; the D
input is sampled and stored on PTs of the clock.

Sometimes, triggering on NTs of the clock is better suited to the application. In this case, an internal
inverter can complement the clock pulse before it reaches the AND gates. Figure 8.23b is the symbol for a
negative-edge-triggered D flip-flop. The bubble and triangle symboiize the negative-edge triggering.

Flip-Flops

Figure 8.23c is another commercially available D flip-flop (the 54/74175 or 54/74LS 175). Besides having
positive-edge triggering, it has an inverted CLEAR input This means that a low CLR resets it. The 54/74175
has four of these D flip-flops in a single 16-pin dual in-line package (DIP), and it's referred to as a quad D
type flip-flop with clear.

(a) (b)

flQ
¥Q

(c)

Dflip-flopsymbols: (a) Positive-edge-triggered, (b) Negative-edge-triggered,
(c) Positive-edge-triggered with active low clear

The Cinput to the D 'flip~ftop in Fig. 8,2ljs held low. What effect does the D inputhave?

'J!o pre:setthe: flip-flop in Fig. 8.22, what level>is required at the preset input. What is the
resulting state of QJ ·

8S EDGE-lRIGGEREDJK··fUP-fl.OPS

Setting R = S = I with an edge-triggered RS flip-flop forces both Q and Q to the same logic level. This is an
illegal condition, and it is not possible to predict the final state of Q. The JK flip-flop accounts for this illegal
input, and is therefore a more versatile circuit. Among other things, flip-flops can be used to build counters.
Counters can be used to count the number of PTs orNTs of a clock. For purposes of counting, theJK flip-flop
is the ideal element to use. There are many commercially available edge-triggered JK flip-flops. Let's see
how they function.

Positive-Edge-Triggered J K Flip-Flops

In Fig. 8.24, the pulse-forming box changes the clock into a series of positive pulses, and thus this circuit
will be sensitive to PTs of the clock. The basic circuit is identical to the previous positive-edge-triggered RS
flip-flop, with two important additions:

1. The Q output is connected back to the input of the lower AND gate.

2. The Q output is connected back to the input of the upper AND gate.

This cross-coupling from outputs to inputs changes the RS flip-flop into a JK flip-flop. The previous S
input is now labeled J, and the previous R input is labeled K. Here's how it works:

1. When J and Kare both low, both AND gates are disabled. Therefore, clock pulses have no effect. This
first possibility is the initial entry in the truth table. As shown, when J and K are both Os, Q retains its
last value.

2. When J is low and K is high, the upper gate is disabled, so there's no way to set the flip-flop. The only
possibility is reset. When Q is high, the lower gate passes a RESET pulse as soon as the next positive

@) ______________ D_ig_it_al_P_n_·nc_ip_le_s_a_n_d_A_pp_ll_·ca_t,_·on_s ____________ _

C J K Qn+I Action

+ 0 0 Q
11

(last state) No change
C t 0 0 RESET

+ 0 SET

t Q
11

(toggle) Toggle

(a) One way to implement a JKflip-flop (b) Truth table

A positive-edge-triggered JK flip-flop

clock edge arrives. This forces Q to become low (the second entry in the truth table). Therefore, J = 0
and K = I means that the next PT of the clock resets the flip-flop (unless Q is already reset).

3. When J is high and K is low, the lower gate is disabled, so it's impossible to reset the flip-flop. But you
can set the flip flop as follows. When Q is low, Q is high; therefore, the upper gate passes a SET pulse
on the next positive clock edge. This drives Q into the high state (the third entry in the truth table). As
you can see, J = 1 and K = 0 means that the next PT of the clock sets the flip-flop (unless Q is already
high).

4. When J and Kare both high (notice that this is the forbidden state with an RS flip-flop), it's possible
to set or reset the flip-flop. If Q is high, the lower gate passes a RESET pulse on the next PT. On the
other hand, when Q is low, the upper gate passes a SET pulse on the next PT. Either way, Q changes
to the complement of the last state (see the truth table). Therefore, J = I and K = I mean the flip-flop
will toggle (switch to the opposite state) on the next positive clock edge.

Propagation delay prevents the JK flip-flop from racing (toggling more than once during a positive dock
edge). Here's why. In Fig. 8.24, the outputs change after the PT of the clock. By then, the new Q and Q
values are too late to coincide with the PTs driving the AND gates. For instance, if tP = 20 ns, the outputs
change approximately 20 ns after the leading edge of the clock. If the PTs are narrower than 20. ns, the
returning Q and Q arrive too late to cause false triggering.

Figure 8.25a shows a symbol for a JK flip-flop of any design. When you see this on a schematic diagram,
remember that on the next PT of the clock:

I. J and K low: no change of Q.
2. J low and K high: Q is reset low.
3. J high and K low: Q is set high.
4. J and K both high: Q toggles to opposite state.

You can include OR gates in the design to accommodate PRESET and CLEAR as was done earlier. Figure
8.25b gives the symbol for a JK flip-flop with PR and CLR. Notice that it is negative-edge-triggered and
requires a low PR to set it or a low CLR to reset it.

£1-o
=E_J--Q
(a) Basic symbol (b) 74LS76A

Q

Q ¥
Q .
Q

(c) 74LS73A

JK flip-flop symbols

Flip-Flops

Figure 8.25c is another commercially available JK flip-flop. It is negative-edge-triggered and requires a low
CLR to reset it. The output Q reacts immediately to a PR or CLR signal. Both PR and CLR are asynchronous,
and they override all other input signals.

Toggle flip-flop, popularly known as T flip-flop has following input-output relation. When
input T = 0, the output Q does not change its state. For T = 1, the output Q toggles its value.
Derive T flip-flop from JK flip-flop.

Solution From Fig. 8.24b we find for input J = K = 0, tbe output Qn+ 1 = Q,,, i.e. output does not change its state.
And forJ=K= l, tbe output Qn+l = Q,;, i.e. output toggles. Thus, ifwe tieJandKinputs of JKflip-flop together and
make a common input T=J=K, the resulting circuit will behave as.Tflip-fl.op.

12. What is the primary difference between a JKand an.RS flip-flop?
13. How could you change an edge-triggered RS flip-flop into an edge-triggered JK flip-flop?

8.6 fUP~fLOP TIMING

Diodes and transistors cannot switch states immediately. It always takes a small amount of time to tum a
diode on or off. Likewise, it takes time for a transistor to switch from saturation to cutoff, and vice versa. For
bipolar diodes and transistors, the switching time is in the nanosecond region.

Switching time is the main cause of propagation delay, designated fp. This represents the amount of time
it takes for the output of a gate or flip-flop to change states after the input changes. For instance, if the data
sheet of an edge-triggered D flip-flop lists Ip= 10 ns, it takes about 10 ns for Q to change states after D has
been sampled by the clock edge. This propagation delay time has been used to construct the "pulse-fom1ing
circuit" used with edge-triggered flip-flops. When flip-flops are used to construct counters, the propagation
delay is often small enough to be ignored.

Stray capacitance at the D input (plus other factors) makes it necessary for data bit D to be at the input
before the clock edge arrives. The setup time fsetup is the minimum amount of time that the data bit must be
present before the clock edge hits. For instance, if a D flip-flop has a setup time of 15 ns, the data bit to be
stored must be at the D input at least 15 ns before the clock edge arrives; otherwise, the manufacturer does
not guarantee correct sampling and storing.

Furthermore, data bit D has to be held long enough for the internal transistors to switch states. Only after
the transition is assured can we allow data bit D to change. Hold time thold is the minimum amount of time
that data bit D must be present after the PT of the clock. For example, if tsetup = 15 ns and thold = 5 ns, the
data bit has to be at the D input at least 15 ns before the clock edge arrives and held at least 5 ns after the
clock PT.

Typical waveforms for setting a 1 in a positive-edge-triggered flip-flop are shown in Fig. 8.26.
Discuss the timing.

Solution The lower line in Fig. 8.26 is tbe time line with .. critical times marked on it. Prior to t1, the data can be a 1
or a 0, or can be changing. This is shown by drawing lines for both high and low levels on D. From time ti to t2, the

Digital Principles and Applications

<l11ta .Iin~D·mustbe lield.steady {in this case a 1). This is1the setuptime tsetup·· Data is shifted into the flip:-flop· at time
t2 but aoes not appear at Q untiltime The time from t2 to t3 is the propagation time Ip. In order to guarantee proper
operation, the data line must be held steady from time t2 until t4; this is to
states-shown by the doubll.1 lines.

We have seen how edge triggering of flip-flops can be achieved by pulse forming circuit (Section 7.1). This
requires application of a very narrow pulse which is generated using differential propagation delays of two
signal flow paths while the flip-flops themselves are level triggered. An alternate way of achieving edge
triggering is to implement a kind of lock out of the input so that it is not able to enforce a change atoutput
which itself is level triggered. This is to say that the effect of change in input is allowed only at the edge and
not after the edge. Let us see how this is possible by implementing a positive edge triggered D type flip-flop.
This requires three NAND latches as shown in Fig. 8.27 with one NAND gate (number 3) having three inputs
and the rest are all two input NAND gates. Note that for a NAND gate output to be 0, all the inputs must be
at 1, else the output is 1. The output latch behaves like an SR flip flop where no change in output occurs if S
=1,R=l.

Now, if the clock input is held at O then irrespective of what is present at D input, the NAND logic makes
both S = 1, R = 1 and thus there could be no change in the output If Clock = 1 then SR can always change if
other inputs ofNAND gates 2 and 3 change and thus the output is essentially level triggered. We will now
explain how input lock out makes the circuit as a whole a positive edge triggered circuit

Consider the case when Clock= 0 and D = 0 (Fig. 8.27a). Since, for a NAND gate, 0 is the forcing input,
the intermediate outputs are S = 1, R = 1 arid A = 1 which make B = 0. Now, clock makes a transition from 0
~ I. D = 0 forces A = 1 and B = 0 keeps R = 1. Thus, after this transition, S = 0, R = l, A = 1 and B = 0. This
makes Q = 0 irrespective of the previous state and one can see that the value at D, i.e. 0 is transferred to Q
after the clock trigger. Next, we see if at Clock = 1, D is changed, then whether Q is changed. This is shown
in Fig. 8.27b as a follow-up of Fig. 8.27a. Before D makes a transition Clock= 1, D = 0 and intermediate
outputs S = 0, R = I, A = I, B = 0 and Q = 0. When D goes to 1, 4111 NAND gate is only directly affected as D
is not connected elsewhere. However, the output A of this gate does not change as it is kept held at 1 by the

Flip-Flops

other input coming from S = 0. Thus, S = 0, R = 1, A = 1, B = 0 and Q = 0. This is the lock out of input we
were referring to. Note that clock going from 1 to O does not change Q as that transition makes S = 1, R = I.

Next, consider the case when Clock= 0 and D = l. This is shown in Fig. 8.27c. S = 1, D = I make A= 0
which in turn makes B = 1. Now, clock makes a transition from O -t 1. A = 0 maintains S = 1. Both the inputs
of 2nd NAND gate being 1, R = 0. S = 1, R = 0 make Q = 1 irrespective of previous state and thus after positive
clock trigger, the logic value of D arrives at Q for D = l case, too. With Clock= 1, if input D changes from
1 to 0, will the output Q change? This 4th possibility is shown in Fig. 8.27d. D = 0 makes A= 1 but R = 0
maintains B = 1 and S = 1. Thus, after the transition, SR remains at where it was and input D remaines locked
out, i.e. unable to effect any change in the output at Clock = 1.

Clock
0-; I

Clock
0-; I

Q

Q

Q

(c)

Clock
I

Clock
I

Positive edge triggering of D type flip-flop through input lock out

Q

Q

Q

Q

Digital Principles and Applications

8.8 JK MASTER-SLAVE. FLIP-FLOPS

Figure 8.28 shows one way to build a JK master-slave flip-flop. Here's how it works.

1. To begin with, the master is positive-level-triggered
and the slave is negative-level-triggered. Therefore, the
master responds to its J and K inputs before the slave.
If J = 1 and K = 0, the master sets on the positive clock
transition. The high Q output of the master drives the J
input of the slave, so on the negative clock transition,
the slave sets, copying the action of the master.

2. If J = 0 and K = I, the master resets on the PT of the

C--<11>---i

K Qt---+---<K Q

Master-slave flip-flop

clock. The high Q output of the master goes to the K input of the slave. Therefore, the NT of the clock
forces the slave to reset. Again, the slave has copied the master.

3. If the master's J and K inputs are both high, it toggles on the PT of the clock and the slave then toggles
on the clock NT. Regardless of what the master does, therefore, the slave copies it: if the master sets,
the slave sets; if the master resets, the slave resets.

4. If J = K = 0, the flip-flop is disabled and Q remains unchanged.

The symbol for a 7476 master-slave flip-flop is
shown in Fig. 8.29. Either it can be preset to Q = H
by taking PR low, or it can be reset to Q = L by taking
CLR low. These two inputs take precedence over all
other signals!

There is something different however. First of all,
notice that the clock (C) is not edge-triggered. The
master does in fact change state when C goes high.
However, while the clock is high, any change in J or
K will immediately affect the master flip-flop. In other
words, the master is transparent while the clock is
high, and thus J and K must be static during this time.

PR

J "l

C

CLR

(a) Symbol

Q

Q

C J K
JL L L
Sl L H
TL H L
.TL H H

Q,,+1
QI/
L

H

Q/1

Action

No change
RESET

SET
Toggle

(b) Trnth table

7476 JK master flip-flop.

The truth table in Fig. 8.29b reveals this action by means of the pulse symbol CnJ.
Second, the symbol l appearing next to the Q and the Q outputs is the IEEE designation for a postponed

output. In this case, it means Q does not change state until the clock makes an NT. In other words, the
contents of the master are shifting into the slave on the clock NT, and at this time Q changes state.

To summarize: The master is set according to J and K while the clock is high; the contents of the master
are then shifted into the slave (Q changes state) when the clock goes low. This particular flip-flop might be
referred to as pulse-triggered, to distinguish it from the edge-triggered flip-flops previously discussed.

There are numerous pulse-triggered master-slave flip-flops in use today. However, because edge-triggered
flip-flops have overcome the restriction of holding J and K static when the clock is high, most new designs
incorporate edge-triggered devices. Some of the more popular pulse-triggered flip-flops you might encounter
include the 7473, 7476, and 7478. Their more modem, edge-triggered counterparts include the 74LS73A, the
74LS76A, and the 74LS78A.

The JK master-slave flip-flop in Fig. 8.29 has its J and K inputs tied to+ Vee and a series
of pulses (actually a square wave) are applied to its C input. Describe the waveform at Q.

_______________ F_lip_-F_lo_p_s _______________ ~

Solution Since J=K = l, the flip-flop simply toggles each time the clock
goes low. The waveaform at Q has a period twice that of the C \vaveform. In
otherwords,.the frequency of Q is only one-half that of C.Thiscircuit acts
as a frequency dlvider~the.ouiputfrequency is equal to th.e input frequency
divided by 2. Note that Q changes state on NTs of the clock. The waveforms
are given in Fig. 8.30.

14. What is the main. difference between an edge-triggered and a pulse-triggered JK flip-flop?
15. Explain the operation ofthe master-slave flip-flop in Fig, 8.29.

8.9 SWITCH CONTACT BOUNCE CIRCUITS

In nearly every digital system there will be occasion to use mechanical contacts for the purpose of conveying
an electrical signal; examples of this are the switches used 011 the keyboard of a computer system. In each
case, the intent is to apply a high logic level (usually +5 Vdc) or a low logic level (0 Vdc). The single-pole
single-throw (SPST) switch shown in Fig. 8.3 la is one such example. When the switch is open, the voltage at
point A is +5 V de; when the switch is closed, the voltage at paint A is O V de. Ideally, the voltage wavefonn at
A should appear as shown in Fig. 8.31 b as the switch is moved from open to closed, or vice versa.

In actuality, the waveform at point A will appear more or less as shown in Fig. 8.31 c, as the result of a
phenomenon known as contact bounce. Any mechanical switching device consists of a moving contact ann
restrained by some sort of a spring system. As a result, when the ann is moved from one stable position to
the other, the arm bounces, much as a hard ball bounces when dropped on a hard surface. The number of
bounces that occur and the period of the bounce differ for each switching device. Notice carefully that in
this particular instance, even though actual physical contact bounce occurs each time the switch is opened or
closed, contact bounce appears in the voltage level at point A only when the switch is closed.

+5 Vdc

R

A

SPST \
switch i

(a)

Open~ Switch position J
Closed

+sv
0

~J Voltage at A ~

Switch position

Voltage at A

(b) Ideal voltage at A

Open~

Closed ~j -I I- B ounce

+5VwUL~

0 -II- -II-
Bounce Bounce

(c) Voltage at A showing contact bounce

Digital Principles and Applications

If the voltage at point A is applied to the input of a TTL circuit, the circuit will respond properly when
the switch is opened, since no contact bounce occurs. However, when the switch is closed, the circuit will
respond as if multiple signals were applied, rather than the single-switch closure intended-the undesired
result of mechanical contact bounce. There is a need here for some sort of electronic circuit to eliminate the
contact bounce problem.

A Simple RS latch Debounce Circuit

The RS latch in Fig. 8.32 will remove any contact bounce due
to the switch. The output (Q) is used to generate the desired
switch signal.

When the switch is moved to position H, R = 0 and S = 1.
Bouncing occurs at the S input due to the switch. The flip-flop
"sees" this as a series of high and low inputs, settling with a
high level. The flip-flop will immediately be set with Q = 1
at the first high level on S. When the switch bounces, losing
contact, the input signals are R = S = 0, therefore the flip-flop
remains set (Q = 1). When the switch regains contact, R = 0
and S = 1; this causes an attempt to again set the flip-flop. But
since the flip-flop is already set, no changes occur at Q. The
result is that the flip-flop responds to the first, and only to the
first, high level at its S input, resulting in a "clean" low-to-high
signal at its output (Q).

(a) Switch contact bounce eliminator

Switch H
position L_r----i__

~ _illl[fswitch1J .

~
Q_r----i__

When the switch is moved to position L, S = 0 and R = 1. (b) Switch bounce

Bouncing occurs at the R input due to the switch. Again, the Debounce circuit
flip-flop "sees" this as a series of high and low inputs. It simply
responds to the.first high level, and ignores all following transitions. The result is a "clean" high-to-low signal
at the flip-flop output. The waveforms in Fig. 8.32b illustrate the behavior.

16. Whatis switchcontact bounce?
17. Why is switch contact bounce important to account for in a digital system?

8.10 VARIOUS REPRESENTATIONS Of fUP-flOPS

There are various ways a flip-flop can be represented, each one suitable for certain application. Considering
basic flip-flop truth table as starting point, this section derives these representations.

Characteristic Equations of Flip-flops

The characteristic equations of flip-flops are useful in analyzing circuits made of them. Here, next output
Q11+1 is expressed as a function of present output Q11 and input to flip-flops. Karnaugh Map can be used to get
the optimized expression and truth table of each flip-flop is mapped into it. This is shown in Fig. 8.33 for all
types of flip-flops. The logic equations are presented in SOP form by forming largest group of 1 's for each

Flip-Flops

SR D JK T

Q/1 00 0 l l l I 0 Q/1 0 QI/ 00 0 l l I 10 Q/1 0 l

0 0 0 X 1 0 0 0 0 0 I 1 I I 0 0 OJ
l ::1J 0 X 11- 0 I ::1J 0 0 rr:: 1 OJ 0

(a) Q11 + 1 =S+ R Q11 (b) Q11 + 1 =D (c) Qn+ 1 =JQ" + K Q11 (d) Q11 + 1 = TQ11 + TQ11

Characteristic equations of (a) SR flip-flop, (b) D flip-flop, (c) JK flip
flop, (d) T flip-flop

flip-flop. For SR flip-flop, since S = R = I input is not allowed we have don't care states in corresponding
locations in Karnaugh Map. This means, it does not matter if Q11+ 1 is O or 1 if SR= 11 as such a combination
at input side will never arise.

The equation for SR flip-flop and all others thus can be represented in a summarized form as

SR flip-flop: Q11 +1 =S+R'Q11

JK flip-flop: Q11+ J = J Q11' + K' Q11

D flip-flop: Q11+ 1 = D
Tflip-flop: Q11+1 = TQ,; + T'Q11

Flip-Flops as Finite State Machine

In a sequential logic circuit the value of all the memory elements at a given time define the state of that circuit
at that time. Finite State Machine (FSM) concept offers a better alternative to truth table in understanding
progress of sequential logic with time. For a complex circuit a truth table is difficult to read as its size
becomes too large. In FSM, functional behavior of the circuit is explained using finite number of states. State
transition diagram is a very convenient tool to describe an FSM. In Fig. 8.34 all the flip-flops are represented
as finite state machine through their state transition diagrams.

1 0

i~~oo
0 1 \._,,.~ I 0

0 I

(a) SR flip-flop

I 0
I 1

{i~oo
01 ~10

0 1
1 1

(c) JK flip-flop

1

~~I
0

(b) D flip-flop

1

r~o
I

(d) T flip-fl op

State transition diagram of (a) SR flip-flop, (b) D flip-flop, (c) JK flip
flop, (d) T flip-flop

Digital Principles and Applications

Let us see how state transition diagram for SR flip-flop is developed from its truth table or characteristic
equation. Each flip-flop can be at either ofO or I state defined by its stored value at any given time. Application
of input may change the stored value, i.e. state of the flip-flop. This is shown by directional arrow and the
corresponding input is written alongside. If SR flip-flop stores 0, then for SR = 00 or O I the stored value does
not change. For SR= l 0, flip-flop output changes to 1. Note that, SR= 11 is not allowed in SR flip-flop. When
SR flip-flop stores 1, application of SR= 00 or 10 does not change its value and only when SR= 01, output
changes to 0. State transitions on application of all possible combination of inputs at every state are shown in
Fig. 8.34(a) for SR flip-flop. The state transition diagrams are developed in a similar way for D, JK, Tflip
flops and are shown in Figs. 8.34 (b), (c), (d) respectively. We see, the timing relation implicit in flip-flop truth
tables are brought to the forefront by FSM concept and state transition diagram.

Flip-Flop Excitation Table

In synthesis or design problem excitation tables are very useful and its importance is analogous to that of truth
table in analysis problem. Excitation table of a flip-flop is looking at its truth table in a reverse way. Here,
flip-flop input is presented as a dependent function of transition Q11~Q11+ 1 and comes later in the table. This
is derived from flip-flop truth table or characteristic
equation but more directly from its state transition
diagram. Figure 8.35 gives a summary presentation
of excitation tables of all the flip-flops.

From Fig. 8.34(a), one can see if present state
is O application of SR = Ox does not alter its value

Q"-+ Q11+I

0 0
0 1
I 0
l I

s R

0 X

l 0
0 l
X 0

J K D T

0 X 0 0
I X I I
X 1 0 1
X 0 l 0

where 'x' denotes don't care condition in R input. Excitation table of flip-flops
State O to 1 transition occurs when SR = 10 is pres
ent at the input side while state 1 to O transition occurs if SR = 01. Present state l is maintained if SR = 0,
i.e. SR = 00 or SR = 01. This is shown in Fig. 8.35 along SR column. Excitation table for other flip-flops are
obtained in a similar way.

Note that, JK flip-flop has maximum number of don't care 'x' conditions and D flip-flop input simply
follows the value to which transition is made.

18. What is characteristic equation of a flip-flop?
19. What is a Finite State Machine?
20. How is excitation table different from flip-flop truth table?

A fictitious flip-flop with two inputs A and B functions like this. For AB= 00 and 11 the output
becomes O and 1 respectively. For AB= 01, flip-flop retains previous output while output
complements for AB= IO. Draw the truth table and excitation table of this flip-flop.

Solution The truth table and corresponding excitation tables are presented in Figs. 8.36(a) and (b) respectively'.
For 0-t O transition we see 4B need to be 00 or O 1. Hence, we write AB = Ox in that place and similarly for other
transitions.

A B Qn+I Q11'""""7Qn+l A B

0 0 0 0'"""70 0 X

0 1 Qn 0 '"""71 X

1 0 Qn I '"""7 0 X 0

l > 1 1 1 X

(a) (b)

Solution for example 8~10: (a) Truth table, (b) Excitation table

8.11 ANALYSIS Of SEQUENTIAL CIRCUITS

A sequential logic circuit contains flip-flops as memory elements and may also contain logic gates as
combinatorial circuit elements. Analysis of a circuit helps to explain its performance. We may use truth tables
of each building block or corresponding equations for this purpose. In this section, we look at important
issues in an analysis problem through an example. In subsequent chapters, more analysis examples will be
taken up.

Consider, the sequential circuit shown in Fig. 8.37. It has only input CLK in the fonn of fixed
frequency binary pulses that triggers both the flip-flops. An output Xis generated from flip
flop outputs as shown. Analysis of this circuit will give how flip-flop values (or states) and
more importantly output X change with input CLK. The steps are as follows.

CLK

B

B

X

A sequential logic circuit for analysis purpose

Note from the circuit diagram flip-flop input relations: SA= A,;, RA= An and Ss AnB,;, Rs= A11Bn.

Next, using characteristic equation of SR flip-flop (Section 8.9) we can write,

for flip-flop A

and for flip-flop B

An+I =SA+RAAn

=A,;+ A,;An (Substituting SA= A,; and RA= An)

=A,;

Bn+l =Ss+RifB,,

= AnB,; + (A 11B11)'B11 (Substituting Ss = A 11B,; and Rs= AnB11)

= A,,B,; +(A,;+ B,;)Bn (Following De Morgan's Theorem)

Digital Principles and Applications

=AnB; + A,;B11
=A11EBB11

Now the output from the given circuit, X,, = A 11B11

The equation shows that present (given by time index n) values of A and B flip-flop, also
called states of the sequential circuit determine present output and next (given by time index
n + 1) flip-flop values or state of the circuit. Thus, if present state is B11 = 0, A11 = 0 then present output X,,
= AnBn = 0.0 = 0 and at the end of first clock cycle we get next state is B11+ 1 = 0 EB O = 0, An+ 1 = O' = 1. In
next clock cycle present state is nothing but next state of previous cycle or Bn = 0, An= 1. The output now
is generated asXn = 0.1 = 0 and next state is determined as B11+ 1 = 0 EB 1 = 1, A11+ 1 = 1' = 0. Continuing this
exercise we arrive at state analysis table also called state table as shown in Table 8.1.

State Analysis Table for Analysis Example

Present Present Input

State

B,, A,, Ss =A,,B,; Rs=A,,B,, S,t =A,;

0 0 0 0 1
0 1 1 0 0
1 0 0 0 1
1 I 0 1 0
0 0 0 0 1
0 I

We find that the states as well as output of the above
circuit repeat after every four clocking periods and at
every fourth clock period the output remains I for one
clock period. The circuit thus behaves like a counter that
counts number of clock pulses that has arrived at its in
put and signals when there is a count of four. A pictorial
presentation of the performance of the circuit showing
state transitions with each clock is shown in Fig. 8.38.
The values within the circle follow syntax: B,,A,/X,1•

Flip-flop outputs defining current state is shown to the
left of '/' and current output appears at right. Such cir
cuit where output is directly derived from current state

Rs=A,,

0
l
0
I
0

Next State Present

Output

Bn+I =An@B11 An+I =A,; X=AnBn

0
1
1
0
0

1 0
0 0
1 0
0 1
I 0

. .. Repeats

State transition diagram
of the sequential circuit
given in Fig'. 8.37

only and not from current inputs are called Moore circuit. If current inputs are also used in output forming
logic it is called Mealy circuit. More about these are discussed in Chapter 11. Often, a state transition diagram
of a sequential circuit serves better than the word description and is presented as final output of an analysis
exercise.

Analysis of a sequential circuit can also be done through timing diagram where all the input, output and
if necessary intermediate variables are plotted against some reference signal say, clock input. The timing
diagram obtained by analyzing circuit of Fig. 8.37 is shown in Fig. 8.39. The method followed is given
next.

CLK

B

A

SB BA

Rs=AB

SA=A

R. =A A

X=AB

Flip-Flops

I I I I

---'-----'-----'n'--: -'---'-----'n·~ _
Timing diagram of the circuit given in Fig. 8.36

We start with an initial state B = 0, A= 0 and note that this state can only change when negative edge of the
clock comes. The next state values of Band A are dependent on current inputs Ss, Rs and SA, RA at the time of
clock trigger. As done before, these input values are derived following relations given in the circuit diagram,
i.e. SA =A',RA =A andSs=AB',Rs=As (suffix n can be ignored). For B =O,A =Owe getS,4 = 1,RA = O,Ss
= 0 and Rs = 1 and these values can change only when B and A change, i.e. in next clock cycle. Thus above
values of SR inputs of two flip-flops continue till next negative edge of the clock. ForSs = 0 and Rs= 1, at the
negative edge of clock B remains at O (from truth table of SR flip-flop). Similarly for SA = I, RA = 0 flip-flop
A moves to 1. Thus we get B and A value of next clock cycle. Following above relation we now calculate SR
input values of these flip-flops as SA= 0, RA= I, Ss = 1 and Rs= 0 and these again remain constant up to
next negative edge of the clock Here as Ss = I and Rs= 0, B moves to 1 and as SA= 0, RA= 1, A moves to
0 and remains constant till next clock trigger. SR inputs are again calculated and this process is continued for
subsequent clock cycles. In each of these clock cycles we calculate and draw the output following relation
X= AB. The timing diagram shows the states get repeated as 00~01 ~ IO~ 11 ~00, and so on. Repetition
occurs after every fourth clock cycle. The outputX= AB, accordingly shows repetition as O~O~O~ 1 ~O
and remains high for one clock period every time flip-flop output becomes B = 1, A= l.

A detailed analysis of various configurations of counter and its timing diagram will be presented in Chapter
10.

2 L What is analysis of sequential citcuit?
22. Which of truth table and excitation table is useful for analysis of a sequential circuit?

Explain the function of the circuit shown in Fig. 8.40 through state transition diagram.

Solution The D flip-flopJnput can be written asD == XEBQ11 and output Y == XQ,;. Figure 8.4 l(a) sh?ws the state 1.able
and Fig, SAI (b) its.state transition diagrnm. Note that, the circuit follows Mealy model and at any given state output is

Digital Principles and Applications

generated from input to that. state. Thus,
outputs are shown by the side of the in
put in state transition diagram to right of
the input and is separated by a '/' sign.

On careful observation, we can see
something interesting in above circuit. If
we ignore Y, then the D flip-flop block
with Ex-OR gate as connected behaves
like a Tflip-flop where T= X.

Q/1 X D=XEB Q
11 Qn+l

0 0 0 0

0 l l I

I 0 l l

l 1 0 0

(a)

Y=XQ
11

0

I

0

0

y

State· transition diagram of Example 8.11

1/1

0/0~0/0

1/0

(b)

Solution to Example 8.11: (a) State table, (b) State transition diagram

8.12 CONVERSION OF FUP .. fl.OPS:
A SYNTHESIS EXAMPLE

Knowledge about how flip-flop of one type can be converted to another may be useful on various count. Say,
when we have designed the circuit with one type and for implementation we get a different type from the
store or the market. Redesign of the problem with available type of flip-flops may take considerable amount
of time if the circuit is very complex. Instead one can convert the available type using few basic gate to the
type in which design is done and implement the existing design.

Conversion of JK to SR, D, T is fairly straightforward as we see from their respective truth tables or
characteristic equations. For example, one need not do anything extra to replace SR flip-flop from a design
if SR flip-flop is not available, by JK flip-flop. This is because their truth tables are same except for input
combination 11, which in design with SR flip-flop is taken care of not to appear in the input side. Hence,
replacing SR with JK flip-flop does not pose any problem. However, the reverse is not true. In design with
JK flip-flop there remains possibility of 11 appearing at input side and that combination of input is forbidden
for SR flip-flop. Again, comparing truth tables or characteristic equations of JK and D flip-flops we see that
putting an inverter from .J to K (K = J') we get D flip-flop from JK flip-flop where J = D. T flip-flop can be
obtained from JK flip-flop by making T = J = K.

We show here how to convert an SR flip-flop to a JK flip-flop through a systematic approach, as a general
methodology for synthesis or design of sequential logic circuit. A detailed study on various design problems
and related issues are presented in Chapter 11.

In step one of this method, we look into JK flip-flop truth table and specifically note, Qn~Qn+ 1 transitions
for a given combination of inputs JK and present state Q11 • Since the synthesis element is SR flip-flop we shall

Flip-Flops

refer to its excitation table to identify SR input combination for a required Q11-,Q11+1 transition. Table 8.2
shows truth table of JK flip-flop as well as necessary SR inputs for Q,,-,Q,,+1 transitions. Such tables are also
known as state synthesis table.

State Synthesis Table for SR to JK Flip-Flop Conversion

J,, Kn Qn ~Qn+I s,, Rn

0 0 0 0 0 X

0 0 l 1 X 0
0 1 0 0 0 X

0 l l 0 0 l
1 0 0 1 l 0
l 0 1 1 X 0
I l 0 1 l 0
I I 1 0 0 l

The next step is to write SR inputs as a function of JK inputs and present state Qn- Kamaugh Map derived
from Table 8.2 for SR inputs are shown in Fig. 8.42 along with their design equations.

JK
II 11

JK 11 11

Q,, 00 0 l 1 1 1 0 Qn 00 0 1 1 1 10

0 0 0 11 1 I 0 X X 0 0

l X 0 0 X 1 0 11 1 I 0

Sn =J,, Qn Rn =K11Q11

Karnaugh Map and Design equations for SR inputs

The final synthesized circuit devel
oped from these equations, are shown
in Fig. 8.43. The functional block with
in dotted lines made up of an SR flip
flop and two AND gates, behave like a
JK flip-flop.

J

~-----------------------------,
I I
I I
I I
I I

: s Q :
I
I

CLK--i------<:l
I
I
I
I

Q

Thus conversion between flip-flops,
in simple cases can be done comparing
their respective truth tables. For other
cases, the steps shown above can be
followed. Refer to Example 8.13 and

K--i----1
R

I
I

Q 1--+-'--:- Q

Problems 8.30 to 8.32.

23. Why flip-flop conversion is needed?

I
I
I

I I

'-----------------------------'
Conversion of SR flip-flop to JK flip-flop.

24. Whafis the basic difference between analysis and synthesis steps?
25. What is the difference between state analysis table and state synthesis table?

Digital Principles and Applications

Show how a D flip-flop can be converted to SR flip-flop.

Solution Note characteristic equation of two flip-flops.

For SR flip-flop: Q11+1 ""'S +R'Q11 and for D flip-flop: Q~+i ~D

Thus with D ""S+ R' Q11 we get circuit shown in Fig. 8.44 which behaves like an SR flip-flop but made from a D
flip-flop and basic logic gates: Method as shown in Section 8J 1 also gives same solution.

r----------------------------------
1 s-:'-------4---.._,_
l
I
I
I

D

CLK-----~1•---~>

R-i---o-,
I
I
I
J I :_ _________________________________ ~

Solution for_ Example 8.11. _ D flip-flop converted to SR flip-flop

8.13 HDLIMPlEMENTATION Of fllP-fLOP

We continue our discussions on HDL from earlier chapters and in this section we look at how to represent
a flip-flop using Verilog HDL. As discussed before, behavioral model is preferred for sequential circuit and
always keyword is used in all these circuits. Since, sequential logic design also includes combinatorial design
at some places we may use dataflow model for that. To start with let us see how a D latch (Fig. 8.15) and SR
latch (Fig. 8.11) are expressed in HDL. We have used characteristic equation corresponding flip-flops given
in Section 8.9. The explanation of the codes are simple. IfEN = 1, output changes according to equation and
if EN = 0, output does not change, i.e. remains latched to previous value.

modu1e {D,EN, Q);

Q;

always @ _(EN or D)

if (EN} Q=D;

I I from characteristic equation

endmodule

module SRLatch(S,R,EN,Q);
input S,R,EN;
output Q;
reg Q;

always@ (EN or Sor R)
if (EN) I (-R&Q) ;

//from characteristic equation

endmodu1e

Next we discuss how to describe a clocked flip-flop. The following Verilog code describes a D flip-flop
with positive edge trigger, negative edge trigger and positive edge trigger with reset (CLR) given in Figs. 8.23
(a), (b) and (c) respectively. Here, the CLR input is active low, i.e. it clears the output (Q = 0) when CLR is 0.
We use keywords posedge and negedge for this. With keyword always it ensures execution of always block
once every clock cycle at corresponding edge. For asynchronous CLR we use a particular nomenclature of
Verilog HDL. The always sensitivity list (after@) contains any number of edge statements including clock

____________ F_lip_-F_lop_s ___________ (;)

and asynchronous inputs. The always block puts all asynchronous conditions in the beginning through else
or else if and the last else statement responds to clock transition.

module DFFpos(D,C,Q);
input D,C; //C is clock
output Q;

reg Q;
always@ (posedge C)

Q=D;

endmodule

module DFFneg(D,C,Q);
input D,C; //C is clock

output Q;
reg Q;
always@ (negedge Cl

Q=D;
endmodule

module DFFpos_clr(D,C,CLR,Q);
input D,C,CLR; //C is clock

output Q;

reg Q;
always@ (posedgeCornegedgeCLR)

if (-CLR) Q=l'bO;
/IQ stores 1 binary bit 0

else Q=D;

endmodule

Write a Verilog code that converts an D flip-flop to an SR flip-flop following Fig. 8.43 of
Section 8.11.

Solution The code is given as follows. See how combinatorial logic part of the circuit is expressed by assign
statement

module SRFFneg(S,R,C,Q);
input S,R,C; //C is clock

output Q;
wire DSR;
assign DSR = SI (-R&Q); //combinatorial logic shown in flg.8.45

DFFneg Dl(DSR,C,Q); //instantiates negative edge triggered D FF

endmodule

module DFFneg(D,C,Q);
input D,C; //C is clock

output Q;
reg Q;
always@ (negedge C)

Q=D;

endmodule

Initial

Explain the use of following Verilog code in test bench preparation of sequential logic
circuit.

begin

elk= l'bO;

repeat (20)

#50 elk= -elk;

end

Solution The keyword initial says following code is run for once. The variable 'elk' is of 1 binary digit and is
initialized with Oat time = 0, Keyword repeat ensures repetition of following statement 20 times, In that statement,

Principles and Applications

variable elk is comple111.ented after a delay of 50 ns. Thus, elk toggles between 1 and O every 50 ns and for 20times
generating l O cycles of 50 + 50 = l 00 ns duration each. ID a test bench, clkean be fed asClock input to simulate a
sequential circuit for a finite duration. The number of clock pulse generated can be changed by changing number after
repeat and clock period can be changed by changing delay after# sign.

The Verilog code given in first column generates output given in second column and
corresponding timing waveform is given next. Draw the digital circuit diagram from Verilog
code and explain the output.

module CKT_XYZ(Q,Q_BAR,D,CLK);

output Q,Q_BAR;

input D,CLK;

wire X,Y;

nand Ul (X,D,CLK)

nand 02 (Y,X,CLK)

nand U3 (Q,Q_BAR,X);

nand U4 (Q_BAR,Q,Y);

endmodule

module TestCKT XYZ;
• wire Q, Q_BAR;

reg D, CLK;

CKT XYZ xyz(Q, Q_BAR, D, CLK);

initial
begin

$monitor($time, "CLK
Q= %b\nu,CLK,D,Q);

D=l;CLK=O;

%b, D= %b,

#10 D = 0; #30 D = 1; #30 D = 0;
#30 D = 1;

#40 $finish; /* the module will terminate after
140ns*/

end
always

#20 CLK -CLK;

endmodule

ions I

TestCKT XYZ.Q

TestCKT XYZ.Q BAR

TestCKT XYZ.D ~-

TestCKT XYZ.CKL I

;20ns
I I

I

:40ns
I I

i60ns
I I '

(

\
r

\ I

0 CLK 0, D 1, Q = X

10 CLK 0, D 0, Q = X

20 CLK 1, D 0, Q 0

40 CLK 0, D 1, Q 0

60 CLK 1, D 1, Q 1

70 CLK 1, D 0, Q 0

80 CLK 0, D 0, Q 0

100 CLK 1, D 1, Q 1

120 CLK 0, D 1, Q 1

I I 120ns i
i r i !

\
·-

j \

\

\ i \

Solution The circuit diagram from the structural model given in the code is shown in Fig .. 8.45. The test bench
displays in the monitor. time elapsed and CLK, D, Q (in binary) through first.statement after begin. D initially 1
toggles after a delay oflOns, 30 ns, 30 ns, 30ns. Simulation stops after.further40 ns faking a.total time oflO+ 30+.
30 +30 + 40 140ns. Clock toggles at every 20 ns starting with a value 0.

Flip-Flops

The circuit $hows·.~tif (;I.,K,.5 ·O~JJl ~d \'.12 outp1.1tg
are l.jrrespective.of other inputs. and Q, Q_ BARremains
latched to pr~vious value· thr?ugh crosg c?upled U3 .and
.U4. WhenCLK. "". l,D canchangepl011tpu~such ~tX
:= D' also final outputQ =B. Jhe timing dia~shows
Q __ B~a: Q'. "fhus the circuit behaves like a high level
triggeredD flip-Flop.

Circuit diagram of Verilog
code given in Example 8.16

PROBLEM SOLVING WITH MULTIPLE METHODS

Analyze the circuit shown in Fig. 8.46 and find the output Y. Consider that the flip-flops are
initially reset.

T Q T Q y

CLK Q CLK Q

A T flip-flop based circuit for analysis purpose

Sobliion We followthree different methods tri analyze the circuit and0identify the performance of Y.

111 Method4, .· we use statetafile approach. Wemak: use ofthe factthat a Tflip-flop does not change
its stateifT=.O but.ittoggli;isw:hen T=.·l at the clock trigger.

Letus name the first ftip .. flop asX andits inputand output as. TxandXrespectively. Similarly, let the
· second flip-fl9p be n~med Y: andits inp~t is Tr: while its output is already assigned as Y. Then, the state
tableiS shown il1Fig, 8,47. !e fin1thiltthe cir~~its lll9ye .from states 00, 0 l, 10, 00, ... repetitively and
the 9utpt1l Ygoes HIGH once in tht-ee cycles and remains HIGH for one clock period.

1
0

0

Digital Principles and Applications

By following similar Xand Y naming oftwo flip-flops as in Method-I, we find that

For Xflip-flop, input: Tx =Xi,+ Yn

For Y flip-flop,

output: X11+ 1 = (X11 + Yn)X,; +·(Xn + Yn}' Xi,
= Ynx,; + XitY,;X11

=Y11 X,;
input: Tr = x,;

outputY,1+1 =X,; Y,; + (X,;)'Y11

=X,; Y,;+X11 Yn

The final solution is shown in Fig. 8.48.

Xn Yn Xn+1 = Y,1 x;1 Y,i+ I = X~ y;; + Xn Y,,

0 0 0 1

0 1 1 0
1 0 0 0

0 0 repeats

Solution using Method-2

In Method-3, we make use of the timing diagram as shown in Fig. 8.49. We note that the flip-flops
are positive edge triggered. The T input just before the positive edge decides output of the flip-flop in
next cycle.

Solution using Method-3

We start withinitialXf== 00. Then we draw Tx byORingXand Ywaveforms and Tyby inverting
Y waveform. T x and Ty before positive edge decide value of X and Y respectively in next clock cycle
(from Tflip-flop truth table).

Flip-Flops

A flip-flop is an electronic circuit that has two stable states. It is said to be bistable. A basic RS flip-flop,
or latch can .be constructed by connecting two NAND gates or two NOR gates in series with a feedback
connection. A signal at the set input of an RS flip-flop will force the Q output to become a 1, while a signal
at the reset input will force Q to become a 0.

A simple RS flip-flop or latch is said to be transparent-that is, its output changes state whenever a
signal appears at the R or S inputs. An RS flip-flop can be modified to form a docked RS flip-flop whose
output can change states only in synchronism with the applied dock.

An RS flip-flop can also be modified to form a D flip-flop. In a D latch, the stored data may be changed
while the dock is high, The last value of D before the clock returns low is the data that is stored. With edge
triggered D flip-flops, the data is sampled and stored on either the positive or negative dock edge.

The values of J and K determine what a JK flip-flop does on the next clock edge. When both are low, the
flip-flop retains its last state. When J islow and K is high, the flip-flop resets. When J is high and K is low,
the flip-flop sets. When both are high, .the flip-flop toggles. In this last mode, the JK flip-flop can be used as
a frequency divider.

There are various ways to represent a flip-flop like truth table, characteristic equation, state transition
diagram or excitation table. Flip-flop treated as a finite state machine highlights its functional aspect.
Analysis of a sequential circuit helps to understand performance of a given circuit in a systematic manner
and through synthesis we develop circuit diagram for a specified problem.

• asynchronous Independent of clocking. The
output can change without having to wait for
a clock pulse.

• bistable Having two stable states.
• bistable multivibrator Another term for an RS

flip-flop.
• buffer register A group of memory elements,

often flip-flops, that can store a binary word.
• characteristic equation logic expression

describing a flip-flop.
• edge triggering A circuit responds only when

the clock is in transition between its two
voltage states.

• finite state machine functional description of
sequential circuit.

• flip-flop An electronic circuit that has two
stable states.

• hold time The minimum amount of time that
data must be present after the clock trigger
arrives.

• latch Another term for an RS flip-flop.
• Mealy model output is dependent both on

cunent state and input to the circuit.
• Moore model output is dependent only on

current state of the circuit.
• propagation delay The amount of time it takes

for the output to change states after an input
trigger.

• setup time The minimum amount of time
required for data inputs to be present before
the clock arrives.

• state the set of memory values at any given
time for a sequential logic circuit.

• synchronous When outputs change states
in time with a clock. A clock signal must be
present in order for the outputs to change
states.

• transparent The condition that exists when
the flip-flop output changes immediately after
its inputs (R, S, J, K, D) change state.

Digital Principles and Applications

8.1 List as many bistable devices as you can think
of--either electrical or mechanical. (Hint:
Magnets, lamps, relays, etc.)

8.2 Redraw the NOR-gate flip-flop in Fig. 8.3b
and label the logic level on each pin for R = S
= 0. Repeat for R = S= I, for R = 0 and S= 1,
and for R = I and S = 0.

8.3 Redraw the NAND-gate flip-flop in Fig. 8.7a
and label the logic level on each pin for R =
S = 0. Repeat for R = S = I, for R. = 1, and
S = 0, and for R = 0 and S = 1.

8.4 Redraw the NAND-gate flip-flop in Fig.
8.8a and label the logic level on each pin for
R = S = 0. Repeat for R = S = I, for R = 0 and
S = 1, and for R = 1 and S = 0.

8.5 The wavefonns in Fig. 8.50 drive the clocked
RS flip-flop in Fig. 8.11. The clock signal goes
from low to high at points A, C, E, and G. If Q
is low before point A in time:

a. At what point does Q become a 1?
b. When does Q reset to O?

CLK __fl__flJl__fL_
ABCDEFGH

s___Il__

R___Il_

8.6 Use the infom1ation in the preceding problem
and draw the waveform at Q.

8.7 Prove that the flip-flop realizations in Fig.
8.12 are equivalent by writing the logic level
present on every pin when R = S = 0 and the
clock is high. Repeat for R = S = I, for R = l
and S = 0, and for R = 0 and S = l. Describe
what happens when the clock is low.

8.8 The waveforms in Fig. 8.51 drive a D latch
as shown in Fig. 8.15. What is the value of D
stored in the flip-flop after the clock pulse is
over?

8.9 What is the advantage offered by an edge
triggered RS flip-flop over a clocked or gated
RS flip-flop?

8.10 The waveforms in Fig. 8.18d illustrate the
typical operation of an edge-triggered RS
flip-flop. This circuit was connected in the
laboratory, but the R and S inputs were
mistakenly reversed. Draw the resulting
waveform for Q.

8.11 An edge-triggered RS flip-flop will be used
to produce the waveform Q with respect to
the clock as shown in Fig. 8.52a. First, would
you use a positive-edge- or a negative-edge
triggered flip-flop? Why? Draw the waveforms
necessary at R and S to produce Q.

c~
I I I

: to : t I : !2

Q~

(a)

c~
I I I I

:to :t1 :12 :t3

Q~

(b)

8.12 An edge-triggered RS flip-flop will be used to
produce the waveform Q with respect to the

Flip-Flops

clock as shown in Fig. 8.52b. First, would
you use a positive-edge- or a negative-edge
triggered flip-flop? Why? Draw the waveforms
necessary at R and S to produce Q.

8.13 A positive-edge-triggered D flip-flop has the
input waveforms shown in Fig. 8.51. What is
the value of Q after the clock pulse?

8.14 A negative-edge-triggered D flip-flop is driven
by the waveforms shown in Fig. 8.51. What is
the value of D stored in the flip-flop?

8.15 A D flip-flop has the following data sheet
infom1ation: setup time = 5 ns; hold time = 10
ns; propagation time = 15 ns.

a. How far ahead of the triggering clock
edge must the data be applied?

b. How long after the clock edge must the
data be present to ensure correct storage?

c. How long after the clock edge before the
output changes?

8.16 Redraw the JK flip-flop in Fig. 8.23a. Connect
J = K = l. (This can be done by connecting
the J and K inputs to + Vee) Now, begin with
Q = 1, and show what logic level results on
each pin after one positive clock pulse. Allow

· one more positive clock pulse and show the
resulting logic level on every pin.

8.17 In the JK flip-flop in Fig. 8.25a, J = K = 1. A
I-MHz square wave is applied to its C input.
It has a propagation delay of 50 ns. Draw the
input square wave and the output waveform
expected at Q, Be sure to show the propagation
delay time.

8.18 Repeat Prob. 8.17, but use the flip-flop in Fig.
8.25c.

8.19 In Prob. 8.17, what is the period of the clock?
What are the period and frequency of the
output waveform at Q?

8.20 Repeat Prob. 8.17, assuming that the C input
has a frequency of 10 MHz.

8.21 Draw two flip-flops like the one shown in Fig.
8.25b and show how to connect them such
that a 500-kHz square wave applied to pin 1
will result in a 125-kHz square wave at pin 11.
Give a complete wiring diagram (show each
pin connection).

8.22 Explain the meaning of the symbol l in Fig.
8.29a.

8.23 What is the significance of the symbol_n_ in
the trnth table of Fig. 8.29?

8.24 Why do most modem designs incorporate
edge-triggered JK flip-flops rather than pulse
triggered JK flip-flops?

8.25 Show how to use a simple RS latch to
eliminate switch contact bounce (see Fig.
8.32a).

8.26 There is contact bounce present with the
SPDT switch in Fig. 8.53 just as with the
SPST switch discussed in Fig. 8.31. However,
the RS latch used in Fig. 8.53 will remove all
contact bounce, and V0 will be high with the
switch in position 1 and low with the switch in
position 2. Explain exactly how this debounce
circuit works. You might use waveforms as an
aid. Incidentally, the 54/74279 can be used to
construct four of these circuits.

1/4--74279

Debounce circuit

Principles and Applications

8.27 (a) Derive the characteristic equation and (b)
draw state transition diagram of the fictitious
flip-flop described in Example 8.10.

8.28 Explain the difference between Mealy and
Moore model of sequential circuit.

8.29 Analyze the following circuit and explain
what it does.

8.30 Show how to convert D flip-flop to JK flip
flop.

J Qt-----iJ Q

K

Fig. 8.54

8.31 Convert T flip-flop to D flip-flop.
8.32 Convert SR flip-flop to Tflip-flop.

y

LABORATORY EXPERIMENT

AIM: The aim of this experiment is to study
D flip-flop and JK flip-flop and use them for
analysis of sequential logic circuits.

Theory: The truth table of D flip-flop and
JK flip-flop are as follows.

C D Qn+l

0 X Q11 (Last state)

i 0 0

i 1

C J K Q,,+J Action

i 0 0 Q,, (Last state) No change

i 0 0 RESET

i 0 SET

i Q11 (toggle) Toggle

Their characteristic equations are:

D flip-flop: Q11+ 1 = D 11

5V CLR2 D2 CK2PRE2 Q2 Q2'

14 13 12 ll 10 9 8

7474
2 3 4 5 6 7

CLRl DJ CKlPREl QI QI' GND

Kl QI Ql'GND K2 Q2 Q2' J2

16 15 14 13 12 ll IO 9

7476
2 3 4 5 6 7 8

CK! CLRI PRE! JI SY CK2 CLR2PRE2

Q

CLK Q

Clock --~-----~

J

K

Q

CLK Q

y

JKflip-flop: Qn+l =JQ,;+K'Q11

Apparatus: 5 VDC Power supply, Multime
ter, Bread Board, Clock Generator, and Oscil
loscope

Work element: IC 7474 is a dual, edge
clocked, D flip-flop with both PRESET and
CLEAR input while 7476 is a dual, edge
clocked, JK flip-flop that too, has both PRE
SET and CLEAR input. Verify the truth table
of IC 7474 and 7476. Find if it is positive or

Flip-Flops

negative,,~~&~/!1',lgger~d. Appreciate the func
tion of J>'(U3~~!;,~~f LEAR ifit is asynchro~
nous or synchronous with clock. The clock
rnay be available from dock generator or you
rnay use555 based pulse generator developed
in laboratory experiment of previous (;:ha.pter1

l. R stands for RESET(Q = L). S stands fQr
SET(Q=H).

2. Quad means "four." There are four flip~
flops in this IC.

3, ANAND-gate latch is considered active
low because a low input signal is required
to change Q.

4. Xmeans don't care-'-this input atthis time
has no effect.

5. ··. Simply hold the EN inputloW{atOV de).
6. Jh~ .I! flip-flop is et1Sier to use because it

· requires only one input (D).
7, !t.~f~S. t~~Q~tput responds .immediately

toinputsignals.
8. A.fircajtis activated by the leading edge of

the clock.
9. Jh71atfll.istrat1spa:re~t. The.edge,-trigsere,:l

flip-flop only changes state. in synchronism
with the clock.

10. None.The.flip,.fl.op is disabled with C held
low.

lL PRESET is active high. A high level at
PRESET will set Q high.

12. Jhe JK flip-flop has an additional input
condition---,- J = K = H. This causes the
flip-~op to< toggle \¥ith the dock The R = S
= 11c ~put condition is· not allowed with an
Rf flip-flop.

13. Crostco~ple the. outputSback to the input

AND 1,;ates .. < . ..· · . . ·.· ... · .. · ·
The t andK inputs are transparent in a
pulse'-triggered flip~flop. Thus, Jand K
must be<statfo while the· clock is high,

15. WhHe C is high, the master is SET-RESET
according to the J•and K inputs, When

Connect 7476 and 7432 (OR gate) as shown,
so that the analysis circuit is realized; Use
CLEAR to initialize both the flip-flops to 00.
Then apply clock, and see the clock and Y in
a dual trace oscilloscope. Use 7474 to prepare
an SR flip-flop as shown in Fig. 8.43 and find
its truth table.

C goes low, the contents of the master
shift into the slave, and Q is SET-RESET
accordingly.

16. Switch contact bounce is the bouncing that
occurs when a mechanical, spring-actuated
device is operated.

17. The. bouncing action produces multiple
PTs and NTs, which may introduce
unintentional signals!

18. Logic · relation showing next state as
a function of current state and cmTent
inputs.

19. That explains the functional behavior of
a sequential· circuit through finite . number
states and its transition from one state to
another.

20. It is truth table written in a reverse way
such that inputs are shown dependent on a
particular state transition.

21. Finding what a given circuit does.
22. Truth table.
23. By this one need not redesign the

whole circuit if flip-flop one kind is not
available.

24. In analysis,problem begins with a circuit
diagram and.· ends in state •. transition
diagram or. perfonnance description .. It
uses flip-flop truth table or characteristic
equation in this process. In synthesis, the
path is reverse and we use excitation table
instead of truth table.

25. In state analysis table, input of the flip
flops used in the circuit is written first
followed by state transition whereas in
state synthesis table it is other way.

Registers

+ Understand serial in-serial out shift registers and be familiar with the basic features
of the 74LS91 register

+ Understand serial in-parallel out shift registers and be familiar with the basic features
of the 7 4164 register

+ Understand parallel in-serial out shift registers and be familiar with the basic features
of the 7 4166 register

+ Understand parallel in-parallel out shift registers and be familiar with the basic
features of the 74174 and 7495A registers

+ Understand working of Universal shift register with the basic features of the 7 4194
register.

+ State various uses of shift registers

A register is a very important digital building block. A data register is often used to momentarily store binary
information appearing at the output of an encoding matrix. A register might be used to accept input data from
an alphanumeric keyboard and then present this data at the input of a microprocessor chip. Similarly, registers
are often used to momentarily store binary data at the output of a decoder. For instance, a register could be
used to accept output data from a microprocessor chip and then present this data to the circuitry used to drive
the display on a CRT screen. Thus registers form a very important link between the main digital system and
the input-output channels. A universal asynchronous receiver transmitter (UART) is a chip used to exchange
data in a microprocessor system. The UART is constructed using registers and some control logic.

A binary register also forms the basis for some very important arithmetic operations. For example, the
operations of complementation, multiplication, and division are frequently implemented by means of a
register. A shift register can also be connected to form a number of different types of counters. Shift registers

Registers

as sequence generator and sequence detector and also as parallel to serial converters offers very distinct
advantages.

The many different applications of registers, along with the myriad of techniques for using them, are
simply too numerous to be discussed here. Our intent is to study the detailed operation of the four basic types
of shift registers. With this knowledge, you will have the ability to study and understand exactly how a shift
register is used in any specific application encountered.

9~1 TYPES OF REGISTERS

A register is simply a group of flip-flops that can be used to store a binary number. "There must be one flip
flop for each bit in the binary number. For instance, a register used to store an 8-bit binary number must
have eight flip-flops. Naturally the flip-flops must be connected such that the binary number can be entered
(shifted) into the register and possibly shifted out. A group of flip-flops connected to provide either or both of
these functions is called a shift register.

The bits in a binary number (let's call them the data) can be moved from one place to another in either
of two ways. The first method involves shifting the data 1 bit at a time in a serial fashion, beginning with
either the most significant bit (MSB) or the least significant bit (LSB). This technique is referred to as serial
shifting. The second method involves shifting all the data bits simultaneously and is referred to as parallel
shifting.

There are two ways to shift data into a register (serial or parallel) and similarly two ways to shift the data
out of the register. This leads to the construction of four basic register types as shown in Fig. 9.l-serial in
serial out, serial in-parallel out, parallel in-serial out, and parallel in-parallel out. All of these configurations
are commercially available as TTL MSI/LSI circuits. For instance:

Serial in-serial out-54/74LS91, 8 bits

Serial-@-··> · · Serial
_data ... · .. 8 bits · · data
mput .. ·.. · output

(a) Serial in-serial out

Parallel data inputs
,------A--,
MSB LSB

(c) Parallel in-serial out

Serial
data

output

Serial-s
_data 8 bits.· ..
mput

MSB LSB
'------r----1

Parallel data outputs
(b) Serial in-parallel out

Parallel data inputs
,------A--,
MSB LSB

OJ
MSB LSB
'------r----1

Parallel data outputs
(d) Serial in-parallel out

Shift register types

Digital Principles and Applications ·

Serial in-parallel out-54/74164, 8 bits

Parallel in-serial out-54/74165, 8 bits

Parallel in-parallel out-54/74198, 8 bits

We now need to consider the methods for shifting data in either a serial or parallel fashion .. Data shifting
techniques and methods for constructing the four different types of registers are discussed in the following
sections.

9.2 SERIAL IN-SERIAL OUT

In this section we discuss how data is serially entered or exited from a shift register. The flip-flops used to
construct registers are usually edge-triggered JK, SR or D types. We begin our discussion with shift registers
made from D type flip-flops and then extend the idea to other types.

Consider four D flip-flops connected as shown in Fig. 9.2a forming 4-bit shift register. A common clock
provides trigger at its negative edge to all the flip-flops. As output of one D flip-flop is com1ected to input of
the next at every Clock trigger data stored in one flip-flop is transferred to the next. For this circuit transfer
takes place like this Q ~ R, R ~ S, S ~ T and serial data input is transferred to Q. Let us see how actual
data transfer takes place by an example.

Assume, all the flip-flops are initially cleared. Let a binary waveform, as shown along D of
Fig. 9.2b be fed to serial data input of the shift register. Corresponding Q, R, S, Tare also shown in the
figure.

At clock edge A, flip-flop Q has input O from serial data in D, flip-flop R has input O from output of Q,
flip-flop S has input O from output of Rand flip-flop Thas input O from output of S. When clock triggers, these
inputs get transferred to corresponding flip-flop outputs simultaneously so that QRST= 0000. Thus at clock
trigger, values at DQRS is transferred to QRST.

Time
A B C D

l + + i t
Clock~

Q I I I I
I 1 I 1

s,riru r 1 I

LL 1 : I I
I I

data I 1
1 1

son,, { R J s input K 1 : I f:
data 0 I I

I 1 1 I

input
K s Ql~

Q J I I I

Clock I I I I

Rl
1 I I

11 1 1 1

0
1 1 I

I I
I 1 1

SI
I 1 I
1 1 :o I 1

0

(a) (b)

4-bit serial input shift register

Registers

At clock edge B, serial data in= 0, i.e. DQRS = 0000. So after NT at B, QRST= 0000. Serial data becomes
1 in next clock cycle.

At clock edge C, DQRS = 1000 and after NT QRST= 1000. Serial data goes to O in next clock cycle such
that at clock edge D, DQRS = 0100 and after NT QRST = 0100. Example 9 .1 will give another illustration
of such data transfer.

A shift register made up of JK or SR flip-flops has non-inverting output Q of one flip-flop connected to J or
S input of next flip-flop and inverting output Q' connected to Kor R input respectively. For the first flip-flop,
between J and K (or Sand R) an inverter is connected and J (or S) input is treated as serial data in. Note that,
in this configuration both JK and SR flip-flops effectively act like a D flip-flop.

Show how a number 0100 is entered serially in a shift register shown in Fig. 9.2a using state
table.

Soh1tion Figure 93 presents the state table. The timing diagram corresponding to this is discussed in this section.
Note how the data flow across the flip-flops is highlighted by arrow direction.

Clock Serial input Q R s T

0

2

0

0

0

o~o~o~o

o~o~o~o

l~O~O~O

O~l~O~O
0 0 l 0

Datil transfer through serial input in .a shift register

Draw the waveforms to shift the number 0100 into the shift register shown in Fig. 9.3 on the

next page.

Solution The waveforms for this register will appear exactly as in Fig. 9.2 provided the waveform labeled K is

eliminated and waveform J is labeled D.

4-bit serial input shift register

At this point, we have developed the ideas for shifting data into a register in serial fonn; the serial data
input can be classified as either JK or D, depending on the flip-flop type used to construct the register. Now,
how about shifting data out of the register?

Digital Principles and Applications

Let's take another look at the register in Fig. 9.3a, and suppose
that it has the 4-bit number QRST = 1010 stored in it. If a clock sig
nal is applied, the waveforms shown in Fig. 9.4 will be generated.
Here's what happens:

Before Time A The register stores the number QRST= 1010. The
LSB (a 0) appears at T.

At Time A The entire number is shifted one flip-flop to the right.
AO is shifted into Q and the LSB is shifted out the right end and lost.
The register holds the bits QRST= 0101, and the second LSB (a I)
appears at T.

At Time B The bits are all shifted one flip-flop to the right, a 0
shifts into Q, and the third LSB (a 0) appears at T. The register holds
QRST= 0010.

At Time C The bits are all shifted one flip-flop to the right, a 0
shifts into Q, and the MSB (a I) appears at T. The register holds
QRST= 0001.

At Time D The MSB is shifted out the right end and lost, a O shifts
into Q, and the register holds QRST = 0000.

A B C D
Time--~--.--~-~-

I I I I
1 I I I I

Clock~
0 I I I I

I I I I

t + t t
DI

0 I I
I I

Q~t] !o
I I I I

l I I I I

R~
Q I I I I

I I I I

s~~
I I I I
I I I J

T~~

To summarize, we have caused the number stored in the register to appear at T (this is the register output)
1 bit at a time, beginning with the LSB, in a serial fashion, over a time period of four clock cycles. In other
words, the data stored was shifted out of the register at flip-flop Tin a serial fashion. Thus, not only is this a
serial-input shift register, it is also a serial-output shift register. It is important to realize that the stored number
is shifted out of the right end of the register and lost after four clock times. Notice that the complement of the
output data stream is also available at f.

The pinout and logic diagram for a 74LS9 l shift register are shown in Fig. 9.5. This is an
8-bit TTL MSI chip. There are eight RS flip-flops connected to provide a serial input as well as a serial output.

14 13 12 11 10 9 8

Q Q B GND A CLK

74LS9I

Vee
2 3 4 5 6 7

(a) DIP pinout

A
B

(b) Logic diagram

74LS91 8-bit shift register

Registers

The clock input at each flip-flop is negative-edge-trigger-sensitive. However, since the applied clock signal is
passed through an inverter, data will be shifted on the positive edges of the input clock pulses.

The inverter connected between R and Son the first flip-flop means that this circuit functions as a D-type
flip-flop. So, the input to the register is a single line on which the data to be shifted into the register appears
serially. The data input is applied at either A (pin 10) or B (pin 12). Notice that a data level at A (or B) is
complemented by the NAND gate and then applied to the R input of the first flip-flop. The same data level
is complemented by the NAND gate and then complemented again by the inverter before it appears at the S
input. So, a 1 at input A will set the first flip-flop (in other words, this 1 is shifted into the first flip-flop) on a
positive clock transition.

The NAND gate with inputs A and B simply provides a gating function for the input data stream if desired.
If gating is not desired, simply connect pins 10 and 12 together and apply the input data stream to this
connection.

Examine the logic levels at the input of a 74LS91 and show how a 1 and then a Oare shifted
into the register.

Solution .The input logic and the firstflip-flop are redrawn in Fig. 9.6a, and a l is applied at the data input A. The
..R>illputis 0, .the Sjnput is 1, and the flip,,fiop y,,m clearly be set when the clock goes high. In other words, the 1 at the
~t!lfaputwill shift int() the ilip-fiop. fafig. ~.6b, a O is applied at the datajnput A. The R input is 1, the S input is 0,
and the flip-flop will be resetwhenthe~lock goes high. The inputO is thus shifted into the flip-flop.

(b) Logic levels shown by arrows will
reset the flip-flop

l. Whalisthelai;gestdecim~l nuniber that can be stored (in binary form) in a 74LS91 register?
Is a 74LS9hegister sensitive to PTs or to NTs?

9.3 SERIAL IN PARALlEl OUT

The second type of register mentioned in Sec. 9 .1 is one in which data is shifted in serially, but shifted out in
parallel. In order to shift the data out in parallel, it is simply necessary to have all the data bits available as
outputs at the same time. This is easily accomplished by connecting the output of each flip-flop to an output
pin. For instance, an 8-bit shift register would have eight output lines-one for each flip-flop in the register.
The basic configuration is shown in Fig. 9.lb.

~ ______________ D_ig_it_al_P_n_·nc_ip_le_s_a_n_d_A_pp_lt_·ca_t,_·on_s ____________ _

The 54/7 4164 is an 8-bit serial input-parallel output shift register. The pinout and logic diagram for this
device are given in Fig. 9.7. It is constructed by using RS flip-flops having clock inputs that are sensitive to
NTs. A careful examination of the logic diagram in Fig. 9. 7b will reveal that this register is exactly like the
74LS9 l discussed in the previous section-with two exceptions: (1) the true side of each flip-flop is available
as an output-thus all 8 bits of any number stored in the register are available simultaneously as an output
(this is a parallel data output); and (2) each flip-flop has an asynchronous clear input. Thus a low level at the
clear input to the chip (pin 9) is applied through an amplifier and will reset (clear) every flip-flop. Notice that
this is an asynchronous signal and can be applied at any time, without regard to the clock waveform and also
that this signal is level sensitive. As long as the clear input to the chip is held low, the flip-flop outputs will all
remain low. (The register will contain all zeros!)

Shifting data into the register in a serial fashion is exactly the same as the previously discussed 74LS91.
Data at the serial inputs may be changed while the clock is either low or high, but the usual setup and hold
times must be observed. The data sheet for this device gives setup time as 30 ns minimum and hold time as

CLEAR

CLOCK

A
B

Data
outputs

54/74164

B QA
~ '------~---..J

Data Data
inputs outputs

(a) DIP pinout

C
L
0
C
K

Parallel data outputs

(b) Logic diagram

54/7 4164 8-bit shift register

Registers

0.0 ns. Since data are shifted into the register on PTs, the data input line must be stable from 30 ns before the
PT until the clock transition is complete.

Let's take a look at the gated serial inputs A and B. Suppose that the serial data is connected to A; then B
can be used as a control line. Here's how it works:

B is Held High The NAND gate is enabled and the serial input data passes through the NAND gate
inverted. The input data is shifted serially into the register.

B is Held Low The NAND-gate output is forced high, the input data stream is inhibited, and the next
positive clock transition will shift a O into the first flip-flop. Each succeeding positive clock transition will
shift another O into the register. After eight clock pulses, the register will be full of zeros!

How long will it take to shift an 8-bit number into a 54164 shift register if the clock is set at
IO MHz?

Solution A minimum of eight clock periods will be required since the data is entered serially. One clock period is
100 ns, so it will require 800 ns minimum.

For the register in Example 9.4, when must the input data be stable? When can it be
changed?

Solution The data must be stable from 30 ns before a positive clock transition untiHhe positive transition occurs.
This leaves 70 ns during which the data may be changing(~~e Fig. 9.8).

Clock

IOOns · .· t PT
clock period --J

Q--,.--,-__.
I . ·. · 70-ns . I _ 30-ns_ l r::::= data =:i-setu~

transition time time ·

The waveforms shown in Fig. 9.9 show the typical response of a 54/74164. The serial data is input at A
(pin 1), while a gating control signal is applied at B (pin 2). The first clear pulse occurs at time A and simply
resets all flip-flops to 0.

The clock begins at time B, but the first PT does nothing since the control line is low. At time C the control
line goes high, and the first data bit (a 0) is shifted into the register at time D.

The next 7 data bits are shifted in, in order, at times E, F, G, H, I, J and K. The clock remains high after
time K, and the 8-bit number 0010 1100 now resides in the register and is available on the eight output lines.
This assumes that the LSB was shifted in first and appears at QH- Notice that the clock must be stopped after
its positive transition at time K, otherwise shifting will continue and the data bits will be lost.

Finally, another clear pulse occurs at time L, the flip-flops are all reset to zero, and another shift sequence
may begin. Incidentally, the register can be cleared by holding the control line at B low and allowing the clock
to run for eight PTs. This simply shifts eight Os into the register.

Digital Pdnciples and Applications

AB CD EFG HI J K L Titne~~
1
~-,-~-.-.,---,.~-r-~--.-~.----,~-,-~.-~~~~-,-

1
~

Clear -1_J-+--,..-;---,.---;.--;--...;i--;--..;--;.-----u--
' I I I

Data (A)

Control (B)

L.l.STl I I --'---!------,...-

Clock ,

I

QA -=- -.... ! ... o _____ __. 0
I I

QB =-,_; 0 __________ __. :o
I

I

Qc --: O - ,.., ----------- ~
I I

QD --: 0 : 0
- ;-, "-------------"""" I

I I I

QE =-: 0 ..----.:-!-----;~
~,"--------------~ I I

Qp=-...... !0 __________ 11 L£_
I I I

QG ==: 0 : 0 : 0
I I I

QH =: =::;...o ________________ """: _o ____ ...;:_o....,..

In prior sections, the ideas necessary for shifting data into and out of a register in serial have been developed.
We can now use these same ideas to develop methods for the parallel entry of data into a register. There are a
number of different techniques for the parallel entry of data, but we shall concentrate our efforts on commer
cially available TTL At first glance, the logic diagrams for some of the shift registers seem rather formidable
(see, for instance, the block diagram for the 54/74166); but they aren't really. The 54/74166, for instance, is
an 8-bit shift register, and the same circuit is repeated eight times. So, it's necessary to study only one of the
eight circuits, and that's what we'll do here.

The pinout and logic block diagram for a 54/74166 are given in Fig. 9.10. The functional description given
on the TTL data sheet says that this is an 8-bit shift register, capable of either serial or parallel data entry,
and serial data output. Notice that there are eight RS flip-flops, each with some attached logic circuitry. Let's
analyze one of these circuits by starting with the RS flip-flops and then adding logic blocks to accomplish
oµrneeds.

Registers

Clear

Serial input --~

Parallel Parallel inputs
Shift/ Input Output~
load H QH G F E Clear

15

Shift/ H QH G F
load

E

Serial input

Serial A B
input ~----v----

Parallel inputs

CK

Clock Clock GND
inhibit

Positive logic: see description

(a) Pinout

Shift/load
A (2)

(14)

Clock H-+(7,,..) --1:---..
Clock inhibit (6) >:>-------+-'

(b) Logic diagram

54/74166

Digital Principles and Applications

First recognize that the clocked RS flip-flop and the attached inverter given in Fig. 9.1 la fonn a type D
flip-flop. If a data bit Xis to be clocked into the flip-flop, the complement of X must be present at the input.
For instance, if X = 0, then R = 0 and S = 1, and a 1 will be clocked into the flip-flop when the clock transi
tions.

s

~--+--tR

Clock---~
(a) Type D flip-flop

Control

Control= 1

Q (X) s Q (X)

~--+--tR

Clock---~
(b) NOR-gate added

.----.uo
s Q

Clock----'
(c) Control logic added

Q (1)

(d) Example 9.5

Now, add a NOR gate as shown in Fig. 9.11 b. If one leg of this NOR gate is at ground level, a data bit X
at the other leg is simply inverted by the NOR gate. For instance, if X = 1, then at the output of the NOR gate
X = 0, allowing a 1 to be clocked into the flip-flop. This NOR gate offers the option of entering data from
two different sources, either X1 or X2. Holding X2 at ground will allow the data at X1 to be shifted into the
flip-flop; conversely, holding X 1 at ground will allow data at X2 to be shifted in.

The addition of two AND gates and two inverters as shown in Fig. 9. llc will allow the selection of data
X 1 or dataX2. If the control line is high, the upper AND gate is enabled and the lower AND gate is disabled.
Thus X1 will appear at the upper leg of the NOR gate while the lower leg of the NOR gate will be at ground
level. On the other hand, if the control line is low, the upper AND gate is disabled while the lower AND gate
is enabled. This allows X2 to appear at the lower leg of the NOR gate while the upper leg of the NOR gate is
at ground level. You should now study this circuit until your understanding is crystal clear! Consider writing
0 or l at each gate leg in response to various inputs. To summarize:

CONTROL is High Data bit atX1 will be shifted into the flip-flop at the next clock transition.

CONTROL is Low Data bit atX2 will be shifted into the flip 0flop at the next clock transition.

Registers

For the circuit in Fig. 9.11 c, write the logic levels present on each gate leg if CONTROL= 1,

X1 = 1, andX2 = I.

Solution The cone(.lt1evels are given in parentheses in Fig, Sl.l l d, The data value J atX1 is ,,hift,,,lin1to tl,,, nro~11on
when the clock transitions.

A careful examination will reveal that exactly eight of the circuits given in Fig. 9 .11 c are connected
together to form the 54/74166 shift register shown in Fig. 9.10. The only question is: how are they connected?
The answer is: they are connected to allow two different operations: (1) the parallel entry of data and (2) the
operation of shifting data serially through the register from the first flip-flop QA toward the last flip-flop QH,

If the data input labeled X2 in Fig. 9. llc is brought out individually for each flip-flop, these eight inputs
will serve as the parallel data entry inputs for an 8-bit number ABCD EFGH. These eight inputs are labeled
A, B, C, D, E, F, G, and Hin Fig. 9.10. The control line is labeled shift/load. Holding this shift/load control
line low will enable the lower AND gate for each flip-flop, and the 8-bit number will be LOADED into the
flip-flops with a single clock transition-PARALLEL input.

Holding the shift/load control line high will enable the upper AND gate for each flip-flop. If the input from
this upper AND gate receives its data from the prior flip-flop in the register, each clock transition will shift ·
a data bit from one flip-flop into the following flip-flop-proceeding in a direction from QA toward QH. In
other words, data will be shifted through the register serially! In the first flip-flop in the register, the upper
AND-gate input is labeled serial input. Thus data can also be entered into this register in a serial fashion. To
summarize:

Shift/Load is Low A single clock transition loads 8 bits of data (ABCD EFGH) into the register in parallel.

Shift/Load is High Clock transitions will shift data through the register serially, with entering data applied
at the SERIAL INPUT.

Notice that the clock is applied
through a two-input NOR gate. When
clock inhibit is held low, the clock
signal passes through the NOR gate
inverted. Since the register flip-flops
respond to NTs, data will shift into
the register on the PTs of the clock.
When clock inhibit is high, the NOR
gate output is held low, and the clock
is prevented from reaching the flip
flops. In this mode, the register can
be made to stop and hold its contents.

A low level at the clear input can
be applied at any time without regard
to the clock, and it will immediately
reset all flip-flops to 0. When not in
use, it should always be held high.

The truth table in Fig. 9.12 sum
maiizes the operation of the 54/74166

Inputs

Clear
Shift/ Clock

Clock Serial
Parallel

load inhibit A ... H

L X X X X X

H X L L X X

H L L t X a ... h
-- - -- - - - ,-- -

H H L t H X

H H L t L X

H X H t X X

X = Irrelevant, H = High level, L = Low level
t = Positive transition

Internal Levels

QA and QB

L L

QAO QBO

a b
- --
H QA,,

L QAn

QAO QBO

a ... h = Steady state input level at A . . . H respectively
QAO• QBO = Level at QA, QB ..• before steady state

QA,,, QG,, Level of QA or QB before most recent transition () t

54/7 4166 truth table

Outputs

QH

L

QHO

h --
QGn

QGn

QHO

Digital Principles and Applications

8-bit shift register. You should study this table in conjunction with the logic diagram to understand clearly
how the register can be used.

Which entry in the truth table in Fig. 9.12 accounts for the parallel entry of data?

9.5 PARALLEL IN-PARALLEL out
The fourth type of register discussed in the intro
ductory section of this chapter is designed such that
data can be shifted either into or out of the register
in parallel. In fact, simply adding an output line from
each flip-flop in the 54/74166 discussed in the previ
ous section would meet the parallel in-parallel out re
quirements. [It would, of course, require a larger dual
in-line package (DIP)-say, a 24-pin package.]

The 54/74174

The 74174 in Fig. 9.13 is an example of a parallel
in-parallel out register. The Texas Instruments data
sheet refers to it as a hex D-type flip-flop with clear.
It is simply a parallel arrangement of six D-type flip
flops. Each flip-flop is negative-edge-triggered, and
thus a PT will shift data into the register. The six data
bits, D 1 through D6 are all shifted into the register in
parallel. The stored data is immediately available, in
parallel, at the outputs, Q1 through Q6. This type of
register is simply used to store data, and is sometimes
called a data register, or data latch. Notice that it is
not possible to shift stored data either to the right or to
the left. A low level at the clear input will immediately
reset all flip-flops low. The clear input is asynchro
nous-that is, it can be done at any time and it takes
precedence over all other inputs.

The 74LS174 data sheet gives
a setup time of 20 ns and a hold

D1

D (4)
2

D (6)
3

D (11)
4

D (13)
5

iJ c14>
6

(3)

CK

Clear

CK

Clear

CK

Clear

CK

Clear

CK

Clear

CK

54/74174

Registers

time of 5 ns. What is the minimum required width of the data input levels (D1 ... D6) for the
74LS174 in Fig. 9.13?

Solution The data inputs m11.i,t be S:te~dy at least 20 ?S before the PT of the clock, and they must be held for a
minimum of 5 ns after the PT. Thus,.the da1;a inputlevels must be held steady fora minimum of25 ns (see Fig. 8.24

for comparison).

The 54/7 4198

The 54/74198 is an 8-bit TTL MSI having both parallel input and parallel output capability. The DIP pinout
for this device is given in Fig. 9.14 on the next page. It uses positive edge-triggered flip-flops, as indicated
by the small triangle at pin 11. Notice that a 24-pin package is required since 16 pins are needed just for the
input and output data lines. Not only does this chip satisfy the parallel input-output requirements; it can also
be used to shift data through the register in either direction-referred to as shift right and shift left. All the
registers previously discussed have the ability to shift right, that is, to shift data serially from the data input
flip-flop toward the right, or from a flip-flop QA toward flip-flop Qs. We now need to consider how to shift
left.

Shift
left

Vee
serial Input

QH
Input

QG
Input

QF QE Clear input H G F

24

S1 L H QH G QG F QF E QE

So 54/74198 Clear

CK

12

So Shift Input Input QB Input Qe Input QD Clock GND
right A B C D
serial
input

54/7 4198, 8-bit shift register. Parallel input-parallel output

There are a number of 4-bit parallel in-,-parallel out shift registers available since they can be conveniently
packaged in a 16-pin DIP. An 8-bit register can be created by either connecting two 4-bit registers in series
or by manufacturing the two 4-bit registers on a single chip and placing the chip in a 24-pin package (such as
the 54/74198). Let's analyze a typical 4-bit register, say, a 5417495A.

The data sheet for the 5417495A describes it as a 4-bit parallel-access shift register. It also has serial data
input and can be used to shift data to the right (from QA toward Qs) and in the opposite direction-,to the left.
The DIP pinout and logic diagram are given in Fig. 9.15. The basic flip-flop and control logic used here are
exactly the same as used in the 54/74164 as shown in Fig. 9.llc.

The parallel data outputs are simply the Q sides of each of the four flip-flops in the register. In fact, note
that the output QD could be used as a serial output when data is shifted from left to right through the register
(right shift).

Clock I
right shift

Clock2
left shift (8)(8)

Digital Principles and Applications

Outputs Clock 2
~--~'~--~Clock I L shift

Vee QA QB Qe QD R shift (load)

14

CKI CK2

Serial input

A B C D Mode

1
Serial A B D Mode GND
input ~---.,..--~ control

Inputs

A

(2)(14)

(a) Pinout

Data inputs

B
(3)(2) (4)(3)

Note: The pin numbers in parentheses correspond to
the ('95A, 'LS95) ('L95), respectively.

(12)(12)
QB

Outputs

(b) Logic diagram

54/7495A

(5)(5)

When the mode control line is held high, the AND gate on the right input to each NOR gate is enabled
while the left AND gate is disabled. The data at inputs, A, B, C and D will then be loaded into the register on
a negative transition of the clock-this is parallel data input.

When the mode control line is low, the AND gate on the right input to each NOR gate is disabled while
the left AND gate is enabled. The data input toflip-flop QA is now at serial input; the data input to Qs is QA
and so on down the line. On each clock NT, a data bit is entered serially into the register at the first flip-flop
QA, and each stored data bit is shifted one flip-flop to the right (toward the last flip-flop Qv). This is the serial
input of data (at serial input), and also the right-shift operation.

Registers

In order to effect a shift-left operation, the input data must be connected to the D data input as shown in
Fig. 9.16 below. It is also necessary to connect QD to C, Qc to B, and QB to A as shown in Fig. 9.16. Now,
when the mode control line is held high, data bit will be entered into flip-flop QD, and each stored data bit
will be shifted one flip-flop to the left on each clock NT. This is also serial input of data (but at input D) and
is the left-shift operation. Notice that the connections described here can either be hard wired or can be made
by means of logic gates.

Clock I
right shift

Clock 2
left shift

(95, 'LS95) ('L95)

Serial data input

A
(2)(14)

Data inputs
C B

(3)(2)

(12)(12)
QB

(4)(3)

(11)(10)

Qc
Outputs

54/7 495A wired for shift left

D
(5)(5)

(10)(9)

QD

There are two clock inputs--clock 1 and clock 2. This is to accommodate requirements where the clock
used to shift data to the right is separate from the clock used to shift data to the left. If such a requirement is
unnecessary, simply connect clock 1 and clock 2 together. The clock signal will then pass through the AND
OR gate combination noninverted, and the flip-flops will respond to clock NTs.

Draw the waveforms you would expect if the 4-bit binary number l O l O were shifted into a
5417495A in parallel.

Solution The mode control line must be high, The data. input line~ must be stable for more than 10 ns prior to the
clockNTs (setup timefor the data sheet information). A single clock NT will enter the data. (The waveforms are given
in Fig. 9 .17.) If the clock is stopped after the transition time T, the levels on the input data lines may be changed,
However, if the clock is not stopped, the input data line levels must be maintained.

At this point, it simply cannot be overemphasized that the input control lines to any shift register must be
controlled at all times! Remember, the register will do something every time there is a clock transition. What
it does is entirely dependent on the levels applied at the control inputs. If you do not account for input control
levels, you simply cannot account for the behavior of the register!

Mode ~

i. n Clock __J L___

0 !
A I

0

B 1
0----'-------

c 1
0

D 1
o---~, -----,-

' Q 1-------+:~~~~-
A 0-------~

I
I

I--------<
QB :

0-------+--~~~~-
I

Qc 1-------:
0-------~

I
1-------~

Digital Principles and Applications

Outputs

2 3 4

Clear Serial A B

Mode
selection

QD Clock S1 S0

12 11 10 9

5 6 7 8

C D Serial GND
QD :

0-------~~~~~-
I

input, inputs, input,
right left

Time----1----
T

Example 9.8

shift

How can the. 7 495A,. a 4~bit register, b.e used to store 8-bi.t numbers?
Why does the 7495A have two separate dock inputs?

9.6 UNIVERSAL SHIFT REGISTER

shift

7 4194 pinout

In Section 9 .1, we have seen that for basic types of shift register, the following operations are possible-serial
in-serial out, serial in-parallel out, parallel in-serial out, and parallel in-parallel out. Serial in or serial out
again can be made possible by shifting data in any of the two directions, left shift (QA +- Qs +- Qc +- Qn +
Data in) and right shift (Data in ~ QA~ Qs ~ Qc ~ QD). A universal shift register can perform all the four
operations and is also bidirectional in nature. 7495A, described in previous section, is quite versatile except
for the fact that it is in-built for right shift; the left shift is achieved through parallel loading (Fig. 9 .16) and
thus requires external wiring.

The 74194 is a4-bit universal shift register in 16 pin package with pinout diagram as shown in Fig. 9.18.
A, B, C and Dare four parallel inputs, and QA, Q8, Qc and QD are corresponding parallel outputs. There are
two separate inputs for serial data for left and right shift. In addition, there are two mode control inputs which

Registers

select the mode of operation for the universal shift register according to Table 9 .1. The subscript n and n + 1
represent two consecutive states and in between them, there is a clock trigger. In the function table, next state
QA, n+l takes the value Qs,n at clock-trigger which means whatever was the value of Qs at n-th state becomes
the value of QA at (n + 1)-th state.

To understand how this universal shift register is implemented, refer to logic circuit diagram of74194 in
Fig. 9.19. You may identify four 4 to 1 multiplexer blocks in the circuit (one is shown with dotted lines). Two
selection inputs of each of these four multiplexers, understandably, are mode selection inputs S1S0. For S1S0
= 00, the second AND gate output which is nothing but the previous value of the corresponding flip-flop is
transferred to the output. Thus, the flip-flop output does not change and this is the 'Hold' mode. For S1S0 =
01, the fourth AND gate output is transferred which corresponds to 'Shift right'. For S1S0 = 10, the first AND
gate output is transferred which corresponds to 'Shift left'. Finally, for S1S0 = 11, the third AND gate output
is selected which effects parallel 'Load' synchronized with clock. The input 'Clear' is active low and resets
all the flip-flops asynchronously when activated. Note that the 'Clock' is positive edge-triggered due to two
inversions (bubble) in the circuit diagram.

The 74299 is an 8-bit universal shift register in 20 pin package with a similar function table as the 74194.
To save number of pins, the input and output pins are made common here. This is achieved by tristating and
using additional control input that make these pins bidirectional.

Mode Next State (n+ I-th state)

So QA,n+J Qs,n+I Qc,n+I Qv.n+I

0 QA,11 Qs,11 Qc,n Qv,n
Data in QA,n Qs.11 Qc.11
(Pin 2)

0 Qs,11 Qc,n Qv.n Data in
(Pin 7)
A B C D

9.7 APPUCATl(JNS Of SHIFT REGISTERS

Shift registers are used in almost every sphere of a digital logic system. In this section we discuss few such
applications. Shift register can be used to count number of pulses entering into a system as ring counter or
switched-tail counter. As ring counter it can generate various. control signals in a sequential manner. Shift
register can also generate a prescribed sequence repetitively or detect a particular sequence from data input. It
can also help in reduction of hardware by converting parallel data feed to serial one. Serial adder is one such
application discussed in this section.

Ring Counter

Let's begin with a simple serial shift register such as the 54/74164. One of the most logical applications of
feedback might be to connect the output of the last flip-flop QH back to the D. input of the first flip-flop A
(Fig. 9.20a). Notice that the A and B data inputs are connected together. Now, suppose that all flip-flops are
reset and the clock is allowed to run. What will happen? The answer is, nothing will happen since the D
input to the first flip-flop is low (the input at A and B). Therefore, every time the clock goes high, the zero

Digital Principles and Applications

Clock
(11)

Clear
(I)

Serial input (7)

for left shift ---~~~

(6)
D ---------+--+--+-----+-,___.

Serial input (2)
for right shift --------------<

S1S9 ________ ~ _t_~ _ !. ~-~!~i_I?!:~er

,__,___.___,___ D Q

CK
Clear

'1------1--+---iD Q

CK
Clear

>----t-+-----,D Q

CK
Clear

>----+--+----iD Q

CK
Clear

74194, 4-bit universal shift register

(12) 0
-D

(13) 0
-c

(15) O
-A

in each flip-flop will be shifted into the next flip-flop, while the zero in the last flip-flop H will travel around
the feedback loop and shift into the first flip-flop A. In other words, all the flip-flops are in a reset state, each
clock PT resets them again, and each flip-flop output simply remains low. Consider the register as a tube full
of zeros (ping-pong balls) that shift round and round the register, moving ahead one flip-flop with each clock
PT.

Registers

Clear---n

Clock

Clock

QA

QD
QE

QF

(a) 54/74164 8-bit shift register with feedback line from QH to A-B

t t

-----~
__._ ______ _,

~-------~
QG ~~~~~~~~r--l~---,-~~~~~~~r-1_____
QH

(b) Waveforms when register has a single one, and seven zeros

Ring counter

In an effort to obtain some action, suppose that QA is high and all other flip-flops are low, and then allow
the clock to run. On the very first clock PT, the 1 in A will shift into B and A will be reset, since the O in H
will shift into A. All other flip-flops will still contain Os. The second clock pulse will shift the 1 from B to C,
while B resets. The third clock PT will shift the 1 from C to D, and so on. Thus this single 1 will shift down the
register, traveling from one flip-flop to the next flip-flop each time the clock goes high. When it reaches flip
flop H, the next clock PT will shift it into flip-flop A by means of the feedback connection. Again, consider the
register as a tube full of ping-pong balls, seven "white" ones (Os) and one "black" one (a 1). The ping-pong
balls simply circulate around the register in a clockwise direction, moving ahead one flip-flop with each clock
PT. This configuration is frequently referred to as a circulating register or a ring counter. The waveforms
present in this ring counter are given in Fig. 9.20b.

Waveforms of this type are frequently used in the control section of a digital system. They are ideal for
controlling events that must occur in a strict time sequence-that is, event A, then event B, then C, and so on.
For instance, the logic diagram in Fig. 9.21 shows how to generate RESET, READ, COMPLEMENT, and
WRITE (a fictitious set of control signals) as a set of control pulses that occur one after the other sequentially.
The control signals are simply the outputs of flip-flips A, B, D, and E as shown in Fig. 9 .20.

There is, however, a problem with such ring counters. In order to produce the waveforms shown in Fig.
9 .20, the counter should have one, and only one, 1 in it. The chances of this occurring naturally when power
is first applied are very remote indeed. If the flip-flops should all happen to be in the reset state when power

Digital Principles and Applications

RESET
(QA) RESET _fl ____ _

(Qe) READ -W"l--
' I I

(QD) COMPLEMENT _j_jJ__Il__
I J : I I

(Q.)WRITE , , : , n
E ~~

Time '

READ } Output
COMPLEMENT signals
WRITE

Control logic

is first applied, it will not work at all, as we saw previously. On the other hand, if some of the flip-flops come
up in the set state while the remainder come up in the reset state, a series of complex waveforms of some kind
will be the result. Therefore, it is necessary to preset the counter to the desired state before it can be used.
Example 9 .10 shows one scheme how to do presetting when power is first applied.

Switched-Tail Counter or Johnson Counter

We have seen in ring counter what happens if non-inverting output of the first flip-flop is fed back to first :flip
flop of the shift register. Ifwe instead feed inverting output back (or switch the tail) as shown in Fig. 9.22a for
a 4-bit shift register we get switched tail counter, also known as twisted tail counter or Johnson counter. The

1-----<D R D S

R s
CLK-~----t-'-----~---~

y

(a)

Clock Serial in= T Q R s T Y=Q'T'

0 1 0 0 0 0 1

1 1 1 0 0 0 0

2 1 1 1 0 0 0

3 I I I I 0 0

4 0 I 1 l l 0

5 0 0 I l I 0

6 0 0 0 I I 0

7 0 0 0 0 I 0

8 1 0 0 0 0 I

9 I I 0 0 0 0
repeats

(b)

(a) 4-bit switched tail counter, (b) Its state table

Registers

circuit is explained through state table similar to Fig. 9.3 of Section 9.2. Assume all the flip-flops are cleared
in the beginning. Then all the flip-flop inputs have O except the first one, serial data in which is complement
of the last flip-flop, i.e. 1. When clock trigger occurs flip-flop stores QRST as I 000. This makes 1100 at the
input of QRST when the next clock trigger comes and that gets transferred to output at NT. Proceeding this
we complete state table of Fig. 9.22b. Note that output Y = Q'T' and state of the circuit repeats every eighth
clock cycle. Thus this 4-bit shift register circuit can count 8 clock pulses or called modulo-8 counter.

Following above logic and preparing state table for any N-bit shift register we see switched-tail configuration
can count up to 2N number of clock pulse and gives modulo-2N counter. The output Y, derived similarly by
AND operation of first and last flip-flop inverting outputs gives a logic high at every 2N-th clock cycle.
This two-input AND gate which decodes states repeating in the memory units to generate output that signals
counting of a given number of clock pulses is called decoding gate. For switched-tail counter of any modulo
number we need only a 2-inputAND gate. Observing the state sequences in Fig. 9.22b we find logic relation
like Y = QR' or Y = RS' or Y = ST', etc. can also be used for decoding purpose as they generate Y = I only
once during 2N clock cycles. Note that for ring counter we don't need any decoding gate and clock pulse
count can directly be obtained from any one flip-flop output. We shall discuss other counter design techniques
in Chapter 10, which require less number of flip-flops for a particular modulo number. But, there decoding
complexity increases with increasing number of flip-flops. For example, a modulo-8 counter is possible to
design with log28 = 3 number of flip-flops but we need a 3 input AND gate to decode the counter. Similarly,
modulo-16 counter requires 4 flip-flops and 4 input AND gate for decoding.

There is another important issue related with ring counter and switched tail counter. An n-bit register
has 211 different combination of states. But, the counter is to be initialized with one of the valid state of the
counting sequence on which the design is based. Otherwise, the counter will follow a completely different
state sequence (mutually exclusive) and decoding will not be proper. Solve Problem 9.25 to get an idea
on what happens if circuit in Fig. 9.22a is initialized with a word outside the state sequence appearing in
Fig. 9.22b.

Sequence Generator and Sequence Detector

Sequence generator is useful in generating a sequence pattern repetitively. It may be the synchronizing hit
pattern sent by a digital data transmitter or it may be a control word directing repetitive control task. Sequence
detector checks binaiy data stream and generates a signal when a particular sequence is detected.

Figure 9.23a gives the basic block diagram of a sequence generator where shift register is presented as
pipe full of data and each flip-flop represents one compartment of it. The leftmost flip-flop is connected to
serial data in and rightmost provides serial data out. The clock is implied and data transfer takes place only
when a clock trigger arrives. Note that the shift register is connected like a ring counter and with triggering
of clock the binary word stored in the clock comes out sequentially from serial out but does not get lost as it
is fed back as serial in to fill the register all over again. Sequence generated for binary word 1011 is shown in
the figure and for any n-bit long sequence to be generated for this configuration we need to store the sequence
in an n-bit shift register.

The circuit that can detect a 4-bit binary sequence is shown in Fig. 9.23b. It has one register to store the
binary word we want to detect from the data stream. Input data stream enters a shift register as serial data
in and leaves as serial out. At every clocking instant, bit-wise comparisons of these two registers are done
through Ex-NOR gate as shown in the figure. Two input Ex-NOR gives logic high when both inputs are low
or both of them are high, i.e. when both are equal. The final output is taken from a four input AND gate,
which becomes 1 only when all its inputs are 1, i.e. all the bits are matched. Figure 9.23b shows a situation

Serial data in __,

Digital Principles and Applications

~~-~-0-~-~~~ -------- lQlllQll
(a)

Sequence to be detected
(b)

(a) 4-bit sequence generator, (b) 4-bit programmable sequence detector

y

when data received so far is O 111 and word to be matched is 1011. The first two bits are mismatched and
corresponding Ex-NOR outputs are low, so also final output Y. Now, as the next bit in the serial data stream is
1 when a clock trigger comes the first flip-flop of the shift-register stores 1 and O 11 gets shifted to 2nd to 3rd
flip-flops. With this both registers store 1011 and the first flip-flop of the shift-register stores 1 and 011 gets
shifted to 2nd to 3rd flip-flops and Y = l completing sequence detection.

Note that Fig. 9.23b can be used as a programmable sequence detector, i.e. ifwe want to change the binary
word to be detected we simply load that in the bottom register. For a fixed sequence detector, we can reduce
hardware cost by removing bottom register and directly connect Ex-NOR input to +Vee or GND depending
on whether we need a 1 or a O to be detected in a particular position.

Serial Adder

The addition operation and full adder (FA) circuit is discussed in detail in Chapter 6. We have seen for 8-bit
addition we need 8 FA units (Fig. 6.6). There the addition is done in parallel. Using shift register we can
convert this parallel addition to serial one and reduce number of FA units to only one. The benefit of this
technique is more pronounced if the hardware unit that's needed to be used in parallel is very costly. Figure
9.24 shows how serial addition takes place in a time-multiplexed manner and also provides a snapshot of the
register values at 3rd clock cycle:

Two 8-bit numbers, to be added (A7A6 ... A1A0 and B7B6···B1Bo) are loaded in two 8-bit shift registers A
and B. The LSB of each number appears in the rightmost position in two registers. Serial data out of A and B
are fed to data inputs of full adder. The carry-in is fed from its own carry output delayed by one clock period

Serial in

Seri al in "

CLK

Registers

~ Serial out Full adder
SI So A7 A6 A5 A4 A3 A2 ~ s 2

r A S; -
I

B2
B;

c-
I

C;-1 C; ,_. C
2

- Q D -
X X B7 B6 B5 B4 B3 B2 - <o--> Serial out

Serial addition of two 8-bit numbers (Register values shown are at 3rd
clock cycle)

by a D flip-flop, which is initially cleared. Both registers and D flip-flop are triggered by same clock. The sum
(S) output ofFA is fed to serial data in of Shift Register A.

The serial addition takes place like this. The LSBs of two numbers (Ao and Bo) appearing at serial out
of respective registers are added by FA during 1st clock cycle and generate sum (S0) and carry (C0). S0 is
available at serial data input of register A and C0 at input of D flip-flop. At NT of clock shift registers shift
its content to right by one unit. S0 becomes MSB of A and C0 appears at D flip-flop output. Therefore in the
second clock cycle FA is fed by second bit (A I and B 1) of two numbers and previous carry (C0). In second
clock cycle, S1 and C1 are generated and made available at serial data in of A register and input of D flip-flop
respectively. At NT of clock S1 becomes MSB of A and So occupies next position. A2 and B2 now appear
at FA data input and carry input is C1. In 3rd clock cycle, S2 and C2 are generated and they get transferred
similarly to register and flip-flop. This process goes on and is stopped by inhibiting the clock after 8 clock
cycles. At that time shift register A stores the sum bits, S7 in leftmost (MSB) position and So in rightmost
(LSB) position. The final carry is available at D flip-flop output.

The limitation of this scheme is that the final addition result is delayed by eight clock cycles. In parallel
adder the result is obtained almost instantaneously, after nanosecond order propagation delay of combinato
rial circuit. However, using a high frequency clock the delay factor can be reduced considerably.

The register in Fig. 9.20 can easily be cleared to all Os by using the clear input. Show one
method for setting a single 1 and the remaining Os in the register.

So,lutiofi(The simple I>~wer-o~-re~et drc~it lllFig. 9 25a on the next page is widely used togenerate th~ equivalent
ot·.a· narr1c>w negative pulse that occurs when power (+ V cc) is first applied to the system .. Before the application of
power, voltage across the capacitor is zero. When + V cc is applied, the capactt.or Voltage charges 1:owa1'd + V cc
w~~RCtillleconstru.l.t,andthe~remains ~t +Vee as·lon~as ~hegyste111powerremains, asseen ~y the.waveform
inthefigt1re. IfpolntAis then~onnected to the clearinput of the 54/74164,all flip-flops will automatically be reset
to Os when+ V cc is first applied.

From Power-on-reset above

CLEAR --1111---a

CLOCK
A

Power
ON

Digital Principles and Applications

To CLEAR
----A

(a) Power-on-reset circuit

'--------1R X

(b)

54/7 4164 with logic to preset a single 1 and seven Os

The logic added in the feedback path in Fig. 9.25b will now cause a single I to be set into the register. Here's how
it works:

The power-on-reset pulse is inverted and used to initially set flip-flop X This causes the output of the OR gate
to be a 1, and the first clock PT will shift this 1 into QA.

2. When QA goes high, this will reset flip-flop X At this point, the register contains a 1 in QA, and O's in all other
flip-flops. X will remain low as long as power is applied, and the data from QH will pass through the. OR gate
directly to the data input AB. The single 1 and the seven Os will now shift around the register, advancing one

position with each clock transition as desired.

Since the ring counter in Fig. 9.20 can function with more than a single 1 in it, it might be desirable
to operate in this fashion at some time or other. It can, for example, be used to generate a more complex
control waveform. Suppose, for instance, that the wavefom1 shown in Fig. 9.26 were needed. This waveform

Registers

could easily be generated by simply presetting the
counter in Fig. 9.20 with a l in A, a 1 in C, and
all the other flip-flops reset. Notice that it is really
immaterial where the two 1 s are set initially. It is
necessary only to ensure that they are spaced one
flip-flop apart.

Clock

Control
waveform

desired

How would you preset the ring counter in Fig. 9.20 to obtain a square-wave output which is

one-half the frequency of the clock? How about one-fourth the clock frequency?

Solution It is necessary only to preset a l in every other flip-flop, while the remaining flip-flops are all reset. This
will generate a waveform at each flip :flop output that is high for one clock period and then low for one clock period.
The period of the output waveform is then two clock periods; therefore, the frequency is one-halftl1e clock frequency.
An output signal at one-fourth the clock frequency can be generated by presetting tl~e shift register with two 1 s, then

two Os, then two ls, and then two Os.

9. What is a ring counter?
lO. What is a power-on-reset circuit usedfor?
11. What is a switched tail counter?
12. How does a serial adder work?

9.8 REGISTER IMPLEMENTATION IN HDl

In this section, we see how to describe a register using HDL. The parallel in parallel out register, primarily
used for storage purpose is described for IC 741174 (Fig. 9.15) in Verilog code in the first colunm. We use
vector notation for convenience. When Clear is activated (active LO\v) all 6 outputs of Qare reset.

In second column, we show code for shift right register shown in Fig. 9.5 where Tis the final output and Q,
R, Sare internal outputs. Since they are outputs of always block they have to be defined as reg and not wire.
Note that, we use a new assignment operator<= within always block which unlike = operator executes all
associated statements concurrently. If we had used= instead of<=, the D input through sequential execution
would have reached final output in one clock cycle (unlike 4 clock cycles required in 4-bit shift register), also
all the flip-flops within the register will have same value that of serial data input. Often, use of = operator
is called blocking mode operation and use of<= is called non blocking mode. In column 3, we show a 4-bit
serial in parallel out right shift register where all the flip-flop outputs are available externally. We use vector
notation for convenience wherever possible.

input Clock;
input
output
reg[5:0] Q;

input D; //

output T; // Clear as in
reg T; // LHS to

reg Q,

module SR2(D,Clock,Q);
input D; //Clear as
output [3:0J Q; //in 74174
reg [3 :OJ Q;

initia.lize

Digital Principles and Applications

always@ (negedge Clock

or negedge Clear)

always @ (negedge Clock) always @ .(negedge

if (-Clear) Q=6'b0; begin begin
/IQ stores 6 0 Q <= D; Q [OJ <= D.;

else Q=D; R <= Q· ' Q [1 l <= Q[O];

endmodule s <= R; Q[2] <= Q[1];

T <= S; Q[3] <= } ;

end end
endmodule endmodule

Write Verilog code for switched tail counter shown in Fig. 9.24.

Solution The code is similar to Shift Register description given above in second column. The serial data inputhere

is taken from inverse of final flip-flop output. Output is generated from decoding logic Y = Q' T'.

module STC(Clock,Clear,Y); //Switched Tai.l Counter
input Clock, Clear;

output Y;

reg Q,R,S,T; I/internal outputs of flip-flops
assign Y= (-Q)&(-T);

always@ (negedge Clock)

begin
if (-Clear) Q=6'b0; /IQ stores 6
else

begin
Q <= "'T; is switched and
R <= Q;

S <= R;

T <= S;
end

endmodule

0

to

PROBLEM sot VING WITH MU[TIPU: METHODS

Design an 8-bit sequence generator that generates the sequence 11000 l 00 repetitively using

shift register.

Solution We use ring counter and switched-tail counter derived from shift registers for this purpose.

In Method-1, we load an 8.-bit ring counter as shown in Fig. 9.27a with the given sequence and.at
the output, the sequence will be repetitively generated.

In Method-2, we consider a modulo-8 switched-tail counter developed from 4-bit shift re~ister.
Let it be initially loaded with 0000. Then the 8 repetitive states of the cotmtcr will be as shown in Fig.

9.27b and is reproduced in Fig. 9.27c. We then design a combinatorial circuit which for each of the
state generates one bit of the sequence. The KamaughMapforthisis shown in Fig. 9.27& Note that the
unused states can be considered as 'don;t care'. The logic equation of the combinatorial circuit realized
as Fig. 9 .27b can be written as Y =A' D' +A' B + AB'

A

1
1
I
l
()

0
0
0

0 0 0 0

A B C D

I O I O I O I I O I O
hktput. r

Combi.natmial ---Circuit Output, Y

Counter
B CD

0 0 0
1 0 0
I 1 0
1 1]

I 1 1
0 1 1
0 0 1
0 0 0

(a) (b)

Sequence Generator
Output, Y

l
0

CD 00 01 11 10 AB
00 0 A'D'

0
0

01 A'B

1 11 0 X 0 0
0
0

IO :-1- X -X- X1

i __ --- ______ I
AB'

Y=A'D'+A'B+AB'

(c) (d)

(a) Solution with Method-1, (b)-(d) Solutfonwith Method-2, (b) Targeted
realization, (c) Counter sequence vs. sequence generator output, (d)
Karnaugh Map to generate logic equation

Note that Method-2 can be used with any other types of counter and is not restricted to shift register
based counter. T!J.is is shown with Example 10.15 in next Chapter.

Shift registers are important digital building blocks that can be used to store binary data. They can accept
data bits in either a serial or a parallel format and can, likewise, deliver data in either serial or parallel.
There are thu~ four basic register types; serial input-serial output, serial input-parallel output, parallel
input-serial output, and parallel input-parallel output.

In one application, a register can be used to change data from a serial format into a parallel format, or vice
versa. As such,. shift registers can be regarded as data format changers. The UART is a good example of a data
changer.There are a great many other shift register applications-arithmetic operations, logic operations,

Digital Principles and Applications

and com:1ters, to name only a few. Our intent has not been to discuss all the possible applications of shift
registers, but rather to consider in detail how each type ofregister functions; With this knowledge, one can
then discover the many and varied practical applications in existing digital designs.

• Johnson counter Refer to switched-tail
counter.

• parallel shift Data bits are shifted simultane
ously with a single clock transition.

• register capacity Determined by the number
of flip-flops in the register. There must be
one flip-flop for each binary bit; the register
capacity is 2'1, where n is the number of flip
flops.

• ring counter A basic shift register with direct
feedback such that the contents of the register
simply circulate around the register when the
clock is running.

11 serial shift Data bits are shifted one after the
other in a serial fashion with one bit shifted
at each clock transition. Therefore, n clock

PROBLEiviS

9 .1 Determine the number of flip-flops needed to
construct a shift register capable of storing:

a. A 6-bit binary number
b. Decimal numbers up to 32
c. Hexadecimal numbers up to F

9.2 A shift register has eight flip-flops. What
is the largest binary number that can be
stored in it? Decimal number? Hexadecimal
number?

9.3 Name the four basic types of shift registers,
and draw a block diagram for each.

transitions are needed to shift an n-bit binary
number.

• sequence detector Detects a binary word from
input data stream.

• sequence generator Generates a binary data
sequence.

• serial adder Converts parallel data to serial
and use adder block sequentially.

• switched tail counter Shift register with
inverting output of last flip-flop fed to first
flip-flop input. For n-bit shift register can give
modulo 2N counter.

• shift register A group of flip-flops connected
in such a way that a binary number can be
shifted into or out of the flip-flops.

• UART Universal asynchronous receiver
transmitter.

9 .4 Draw the waveforms to shift the binary
number 1010 into the register in Fig. 9.2.

9 .5 Draw the waveforms to shift the binary
number 1001 into the register in Fig. 9.3.

9.6 The register in Fig. 9.2 has 0100 stored in it.
Draw the waveforms for four clock transitions,
assuming that both J and Kare low.

9. 7 Draw the waveforms showing how the decimal
number 68 is shifted into the 54/74LS91 in
Fig. 9.5. Show eight clock periods.

9.8 The hexadecimal number AB is stored in
the 54/74LS91 in Fig. 9.5. Show the

Registers

waveforms at the output, assuming that the
clock is allowed to run for eight cycles and
thatA =B =O.

9.9 How long will it take to shift an 8-bit binary
number into the 54/74164 in Fig. 9.7 if the
clock is:

a. 1 MHz b. 5 MHz

9.10 For the 54/74164 in Fig. 9.7, B is high,
clear is high, a 1-MHz clock is used to shift
the decimal number 200 into the register
at A. Draw all the waveforms (such as in
Fig. 9.9).

9.11 On the basis of information in Example
9.5, what is the maximum frequency of the
clock if the minimum data transition time is
30 ns?

9.12 In Fig. 9.9, if control is taken low at time K,
will the data stored in the register remain even
if the clock is allowed to run? Explain.

9.13 For the circuit in Fig. 9.llc, write the logic
levels on each gate leg, given:

a. Control= 1, X1 = 0, X2 = l
b. Control= 0, X1 = 0, X2 = 1

9.14 Redraw the 54/74166 in Fig. 9.10 showing
only those gates used to shift data into the
register in parallel. If a gate is disabled, don't
draw it.

9.15 Redraw the 54/74166 in Fig. 9.10 showing
only those gates used to shift data into the
register in serial. If a gate is disabled, don't
draw it.

9.16 Explain the operation of the 54/74166 for each
ofthe six truth table entries in Fig. 9.12.

9 .17 Draw all the input and output waveforms for
the 54/74166 in Fig. 9.10, assuming that the
decimal number 190 is shifted into the register

in:

a. Parallel b. Serial

9.18 Redraw the 5417495A shift register in Fig.
9 .15 showing only those gates used to shift
data into the register in parallel. If a gate is
disabled, don't draw it.

9.19 Repeat Prob. 9.18, assuming that the data is
shifted in serially.

9.20 Draw the waveforms necessary to enter, and
shift to the right a single 1 through the shift
register in Fig. 9.15.

9.21 Repeat Prob. 9.20, but do a left shift.(See Fig.
9.16.)

9 .22 Draw the waveforms that would result if the
circulating register (ring counter) in Fig. 9.20
had alternate 1 s and Os stored in it and a 1-
MHz clock.were applied.

9.23 The register in Fig. 9.20 can easily be cleared
to all Os by using the clear input. See if you
can design logic circuitry to set the register
with alternating ls and Os.

9.24 Explain the operation of the 54/74165
shift register. Redraw one of the eight flip
flops along with its two NAND gates, and
analyze:

a. Parallel data entry

b. Shift right
c. Serial data entry

The logic diagram is given in Fig. 9.28 on the
next page.

9 .25 Show how modulo-8 switched tail counter works
if is initialized with '100 I'. How to decode this
counter?

9.26 Show the circuit diagram for an 8-bit sequence
detector which has to detect a fixed pattern
'100111 IO' from incoming binary data stream.

~ ______________ D_ig_it_al_P_n_·nc_ip_le_s_a_n_d_A_pp_ll_·ca_t1_·on_s ____________ _

Parallel
inputs

Pin numbers shown are for J and N packages.

(a) Logic diagram (positive logic)

Clock

CLKJNH
L

SER----------'------------------
SH/LD

r:
D

Data
E

F
I

G _Jfi:il
I
I

H_lTm
I
I ----

QH ---- H H

QH ~=== L L

I-Inhibit -------- Serial shift ~----'----'-+i

Load
(b) Typical shift, load, and inhibit sequences

54/7 4165, 8-bit shift register

Registers

AIM: The aim ofthisexperimentisto study
Shift Register and u.se it fo. get Ring Counter
and Johnson Counter.

The9ry.: The ~hifi register is a.special kind
of register, i.e. gr(}up of memory units where
binary.data can.be shifted from.one unit to

Outputs

Vee Q.4 QB Qe

Q.4 QB Qe

another in a sequential manner. The loading of
shift register may be done serially or parallely.
In serial loading as many number of clock
cycles are required as the size ofthe register to
load it fully. h1 parallel loading,. all the memory
units are loaded simultaneously in one clock
cycle. The data within·· the register can be

Clock2
Clock l L shift

QD R shift (load)

9 8

QD CKI CK2

Serial input 7495

A

Serial A
input

(95, 'LS95) ('L95)

Clock 1
right shift ---i--;__../

Clock 2 ----L-J
left shift

B C

B

Inputs

A
(2)(14)

(13)(13)
QA

D Mode

Mode GND
control

Serial data input

Data inputs

(12)(12)
QB

(11)(10)
Qe

Outputs

D
(5)(5)

(10)(9)
QD

Digital Principles and Applications

Work element: IC 7495 js a 4-bit shift
register with a mode control that.allows

1. 255
2. PTs
3. 30 ns
4. Eight; one

The shift/load line on the 74166 allows
either serial or parallel data entry.

6. PTs
7. Two.7495As connectedinserieswiUstore

8 bit numbers.
8. Tl1t1.7495:A, llas geparate clock inpµts to

accommodate separate %hift .. rigl1t and
shift-left signals.

9. A dh;ect-feedback shift register-the
1::011tents.of the register circulate around. the
registerw~en the. clock is running.

10. A power-9n.creset circuit is used
fiip-flopg t? ~Y desired states.
Swit5hedtailcounter .. shift registerwith
inv?rting oµtput ofJast flip-flop fed to fkst
fiip,.flopdnput. For• n-'bif shift Jt:~ster this
configuration .can.give modulo 2Ncounter;

12. Serial.adder.converts.~araUeldatato serial
using shift register and. performs addition
sequentialli•·~in~.a~ ru.i<lerblock,

Counters

+ Describe the basic construction and operation of an asynchronous counter
+ Determine the logic circuit needed to decode a given state from the output of a given

counter
+ Describe the synchronous counter and its advantages
+ See how the modulus of a counter can be reduced by skipping one or more of its

natural counts
+ Understand how to design counter as a finite state machine

A counter is probably one of the most useful and versatile subsystems in a digital system. A counter driven
by a clock can be used to count the number of clock cycles. Since the clock pulses occur at known intervals,
the counter can be used as an instrument for measuring time and therefore period or frequency. There are
basically two different types of counters-synchronous and asynchronous.

The ripple counter is simple and straightforward in operation and its construction usually requires a
minimum of hardware. It does, however, have a speed limitation. Each flip-flop is triggered by the previous
flip-flop, and thus the counter has a cumulative settling time. Counters such as these are called serial, or
asynchronous.

An increase in speed of operation can be achieved by use of a parallel or synchronous counter. Here, every
flip-flop is triggered by the clock (in synchronism), and thus settling time is simply equal to the delay time of
a single flip-flop. The increase in speed is usually obtained at the price of increased hardware.

Serial and parallel counters are used in combination to compromise between speed of operation and
hardware count. Serial, parallel, or combination counters can be designed such that each clock transition
advances the contents of the counter by one; it is then operating in a count-up mode. The opposite is also

Digital Principles and Applications

possible; the counter then operates in the count-down mode. Furthermore, many counters can be either
"cleared" so that every flip-flop contains a zero, or preset such that the contents of the flip-flops represent any
desired binary number.

Now, let's take a look at some of the techniques used to construct counters.

10.1 ASYNCHRONOUS COUNTERS

Ripple Counters

A binary ripple counter can be constructed using clocked JK flip-flops. Figure 10.1 shows three negative
edge-triggered, JK flip-flops connected in cascade. The system clock, a square wave, drives flip-flop A. The
output of A drives B, and the output of B drives flip-flop C. All the] andK inputs are tied to +Vee· This means
that each flip-flop will change state (toggle) with a negative transition at its clock input.

+Vee
Negative State

_n_n_ J A J B J C clock or
Clock transitions C B A count

K A K lJ K c 0 0 0 0

A B C a 0 0

Outputs b 0 0 2

(a) Three-bit binary ripple counter C 0 1 3

a b C d e .r g h j d 0 0 4
Time t i l i i l l t l r e I 0 5

Clock .r 1 0 6
A

B
g 1 7

C h 0 0 0 0

(b) Waveforms (c) Truth table

When the output of a flip-flop is used as the clock input for the next flip-flop, we call the counter a ripple
counter, or asynchronous counter. The A flip-flop must change state before it can trigger the B flip-flop, and
the B flip-flop has to change state before it can trigger the C flip-flop. The triggers move through the flip-flops
like a ripple in water. Because of this, the overall propagation delay time is the sum of the individual delays.
For instance, if each flip-flop in this three-flip-flop counter has a propagation delay time of 10 ns, the overall
propagation delay time for the counter is 30 ns.

The waveforms given in Fig. 10.l b show the action of the counter as the clock runs. Let's assume that the
flip-flops are all initially reset to produce O outputs. If we consider A to be the least-significant bit(LSB) and
C the most-significant bit (MSB), we can say the contents of the counter is CEA = 000.

Every time there is a clock NT, flip-flop A will change state. This is indicated by the small arrows (.!) on
the time line. Thus at point a on the time line, A goes high, at point b it goes back low, at c it goes back high,
and so on. Notice that the waveform at the output of flip-flop A is one-half the clock frequency.

Counters

Since A acts as the clock for B, each time the wavefonn at A goes low, flip-flop B will toggle. Thus at point
b on the time line, B goes high; it then goes low at point d and toggles back high again at point f Notice that
the waveform at the output of flip-flop Bis one-half the frequency of A and one-fourth the clock frequency.

Since B acts as the clock for C, each time the waveform at B goes low, flip-flop C will toggle. Thus C goes
high at point don the time line and goes back low again at point h. The frequency of the waveform at C is
one-half that at B, but it is only one-eighth the clock frequency.

What is the clock frequency in Fig. I 0.1 if the period of the waveform at C is 24 µs?

Solution Since there are eight clock cycles in one cycle of C, the period of the clock must be 24/8 = 3 µs. The clock
frequency must then be l/(3 x 10""6) = 333 kHz.

Notice that the output condition of the flip-flops is a binary number equivalent to the number of clock
NTs that have occurred. Prior to point a on the time line the output condition is CBA = 000. At point a on the
time line the output condition changes to CBA = 001, at point b it changes to CBA = 010, and so on. In fact, a
careful examination of the wavefom1s will reveal that the counter content advances one count with each clock
NT in a "straight binary progression" that is summarized in the truth table in Fig. 10.1 c.

Because each output condition shown in the truth table is the binary equivalent of the number of clock
NTs, the three cascaded flip-flops in Fig. 10.1 comprise a 3-bit binary ripple counter. This counter can be
used to count the number of clock transitions up to a maximum of seven. The counter begins at count 000 and
advances one count for each clock transition until it reaches count 111. At this point it resets back to 000 and
begins the count cycle all over again. We can say that this ripple counter is operating in a count-up mode.

Since a binary ripple counter counts in a straight binary sequence, it is easy to see that a counter having
n flip-flops will have 211 output conditions. For instance, the three-flip-flop counter just discussed has 23 = 8
output conditions (000 through 111). Five flip-flops would have 25 = 32 output conditions (00000 through
11111), and so on. The largest binary number that can be represe:1ted by n cascaded flip-flops has a decimal
equivalent of 211

- 1. For example, the three-flip-flop counter reaches a maximum decimal number of 23
- 1.

The maximum decimal number for five flip-flops is 25 - l = 31, while six flip-flops have a maximum count
of 63.

A three-flip-flop counter is often referred to as a modulus-8 (or mod-8) counter since it has eight states.
Similarly, a four-flip-flop counter is a mod-16 counter, and a six-flip-flop counter is a mod-64 counter. The
modulus of a counter is the total number of states through which the counter can progress.

How many flip-flops are required to construct a mod-128 counter? A mod-32? What is the
largest decimal number that can be stored in a mod-64 counter?

Solution A mod-1!8 c.ounter must have seven flip 0flol)s, since 27 = 128, Five flip-flopsar~ needed to construct a
modl32 coi.mter. The1argestdecima1 numbenhatcan be stored ina six-mp-flop cou~ter{mod-64)is1mn = 63.
Note carefully the difference between the modulus (total number of states) and the maximum· decimal number.

The 54/7 493A

The logic diagram, DIP pinout, and truth table for a 5417493A are given in Fig. 10.2. This TTL MSI circuit is
a 4-bit binary counter that can be used in either a mod-8 or a mod-16 configuration. If the clock is applied at
input CKB, the outputs will appear at Qs, Qc, and Qn, and this is a mod-8 binary ripple counter exactly like
that in Fig. 10.L In this case, flip-flop QA is simply unused.

('93A) ['L93]

J Q
CKA (14) CK

K

J Q fl)
CKB · CK

K

K

(a) Logic diagram

Digital Principles and Applications

(12)
QA

(9)
QB

Qe

7493A Qe

CKB RO(I) R0(2) NC Vee NC

Positive logic: see function tables
NC - No internal connection

(b) DIP pinout

'L93A, 'L93, 'LS93 Count
sequence

Count Output

QD Qe QB QA
0 L L L L
1 L L L H
2 L L H L
3 L L H H
4 L H L L
5 L H L H
6 L H H L
7 L H H H
8 H L L L
9 H L L H

IO HLHL
11 H L H H
12 H H L L
13 H H L H
14 H H H L
15 H H H H

(c) Truth table

7493A

On the other hand, if the clock is applied at input CKA and flip-flop QA is connected to input CKB, we
have a mod-16, 4-bit binary ripple counter. The outputs are QA, QB, Qc, and QD. The proper truth tablefor
this connection is given in Fig. 10.2c.

All the flip-flops in the 7493A have direct reset inputs that are active low. Thus a high level at both reset
inputs of the NAND gate, Ro(I) and Rocz), is needed to reset all flip-flops simultaneously. Notice that this reset
operation will occur without regard to the clock.

Draw the correct output waveforms for a 7493A connected as a mod-16 counter.

Solution . The correct waveforms are shown. in Fig.1 o.t The fu11fents Of'tlie C\Jlltif~r is 0000 afpoirlt bon'ilie tint(·.
line. With each negative clock transition, the counter is advanced· by one '1Util the. counter contents.are H 1. l at ~int·.

Counters

counting :.eque11ce rep~ts. Clti,arly, this is a mod-1.6
the.maKimtum decimal number that can be stored in the

An interesting and useful variation of the 3~bit ripple counter in Fig. 10.1 is shown in Fig. 10.4. The
system clock is still used at the clock input to flip-flop A, but the complement of A, A, is used to drive flip
flop B, likewise; B is used to drive flip-flop C. Take a look at the resulting waveforms.

+~~-----------~

Count C B A

7 1 1
6 0

A B 5 0 1

(a) 4 0 0

a b C d e f g h
Time l l l l l l l l t •

Count

3 0
2 0 1 0
1 0 0

clock 0 0 0 0

A 7
B_j
C

(b) (c)

A down counter

Flip-flop A simply toggles with each negative clock transition as before. But flip-flop B will toggle each
time A goes high! Notice that each time A goes high, A goes low, and it is this negative transition on A that
triggers B. On the time line, B toggles at points a, c, e, g and i.

Similarly, flip-flop C is triggered by B and so C will toggle each time B goes high. Thus C toggles high at
point a on the time line, toggles back low at point e and goes back high again at point i.

The counter contents become ABC= 111 at point a on the time line, change to 110 at point b, and change to
101 at point c. Notice that the counter contents are reduced by one count with each clock transition! In other
words, the counter is operating in a count-down mode. The results are summarized in the truth table in Fig.
10.4c. This is still a mod-8 counter, since it has eight discrete states, but it is connected as a down counter.

Digital Principles and Applications

A 3-bit asynchronous up-down counter that counts in a straight binary sequence is shown in
Fig. 10.5. It is simply a combination of the two counters discussed previously. For this counter to progress
through a count-up sequence, it is necessary to trigger each flip-flop with the true side of the previous flip-flop
(as opposed to the complement side.). If the count-down control line is low and the count-up control line high,
this will be the case, and the counter will have count-up waveforms such as those shown in Fig. 10.1.

A B

Note: The J and K inputs are all tied to + V cc·
The counter outputs are A, B, and C.

3-bit binary up-down counter

C

c

C

On the other hand, if count-down is high and count-up is low, each flip-flop will be triggered from the
complement side of the previous flip-flop. The counter will then be in a count-down mode and will progress
through the waveforms as shown in Fig. 10.4.

This process can be continued to other flip-flops down the line to form an up-down counter of larger
moduli. It should be noticed, however, that the gates introduce additional delays that must be taken into ac
count when detem1ining the maximum rate at which the counter can operate.

1. What is the largest binary number representable by a mod-6 ripple counter?
2. How many flip-flops are required to construct a mod- I 024 ripple counter?

10.2 DECODING GATES

A decoding gate can be connected to the outputs of a counter in such a way that the output of the gate will
l,t high (or low) only when the counter contents are equal to a given state. For instance, the decoding gate
connected to the 3-bit ripple counter in Fig. 10.6a will decode state 7 (CBA = 111). Thus the gate output will
be high only when A = 1, B = I, and C = 1 and the waveform appearing at the output of the gate is labeled
7. The Boolean expression for this gate can be written 7 = CBA. A comparison with the truth table for this
counter (in Fig. IO.I) will reveal that the condition CBA = 111 is true only fo.· state 7.

The other seven states of the counter can be decoded in a similar fashion. It is only necessary to examine
the truth table for the counter and then the proper Boolean expression for each gate can be written. For
instance, to decode state 5, the truth table reveals that CBA = 101 is the unique state. For the gate output to
be high during this time, we must use C, B, and A at the gate inputs. Notice carefully that if B = 0, then B .:iJ ! The correct Boolean expression is then 5 = CB A, and the desired gate is that given in Fig. 10.6c. The

""Nf<Jrm is again that given in Fig. 10.6b and is labeled 5.

Clock

A

B __ __,

J1SL J
Clock

K

Counters

A J B J C

A K B K c
7

(a) Decoding gate for state 7

c ______ ' '
I I I I

7 _______ ...___,___,,l.__ ______ ~--~r-L
5 _______ __,

(b) Wavefonns (c) Gate to decode state 5

All eight gates necessary to decode the eight states of the 3-bit counter in Fig. 10.1 are shown in Fig. 10. 7a.
The gate outputs are shown in Fig. 10. 7b. These decoded waveforms are a series of positive pulses that occur
in a strict time sequence and are very useful as control signals throughout a digital system. If we consider
state O as the first event, then state 1 will be the second, state 2 the third, and so on, up to state 7. Clearly the
counter is counting upward in decimal notation from O to 7 and then beginning over again at 0.

Clock

A
B __ __.

iD-o
C

iD-4
C

c _____ ~
0
1
2 __ __,

3 ____ _.
4 _____ __,

s ______ __,
6 ________ _,
? _________,

(b) Count-up mode

iD-
C

iD-2
C

iD-3
C

'D-C
~D-6
C

~D-7
C

(a) Gates

0
1 _________ __,

2 ________

3 ______ ___.
4____!L__ _______ _

s ___,
6 __ __,

7
(c) Count-down mode

Decoding gates for a 3-bit binary ripple counter

Digital Principles and Applications

If these eight gates are connected to the up-down counter shown in Fig. 10.5, the decoded waveforms will
appear exactly as shown in Fig. 10. 7b, provided the counter is operating in the count-up mode. If the counter
is operated in the count-down mode, the decoded waveforms will appear as in Fig. 10. 7c. In this case, if state
0 is considered the first event, then state 7 is the second event, then state 6, and so on, down to state 1. Clearly
the counter is counting downward in decimal notation from 7 to O and then beginning again at 7.

Show how to use a 54LS11, triple 3-input AND gate to decode states !, 4, and 6 of the
counter in Fig. 10.5.

Solution The logic diagram and pinout for a54LS 11
is given in Fig. 10.8. The correct Boolean expressions
forthedesireqst!lt~s are l = CBA ,4 = <7BA,and.6=
CB.A. Wu:itlgsfrom the counterftip-ifop outputs to the
chip is given in Fig. 10.8.

Let's take a more careful look at the waveforms
g?J.~r!lted l>y th~ ~ounter in Fig. l05 as it operates
in the count~up · mode. The dock and each flip-flop
output are redrawn in Fig. J0.9, and the propagadon
delay time of each flip-flop is taken into account. N0,;-.,
tic~ ca~efyllY th~t}lle clockjs the ~gge~ !or flip-flop
~rand. the 1 wavefornds thus delayed by fp frolll the

· negative clock"transition. For reference purposes,
complementofA, A, is also shown. Naturall)'itis the
exactmirrorimageofA,

Since A acts as the trigger for B, the B waveform is
delayed.by onefiip-'flop del!ly time.from the ~eg!lti~e
transition of A, ·Simil,irly,1the G'wayeform isdelayed
by tp from each neglltive transition ofB,

At first glance,th7se delay times wo~ld~eem to .. offer no Inore sedoµs. problem than a s11eed limitation ·for the
counter, but a closer examiriatio11 reveals a much ll}Ore serious pr?bl~m- When the de~?ging gates in Fig. 10. 7 artl
connected to this counter (or, indeed,when decoding gates arr connected to any ripple counter}, glitcnes may appear
at the outputs of one ormore of the gates. Consider, for insfance; the gate used to decode state 6/fhe proper Bo0lean
expressio11 CB A.. So, in Fig. I0.9the correct output waveform gate is hlghonlywllen C= l, B =
and.A=l .

.•... ·. J3ut l<>ok at the glitcll that occurs when the counter progresses fyom state 7 t<> state 0. On the tim(l!in.e, A goes 1?\V
(,A goes high) atpoint a. Because pf ffip-flqp delay. time, however, B does not goiow until P?int b 011the time line!
Thus between points aandb on the time line we.have the condition C= 1,B = l, and A = I-therefore, the gate output
is µigb., and we have aglitchJLookatthe w1.1.veform 6 =CB.A. .

. Depending <>n fi?wthe decoder gate outputs are used, the ~itches (or unwanted pulstls) may(lr may'not be a
problem, Admittedly.~e g!Itches are only. a f(:w nanosecondswideand may. e.ven be very.diffic~lt to observe.on an
Ol>cilloscope, But TIL is veryf~,, ;md TIL circuits will respon<i to (lyen tlle smallest .glitclles...:.:..us®lly wlle11 you
~~~t.l;l;pecti~ W1d !!1'vay~ lit un\\'.anted tiilles! Tlierefore, you Illust l)erv~e t(} ayoi<i this condition, i1lere ~e.,1tleast 
1,,V? ~olutiq~to tlle ?liti;fipr<;>bl!!ll};i)n~ ll}ethod in.volves. strobin.g the gates;w~ discuss that technique her~. A second 
metho~isto use synchronous counters; we consider that topic in the next section. . . . . 

c:onsi<ier using a 4-i11put. AND gate tl:l ctec()de· state 6 as shown Ill Fi~ .. m:91>, wheret1ie. cloc~ is now. ~~~as a 
§ttobe, An e"'~Wll~i<>~.o{~~ }V<LV!!forms in this figure clearly reveals that the •. fl<>Gk:Js 1())-YPet,rfen points a and b on 
the timeJine. Since the clock must be high for the gate output to be high, the glitch cann9t possibly occur! On the other 



Counters 

The ripple counter is the simplest to build, but there is a limit to its highest operating frequency. As previously 
discussed, each flip-flop has a delay time. In a ripple counter these delay times are additive, and the total 
"settling" time for the counter is approximately the delay time times the total number offlip-flops. Furthermore, 
there is the possibility of glitches occurring at the output of decoding gates used with a ripple counter. The 
first problem fully and the second problem, to some extent can be overcome by the use of a synchronous 
parallel counter. The main difference here is that every flip-flop is triggered in synchronism with the clock. 
Note that strobing as the solution to glitches has been discussed before in a separate subsection of Section 
7.7 of Chapter 7. 

The construction of one type of parallel binary counter is shown in Fig.10.10, along with the truth table 
and the waveforms for the natural count sequence. Since each state corresponds to an equivalent binary 
number ( or count), we refer to each state as a count from now on. The basic idea here is to keep the J and K 



Clock~~--<1t--+-i:x:> 

_n_n_ 

C B A Count 

0 0 0 0 
0 0 I I 
0 1 0 2 
0 I 1 3 ----- --- -- -----· 
l 0 0 4 
1 0 I 5 
1 I 0 6 
1 l l 7 
0 0 0 0 

(b) 

Digital Principles and Applications 

(a) 

a b c d e f g h i 
Time 

Count O t 1 t 2 t 3 t 4 t 5 t 6 t 7 t O t 

Clock 

A 

B 

C 

(c) 

Mod-8 binary counter with parallel clock input 

inputs of each flip-flop high, such that the flip-flop will toggle with any clock NT at its clock input. We then 
use AND gates to gate every second clock to flip-flop B, every fourth clock to flip-flop C, and so on. This 
logic configuration is often referred to as "steering logic" since the clock pulses are gated or steered to each 
individual flip-flop. 

The clock is applied directly to flip-flop A. Since the JK flip-flop used responds to a negative transition 
at the clock input and toggles when both the J and K inputs are high, flip-flop A will change state with each 
clock NT. 

Whenever A is high, AND gate X is enabled and a clock pulse is passed through the gate to the clock 
input of flip-flop B. Thus B changes state with every other clock NT at points b, d,f, and hon the time line. 
Since, there is an additional AND gate delay for the clock at B flip-flop in comparison to A flip-flop, it is not 
a parallel counter in a strict sense of the term. 

Since AND gate Y is enabled and will transmit the clock to flip-flop Conly when both A and B are high, 
flip-flop C changes state with every fourth clock NT at points d and h on the time line. 

Examination of the waveforms and the truth table reveals that this counter progresses upward in a natural 
binary sequence from count 000 up to count 111, advancing one count with each clock NT; This is a mod-8 
parallel or synchronous binary counter operating in the count-up mode. 

Let's see if this counter configuration has cured the glitch problem discussed previously. The waveforms 
for this counter are expanded and redrawn in Fig. 10.11, and we have accounted for the individual flip-flop 
propagation times. Study these waveforms carefully and note the following: 

1. The clock NT is the mechanism that toggles each flip-flop. 
2. Therefore, whenever a flip-flop changes state,· it toggles at exactly the same time as all the other flip-

flops-in other words, all the flip-flops change states in synchronism! · 
3. As a result of the synchronous changes of state, it is not possible to produce a glitch at the output of a 

decoding gate, such as the gate for 6 shown in Fig. 10.11. Therefore, the decoding gates need not be 
strobed. All the decoding gates in Fig. 10.7 can be used with this counter without fear of glitches! 



Counters 

Time 

Clock 

A 

A ,, ,, ,, ,, 
B :1 :1 I L 

I " I " C 

6 

You should take time to compare these waveforms with those generated by the ripple counter as shown 
in Fig. 10.9. 

A parallel up-down counter can be constructed in a fashion similar to that shown in Fig. 10.12. In any 
parallel counter, the time at which any flip-flop changes state is determined by the states of all previous flip
flops in the counter. In the count-up mode, a flip-flop must toggle every time all previous flip-flops are in a 1 
state, and the clock makes a transition. In the count-down mode, flip-flop toggles must occur when all prior 
flip-flops are in a O state. 

The counter in Fig. 10.12 is a synchronous 4-bit up-down counter. To operate in the count-up mode, the 
system clock is applied at the count-up input, while the count-down input is held low. To operate in the count
down mode, the system clock is applied at the count-down input while holding the count-up input low. 

Count 
up 

Count 
down 

Note : All J and K inputs are tied to +V cc-

Clock 

A 

B 

C 

D 

(a) Logic diagram 

--~ ______ _, 

(b) Count up waveforms 

D 

D 



Digital Principles and Applications 

a b c d e f g h i J k I m n o P q 
Time --.~~.-~.-~,--,~~+--+-~+--f~~f-~,--,-~t -~+-~+-~+--,,_,,.• 
Clock 

A 

C 

D 

( c) Count down waveforms 

Synchronous, 4-bit up-down counter 

Holding the count-down input low (at ground) will disable AND gates Y1, Y2, and Y3• The clock applied 
at count-up will then go directly into flip-flop A and will be steered into the other flip-flops by AND gates Xi, 
X 2, and X3. This counter will then function exactly as the previously discussed parallel counter shown in Fig. 
10.10. The only difference here is thatthis is a mod-16counter that advances one count with each clock NT, 
beginning with 0000 and ending with 1111. The correct waveforms are shown in Fig. 10.12b. 

If the count-up line is held low, the upper AND gates X1, X2, and X:1 are disabled. The clock applied at 
input count-down will go directly into flip-flop A and be steered into the following flip-flops by AND gates 
Y1, Y2, and Y3. 

Flip-flop A will toggle each time there is a clock NT as shown in Fig. 10.12c. Each time A is high, AND 
gate Y1 will be enabled and the clock NT will toggle flip-flop Bat points a, c, e, g, and so on. Whenever both 
A· and B are high, AND gate Y2 is enabled, and thus a clock will be steered into flip-flop C at points a, e, i, 
m, and q. Similarly, AND gate Y3 will steer a clock into flip-flop D only when A, B, and C are all high. Thus 
flip-flop D will toggle at points a and i on the time line. The waveforms in Fig. l 0.12c clearly show that the 
counter is operating in a count-down mode, progressing one count at a time from 1111 to 0000. 

If you examine the logic diagram for the 54/74193 TTL circuit shown in Fig. 10.13, you will see that 
it uses steering logic just like the counter in Fig. 10.12. This MSI circuit is a synchronous 4-bit up-down 

'192, '193, 'LSI92, 'LS193. 
(Top view) 

Logic: low input to load sets QA = A, 

QB= B, QC= C, and QD = D 

Inputs 

Data Data 
C D 

B 

A Clear Borrow Carry Load C 

74193 
Count Count 
down up 

D 

9 

8 
Data QB QA CountCount Qc QD GND 

B ~down up~ 
Input Outputs '----v-'--' Outputs 

Inputs 

(a) Pinout 

54/74193 



Counters 

'193, 'L193, 'LS193 (13). Borrow output 
'io------

........ Ffr--=--t-- J (IZ) Carry output lW=i$tW~== 'io-----

\(.1~5)!__--;::±:l:t:l=!=l=ffffr=L!"~ I ~ 
Data input A_:_ I L:=. ___ r--I Q,, 

(4) '->D--1--tt-H-tftm---, ~· T Countdown (
3
) Output QA --,. 

Count up (5) '>o----t--t-l-f-t-J-r-i-i--r-i--~ -

<<

1
~
0~)-u:ttl+l=t=f=rr~..J Data input C _;_ c:!e:=::.J" ___ I_ T 

::::j 1 (6) Output Qc Qc ~..---

>-+--,--.,T -
Qc, • 

~(11) 
Load 

r 

nJJ_ ~@H-++====~= 
' 

-

I 

It=====~--~ 
(b) Logic 

(Continued) 



Digital Principles and Applications 

'193, 'Ll93, 'LS193 Binary counters 
Typical clear, load, and count sequences 

Illustrated below is the following sequence. 
l. Clear outputs to zero. 
2. Load (preset) to binary thirteen. 
3. Count up to fourteen, fifteen, carry, zero, one, and two. 
4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen. 

Clear 

Load 

A 

B 
Data 

C 

D 

Count up 

Count down 

Outputs 

Carry 

Borrow 

Sequence illustrated 

I 

_J L__ _____________________________________________ _ 
I 

~-;-..-;.-~f--!~·----------------------------------------------
_J 

_J 

L__ _____________________________________________ _ 
I 

L__ _____________________________________________ _ 
I 

' 

I I I I 1 

IOI 1131 I 14 15 O 
~ ,--A-., ~ Count up 
Clear Preset 

I 
I 
I 

W-
I 

I ' 

I 1 0 15 14 1: I I- Count down 

Notes: A. Clear overrides load, data, and count inputs. 
B. When counting up, count-down input must be high; when counting down, count-up input must be high. 

(c) Waveforms for 54/74193 

(Continued) 

counter that can also be cleared and preset to any desired count-attributes that we discuss later. For now, you 
should carefully examine the steering logic for each flip-flop and study the OR gate and the two AND gates 
at the input of the OR gate used to provide the clock to each flip-flop. 

The waveforms for the 54/74193 are exactly the same as those shown in Fig. 10.12, except that the flip
flop outputs change states when the clock makes a low-to-high transition. Note carefully that the external 
clock ( applied at either the count-up or the count-down input) passes through an inverter before being applied 
to the AND-OR-gate logic of each flip-flop clock input. 

Write a Boolean expression for the AND gate connected to the lower leg of the OR gate that 
drives the clock input to flip-flop QD in the 54/74193. 



Counters 

Solution The correct expression is 

x= (count~upclock) (QA)(Qs)(Qc) 

A parallel.upcdown counter can be formed by using a slightly differe11t.logic scheme, as. sh.ow!linFig. }0:14. 
Remember that in a parallel counter, the time at which any flip-flop changes state is determined by the states of all 
previous flip~fiops in the counter. In the count0up mode, a :flip•ffop musttoggle every time all previous fiip~flops are 
in a 1 state, and the clock makes atra11sition. In the. eount-down mode, flip-flop toggles must occµr when all prior 
:flip-flops are in a O state. 

This particular counter works in an inhibit mode, since each flip-flop changes state on a clock NT pro
vided its J and K inputs are both high; a change of state will not occur when the J and K inputs are low. We 

Count up~--.----~-~~---.---------------, 

+Vee 

-1lSL 
Clock----<11-1------------;--------<11------+-----~ 

(a) 

l 
Count up 

l Countdown 

D C B A Count 

0 0 0 0 0 
0 0 0 l 1 
0 0 1 0 2 
0 0 1 l 3 
0 l 0 0 4 
0 l 0 l 5 
0 l 1 0 6 
0 I l 1 7 

l 0 0 0 8 
I 0 0 l 9 
1 0 1 0 10 
l 0 1 1 11 
1 1 0 0 12 
1 1 0 1 13 
l 1 1 0 14 
l 1 1 1 15 

0 0 0 0 0 
(b) 

Parallel up-down counter 



~ ______________ D_ig_it_al_P_n_·nc_ip_le_s_a_n_d_Ap_p_l1_·ca_tt_·on_s ____________ _ 

might consider this is "look-ahead logic," since the mode of operation occurs in a strict time sequence as 
follows: 

I. Establish a level on the J and K inputs (low or high) 
2. Let the clock transition high to low 
3. Look at the flip-flop output to determine whether it toggled. 

To understand the logic used to implement this counter, refer to the truth table shown in 
Fig. 10.14b. 

A is required to change state each time the clock goes low, and flip-flop A therefore has both its J and K 
inputs held in a high state. This is true in both the count-up and count-down modes, and thus no other logic 
is necessary for this flip-flop. 

In the count-up mode, B is required to change state each time A is high and the clock goes low. Whenever 
the count-up line and A are both high, the output of gate X 1 is high. Whenever either input to Z1 is high, the 
output is high. Therefore, the J andK inputs to flip-flop B are high whenever both count-up and A are high. 
Then, in the count-up mode, a clock NT will toggle B each time A is high, such as in going from count I to 
count 2, or 3 to 4, and so on. 

In the count-down mode, B must change state each time A is high and the clock goes low. The output 
of gate Y1 is high, and thus the J and K inputs to flip-flop B are high whenever A and count-down are high. 
Thus, in the count-down mode, B changes state every time A is high and the clock goes low-going from 0 
to 15, or from 14 to 13, etc. 

In the count-up mode, a clock NT must toggle C every time both A and B are high (transitions 3 to 4, 7 
to 8, 11 to 12, and 15 to 0). The output of gate X2 is high whenever both A and B are high and the count-up 
line is high. Thus, the J and K inputs to flip-flop Care high during these times and C changes state during the 
needed transitions. 

In the count-down mode, C is required to change state whenever both A and B are high. The output of 
gate Y2 is high any time both A and B are high, and the count-down line is high. Thus the J and K inputs to 
flip-flop Care high during these times, and C then changes state during the required transitions-that is, 0 to 
15, 12 to 11, 8 to 7, and 4 to 3. 

In the count-up mode, D must toggle every time A, B, and C are all high. The output of gate X3 is high, 
and thus the J and K inputs to flip-flop D are high whenever A, B, and C and count-up are all high. Thus D 
changes state during the transitions from 7 to 8 and from 15 to 0. 

In the count-down mode, a clock NT must toggle D whenever A, B, and Care all high. The output of gate 
Y3 is high, and thus the J and K inputs to flip-flop D are high whenever A, B, and C and count-down are all 
high. Thus D changes state during the transitions from Oto 15 and from 8 to 7. The count-up and count-down 
waveforms for this counter are exactly like those shown in Fig. 10.12. 

Take a look at the logic diagram for the 54/7 4191 TTL MSI circuit shown in Fig. 10 .15. This is a 
synchronous up-down counter. A careful examination of the AND-OR-gate logic used to precondition the J 
and K inputs to each flip-flop will reveal that this counter uses look-ahead logic exactly like the counter in 
Fig. I 0.14. Additional logic allows one to clear or preset this counter to any desired count, and we study these 
functions later. For now, carefully compare the logic diagram with the counter in Fig. 10.14 to be certain you 
understand its operation. 

Notice carefully that the clock input passes through an inverter before it is fed to the individual flip-flops. 
Thus the outputs of the four master-slave flip-flops will change states only on low-to-high transitions of the 
input clock. Typical waveforms are given in Fig. 10.15. Incidentally, these are precisely the same waveforms 
one would expect when using the 54/74193 discussed previously. 



Counters 

Write a Boolean expression for the 4-input AND gate connected to the lower leg of the OR 
gate that conditions the J and K inputs to the QD flip-flop in a 54/74191. 

Solution The correct logic expression is 

x = (down-up)(QA)(Qs)(Qc)(enable) 

J or N dual-in-line 
or W flat package 

(top view) 

Asynchronous inputs: 
low input to load 

sets QA=A, QB= B, 

Qc= C, and QD = D; 

Inputs . · Oµtputs Inputs 
~ .... ,-~~"-~---

Data Ripple Maxi Data Data 
A Clock clock min Load C D 

15 14 13 11 9 

B 74193 D 

Data QB QA EnableDown/ Qc QD GND 
B ~.·G up·~ 

'--v--' Outputs .'--v---=-' Outputs 
Input Inputs 

54/7 4191 (continued on next page) 

5. How does a parallel (synchronous) counter differ from a serial (asynchronous} counter? 
6. Why are decoding gate glitches eliminated in a synchronous· counter? 
7. Does the 74193 change state withPTs or with: NTs? 

10.4 CHANGING THE COUNTER MODULUS 

Counter Modulus 

At this point, we have discussed asynchronous (ripple) counters and two different types of synchronous 
(parallel) counters, all of which have the ability to operate in either a count-up or count-down mode. All of 
these counters progress one count at a time in a strict binary progression, and they all have a modulus given 
by 2n, where n indicates the number of flip-flops. Such counters are said to have a "natural count" of2". 

A mod-2 counter consists of a single flip-flop; a mod-4 counter requires two flip-flops, and it counts 
through four discrete states. Three flip-flops form a mod-8 counter, while four flip-flops form a mod-16 
counter. Thus we can construct counters that have a natural count of 2, 4, 8, 16, 32, and so on by using the 
proper number of flip-flops. 

It is often desirable to construct counters having a modulus other than 2, 4, 8, and so on. For example, a 
counter having a modulus of 3, or 5, would be useful. A small modulus counter can always be constructed 



(14) 
Clock 

(5) 
Down/up 

I 

Digital Principles and Applications 

'191, 'LS 191 Binary counters 

.. ..,.,---..,_ (13) ~----FrLJo---- Ripple clock 

11 0 2) >----1--+-<11_1--------Max/min output 

(15) I 
Data input A--+-l-~-----!-1-+-+-+-+-+-+--~,-')-io-,11------+--+----.,I, 

Preset (3) 
(4) - -,-- J QA 1--...---0utput QA 

Enable G ---+-~------1_-+_---+--+-+-+-+-,1--t-+--a ;>----t----- tH > CK 

_,J J- - ,- K QA -
Clear 

'f 
_r 

(I) 
Data input B ------+--+--+--+-+-+-f--!--!-+--+--r

1 r ), 

(10) 
Data input C 

(9) 

l'D-----------,J, 
Preset (6) 

1 i-- J Qc 1---0--- Output Qc 

--LH>CK 
-K QC._ 

·-+--1 
I 

Clear 
y 

_F 

DatainputD------+--+-+--1--+-+-+-!--!-+--+-~l,-,,_ 
.--1-HH-t--t--t--t-+-i--i _ _,,110-------1......----1---,1 ~J--- Preset (7) 

le- J QD 1---9-- ()utput QD 

T Le.> CK_ 
L......_K QD-

Clear 

Load (II) 
.· y 

(Continued) 



Counters 

'191, 'LS191 Binary counters 
Typical load, count and inhibit sequences 

Illustrated below is the following sequence. 
1. Load (preset) to binary thirteen. 
2. Count up to fourteen, fifteen (maximum), zero, one, and two. 
3. Inhibit 
4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen. 

Data inputs 

I I 

ArH--------------------------------------------· I I 

B : ~---------------------------------------------

C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
D__r--t--t~-~~~----~--~--~--~~~--~--------------------· I I . 

Down/up 

0 ----, I 
-B ___ l_J: 

Q ----c ___ J 

QD~~~~ : 
I 
I 

Max/min~~~.J : ll~----1-----1--,---,11~-----
' Ripple clock ; : LJ LJ 

----1131114 15 0 121 2 12 1 0 15 14 13 
I 11-- Count up -r-Inhibit...j 1-- Count down -I 
~ 

Load 

(Continued) 

from a larger modulus counter by skipping states. Such counters are said to have a modified count. It is first 
necessary to determine the number of flip-flops required. The correct number of flip-flops is determined 
choosing the lowest natural count that is greater than the desired modified count. For example, a mod-7 
counter requires three flip-flops, since 8 is the lowest natural count greater than the desired modified count 
of7. 

Solution 

Indicate how many flip-flops are required to construct each of the following counters: (a) 
mod-3, (b) mod-6, and (c) mod-9. 

a. The lowest natural count greate~ than 3 is 4. Two flip-flops provide a natural count of 4. Therefore, it requires at 
least two flip-flops to construct a mod-3 counter. 



Digital Principles and Applications 

b. Construc1:ion of a mod-6 counter requires at least three flip-flops, since 8 is the lowest natural count greater than 
6. 

c. A mod-9 counter requires at least four flip-flops, since 16 is the lowest natural coU11t greater than 9. 

A single flip-flop has a natural count of2; thus we could use a single flip-flop to construct a mod-2 counter, 
and that's all. However, a two flip-flop counter has a natural count of 4. Skipping one count will lead to a 
mod-3 counter. So, two flip-flops can be used to construct either a mod-4 or mod-3 counter. 

Similarly, a three-flip-flop counter has a natural count of 8, but by skipping counts we can use three flip
flops to construct a counter having a modulus of 8, 7, 6, or 5. Note that counters having a modulus of 4 or 3 
could also be constructed, but these two counters can be constructed by using only two flip-flops. 

What modulus counters can be constructed with the use of four flip-flops? 

Solution A four~flip-flop counter has a natural count of 16. We can thus construct any counter that has a modulus 
between 16 and 2, inclusive .. We might choose to use four flip-flops only for co1IDters having a modulus between 16 
and 9, since only. three flip-flops are required for a modulus of less than 8, and only two are required for a modulus 
ofless than 4. 

A Mod-3 Counter 

There are a great many different methods for consh-ucting a counter having a modified count. A counter 
can be synchronous, asynchronous, or a combination of these two types; furthermore, there is the decision 
of which count to skip. For instance, if a mod-6 counter using three flip-flops is to be constructed, which 
two of the eight discrete states should be skipped? Our purpose here is not to consider all possible counter 
configurations and how to design them; rather, we devote our efforts to one or two designs widely used in 
TTL MSI. A mod-3 counter is considered in this section and a mod-5 in the next section, and then we consider 
the use of presettable counters to achieve any desired modulus. 

The two flip-flops in Fig. 10.16 have been connected to provide a mod-3 counter. Since two flip-flops have 
a natural count of 4, this counter skips one state. The waveforms and the truth table in Fig. 10.16 show that 
this counter progresses through the count sequence 00, 01, 10, and then back to 00. It clearly skips count 11. 
Here's how it works: 

1. Prior to point a on the time line, A = 0 and B = 0. A negative clock transition at a will cause: 

a. A to toggle to a 1, since its J and K inputs are high 
b. B to reset to O (it's already a 0), since its J input is low and its K input is high 

2. Prior to point b on the time line, A = I, and B = 0. A negative clock transition at b will cause: 

a. A to toggle to a 0, since its J and K inputs are high 
b. B to toggle to a 1, since its J and K inputs are high 

3. Prior to point c on the time line, A = 0 and B = I. A negative clock transition at c will cause: 

a. A to reset to O (it's already 0), since its J input is low and its K input is high 
b. B to reset to O since its J input is low and its K input is high 

4. The counter has now progressed through all three of its states, advancing one count with each negative 
clock transition. 

This two-flip-flop mod-3 counter can be considered as a logic building block as shown in Fig. 10.16d. 
It has a clock input and outputs at A and B. It can be considered as a divide-by-3 block, since the output 



Counters 

J A i--e-------j 

Clock -----<» 

A 

(a) Logic diagram 

B A Count 

0 0 0 
0 1 1 

0 2 
-------

0 0 0 

(c) Truth table 

B 

Clock 

a b C 
Time-------• 

t t t 
Clock _Il___fl__fl_Jl 

A ____r--i___.r

B ~ 

(b) Waveforms 

Mod-3 

A B 

(d) Logic block 

Mod-3 counter 

waveform at B ( or at A) has a period equal to three times that of the clock-in other words, this counter 
divides the clock frequency by 3. Notice that this is a synchronous counter since both flip-flops change state 
in synchronism with the clock. 

A Mod-6 Counter 

Ifwe consider a basic flip-flop to be a mod-2 counter, we see that a mod-4 counter (two flip-flops in series) is 
simply two mod-2 counters in series. Similarly, a mod-8 counter is simply a 2 x 2 x 2 connection, and so on. 
Thus a great number of higher-modulus counters can be fonned by using the product of any number of lower
modulus counters. For instance, suppose that we connect a flip-flop at the B output of the mod-3 counter in 
Fig. 10.16. The result is a (3 x 2 = 6) mod-6 counter as shown in Fig. 10.17. The output of the single flip-flop 
is labeled C. Notice that it is a symmetrical waveform, and it also has a frequency of one-sixth that of the 
input clock. Also, this can no longer be considered a synchronous counter since flip flop C is triggered by 
flip-flop B; that is, the flip-flops do not all change status in synchronism with the clock. 

Clock 

A B C 

(a) 3 x 2 Mod-6 counter (b) Waveforms 



Digital Principles and Applications 

Draw the wavefonns you would expect from the mod-6 counter by connecting a single 
flip-flop in front of the mod-3 counter in Fig. 10.16. 

Solution The resulting counter is a 2 x 3 = mod~6 counter thathas the waveforms shown in Fig. l OJ 8. Notice that 
B now has a period equal to six clock periods, buf it is not symmetrical. 

The 54/7492A 

Q 

Clock 
input 

(a) 2 x 3 Mod-6 counter 

Q 

A __ ___, 

B _____ ~ 

(b) Waveforms 

Mod-3 

A B 

The 5417492A ('92A) in Fig. 10.19 is a TTL divide-by-12, MSI counter. A careful examination of the logic 
diagram will reveal that flip-flops Qs, Qc, and QD are exactly the same as the 3 x 2 counter in Fig. 10.17. 
Thus if the clock is applied to input B of the '92A and the outputs are taken at Qs, Qc, and QD, this is a mod-6 

. counter. 

On the other hand, if the clock is applied at input A and QA is connected to input B, we have a 2 x 3 x 2 
mod-12 counter. The proper truth table for the mod-12 configuration is given in Fig. 10.19b. Again, this must 
be considered as an asynchronous counter since all flip-flops do not change states atthe same time. Thus there 
is the possibility of glitches occurring at the outputs of any decoding gates used with the counter. 

Use the truth table for the '92A to write a Boolean expression for a gate to decode count 8. 

Solution The correct expressionis "8" = QnQcQsQx-

At this point, we can construct counters that have any natural count (2, 4, 8, 16, etc.) and, in addition, a 
mod-3 counter. Furthermore, we can cascade these counters in any combination, such as 2 x 2, 2 x 3, 3 x 4, 
and so on. So far we can construct counters having a modulus of 2, 3, 4, 6, 8, 9, 12, and so on. Therefore, let's 
consider next a mod-5 counter. 



_____________ c_o_un_te_rs _____________ @) 

'92A, 'LS92 

(14) 
Input A-------a> CK 
(CK.A) K 

(1) 
Input B ___ ...,._,._..--a> CK 

(CKB) K 

R00 l ~"..r .___,_ 

CK 

K 

Ro(2) o----~ 

(a) Logic 

'92A, 'LS92 Count sequence 
(See Note C) 

Output 
Count 

QD QC QB QA 

0 L L L L 
I L L L H 
2 L L H L 
3 L L H H 
4 L H L L 
5 L H L H 
6 H L L L 
7 H L L H 
8 H L H L 
9 H L H H 

10 H H L L 
11 H H L H 

(b) Truth table 

Input A '92A, 'LS92, (Top view) 

(CK.A) NC QB GND Qc 
14 13 

A 

B 

2 

QD 

Input B NC NC NC V cc R0(1) R0(2) 

(CKB) Positive logic: See function tables. 
Note: Output QA connected to input B 

(c) Pinout 

54/7492A 

8. How many flip-flops are required to construct a mod-12 counter? 

9. Three flip-flops are available. What modulus counters couldbe constructed? 

10.5 DECADE COUNTERS 

A Mod-5 Counter 

The three-flip-flop counter shown in Fig. 10.20 has a natural count of 8, but it is connected in such a way that 
it will skip over three counts. It will, in fact, advance one count at a time, through a strict binary sequence, 
beginning with 000 and ending with 100; therefore, it is a mod-5 counter. Let's see how it works. 



Principles and Applications 

C B A Count 

0 0 0 0 
0 0 1 1 
0 1 0 2 
0 1 1 3 
1 0 0 4 

0 0 0 0 

(a) 

+Vee a---+-----------------~ 

(c) 

Count O 1 2 3 4 0 
Clock~ 

A~ 

B 

C 
--~ 

(b) 

Clock Mod-5 

A B C 

(d) Logic block 

Mod-5 binary counter 

The waveforms show that flip-flop A changes state each time the clock goes negative, except dming the 
transition from count 4 to count 0. Thus, flip-flop A should be triggered by the clock and must have an inhibit 
during count 4-that is, some signal must be provided during the transition from count 4 to count 0. Notice 
that C is high during all counts except count 4. If C is connected to the J input of flip-flop A, we will have 
the desired inhibit signal. This is true since the J and K inputs to flip-flop A are both true for all counts except 
count 4; thus the flip-flop triggers each time the clock goes negative. However, during count 4, the J side is 
low and the next time the clock goes negative the flip-flop will be prevented from being set. The connections 
which cause flip-flop A to progress through the desired sequence are shown in Fig. 10.20. 

The desired waveforms (Fig. 10.20b) show that flip-flop B must change state each time A goes negative. 
Thus the clock input offlip-flop B will be driven by A (Fig. 10.20c). 

If flip-flop C is triggered by the clock while the J input is held low and the K input high, every clock pulse 
will reset it. Now, if the J input is high only during count 3, C will be high during count 4 and low during all 
other counts. The necessary levels for the J input can be obtained by ANDing flip-flops A and B. Since A and 
Bare both high only during count 3, the J input to flip-flop C is high only during count 3. Thus, when the 
clock goes negative during the transition from count 3 to count 4, flip-flop C will be set. At all other times, 
the J input to flip-flop C is low and is held in the reset state. The complete mod-5 counter is shown in Fig. 
10.20. 

In constructing a counter of this type, it is always necessary to examine the omitted states to make sure that 
the counter will not malfunction. This counter omits states 5, 6, and 7 during its normal operating sequence. 
There is however, a very real possibility that the counter may set up in one of these omitted (illegal) states 
when power is first applied to the system. It is necessary to check the operation of the counter when starting 
from each of the three illegal states to ensure that it progresses into the normal count sequence and does not 
become inoperative. 



Counters 

Begin by assuming that the counter is in state 5 (CBA = 101). When the next clock pulse goes low, the 
following events occur: 

1. Since C is low, flip-flop A resets. Thus A changes from a I to a 0. 
2. When A goes from a 1 to a 0, flip-flop B triggers and B changes from a O to a I. 
3. Since the J input to flip-flop C is low, flip-flop C is reset and C changes from a 1 to a 0. 
4. Thus the counter progresses from the illegal state 5 to the legal state 2 ( CBA = 010) after one clock. 

Now, assume that the counter starts in the illegal state 6 ( CBA = 110). On the next negative clock transi-
tion, the following events occur: 

1. Since C is low, flip-flop A is reset. Since A is already a 0, it just remains a 0. 
2. Since A does not change, flip-flop B does not change and B remains a 1. 
3. Since the J input to flip-flop C is low, flip-flop C is reset and C changes from a 1 to a 0. 
4. Thus the counter progresses from the illegal state 6 to the legal state 2 after one clock transition. 

Finally, assume that the counter begins in the illegal state 7 ( CBA = 111 ). On the next negative clock 
transition, the following events occur: 

1. Since C is low, flip-flop A is reset and A changes from a 1 to a 0. 
2. Since A changes from a 1 to a 0, flip-flop B triggers and B changes from a l to a 0. 
3. The J input to flip-flop C is high; therefore, flip-flop C toggles from a 1 to a 0. 
4. Thus the counter progresses from the illegal count 7 to the legal count O after one clock transition. 

None of the three illegal states will cause the counter to malfunction, and it will automatically work itself 
out of any illegal state after only one clock transition. 

A Mod-10 Counter 

This mod-5 counter configuration can be considered as a logic block as shown in Fig. 10.20d and can be used 
in cascade to construct higher-modulus counters. For instance, a 2 x 5 or a 5 x 2 will form a mod-10 counter, 
or decade counter. 

Show a method for constructing a 5 x 2 (mod-10) decade counter. 

Solution AdeC!,1,decountercan be constntctedbyusing the mod-5 counter in Fig. 10.20.andadding an additional 
fli})'-flrip, labeled D, as shown in Fig. 10.21, The appropriate waveforms and truth table are included. Notice that the 
counter progresses through a biquinary count sequence and does not count in a straight binary sequence, 

A decade counter could be fonned just as easily by using the mod-5 counter in Fig. 10.20 in conjunction 
with a flip-flop, but connected in a 2 x 5 configuration as shown in Fig. 10.22. The truth table for this 
configuration, and the resulting waveforms are shown. This is still a mod-10 (decade) counter since it still 
has 10 discrete states. Notice that this counter counts in a straight binary sequence from 0000 up to 1001, and 
then back to 0000. 

The 7490A 

The 5417490A is a TTL MSI decade counter. Its logic diagram, truth table, and pinout are given in Fig. 10.23. 
A careful examination will reveal that flip-flops QB, Qc, and QD form a mod-5 counter exactly like the one in 
Fig. 10.20. Notice, however, that flip-flop QD in the '90A is an RS flip-flop that has a direct connection from 
its Q output back to its R input. The net result in this case is that QD behaves exactly like a JK flip-flop. 



~ _____________ D_ig_it_al_P_rin_c_ip_le_s_a_nd_A_p_pl_ic_at_io_ns ____________ _ 

Clock ----11--il>-+-«> 

SUl_ 

D C B A State 

0 0 0 0 0 
0 0 0 I I 
0 0 I 0 2 
0 0 I I 3 
0 1 0 0 4 
1 0 0 0 5 
I 0 0 1 6 
I 0 1 0 7 
I 0 I 1 8 
1 I 0 0 9 

0 0 0 0 0 

(b) 

D C B A Count 

0 0 0 0 0 
0 0 0 1 1 
0 0 I 0 2 
0 0 I 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 I 0 6 
0 1 1 I 7 
1 0 0 0 8 
1 0 0 l 9 

0 0 0 0 0 

(a) 

Clock ----1---a> 

__n_n_ 

State 0 
Clock 

Count 0 
Clock 

A 

B 

C 

D 

(a) 

2 3 4 5 6 7 8 9 0 

(c) 

A decade counter 

2 3 4 5 6 7 8 9 0 

(b) 

(c) 

A decade counter 



Counters ® 
'90A, 'L90, 'LS90 '90A, 'L90, 'LS90 '90A, 'L90, 'LS90 

BCD count sequence Bi-quinary (5-2) 
(See note A) (See note B) 

Input (14) 
(12) QA 

Count 
Output 

Count 
Output 

A QD Qe QB QA QA QD Qe QB 
0 L L L L 0 L L L L 

L L L H 1 L L L H 
2 L L H L 2 L L H L 

(9) 0 3 L L H H 3 L L H H 

Input (1) -B 4 L H L L 4 L H L L 

B 5 L H L H 5 H L L L 
K 6 L H H L 6 H L L H 

7 L H H H 7 H L H L 
8 H L L L 8 H L H H 
9 H L L H 9 H H L L 

(b) Truth table 

(8) Qe 
'90A, 'L90, 'LS90 (Top view) 

InputA NC QA QD GND QB Qe 
14 13 12 9 8 

K 

QA QD QB 
A Qe 

7490A 
B R9(2) 

RO(!) Ro(2) R9(1) 

(11) QD 
4 5 7 

Input B Ro(!) Ro(2) NC Vee R9(1) R9(2) 

Positive logic: See function tables 

Note: A output QA connected to input B 
B output QD connected to input A 

(a) Logic (c) Pinout 

54/7490A 

Reset pulse 

D 
C 
B 

7490 JUlSl 
A 

Hundreds Tens Units 

Cascaded 7490's can count to 999 



Digital Principles and Applications 

If the system clock is applied at input A and QA is connected to input B, we have a true binary decade 
counter exactly as in Fig. 10.22. On the other hand, if the system clock is applied at input B and Qv is 
connected to input A, we have the biquinary counter as discussed in Example l 0.11. Take time to study the 
logic diagram and the truth table for the '90A; it is widely used in industry, and the time spent will be well 
worth your while. 

An interesting application using three 5417490A decade counters is shown in Fig. 10.24. The three '90A 
counters are connected in series such that the first one ( on the right) counts the number of input pulses at its 
clock input. We call it a units counter. 

The middle '90A will advance one count each time the units counter counts 10 input pulses, because D 
from the units counter will have a single negative transition as that counter progresses from count 9 to 0. This 
middle block is then called tens counter. 

The left '90A will advance one count each time the tens counter progresses from count 9 to 0. This will 
occur once for every 100 input pulses. Thus this block is called the hundreds counter. 

Now the operation should be clear. This logic circuit is capable of counting input pulses from one up to 
999. The procedure is to reset all the '90As and then count the number of pulses at the input to the units 
counter. This cascaded arrangement is widely used in digital voltmeters, frequency counters, etc., where a 
decimal count is needed. 

It should be pointed out that the 5417490A is only one of a number of TTL MSI decade counters. 
In particular, the 54/74176 is another popular asynchronous decade counter, and the 54/74160, 
54/7 4162, 54/7 4190, and 54/7 4192 are all popular synchronous decade counters. Each has particular attributes 
that you should consider, and a study of their individual data sheets would be worthwhile. 

10. What is a decade counter? 
11. What is tb,e difference between theS x 2 decade counterjn Fig. 10.21 and>the 2 X 5 decade 

counter in Fig. 10.22? 

10.6 PRESETTABLE COUNTERS 

Up to this point we have discussed the operation of counters that progress through a natural binary count 
sequence in either a count-up or count-down mode and have studied two counters t)lat have a modified 
count-a mod-3 and a mod-5. With these basic configurations, and with cascaded combinations of these 
basic units, it is possible to construct counters having moduli of 2, 3, 4, 5, 6, 7, 8, 9, 10, and so on. The ability 
to quickly and easily construct a counter having any desired modulus is so important that the semiconductor 
industry has provided a number of TTL MSI circuits for this purpose. The presettable counter is the basic 
building block that can be used to implement a counter that has any modulus. 

Nearly all the presettable counters available as TTL MSI are constructed by using four flip-flops, and 
they are generally referred to as 4-bit counters. They may be either synchronous or asynchronous. When 
connected such that the count advances in a natural binary sequence from 0000 to 1111, it is simply referred 
to as a bina,y counter. For instance, the 54/74161 and the 54/74163 are both synchronous binary counters 
that operate in a count-up mode. The 54/74191 and the 54/74193 are also synchronous binary counters, but 
they can operate in either a count-down or count-up mode. 



Counters 

Since the decade counter is a very important and useful configuration, many of the "basic 4-bit counters 
are internally connected to provide a modified count of 10-a mod-10 or decade counter. For instance, 
the 54/74160 and the 54/74162 are synchronous decade counters that operate in the count-up mode. The 
54/74190 and the 54/74192 are also synchronous decade counters but they can operate in either a count-up 
or count-down mode. 

The counters mentioned above are all TTL MSI circuits, and as such we have little control over the 
internal logic used to implement each counter. Our concern is directed at how each unit can be used in a 
digital system. Thus we consider each of these counters as a logic block, and our efforts are concentrated 
on inputs, outputs, and control signals. Even so, the logic block diagram is given for each counter, since a 
knowledge of the internal logic gives a depth of understanding that is invaluable in practical applications. 

Synchronous Up Counters 

The pinout and logic diagram for a 54/74163 synchronous 4-bit counter are given in Fig. 10.25. The pinout 
contains a logic block diagram for this unit. The power requirements are+ V cc and GROUND on pins 16 and 
8, respectively. The "clock" is applied on pin 2, and you will notice from the diagram that the outputs change 
states on positive clock transitions (PTs). 

The four flip-flop outputs are QA, QB, Qc, and QD, while the CARRY output on pin 15 can be used to 
enable successive counter stages (e.g. in a units, tens, hundreds application). 

The two ENABLE inputs (Pon pin 7 and Ton pin 10) are used to control the counter. If either ENABLE 
input is low, the counter will cease to advance; both of these inputs must be high for the counter to count. 

A low level on the CLEAR input will reset all flip-flop outputs low at the very next clock transition, 
regardless at the levels on the ENABLE inputs. This is called a synchronous reset since it occurs at a 
positive clock transition. On the other hand, note that the 54/7 4161 has an asynchronous clear, since it occurs 
immediately when the CLEAR input goes low, regardless of the levels on the CLOCK, ENABLE, or LOAD 
inputs. 

When a low level is applied to the LOAD input, the counter is disabled, and the very next positive clock 
transition will set the flip-flops to agree with the levels present on the four data inputs (D, C, B, and A). For 
instance, suppose that the data inputs are DCBA = 1101, and the LOAD input is taken low. The very next 
positive clock transition will load these data into the counter and the outputs will become QDQcQBQA = 1101. 
This is a very useful function when it is desired to have the counter begin counting from a predetermined 
count. 

For the counter to count upward in its normal binary count sequence, it is necessary to hold the ENABLE 
inputs (P and T), the LOAD input, and the CLEAR input all high. Under these conditions, the counter 
will advance one count for each positive clock transition, progressing from count 0000 up to count 1111 
and then repeating the sequence. Since the flip-flops are clocked synchronously, the outputs change states 
simultaneously and there are no counting spikes or glitches associated with the counter outputs. The state 
diagram given in Fig. 10.26a show the normal count sequence, where each box corresponds to one count (or 
state) and the arrows show how the counter progresses from one state to the next. 

The count length can be very easily modified by making use of the synchronous CLEAR input. It is a 
simple matter to use a NAND gate to decode the maximum count desired, and use the output of this NAND 
gate to clear the counter synchronously to count 0000. The counter will then count from 0000 up to the 
maximum desired count and then clear back to 0000. This is the technique that can be used to construct a 
counter that has any desired modulus. 



~ ______________ D_ig_it_al_P_ri_nc_ip_le_s_a_n_d A_p_p_li_ca_ti_on_s ____________ _ 

SN54163, SN74163 Synchronous binary counters 

SN54161, SN74161 Synchronous binary counters are similar; 
however, the CLEAR is asynchronous as shown for the 

SN54160, 74160 decade counters at left. 

Load _(9_) _______ --a 

DataB 
(4) 

Clock 
(2) 

DataC 
(5) 

54/74161 and 54/74163 

J QB 
(13) 0 

-B 
CK 

K 

J Qc (12) QC 

CK 

K 

(15) Ripple ,__ __ _ 
carry 

For instance, if a maximum count of 9 is desired, we connect the inputs of the NAND gate to decode 
count 9 = DCBA = 1001. We then have a mod-10 counter, since the count sequence is from 0000 up to 1001. 
The NAND gate used to decode count 9 along with the modified state diagram are shown in Fig. 1026b 
and c, respectively. Notice that it was necessary to use two inverters to obtain Q8 and Qc. The modified 



Counters 

J or N dual-in-line or W flat package (Top view) 

Outputs 
,.------''-----... Enable 

QB T Load 

Carry QA 
output 

Clear 

CK 

54/74163 

QD Enable 
T 

Load 

9 

8 

Clear Clock A B C D Enable GND '--------..,------' p 
Data inputs 

Positive logic: See description. 

(Continued) 

From QB 

FromQc 

To Clear input 
(Pin I) 

(a) Mod-16 counter state diagram (b) Gate to decode count 9 (1001) 

,---1 ,---1 .---, 

: 12: : 11 : : IO: 
L--- L--- 1---

( c) Modified state diagram for Mod- IO counter 



Digital Principles and Applications 

state diagram has solid boxes for states in the modified, mod-10 counter, and dashed boxes for omitted 
states. 

What are the NAND-gate inputs in Fig. 10.26b if this fi!:,rure is to be used to construct a 
mod-12 counter? 

Solution The counter must progress from 0000 up to 1011 (decimal ll); the NAND-gate inputs must then be Qn, 
Qc, QB, and QA. 

A set of typical waveforms showing the clear, preset, count, and inhibit operations for a 54/7 4163 ( and 
54/74161) is given in Fig. 10.27. You should take time to study them carefully until you understand exactly 
how these four operations are controlled. 

SN54161, SN54163, SN74161, SN74163 Synchronous binary counters 

Typical clear, preset, count, and inhibit sequences 
Illustrated below is the following sequence. 

1. Clear outputs to zero. 
2. Preset to binary twelve. 
3. Count to thirteen, fourteen, fifteen, zero, one, and two. 
4. Inhibit. 

Clear (SN54161, SN74161) µ (Asynchronous) 

Clear (SN54163, SN74163) -1-JJ (Synchronous) 

Load 

-------------------------------------------1 A 

B -------------------------------------------
Data inputs 

C _J 

D _J 

Clock (SN54161, SN74I6l) 

Clock (SN54163, SN74163) 

ENABLE? 

1 

ENABLE T ---1---+--' 
I 

QA =======~-'--,...-~ 
Outputs 

QC ------- I 

QD =======-, 
Carry 

112 113 14 15 0 21 
I Count -----i---

Clear Preset 
Inhibit -



Counters 

The logic diagram and a typical set of waveforms for the 54/74160 and the 54/74162 are given in Fig.10.28. 
(The pinout is identical for the previously given 54/74163.) These two counters have been modified internally 
and are decade counters. Other than that, the input, output, and control lines for these two counters are 
identical with the previously discussed 54/7 4163 and 54/7 4161. These counters advance one count with each 
positive clock transition, progressing from 0000 to 1001 and back to 0000. The state diagram for these two 
units would appear exactly as shown in Fig. 10.26c; this is the state diagrnm for a mod-10 or decade counts. 

(9) 
Load 

(3) 
DataA 

(2) 
Clock 

SN54160, SN74160 Synchronous decade counters 

SN54162, SN74162 Synchronous decade counters are similar; 
however, the clear is synchronous as shown for the 

SN54163, SN74163 binary counters at right 

µ (14) 
,---,_J_.,, J QA 1--e-- QA 

""- I --<>CK 
~ -1 K 

J_ JP-4->---+-1:..._.,11 Clear 
'f 

'rP ' (12) J J Qc,..._.,.___Qc 

""- l >-+rrri.-_./, CK 
(5) 

Data C -'--'------11-1-+-+-------,1-~-r--..,,S l ~lear 

'f 

~~1:>i 
J J QD - >CK 

(6) 
l K QD DataD _LJ":. Clear 

(1) 'f 
Clear -

(7) 

~ ENABLE; - I )-
(10) T _J 

(15) Ripple 
>---- carry 

(a) 

54/74160 (continued on next page) 



(!i) ______________ D_ig_i_ta_l P_n_·n_c_ip_le_s_a_nd_A_p_p_li_ca_t1_·on_s _____________ _ 

SN54160, SN54162, SN74160, SN74162 Synchronous binary counters 

Typical clear, preset, count, and inhibit sequences 
Illustrated below is the following sequence. 

1. Clear outputs to zero. 
2. Preset to BCD seven. 
3. Count to eight, nine zero, one, two, and three. 
4. Inhibit. 

Clear (SN54160, SN74160) µ (Asynchronous) 

Clear (SN54162, SN74162) -u~(-Sy_n_c_hr_o_n_o-us-·)---------------

Load 

Data inputs 

A _J 

B _J 

C _J 

[========================================== 

[========================================== 

[-========================================= -----------------------------------------
D -----'---~------------------------------------------

Clock (SN54160, SN74I60) 

Clock (SN54162, SN74I62) 

ENABLE? 

Outputs 

I 

QD =======~-; _ _,____, 
Carry 

17 18 9 0 1 2 31 
I Count ---+.--- Inhibit -

Clear Preset 

(b) 

(Continued) 

Synchronous Up-Down Counters 

The 54/74193 is a 4-bit synchronous up-down binary counter. It has a master reset input and can be reset to 
any desired count with the parallel load inputs. The logic symbol for this TTL MSI is shown in Fig. I 0.29a. 
Pin PL is a control input for loading data into pins PA, Ps, Pc, and PD. When the device is used as a counter, 
these four pins are left open and PL must be held high. Pin MR is the master reset, and it is nonnally held 
low. (A high level on MR will reset all flip-flops.) 



Counters 

Outputs TCu and TCD are to be used to drive the following units, such as in a cascade arrangement. The 
clock inputs are CPu and CPD. Placing the clock on CPu will cause the counter to count up, and placing the 
clock on CPD will cause the counter to count down. Notice that the clock should be connected to either CPu 
or CPD, but not both, and the unused input should be held high. The outputs of the counter are QA, Q8 , Qc 
and QD· 

A state diagram is a simple drawing which shows the stable states of the counter, as well as how the 
counter progresses from one count to the next. The state diagram for the 54/74193 is shown in Fig. 10.29b. 
Each box represents a stable state, and the arrows indicate the count sequence for both count-up and count
down operations. This is a 4-bit counter, and clearly there are 16 stable states, numbered 0, 1, 2, ... , 15. 

PL P.4 Ps Pc PD 
CPu TCu 

--Count up 
54/74193 

CPD TCD - - - - Count down 

MR QA QB Qc QD 

(a) (b) 

4-bit binary counter (presettable) 

The 54/74193 has a parallel-data-entry capability which permits the counter to be preset to the number 
present on the parallel-data-entry inputs (P,1, P8 , Pc, and PD). Whenever the parallel load input (PL) is low, 
the data present at these four inputs is shifted into the counter; that is, the counter is preset to the number held 
by PDPcPsPA. 

Now, here is another technique for modifying the count. Simply use a NAND gate to detect any of the 
stable states, say, state 15 (1111 ), and use this gate output to take p L low. The only time p L will be low is 
when QD, Qc, Q8 , and Q,1 are all high, or state 15( 1111 ). At this time, the counter will be preset to the data 
PvPcPsPA. 

For example, suppose that PvPcPsPA = 1001 (the number 9). When the clock is applied, the counter will 
progress naturally to count 15(1111). At this time, PL will go low and the number 9 (1001) will be shifted 
into the counter. The counter will then progress through states 9, 10, 11, 12, 13, and 14, and at count 15 it 
will again be preset to 9. 

The count sequence is easily shown by the state diagram in Fig. 10.30 on the next page. Notice that count 
15 (1111) is no longer a stable state; it is the short time during which the counter is preset. The stable states 
in this example are 9, 10, 11, 12, 13, and 14. This is, then, a mod-6 counter. Notice that this technique is 



Digital Principles and Applications 

asynchronous since the preset action is not in synchronism with the clock. Therefore, you should be aware 
that counting spikes or glitches may be associated with the outputs of this presetting arrangement. 

Suppose that the counter just discussed is still preset to I 001 (the number 9) but the clock 
is applied to count down rather than count up. What are the counting states? What is the 

modulus? 

Solution The counter will count down to 15, then preset back to 9, and repeat. The resulting state diagram is given 
in Fig. l 0.31. The modulus is clearly 10. 

0 2 3 4 

(is) 5 

~ 6 

7 

8 

12. Name two popular synchronous binary counters. 

13. What is the difference between the 74161 binary counter and the74191binary counter? 
14. What is the modulus of the 74160 counter? 

15. Can a 74160 counter be used to count down? 

10.7 COUNTER DESIGN AS A SYNTHESIS PROBLEM 

Section 8.11 of Chapter 8 presents a systematic approach to
wards sequential logic circuit design using FSM concept. In 
this section, we consider counter as a state machine and discuss 
counter design steps through an example. 

Let us try to design a modulo-6 counter, the counting states 
(memory values) of which are shown in state transition dia
gram of Fig. I 0.32. We need three memory elements or flip
flops for this as with n flip-flop we can get at most 2" number 
of different counting states. 

Now with three flip-flop, 8 different states are possible but 
in our design states 110 and 111 are not used in the counting 

State sequence of a 
modulo-6 counter 



Counters 

sequence. To start with we shall assume the counter is always initialized with one of the valid states and not 
110 or 111. We decide to use three JK flip-flops labeled A, B and C as memory element for this design. 

The next step to be taken is to form a state synthesis table as shown in Table 10.1. In this, the first column 
represents current state of the counter and second column, as shown in the next state of the counter state 
transition diagram. We fill up next three columns using excitation table of JK flip-flop given in Fig. 8.34 of 
Chapter 8. Excitation table gives inputs need to be present when clock triggers a certain Qn~Q,,+ 1 transition 
of the flip-flop. In the first row, we see both C and B make transition O~O and hence corresponding JK 
inputs should be Ox from excitation table. For flip-flop A, transition is 0~ I and input should be Ix. This is 
continued to fill up other five rows of input columns for three flip-flops. 

State Table for Design of Modulo-6 Counter Given in Fig. 10.32 

c,, B,, A,, Cn+J Bn+l An+l Jc Kc ls Ks JA K,1 

0 0 0 0 0 l 0 X 0 X 1 X 

0 0 l 0 l 0 0 X 1 X X l 
0 1 0 0 1 1 0 X X 0 1 X 

0 I I 1 0 0 I X X 1 X 1 
I 0 0 l 0 1 X 0 0 X l X 

I 0 1 0 0 I X I 0 X X l 

Our next objective is to get logic equation for each flip-flop input as a function of present state of the 
counter. We use Kamaugh Map for this as shown in Fig. 10.33. Note that values corresponding to unused 
states 110 and 111 appear as don't care 'x'. We have not shown Kamaugh Map for JA and K._4 as it is obvious 
from Table 10.1 thatJA =KA= I. 

B nAn A Bn- " 
e" 00 0 I 1 1 I 0 e 11 00 0 I l 1 1 0 

-
0 0 0 1 0 0 X X X X 

I X X X X I 0 I X X -
Kc=A11 

BA n n BIIA,, 
e 

/l 00 0 1 I 1 I 0 e" 00 0 I l I 1 0 

0 0 I 1 xi X 0 X X 0 

1 0 0 X X X X X X 

Ks=A,, 

Derivation of design equations from Karnaugh Map 

The final step is to draw the circuit diagram from these design equations, which is shown in 
Fig. 10.34. The decoding output is obtained from a three input AND gate which goes high every time the 
counter goes to a valid state CBA = 000 and that occurs in every 6th clock cycle. 

Note that the method we have explained is a general one and can be used to design counter of any 
modulo number and that can follow any given counting sequence. An irregular counter is the one which 



(;) ______________ D_ig_it_al_P_n_·nc_ip_le_s_a_n_d_A_pp_lJ_·ca_t_io_ns ____________ _ 

does not follow any regular binary sequence but has N number of distinct states and thus qualifies as a 
modulo-N counter. In Example 10.15, we present a modulo-4 irregular counter. 

One question can be raised at this point for the above circuit. What happens if the circuit for any reason 
goes to one of the unused state? Does it come back to any of the valid counting state or in the worst case gets 
locked as shown in Fig. 10.35a? Initializing the designed circuit with 110 or 111 unused state we find that 
they get back to counting sequence as shown in Fig.10.35b. However, a designer may not leave unused states 
to chances and want them to follow certain course if the circuit accidentally enters into one of them. Example 
10.14 shows how to handle unused states in a counter design problem. 

CLK 

JA A 
A 
B 

Jc C 

K.1 A B c 

y 

Circuit diagram of modulo-6 synchronous counter described in Fig. 10.32 

(a) (b) 

(a) Lock-in conditions, (b) Full state transition diagram for circuit in Fig. 10.34 

Desig,1 a self-correcting rnodulo-6 counter as described in Fig. 10.32 in which all the 
unused state leads to state CEA = 000. 

For this we have to add two more rows as given next for two unused states 



Counters 

Accordingly, Kamaugh Map giving design equations changes to as given in Fig. 10.36. 

BA 11 11 BA 11 11 BA 11 Tl 

C 11 00 0 1 1 1 1 0 C 
/l 00 0 1 1 1 10 C 

I! 00 0 1 1 1 1 0 
~ 

0 0 0 1 0 0 X Ix xi X 0 0 I 1 xi X 

1 X X X X 1 0 
~ 

I 1 1 I 1 1 0 0 X X 

Kc=A11 + B,, Js=C11An 

B,,A,, BA 
/l 11 BA 

I! 11 
c11 oo 01 11 10 C 

II 00 0 1 l 1 l 0 C 
/l 00 0 1 1 1 1 0 

0 X X 0 0 1 X X 1 I 0 X 1 1 X 

X X 1 l X X 0 1 X 1 l X 

Kn=A
11

+C
11 

Design equations for Example 10.14 

Note the difference between Fig. 10.33 and 10.36. Unused states 110 and 111 can no longer be considered as don't 
care. This type of design is called self-correcting as the circuit comes out on its own from an invalid state to a valid 

counting state sequence. The final circuit diagram from design equations are shown in Fig.10.37. 

C 

c 

y 

Circuit diagram for Example 10.14 

Design a modulo-4 irregular counter with following counting sequence using D flip-flop. 

00-10-11-01 

Soliitidn Using state excitation table of D flip-flop (Fig. 8.34), the state table can be formed as shown in Table 
10.2. 



Digital Principles and Applications 

State Table for Design of Irregular Counter 

Bn An B,,+1 A,,+1 Ds D.4 

0 0 1 0 l 0 
0 l 0 0 0 0 
1 0 l I 
l 0 0 

Design equations from Kamaugh Map can be derived as shown in Fig. 10.38(a), and con-esponding logic 
circuit is shown in Fig. I0.38(b). 

An 
B,, 0 An 

0 0 

0 0 

Ds=A,, 
(a) 

A B 

B,, 0 D Q ~---iD Q 

0 Flip-flop A Flip-flop B 

0 CLK Q CLK Q 

D;1=Bn Clock 

(b) 

(a) Deriving design equations for Example 10.15, (b) Circuit diagram 

Show how a modulo-4 counter designed with two flip-flops can generate a repetitive 
sequence of binary word '1101' with minimum number of memory elements? 

Solution Let the counting sequence oftwo flip-flops B and A be 00 -+ 0 I -+ l O ~ 11.-+ 00 ... , Le. a modulo-4 
synchronous up counter. The corresponding output is I-+ 1-+ 0-+ . .l-+ L .. As shown in Fig. 10.39(a) the sequence 
'1101' will be generated.repetitively by Y. Figure 10.39(b) gives Kamaugh Map representation of Y and we get 
Y = A + B'. A standard modulo-4 up counter and an 2sinput OR gate connected as shown in Fig. 10.39( c) generates 
the given sequence. 

Note that for N-bit sequence generator we need modulo-N counter. Modulo-N synchronous counter 
requires m number of flip-flops where mis the lowest integer for which 2111

::::: N. The design procedure remains 
the same as discussed in Example 10.16. Output Y now is a function of m state variables representing m 
memory elements. 

Compare this design with shift register based sequence generator design discussed in Chapter 9 · that 
requires N number of memory elements for N-bit sequence generator. Though shift register based design does 
not require any combinatorial circuit to generate output logic the overall hardware cost is more and it is more 
pronounced for large N. 

A similar design for sequence detector circuit with minimum number of flip-flops is discussed in 
Chapter 11. 

16. What is lock-out of a counter? 
17. For 48-bit sequence generator what is the minimum number of memory elements reqµired? 



A B y 

0 0 1 
0 1 I 
I 0 0 
1 l 1 

(a) 

J 

CLK-,----0!> 

K 

Counters 

A i--~~-1_. J 

A K 

(c) 

AWO I 
0 1 0 

1 1 1 

Y=A+B 

(b) 

------10 ll 10 ll 
'--v---' '--v---' 

y 

Sequence generator circuit using synchronous counter, (a) State Table, 
(b) Output equation, (c) Circuit diagram 

10.8 A DIGIT Al CLOCK 

A very interesting application of counters and decoding arises in the design of a digital clock. Suppose that 
we want to construct an ordinary clock which will display hours, minutes, and seconds. The power supply 
for this system is the usual 60-Hz 120-Vac commercial power. Since the 60-Hz frequency of most power 
systems is very closely controlled, it is possible to use this signal as the basic clock frequency for our system. 
Note that in several countries commercial power supply is 50-Hz and not 60-Hz. There one can use standard 
variable frequency signal generator, set at 60-Hz, as input. 

In order to obtain pulses occurring at a rate of one each second, it is necessary to divide the 60-Hz power 
source by 60. lfthe resulting 1-Hz waveform is again divided by 60, a one-per-minute waveform is the result. 
Dividing this signal by 60 then provides a one-per-hour waveform. This, then, is the basic idea to be used in 
forming a digital clock. 

A block diagram showing the functions to be performed is given in Fig. 10.40. The first divide-by-60 
counter simply divides the 60-Hz power signal down to a 1-Hz square wave. The second divide-by-60 
counter changes state once each second and has 60 discrete states. It can, therefore, be decoded to provide 
signals to display seconds. This counter is then referred to as the seconds counter. 

60Hz 

-c:P'- +60 

1 cycle/s 
__n_n_ 

+60 

Seconds 
counter 

~r+60 ~k_cy_c_le_/h-r .ff~ 
Minutes 
counter 

Hours 
counter 

Block diagram of digital clock 



Digital Principles and Applications 

The third divide-by-60 counter changes state once each minute and has 60 discrete states. It can thus be 
decoded to provide the necessary signals to display minutes. This counter is then the minutes counter. 

The last counter changes state once each 60 minutes ( once each hour). Thus, if it is a divide-by-12 counter, 
it will have 12 states that can be decoded to provide signals to display the correct hour. This, then, is the hours 
counter. 

As you know, there are a number of ways to implement a counter. What is desired here is to design the 
counters in such a way as to minimize the hardware required. The first counter must divide by 60, and it need 
not be decoded. Therefore, it should be constructed in the easiest manner with the minimum number of flip
flops. 

For instance, the divide-by-60 counter could be implemented by cascading counters (12 x 5 = 60, or 10 x 6 
= 60, etc.). The TTL MSI 7490 decade counter can be used as a divide-by-IO counter, and the TTL MSI 7492 
can be used as a divide-by-6 counter. Cascading these two will provide a divide-by-60 counter as shown in 
Fig. 10.41. The amplifier at the input provides a 60-Hz square wave of the proper amplitude to drive the 7490. 
The 7492 is connected as a divide-by-12 counter, but only outputs QA, Q8, and Qc are used. In this fashion, 
the 7492 operates essentially as a divide-by-6 counter. 

/ / 60Hz 

~ Ampli- ...IlSL 
fier 

[/ 

6Hz 
...IlSL 

Divide-by-60 counter 

1 Hz 
...IlSL 

(Qc) 

The seconds counter in the system also divides by 60 and could be implemented in the same way. However, 
the seconds counter must be decoded. We are interested in decoding this counter to represent each of the 60 
s in 1 min. This can most easily be accomplished by constructing a mod~ IO counter in series with a mod-6 
counter for the divide-by-60 counter. The mod- IO counter can then be decoded to represent the units digit of 
seconds, and the .mod-6 counter can be decoded to represent the tens digits of seconds. 

Since both the 7490 and the 7492 count in straight 8421 binary, a 7447 decoder-driver can be used with 
each to drive two 7-segment indicators, as shown in Fig. I 0.42. Notice that the 7492 is connected as a divide
by-12 counter; but only outputs QA, Q8, and Qc are used to drive the 7447 decoder-driver. 

The minutes counter is exactly the same as the seconds counter, except that it is driven by the one-per
minute square wave from the output of the seconds counter, and its output is a one-per-hour square wave, as 
shown in Fig. 10.42. 

The divide-by-12 hours counter must be decoded into 12 states to display hours. This can be accomplished 
by connecting a mod-IO (54/74160) decade counter in series with a single flip-flop E as shown in Fig. 10.43. 
This forms a divide-by-20 (10 x 2 = 20) counter. Feedback is then used to form a mod-12 counter. 

The hours counter must count through states 00, 01, 02, ... , 11, and then back to 00. The NAND gate in 
Fig. 10.43 will go low as the counter progresses from count 11 to count 12, and this will immediately clear 
the 74160 to 0000 and reset the flip-flop E to 0. The counter actually skips from count 11 to count 00 omitting 
the eight counts in between. This is the mod-12 hours counter; the 74160 will provide the units of hours while 
the flip-flop will provide the tens of hours. Notice that the 74160 is reset asynchronously and there might then 
be glitches at the outputs of the decoding gates. However, this is one case where these glitches will have no 
effect, since they are too narrow to cause a visible indication on the light emitting diodes (LEDs). 



(1 cycle/min) 

(1 cycle/h) 

+6 
7492 

Counters 

QD QC QB QA 

7447 

,-1 
/_/ LED 

Tens 

+ 10 
7490 

QD QC QB QA 

7447 

/-/ 
I I LED 

Units 

(1 Hz) 
_n__n_ 

(1 cycle/min) 

A 1 O x 6 mod-60 counter with units and tens decoding 

RESET 

7447 

Tens 

+ 10 
CLR 74160 

QD QC QB QA 

7447 

Units 

I cycle/h 
__n__n_ 

Mod-12 hours counter 

Finally, some means must be found to set the clock because the flip-flops will assume random states when 
the power is turned off and then turned back on again. Setting the clock can be quite easily accomplished by 
means of the SET push-buttons shown in Fig. 10.44. Depressing the SET HOURS button causes the hours 
counter to advance at a one-count-per-second rate, and thus this counter can be set to the desired hour. The 
minutes counter can be similarly set by depression of the SET MINUTES button. 



Hours 

+ 12 

Digital Principles and Applications 

Set Set Set 
hours Minutes minutes Seconds seconds 

+60 
-...._,_.,e:---, 10 X 6 

+ 60 
--:S.Z...J.J,lt---, 1 0 X 6 

,-, lol 
/_/ ~ 
Tens Units Tens Units 

Digital clock 

lHz 60Hz 
+60 

Depression of the SET SECONDS button removes the signal from the seconds counter, and the clock can 
thus be brought into synchronization. 

By means of large-scale integration (LSI), it is possible to construct a digital clock entirely on one 
semiconductor chip. Such units are commercially available, and they perfom1 essentially the function shown 
in the logic diagram in Fig. 10.43 (the seven-segment indicators are, of course, separate). The National 
Semiconductor 5318 is one such commercially available LSI digital clock. It is available in a 24-pin dual in
line (DIP) package measuring 0.54 x 1.25 in. 

10.9 COUNTER DESIGN USING HDl 

Counter design in HDL is straight forward if one uses arithmetic operator+ and - that corresponds to binary 
addition and subtraction respectively. We show a modulo-8 up counter design in the example given in first 
column. It is left to the compiler to decide which flip-flop is to be used. If one wants to ensure use of a 
particular type of flip-flop say, JK then the code should be written in a manner shown in second column for 
modulo-3 up counter shown in Fig. 10.16a. 

module UC(Clock, Reset,Q); module UCJK(A,B,Clock,Reset); 
input Clock, Reset; 
output [2:0] Q; 

//modulo 8 requires 3 flip-flop wire JA, JB, KA, KB; 
reg [ 2 : 0 J Q; as.sign 

always@ (negedge Clock 
or negedge Reset) 

if Q"'3'b0; 

else Q= Q+l; 

endmodule 

assign KA=l'bl; 

requires 2 flip-flop 



Counters 

module JKFF(Q,J,K,Clock,Reset); 
input·· .J, K, Clock, Reset; 
output Q; 

reg Q; 

always@ (negedge or negedge 
if{,-Reset) Q=l'bO; 
else Q <= (J&-Ql I (-K&Q); 

endmodule 

Design a modulo-8 up down counter which counts in upward direction if input MODE = 
0, else counts in downward direction. It should also have a parallel load facility. When PL 
= 1, a 3-bit number Dis asynchronously loaded to the cmmter. The counter counts at the 

negative edge of CLOCK and its output is represented by Q. 

Solution The Verilog HDL code for the problem is given below. We have used a new keyword integerJQ hold a 
value temporarily. This helps us in writing both up and down count in one single statement that responds to clock 

within always block. 

input CLOCK,PL,MODE; 
input[2:0] 

MODE,D, 

output [ OJ Q; //modulo 
reg J2:0J Q; 
integer updown.;. //updown 
always (negedge·.CLOCK) 

·begin 
if 

Down 
pa.rallel load 

-1 dependi.ng on MODE 

The code in the first column when executed with modulo-3 JK counter, UCJK described 
in this section generates monitor output as shown in column 2 and timing diagram as 
shown below. Show how the test bench verifies Verilog code UCJK is that of a modulo-3 

counter. 



Clock,A,B); 

end 
end!aodw.e 

Ons 
I l ' I 

testUC.A 

testUC.B 

testUC.Clock 

testUC.Reset J 

1IOns 
I l ' 

I 

Digital Principles and Applications 

//Clock 

%b,A= B=%_b\n"_, 

j2?ns
1 

130ns 140ns !50ns 16,0~s 
l I i i ' ' i ' ! l ! 

I \ 

I \ 

\ I \ I \ 

60 .Clock= 0, A=O B=O 
70 1, A=O B=O 

0, B=O 
1, B=O 

Clock= O, A""'O B=l 

' 17?~s, i80ns 190ns 1100 
\ ! I ' I \ I l I 

ns 

I \ 

' I \ I \_ 

Solution The test bench, given in the code above runs the simulation for 5 + WO = 105ns duration. At every l O ns 
clock toggles giving a· l O + l O = 20 ns clock cycle time. So we have 5 negative edges of the clock (I to, 0 transition) 
from start at20, 40, 60, 80 and l OOns: Ifwe look at the timing diagram and monitor output we gee JK, flip :!lop output 
changes valueatnegative.edges as BA= 00 (initially reset by 'Reset'), 01, 10, 00, 01,lOetc. These show that .three 
counting states 00, 01, 10 get repeated. Hence, the code of module UCJKbehaves like a modulo~3 counter. 

PROBLEM SOLVING WITH MULTIPLE METHODS 

Design a self correcting modulo-3 down counter. 

Solution We need2 fiip-flop8:, sayB and A for this purpose which has 4 states. Let the down counter count like 
10 4 01 4 00 --410, .. and undesired state 11 corrects itself to 10. The excitation tabl.e of Fig. 8.35 is used for 
the design purpose. 

In MethruM, we use SR flip-flop for design pwpose. Figure 10.45a shows the state table and in the 
second column, necessary inputsfor the two SR flip-flops are given. Figure 10.45b shows the use of 
Karnaugh Map to get the design equations. 

In A.,te~Qd.:2, \V~ use JK:flip-flop for desigu purpose. The fourth column shows necessary. inputsfor 
tile twp JKflip.flops. Figure 10.45c shows the use of Kamaugh Map to get the design equations. 

In Method<J, we use.D flip-flop for design purpose. The third column shows necessary inputs for the 
two D flip-flops, Fig.10.45d shows the use ofKamaugh Map to get the design equations. 



_________________ c_o_un_te_rs ________________ ~ 

In Method-4, we use T flip-flop for design purpose. The last column shows necessary inputs for the 
two D flip-flops. Figure 10.45e shows the use of KamaughMap to get the design equations . 

.. 

Present State Next State 
SsRB S,iRA DB DA JJ/(B JAKA TB TA 

A 
B n 

0 

1 

n 

BnAn 

0 0 
0 I 
1 0 
I I 

0 1 

1 0 

0 X 

I 

Bn+1An+1 

1 0 
o O 
0 l 
1 0 

A 
B 

11 

0 

l 

11 0 

0 

1 

1 0 
OX 
0 1 
XO 

l 

X 

0 

A,, 0 1 
B,, -,.....--,--, 

o rx: x 
I I 
I 

OX 
0 l 
1 0 
0 l 

(a) 

(b) 

A 
B n 

0 

1 

1 
0 
0 
l 

11 0 

0 

1 

0 1 X 
0 ox 
1 Xl 
0 XO 

1 

0 

0 

An O 1 
Bil -,.---,--, 

0 0 X 

ox 
XI 
1 X 
X 1 

1 

1 0 
0 1 
1 1 
0 1 

I 
0 I 1 I 1_J 

l 'X' X 1 __ , 1 '1' 0 , __ 1 1 CC _x: 

A 
B 

JI 

0 

1 

" 0 1 

l 0 

0 1 

A 
B 

11 

0 

1 

(d) 

11 0 1 

0 0 

1 0 

(c) 

An 0 1 Bil 
0 :r: 0 

I 
I 
I 1 I 0 , __ , --- L-

1 LLJJJ 

(e) 

(a) State table for the self correcting modulo~3 counter and required inputs, 
(b) Design with SR flip-flops, (c) Design with JK flip-flops, (d)Design with 
D flip-flops, (e) Design with T flip-flops 

A counter has a natural count of 2", where n is the number of flip-flops in the counter. Counters of any 
modulus can beconstructed by incorporating logic which causes certain states to be skipped over or 
omitted. One technique for skipping counts is to steer the clock pulses to certain flip-flops at the proper 



Digital Principles and Applications 

tim~0 this is <;alloo steeringlogic. A.s1ccond teclmiqueisto preconditiortthe logicinputs to eachflip,-flopin 
order to omit.certai11 states,'I'ltis is falledloqk-ahe.id]ogic. .. . 

Logic can be inclt1ded. · sucll that ti'ltc coi:tnter can operate in either a count-up or count-down mode. 
Furthermore,logic ga,s bin.be de~igned, to uniquely decode each state of a counter. 

. . . . Higher-modulus c<Jllllters ca11 be el'lSily co.nstructedby usin9 combinations of lower-modulus counters. 
S.ich configurations repr~sent a C~!ll}'I'Omise between speed and hardware count. 

The digital dock is an.interesting.applkation that illustrates some of the methods employing counters 
and decoders. 

• decoding gate A logic gate whose output is 
high ( or low) only during one of the unique 
states of a counter. 

• glitch An undesired positive or negative pulse 
appearing at the output of a logic gate. 

• lock out of a counter Counter getting locked 
into unused states. 

• modulus Defines the number of states through 
which a counter can progress. 

• natural count The maximum number of states 
through which a counter can progress. Given 
by 2n, where n is the number of flip-flops in 
the counter. 

IO.I Draw the logic diagram, truth table, and 
waveforms for a two-flip-flop ripple counter 
similar to that in Fig. IO.I. 

10.2 Draw the logic diagram, truth table, and 
waveforms for a three-flip-flop ripple counter 
that uses JK flip-flops sensitive to a clock PT. 

10.3 What is the clock frequency if the period of B 
in Fig. 10.1 is 1000 ns? 

10.4 Determine the number of possible states in a 
counter composed of the following number of 
flip-flops: 

• parallel counter A synchronous counter 
in which all flip-flops change states 
simultaneously since all clock inputs are 
driven by the same clock. 

• presettable counter A counter incorporating 
logic such that it can be preset to any desired 
state. 

• ripple counter An asynchronous counter in 
which each flip-flop is triggered by the output 
of the previous flip-flop. 

• sequence generator Generates a binary data 
sequence. 

• up-down counter A basic counter, synchronous 
or asynchronous, that is capable of counting 
in either an upward or a downward direction. 

a. 7 

C. 8 

b. 10 

10.5 See if you can draw the waveforms for a 10-
flip-flop ripple counter. What difficulties do 
you encounter? 

10.6 What is the largest decimal number that can 
be stored in each counter in Prob. 10.4? 

10. 7 Draw the waveforms at QB, Qc, and Qv for 
a 7493A, assuming that a I-MHz clock is 
applied at inputB. 

10.8 Draw the logic diagram, truth table, and 
waveforms for a two-flip-flop ripple counter 
operating in the count-down mode. 



_______________ :.:Co::u::.:.:nt::.:e~..:.s _______________ ® 

10.9 Draw the gates necessary to decode the 16 
states ofa 7493A operating as in Fig. 10.3. 

10.1 O Assume that the clock for the ripple counter 
in Fig. 10.1 is a 1-MHz square wave and each 
flip-flop has a delay time of0.25 µs. Carefully 
draw the waveforms for the clock and each 
flip-flop and the output decoded signals. Do 
you see any sources of difficulty? 

10.11 Use the waveforms in Fig. 10.9 and study the 
remaining seven decoding gates in Fig. 10.7. 
Show whether glitches will appear by drawing 
the decoded waveform for each gate. 

10.12 Draw the logic diagram, truth table, and 
waveforms for the synchronous counter in 
Fig. 10.13 in the count-up mode. 

10.13 Repeat Prob. 10.12, but in the count-down 
mode. 

10.14 Write a Boolean expression for the AND gate 
connected to the upper leg of the OR gate 
that drives the clock input to flip-flop QD in a 
74193. 

10.15 Draw a complete set of waveforms for the 
74191 in Fig. 10.15 operating in the count-up 
mode. 

10.16 RepeatProb.10.15,butoperatinginthecount
downmode. 

10.17 Determine the number of flip-flops that would 
be required to build the following counters: 

a. Mod-6 b. Mod-11 

c. Mod-15 d. Mod-19 

e. Mod-31 

10.18 Draw decoding gates and all waveforms for 
the mod-3 counter in Fig. 10.16. 

10.19 Draw decoding gates and all waveforms for 
the mod-6 counter in Fig. 10.17. 

1 o·.20 Draw decoding gates and all waveforms for 
the counter in Fig. 10.18. 

10.21 Draw the logic diagram, truth table, and 
wavefonns for a mod-9 counter using two 
mod-3 counters connected in series. 

10.22 Draw decoding gates and all wavefonns for 
the decade counter in Fig. 10.21. 

10.23 Draw decoding gates and all wavefonns for 
the counter in Fig. 10.22. 

10.24 Draw waveforms for Qs, Qc, and QD, 
assuming that the clock is applied to input B 
ofa 7490A. 

10.25 Show how an AND gate might be used in Fig. 
10.24 to count an unknown number of pulses 
that occur during a known time interval. This 
is the basic idea used in a frequency counter. 

10.26 Draw the logic block for a 74163 and show 
how to construct a mod-13 counter. Use the 
same technique as in Fig. 10.26. Draw the 
state diagram. 

10.27 Repeat Prob. 10.26 for a mod-11 counter and 
then a mod-7 counter. 

10.28 Draw the waveforms expected in Prob. 10.26. 
10.29 Draw the logic block for a 74162 and show 

how to construct a mod-7 counter. Use the 
same technique as in Fig. 10.26. Draw the 
state diagram. 

10.30 Use a 74193 presettable counter to implement 
a mod-8 counter. List the omitted states .and 
normal count sequence; draw a complete 
logic diagram. Draw the set of waveforms you 
would expect, showing the clock and the four 
outputs. Remember that the output transitions 
occur on positive clock transitions. 

10.31 Design a modulo-3 counter using D flip-flop 
that counts as O 1 -t 10-t 11. The unused state 
00 goes to O 1 at next clock trigger. 

10.32 Design a modulo-5 counter using D flip-flop 
the unused states of which go to one of the 
valid counting state at next clock trigger. 



Digital Principles and Applications 

l 0.33 Design a circuit usingJK flip-flop that behaves 
both as a modulo-5 and modulo-3 counter 
depending on how it I initialized. 

10.34 Design a modulo-8 counter (a) using SR flip
flop and (b) using T flip-flop. 

10.35 Design a sequence generator with minimum 
number of flip-flops that generates sequence 
'110001' repetitively. 

10.36 Design a sequence generator with minimum 
number of flip-flops that generates. sequence 
'10110001 ' repetitively. 

LABORATORY EXPERIMENT 

AIM: The aim of this experiment is to study 
counters and design a modulo-N counter. 

Theory: A countercounts events happening 
in certain form at its input It consists of a bank 
of fiip-flqps and also may have a combinatorial 
logic circuit. In ripple counter, output of 
one flip-flop triggers another flip-flop. In 
synchronous counter, all the flip.;flops are 
triggered simultaneously by a common clock. 
A modulo-N counter generates an output at 
every n pulse occurring at its· input which is 
usually a clock signal. With m number offlip
flops, a maximum of2m modulo number can be 
achieved. The CLEAR input clears a counter 
which can be used to have lower modulo 
numbers from originally designed higher 
modulo. number counters. The LOAD input, 
if available, allows parallel lqading ofa set of 
data from where counting sequence can begin. 
This can also be used to get a lower modulo 
number or some specific counting states. 

Apparatus: 5V DC Power supply, Multime-

A 
7490A 

R9(2) B 

Ro(!) Roc2i R9(I) 

Input B Ro(l) R0(2) Vee R9(1) R9(2) 

ter, Bread Board, Clock Generator, and Oscil
loscope 

Work element: IC 7490 has two separate 
counters, a modulo-2 and a synchronous 
modulo-5 counter which can work 
independently with two different clocks being 
connected to input A and input B. They can 
be combined to work as modulo-IO (coming 
from 5 x 2) counter if output of one is used 
as· clock input of other. The pair Ro performs 
NAND operation and then clears (active low) 
the modulo-2 counter. The pair R9 functions 
similarly but for modulo-5 counter. Verify 
7490 truth table for individual counters and 
the combination. Use R inputs to get modulo 
numbers different from 2, 5 and 10. IC 74 I 63 
is modulo-16 counter with synchronous clear 
and data input load facility. Verify· the truth 
table of 74163. Understand the function of 
carry output. Show in how many different 
ways 74163 can be connected to get a/decade 
(modulo-IO) counter. Use two 74163 to obtain 
a modulo 50 and then a modulo I 00 counter. 

54/74163 Load 

CK 

Clear Clock A B D EnableGND 

Data inputs 
p 



Counters 

L 63 
2. Ten 
3. State 3 = CBA 
4. The primary cause of such glitches is flip

flop propagationtime; one way to eliminate 
them is to use the clock as a "strobe." 

5. In a parallel counter, all flip-flops change 
state in synchronism with the clock 

6. The glitches are eliminated because·· all 
gate inputs are synchronized-that is, they 
are all delayed from the clock by the same 
amount 

7. PTs 
8. Four 
9. 8. 7, 6, 5, 4, 3, or 2. However, m.od-4 and 

mod-3 require only two flip-flops, and 
mod-2 is a single flip-flop. 

l 0. A decade counter has 10 states-a mod-10 
counter. 

1 The decade counter in Fig. 10.21 has 
symmetrical output at D, but does not count 
in straight binary. The decade counter in 
Fig. 10.22 does not have symmetrical 
output at D and. does count in straight 
binary. 

12. 74161, 74163, 74191, 74193 
The 74191 can count up or down. 
The 7 4160 is a mod- IO counter. 

15. The 74160 can only count up. (The 74190 
can count down.) 

16. Lock-out of a counter occurs when the 
counter remains locked into unused states 
and does not function properly. 

17. Six. 



Design of Synchronous and 
Asynchronous Sequential Circuits 

-+ State machine design using Moore model and Mealy model 
-+ State transition diagram and preparation of state synthesis table 
-+ Derivation of design equation from state synthesis table using Karnaugh map 
-+ Circuit implementation: flip-flop based approach and ROM based approach 
-+ Use of Algorithm State Machine chart 
-+ State reduction techniques 
-+ Analysis of asynchronous sequential circuit 
-+ Problems specific to asynchronous sequential circuit 
-+ Design issues related to asynchronous sequential circuit 

Design problem normally starts with a word description of input output relation and ends with a circuit 
diagram having sequential and combinatorial logic elements. The word description is first converted to 
a state transition diagram or Algorithmic State Machine (ASM) chart followed by preparation of state 
synthesis table. For flip-flop based implementation, excitation tables are used to generate design equations 
through Karnaugh Map. The final circuit diagram is developed from these design equations. In Read Only 
Memory (ROM) based implementation, excitation tables are not required however; flip-flops are used as 
delay elements. In this chapter, we show how these techniques can be used in sequential circuit design. 

There are two different approaches of state machine design called Moore model and Mealy model. In 
Moore model circuit outputs, also called primary outputs are generated solely from secondary outputs or 
memory values. In Mealy model circuit inputs, also known as primary inputs combine with memory elements 
to generate circuit output. Both the methods are discussed in detail in this chapter. 

In general, sequential logic circuit design refers to synchronous clock-triggered circuit because of its 
design and implementation advantages. But there is increasi!lg attention to asynchronous sequential logic 



Design of Synchronous and Asynchronous Sequential Circuits 

circuit, as its response is not limited by the clock frequency. But there are too many operational constraints 
that makes design of asynchronous circuit very complex. Except for time-critical applications synchronous 
circuit always remains a preferred choice for sequential logic design. 

We divide this chapter in two parts. Part A presents a systematic approach towards synchronous system 
design while Part B is devoted to asynchronous circuit. 

PART A : DESIGN OF SYNCHRONOUS SEQUENTIAL CIRCUIT 

11.1 MODEL SELECTION 

There are two distinct models by which a synchronous sequential logic circuit can be designed. In Moore 
model (Fig. 11.la) the output depends only on present state and not on input. In Mealy model (Fig. 11.lb), 
the output is derived from present state as well 
as input. The option to include input in output 
generation logic gives certain advantage to 
Mealy model. Usually it requires less number 
of states and thereby less hardware to solve any 
problem. Also, the output is generated one clock 
cycle earlier. However, there is one important 
disadvantage associated with such circuit. The 
input transients, glitches etc. (if any) are directly 
conveyed to the output. Also if we want output 
transitions to be synchronized while input can 
change any time Mealy model is not preferred. 
In Moore model, the output remains stable over 
entire clock period and changes only when there 
occurs a state change at clock trigger based on 
input available at that time. 

In .Section 11.2, we shall discuss how 
conversion from one model to other can be 
done through state diagram representation. 
Depending on application requirements we 

Primary.--_ __..,~----~ 
inputs Combination 

State 
outputs 

logic 

Memory 

Combination 
logic 

(a) 

Next-state 
inputs 

--~ .... Primary 
outputs 

Primary Primary 
inputs --~" r-C_o_m-:-b-in-at-:-io-n-,_ __ J--..... outputs 

State logic 
outputs 

inputs 
Memory 

(b) 

(a) Moore model, (b) Mealy 
model of sequential logic system 

choose one of these two models or a mixed model where a part of the circuit follows Mealy model and the 
other Moore model. 

We address all design related issues of synchronous sequential logic by solving a binary sequence detector 
problem in a step-by-step manner. We use both Moore model and Mealy model for this problem and note the 
pros and cons of each approach. Note that, any other design problem can be attempted in the same way. The 
solution presented in subsequent sections is particular to this problem but the approach is general in nature. 
The sequence detector problem is stated next. 

The Problem Design a sequence detector that receives binary data stream at its input, X and signals when 
a combination 'O 11' arrives at the input by making its output, Yhigh which otherwise remains low. Consider, 
data is coming from left, i.e. the first bit to be identified is I, second I and third O from the input sequence. 



Digital Principles and Applications 

11.2 STATE TRANSITION DIAGRAM 

The first step in a sequential logic synthesis problem is to convert this word description to State transition 
diagram or Algorithm State Machine (ASM) Chart. ASM chart is discussed in Section 11.6. In this section, 
let us see how we arrive at state transition diagram following Moore and Mealy model. We use the problem 
presented in Section 11.1 for demonstration. 

State Definitions: Moore Model 

Since, the output is generated only from the state variables let us see how many of them are necessary. Let 
the detector circuit be at state a when initialized. State a can also be considered as one where none of the bit 
in input sequence is properly detected or the starting point of detection. Then if 1st bit is detected properly 
the circuit should be at a different state say, b. Similarly, we need two more states say, c and d to represent 
detection of 2nd and 3rd bit in proper order. When the detector circuit is at state d, output Y is asserted and 
kept high as long as circuit remains in stated signaling sequence detection. For other states detector output, 
Y=O. 

State Transition Diagram: Moore Model 

In Moore model each state and output is defined within a circle in state transition diagram in the format 
s/Y wheres represents a symbol or memory values identified with a state and Y represents the output of the 
circuit. An arrow sign marks state transition following an 
input value O or 1 that is written along the path. Note that o 
X represents the binary data input from which sequence 
'011' is to be detected. 

Figure 11.2a shows the state transition diagram 
following Moore model. We arrive at it by following 
logic. The circuit is initialized with state a. If input 
data X = 1, the first bit of the sequence to be detected 
is considered detected and the circuit goes to state b. If 
X = 0 then it remains at state a to check next bit that 
arrives. If at state b, the circuit receives X = 1, then first 

State transition diagram 
of sequence detector: 
Moore model 

two bit of the pattern is considered detected and it moves to state c. But at state b, if it receives X = 0 (i.e 
input sequence is '01 ') then detection has to start afresh as we need all three bits of' 011' to match. Thus, the 
detector goes back to initial state a. At state c, if the circuit receivesX= 0 then input bit stream is '011' and 
the circuit goes to state d and signals detection of pattern at state d. However, at c if X = l, the detector is in 
a situation where it has received '111' in order. It stays at c so that if next arriving bit, X = 0 it should signal 
sequence detection. At state d if the circuit continues sequence detection job, receiving X = I it goes to state 
b. That ensures detection of '011' second time in input '011011 '. For X = 0 the circuit goes to initial state a 
signifying not a single bit has been detected properly subsequent to previous detection. 

State Definitions: Mealy Model 

Since, the output can be derived using state as well as input we need three different states for 3-bit sequence 
detector circuit following Mealy model. The three states say, a, b, c represents none, 1" bit and 2°ct bit 
detection. When the circuit is at state c if the input is as per the pattern the output is generated in state c itself 



Design of Synchronous and Asynchronous Sequential Circuits 

with proper logic combination of input. Note the difference with Moore model where output is generated one 
clock cycle later in state d and also requires one additional state. 

State Transition Diagram: Mealy Model 

Here, the output is written by the side of input along arrow path in the format xn: where X and Y represent 
input and output respectively. Figure 11.2b shows state transition diagram of the given problem following 
Mealy model. The explanation is as follows. 

The circuit is initialized with state a. If it receives input 
X = 0, it stays at a el.se goes to state b that signifies first bit 
is detected properly. In both the cases output, Y = 0 signify
ing no detection. At state b, if X = 0, the circuit returns to 
initial state a, i.e. no bit in given order is detected and ifX = 
I, goes to state c, signifying two bits in order are detected. 
hi both the cases Y = 0. Now when at c, if input received is 
0 then all the three bits of the pattern are received properly 
and sequence detection can be signaled through Y = l. Also 
the circuit goes to initial state a and prepares for a new set 
of detection. At state c, if X = 1 then the sequence received 
is '111 '. An aiTival of O in next clock can make the detec

0/0 

1/0 

State transition diagram 
of sequence detector: 
Mealy model 

tion' 11 O' possible. So, at state c if X = 1 it is considered as two bits, '11' have been detected properly and the 
circuit remains at state c. The ouput at that time is Y = 0 since sequence is not fully detected. 

Conversion of Models 

Conversion between Mealy and Moore models can take place as shown in Fig. 11.3 where, T
1
, T2, T

3 
represent 

paths leading to state a. The path T
4 

leads from state a when input is 1. If input is 0, state a leads to state band 
there are no other paths reaching b. The rule of conversion is as follows. If all the transitions in a Mealy model 
to a particular state are associated with only one type of output then in corresponding Moore model that 
output becomes state output (Fig. 11.3a). If there is more than one output in Mealy model we need as many 
intermediate state variables, as shown in Fig. 11.3b. In Fig. 11.3c it is shown how to treat transitions that loop 
within a particular state. The reverse of this is applied in converting Moore model to Mealy model. 

As an example, let us look at equivalence between two models of the sequence detector problem shown 
in Fig. 11.2a and Fig. 11.2b. In Mealy model we have paths leading to state a, have two different types of 
outputs. So state a of Mealy model get divided in two as a and din Moore model. Since there is a loop in 
state a itself for one input, conversion rnle shown in Fig. 11.3c is applicable. For other states there is no such 
conflict and a direct conversion is possible following Fig. 11.3a. 

Now that we know one model can be obtained from other, i.e. logical equivalence exists between the two, 
we let application constraints (as discussed in Section 11.1) decide which one is to be chosen for a particular 
problem. 

What is a.state transition diagram? 

Hpw dpl:!s $~te transition diagram (?fa l'v1oore Machine 



Digital Principles and Applications 
~----

T1 0 

T2 
0 

-

T4 
T3 

(a) 

T1 

0 -
T2 

T4 

(b) 

T1 

-

T2 

T Oil 
I a 

T24 0/0 

(c) 

Conversion between Mealy and Moore model 

11.3 ST A TE SYNTHESIS TABLE 

The next step in design process is to develop state synthesis table, also called circuit excitation table or 
simply state table from state transition diagram. Note that for m number of memory elements we can have 
up to 2111 number of different states in a circuit. Once we decide how many memory elements are to be used, 
we go for state assignment. 

Often, we need to exercise state reduction technique before state assignment to remove redundancy in 
state description. Redundancy may come while converting word description of a complex problem to state 
transition diagram. We shall discuss state reduction techniques in Section 11. 7. 

State Assignment 

Here, we allocate each state a binary combination of memory values. For the given problem, both Moore and 
Mealy models require minimum two flip-flops (say A and B) to define their states (4 for Moore and 3 for 
Mealy). Let the state assignment be as follows. 

a:B=O, A=O b:B=O, A=l c:B=l, A=O d:B=I, A=l 

Note that Mealy model does not use stated. Assignment can be done in any order, e.g. we can make a: B 
= 0, A = l and b: B = 0, A = 0 and proceed with the design. However, one set of state assignment may give 
simpler final logic circuit over other. Though there is no definite state assignment rule that gives minimum 



Design of Synchronous and Asynchronous Sequential Circuits 

hardware for an implementation, logical adjacency between transition states often helps. In Problern 
to 11.10, we shall see how a different state assignment for this sequence detector problem asks for 
hardware requirement. 

State Synthesis Table 

The next design step is to decide what kind of memory elements are to be used for our design. Flip-flops 
commonly used for this purpose. A ROM based implementation is discussed in Section 11.5. When 
flip-flops we take note of the fact that there are different types of them available. Each flip-flop has a 
characteristic equation and excitation table (Section 8.9). In synthesis problem we have to find out how 
flop inputs are to be connected and how final output is generated from flip-flop output. For this, we 
synthesis table that gives the input requirement of all flip-flops for a given state transition diagram. 
we prepare this table we should decide which flip-flop we are going to use. We nom1ally prefer JK flip-flop 
it has maximum number of don't care states in its excitation table and that leads to simpler design 
We design the given sequence detector circuit using JK flip-flops. 

Moore Model 

State synthesis table obtained from state transition diagram of Moore model (Fig. 11.2a) and excitation 
of JK flip-flop (Fig. 8.34) is shown in Table 11.1. It has eight rows as for each of the four possible states there 
can be two different types of inputs. The table is prepared as follows. When the circuit is at state 
and receives X = 0 it remains at state 00 and output in this state Y = 0. Since both B and A flip-flop 
O~O transition both the flip-flops should have input Ox from excitation table. This way first four columns 
the table (present state, input, next state, output) are filled from state transition diagram and last two 
(Band A flip-flop inputs) from flip-flop excitation table. 

Present State 

B" 

0 

1 

0 

1 
l 

Mealy Model 

x;, Bn+1 

0 0 
1 0 
0 0 
1 1 
0 I 
1 
0 0 
l 0 

State Synthesis Table for Moore Model 

Output 

~. JB KB J1 

0 0 0 X 0 
1 0 0 X 

0 0 0 X X 

0 0 1 X. X 

1 0 X 0 
0 0 X 0 0 
0 X 1 X 

I X X 

Since, Mealy Model requires three states for this problem we have six rows in state synthesis table as in 
state there can be two different types of input X = 0 or X = 1. Table 11.2 represents state synthesis tab le 
Mealy model. The method remains the same as Moore model but we use state transition diagram l l 
corresponding to Mealy model from Section 11.2. 



Digital Principles and Applications 

State Synthesis Table for Mealy Model 

Present State Present Input Next State Present Output 

B n A 
II 

x;, B11+1 .r;, JB .1_4 KA 

0 0 0 0 0 0 0 X 0 X 

0 0 1 0 I 0 0 X 

0 l 0 0 0 0 0 X 

0 1 l 0 0 1 X l 
l 0 0 0 0 1 X 0 X 

l 0 0 0 X 0 X 

11.4 DESIGN EQUA UONS AND (]RCUII DIAGRAM 

In this section, we discuss how to get final circuit diagram from state synthesis table (Section 11.3) through 
design equation. In design equation we express flip-flop inputs as a function of present state, i.e. memory 
values (here, B and A) and present input (here, .x). This ensures proper transfer of the circuit to next state. The 
design equations also give output (here, Y) equation in tenns of state variables or memory elements in Moore 
model and state variables together with input in Mealy model. We nonnally use Kamaugh map technique to 
get a simplified form of these relations. 

Moore Model 

Figure 11.4a presents Karnaugh map developed from state synthesis Table 11.1 and also shows corresponding 
design equations. Figure 11.4b shows the sequence detector circuit diagram developed from these equations. 
This is done in the following manner. Equation J

8 
= XA requires J input of flip-flop A to be fed from a two 

input AND gate, inputs to which are X and A. The other inputs and output are obtained in similar way. Note 
that, output is generated by AND operation on two flip-flop outputs and does not use X 

Mealy Model 

Using state synthesis table corresponding to Mealy model (Table 11.2) we can fill six positions in each 
Kamaugh map (Fig. 11.5a). Locations B,,A 11X = 110 and B11A,,X = 111 are filled with don't care(x) conditions 
as such a combination never occur in the detector circuit if properly initialized. The design equations are 
obtained from these Kamaugh maps from which circuit diagram is drawn as shown in Fig. 11.5b. Note that 
in this circuit, output directly uses input inforn1ation. 

3. What is an excitation map? 
4. Is there any difference in hardware. requirement between Moore and Mealy machine? 
5. In the sequence detector circuitdesigned here, show tlle output in each clock cycle 

completing Table 11.3. 



_________ D_es_ig_n_o_f_Sy_n_ch_ro_n_o_us_a_n_d_A_sy_n_ch_ro_n_ou_s_S_e_qu_e_n_tia_l_C1_·rc_u_its _________ eg ~ 
BA n n BA n n Bn 

X 00 0 1 1 1 1 0 X 00 0 1 1 1 I 0 An 0 

0 0 0 X X 0 0 X IX I I 0 0 0 

I 0 I I xi X 1 I 1 xi X 0 0 

JB XA
11 J;1=XBl1+XB1l Y=AIIB/1 

B
11

A
11 

B
11

A
11 

X 00 0 1 1 1 I 0 X 00 0 I I 1 1 0 

0 X X 0 0 X X 

X X 0 X 0 X 

K8 =A,, KA=X+Bll 

(a) 

A B 
y 

JB 

K A K B 
A B 

X 

CLK------------'-------------' 

ClockC~cle ,, 1 

Input··· 0 
Moore output 
Mealy output 

(b) 

(a) Design equations for Moore model, (b) Circuit diagram following Moore 
model 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 l l 0 0 0 1 0 'j' 1 



B11 A,, 
00 

() 0 

0 

·"- B11 An 
X 00 

0 X 

] X 

0 1 

0 

1 

JB 

0 1 

1 

1 

1 1 1 0 X 

X X 

X X 

X4,, 

1 1 1 0 X 

X X 

X X 

Digital Principles and Applications 

B 4 Jl .. 11 

00 

0 IX 

l X 

BA 
Jl 11 

00 

0 0 

I 0 

0 1 1 I 

X X 

X X 

0 1 1 1 

0 Ix 
0 X 

Y=XB/l 

(a) 

I 0 

1 I 

0 

l 0 

11 

0 

BA 
11 ll 

X 00 0 I 1 1 1 0 

0 0 X X 0 

1 11 xi X 0 

x---.-----,------------, 

y 

KA A B 

(b) 

(a) Design equations for Mealy models, (b) Circuit diagram following Mealy 
model 

11.5 IMPLEMENTATION USING READ ONLY MEMORY 

ln this section we present an interesting solution to sequential logic problem using Read Only Memory 
(ROM) which though called memory is a combinatorial circuit. The output of ROM is immediately available 
when a particular location in memory is addressed. The detailed description of ROM, its architecture, type 
and operation is given in Sections 4.9 and 13.5. 

For our design purpose we need to have a ROM that has as many memory locations as the number of rows 
in a state synthesis table. Note that, each row is uniquely identified by present state and present input. This 
present state and input combination through an address decoder points to memory spaces in ROM. In each 
location of ROM we store the next state value of the circuit. 



Design of Synchronous and Asynchronous Sequential Circuits 

We also need a bank of Delay flip-flops, the number is same as the number of state variables or memory 
elements. Next state information for each state variable that is stored in ROM is fed to these D flip-flop 
inputs. At clock trigger they appear at the output of the flip-flop. Now that the circuit has advanced by one 
clock cycle these D flip-flop outputs serve as present state information and fed to ROM address decoder. 
Together with present input they point to another location in memory that has next state information. ROM 
being a combinatorial circuit these next state values are immediately available to D flip-flop inputs and the 
cycle goes on. The final output is generated from state variables in Moore model and also uses direct input 
in Mealy model. 

Moore Model 

For the sequence detector problem we need 8 x 2 ROM as there are 8 rows in state synthesis Tables 11.1 and 
11.2. The circuit diagram is shown in Fig. 11.6. The 3 to 8 address decoder is fed by B, A and X The output 
of decoder is 000, 001, 010 .. in same order as they appear in state Table 11.1. For example, when BAX= 000 
next state is 00 from state table and we store 00 in ROM corresponding to decoder output 000. Similarly, 
next memory values stored in ROM are O 1, 00, 10, 11 ... in order from state table. D flip-flop connections are 
explained before and output is generated following logic equation Y =AB. 

The circuit functions like this. The D flip-flops are initially cleared, i.e. BA= 00. If X = 0, the first location 
in ROM corresponding to BAX= 000 is selected and ROM output= 00 and at clock trigger next state remains 

3 to 8 decoder B,,+1 A,,+1 

000 0 0 
Bn 

001 0 l 
A,, 

010 0 0 

X /i\---lr'-. 
x,, 

0 1 1 l 0 
8x2ROM 

100 1 l 

1 0 1 l 0 

l l 0 0 0 

I 1 1 0 1 

B,, B,,+1 
' D ,/ 

<~ 
L____fr-. 

y 

A,, A,,+1 
D ' ./ <:: 

-- CLK 

ROM based implementation of sequence detector: Moore model 



Digital Principles and Applications 

at BA= 00. Thus 00 state remains at 00 for X= 0. lfX= 1, then BAX= 001 location in ROM is selected which 
stores O 1, i.e. the circuit (D Hip-flops) goes to BA = 01 state with clock trigger. For BA = 01, if X = 0 then 
BAX= 0 IO location in ROM is selected which stores 00 that means with NT of clock the circuit goes to state 
00 or initial state. If BA = 0 I and X = 1 then BAX= 011 location of ROM is selected which stores 10. Thus 
next state becomes 10 with NT. Now at BA I 0, ifX = 0 then BAX= I 00 location is selected which stores 
11 and next state becomes 11. Ifwe have recorded input values we see when 100 location in ROM is selected 
in ROM the pattern '011' has mTived in proper order. Stored ROM data is immediately available in the same 
clock cycle and we can generate circuit output from this signaling detection. 

Thus, compared to previous implementation here sequence detection signal comes one cycle earlier. Also 
note that the design process is very straightforward. We don't need to remember flip-flop excitation table or 
simplify design equation, which gives different circuit for different problem. Here, for all problems circuit 
remains same only the content of ROM changes. The output logic may also be different but we have an option 
to store the output as 3"1 bit in the ROM and we then don't need any output logic equation to be realized by 
basic gates. Refer to Problems 11.15 and 11.16. 

Mealy 

ROM based solution of Mealy model uses state synthesis table in the same way as Moore model ROM 
locations are selected by present state and input as appears in state table and next state value fills corresponding 
ROM locations (Fig. 11. 7). Delay flip-flop banks are used in the same way but final output is generated from 

3 to 8 decoder B,,+1 A 11+1 

000 0 0 

B" 0 0 l 0 I 
A" 

0 l 0 0 0 

X '--'" 
x,, 

0 1 1 1 0 
8 x2ROM 

100 0 0 

1 0 1 1 0 

1 1 0 X X 

1 1 1 X X 

i\-f' 

~ L...J '----1' 
( I'['\.____/ 

Bn ( Bn+! ' D ,./ <::: 

y 

An An+! 
D '\ 

<~ 
,/ 

- CLK 

ROM based implementation of sequence detector: Mealy model 



Design of Synchronous and Asynchronous Sequential Circuits 

D flip-flop outputs (representing present state) and data input. In Moore model we have used ROM outputs 
directly to generate sequence detector output. Note that ROM of size 6 x 2 is sufficient for Mealy model and 
last two locations of 8 x 2 ROM are not used. 

Give design equations for the synchronous sequential logic circuit that has two inputs X 
and Y. The output Z of this circuit is generated according to the timing diagram shown in 
Fig.11.8. 

CLK_j 

x-------' 
y 

z _ ____.n~--~n~-
Timing diagram for Example 11.1 

Solution Jnste~&ofword descripH011 we have timmg diagram explaining the problem, On careful observation we 
findZremamshighforone clockperiod when l'goesfrom high to low and if at that time (Y low) the otherinput 
X remams>at logic high .. Thus ifwe adopt a Mealy model, the circuit needs one memory element that remembers if 
previous state ofTwas high for.any XF l, Y= 0 mpul:. The·state transition diagram, state synthesjs table and design 
equations are shown fa Figs. LL~(a), {b) and ( c} respectively. The design has been done with D flip-flop in which. D 
input simplyfollow:s next state. Refer to excitation table ofFig. 8.34, 

11/0 
01/0 

00/0~11/0 
10/0~01/0 

10/1 

XY 

A,, 

0 

1 

00/0 
(a) 

00 0 1 1 1 

0 1 

0 1 

D
11

=Y 

1 0 

0 

0 

An X 

0 

0 
0 
1 
1 

0 

1 
0 
1 
1 

XY 
A n 00 

0 0 

1 0 

(c) 

y An+! Dn z 
0 0 0 0 
1 1 1 0 
0 0 0 0 
1 1 1 0 

0 0 0 0 
1 1 l 0 
0 0 0 1 
1 l 1 0 

(b) 

0 l l l 1 0 

0 0 0 

0 0 l 

(a) State transition diagram, (b) State synthesis table, (c) Design equations for 
Example 11.1 



Digital Principles and Applications 

6. How use of flip-flop is different in ROM based implementation? 

Complete the table as shown inQ. 5 for ROMbased Moore and Mealy models: 

11.6 ALGORITHMIC STATE MACHINE 

Algorithmic State Machine (ASM) is a flow chart like representation (ASM Chart) of the algorithm 
a state machine performs. State Transition diagrams though more compact in representation has certain 
disadvantages. For relatively more complex problem where number of inputs and states are higher the state 
diagram space becomes so crowded that it is difficult to read. The other advantage of ASM chart is that, it 
handles implementation issues with greater ease offering better timing infom1ation. In ASM chart, square 
boxes represents a state. If a state generates an unconditional output (Moore model) it can be specified within 
the square box. A diamond shaped box represents decision to be taken and normally the variable or the 
condition that is tested is placed inside it with a question mark. There are two exit paths of this decision box 
since the decision is binary in nature. For Mealy model, oval shaped boxes are used to desc1ibe the output that 
depends on present state as well as the present input. Circles are used to denote start, stop of the algorithm 
and also the connector point of an ASM chart when it becomes too large and needs to be drawn at more than 
one place. Entry and exit of each ASM block is shown by arrow headed connecting link. 

We take a new example and discuss its design usingASM chart. ASM chart for sequence detector problem 
of previous section is shown in Example 11.4. 

Vending Machine Problem 

The task is to design a synchronous logic control unit of a vending machine. The machine can take only two 
types of coins of denomination 1 and 2 in any order. It delivers only one product that is priced Rs. 3. On 
receiving Rs. 3 the product is delivered by asserting an output D = I 
which otherwise remains 0. Ifit gets Rs. 4 then product is delivered 
by asserting X and also a coin return mechanism is activated by 
output Y = 1 to return a Re. 1 coin. There are two sensors to sense 
the denomination of the coins that give binary output as shown in 
the following table. The clock speed is much higher than human 
response time, i.e. no two coins can be deposited in same clock cycle. 

ASM Chart 

I 

0 

l 

1 

J Coin 

X No Coin dropped 

0 One Rupee 

1 Two Rupees 

TheASM chart is prepared following Mealy model and is shown in Fig. 11.10. The initial state when no coin is 
deposited is designated as state a. Note that, sensor output I= 0 indicates no coin is deposited. At every clock 
trigger I is tested and if found O the circuit retraces its path to state a and obviously none of X and Y is asserted, 
i.e. no product is delivered or coin returned. If!= 1, the controller tests 1. If]= 0 it goes to state bthatrepresents 
Re. 1 is received and if J = l, goes to state c indicating Rs. 2 is received. The controller remains at state b if 
no further coin is deposited found by checking I. Now, if I= 1 and J = 0, the machine has received two Re. 1 
coins in succession and should move to state c. But I= 1 and J = I means a Rs. 2 coin is received following 
Re. 1 totaling Rs. 3 the cost of the product. Hence, the product is delivered by asserting X = I and the circuit 



Design of Synchronous and Asynchronous Sequential Circuits 

0 

0 

C 

0 

ASM chart for vending machine problem: Mealy model 



Digital Principles and Applications 

goes to initial state. At state c if on testing I= I that is a coin is deposited, the controller tests J to ascertain if 
it is Re. 1 or Rs. 2. If J = 0, Re. 1 is deposited and a total of Rs. 3 is received. The product is delivered by X = 

1 and the circuit goes to initial state a. Now if J = 1 then Rs. 2 is received totaling Rs. 4. Then Re. 1 is returned 
by asserting Y = 1, also the product is delivered through X = l and the controller moves to initial state a. 

State Assignment and State Synthesis Table 

The subsequent design steps are same as state transition diagram based method discussed before. We prepare 
state table from this ASM Chart. In this example we show how to use D flip-flop as the memory element 
though JK flip-flop can also be used. As expected, filling up of columns that corresponds to D input in a 
given state is easier than JK flip-flop, also the number ofKamaugh map to be drawn for each flip-flop is half 
that of JK flip-flop as D flip-flop has only one data input. But all these come at a cost of increased hardware 
complexity. This example will highlight this aspect of design issue for synchronous sequential circuit. The 
state assignment is done as follows. Since there are three different states we need two flip-flops (say, Band A) 
to represent them. Let BA= 00 represent state a, BA= 01 state b, BA= 10 state c. State BA= 11 is not used 
in this problem. Table 11.4 shows the state table corresponding to ASM chart shown in Fig. 11.10 and also 
the D inputs corresponding to every state. 

State Synthesis Table for Vending Machine Problem: Mealy Model 

Present State Input Next State Output D11 D_; 

B,, A I J Bn+I A,n1 X y ·• 

n 

0 0 0 0 0 0 0 0 
0 0 0 l 0 0 0 0 0 0 

l 0 0 l 0 0 0 l 
l l I 0 0 0 1 0 
0 0 0 l 0 0 0 1 

0 I 0 1 0 1 0 0 0 1 
l 0 1 0 0 0 1 0 
1 l o. 0 1 0 0 0 
0 0 1 0 0 0 1 0 

l 0 0 l ] 0 0 0 1 0 
1 0 0 0 l 0 0 0 
l 1 0 0 l l 0 0 

Design Equations from Karnaugh map and Circuit Diagram 

Kamaugh maps for each flip-flop input and both the outputs are shown in Fig. 11.lla along with design 
equations. Note that for BA = 11 we have don!t care states in each map that helps in minimizing design 
equation. The final digital controller circuit for the vending machine problem is shown in Fig. 11.11 b. 

Draw the Delay flip-flop-Decoder-ROM based digital controller circuit for the vending 

machine problem. 

Solution The circuit is shown in Fig. 11.12a. The values stored in ROM is derived from state stable. Here we have 
used higher ROM size adding two more bits in the memory location for each address but~~ 11ot neT~ any basic gate 
for output logic. However,we can.useJogicgates as sh<:lwn.in sequence detector problem andreducetwo columns 
corresponding to X and Yin ROM. 



Design of Synchronous and Asynchronous Sequential Circuits 

B A 11"' ll B A n~ n 
IJ 00 0 1 1 1 1 0 JJ 00 0 1 1 1 I 0 

00 0 0 X 1 00 0 1 X 0 

0 1 0 0 X 1 0 1 0 I X 0 

1 1 1 0 X 0 1 1 0 0 X 0 

1 0 0 11 XI 0 1 0 1 0 X 0 

BA 
11 ll BIIA/1 

IJ 00 0 1 1 1 1 0 JJ 00 0 1 1 I l 0 

00 0 0 X 0 00 0 0 X 0 

0 1 0 0 X 0 0 1 0 0 X 0 

1 1 0 I I xi 1 l I 0 0 Ix 11 

1 0 0 0 X l l 0 0 0 X 0 

X=JB
11

+JJA
11 Y=JJ B,, 

(a) 

B 

A B 

X 

y 

CLK----------~---------~ 
(b) 

(a) Design equation, (b) Circuit diagram for vending machine problem: 
Mealy model 



Digital Principles and Applications 

4 to 16 decoder 

0000 0 0 0 
0001 0 0 0 

Bn 
S3 0010 0 1 0 

0011 l 0 0 
A,, 

S2 0100 0 1 0 -

I 

0101 0 1 0 
___f [\._( --....!__ S1 0110 1 0 0 

0111 0 0 1 

J ___f f'\-J -.,_!__ So 1000 l 0 0 
1001 1 0 0 

1010 0 0 1 

1011 0 0 1 
1100 X X X 

1101 X X X 

1110 X X X 

1111 X X X 

-;~ " ./ 

<P--
~ 

~ 

D " ./ 

<P--

~ 

CLK 

y 

0 
0 

0 

0 
0 
0 

0 

0 
0 

0 
0 

l 
X 

X 

X 

X 

I 

16 X 4ROM 

y 

X 

ROM implementation of vending machine problem 

Draw state transition diagram 
of the Mealy model vending 

machine problem. 

Solution The diagram can easily be drawn from ASM 
chart (Fig. 11. l 0) and is shown in Fig.1 l .12b. 

Draw ASM chart of the sequence 
detector problem described in 
Section 11.2 following Moore 
model. 

State transition diagram of 
vending machine problem 

Solution In Fig. 11.13 we show the ASMchart of the sequence detector problem described in Section 11.2.follow
ing Moore model where X denotes the input data bit and Y the detector output. 



Design of Synchronous and Asynchronous Sequential Circuits 

0 

b 

~ 
0 

0 

0 

ASM chart of sequence detector problem: Moore model 

Note the similarity between Moore model state transition diagram of Fig. 11.2a and ASM chart shown 
here. Once we arrive at the ASM Chart the rest of the design procedure starting from state assignment up to 
final circuit diagram is same as what is discussed in Section 11.6. ASM Chart for the Mealy model sequence 
detector is left as exercise for the reader. 

11.7 STATEREDlJCTION TECHNIQUE 

In design of sequential logic circuit state reduction 
techniques play an important role, more so for complex 
problems. While converting problem statement to 
state transition diagram or state table we may use 
more number of states than necessary. On removing 
redundant states the clarity of the problem is enhanced. 
This also offers simpler solution and less hardware to 
implement a circuit. We explain two state reduction 
techniques through an example. 

Let the state transition diagram drawn following a 
Mealy model is as shown in Fig. 11.14. The goal is to 
identify and remove redundant states, if any and obtain 
the reduced state diagram. 

0/0 

A state transition diagram 



Digital Principles and Applications 

Row Elimination Method 

In this method, we first prepare a state table where at any given state the next state and present output(s) are 
written for each combination ofinput(s). In the present problem there are only two possible values of input 
X= 0 andX = 1. For 2 input circuits there will be 22= 4 such combinations in this table. Now, two states are 
considered equivalent if they move to same or equivalent state for every input combination and also generate 
same output. 

Figure 11.15a shows the state table for Fig. 11.14 and we see that states b and e are equivalent as next 
state and output are same. Therefore, we can retain one of these two and discard the other. Let us retain b 
and eliminate row corresponding to present state e and in rest of the table, wherever e appears we replace it 
by b and get table of Fig. 11.15b. A careful look on this reduced table shows state d andf are equivalent. We 
retain d and eliminate row/from this table and replace/with din rest of the rows and get Fig. 11.15c. This 
table places us in an interesting situation as far as equivalence between two rows are concerned. For states b 
and c except for next state at X = 0 the rest are same. Now b and c would have been equivalent if these next 
states are equivalent. For b, next state is c and for c, next state is b. Thus be are equivalent if next states cb 
are equivalent which can always be true (from tautology). Thus, band c are equivalent and state b is retained 
and row c is eliminated in the same manner and shown in Fig. 11.15d, which cannot be further reduced. The 
final reduced state table has three states reduced from six in the original state diagram and final reduced state 
diagram is shown in Fig. 11.1 Se. 

Present state Next state Present output 
X=O X= 1 X=O X= 1 Present state Next state Present output 

a a h 0 0 X=O X= 1 X=O X= l 
lb C d 0 0 a a b 0 0 
C e f 0 0 b C d 0 0 
d h a 0 1 C b f 0 0 
ve C d 0 0 vd h a 0 l 
f b a 0 1 -I]" b a 0 1 

(a) Original table (b) After one row elimination 

Present state Next state Present output 
X=O X= 1 X=O X=l Present state Next state Present output 

a a h 0 0 X=O X=I X=O X=I 
-lb C d 0 0 a a b 0 0 
Ve b d 0 0 b b d 0 0 
d h a 0 1 d b a 0 l 

(c) After two row elimination (d) Final reduced table after three row elimination 

010 

0/0 

(e) 

(a)-(d) Tables showing row elimination steps, (e) Reduced state diagram 



Design of Synchronous and Asynchronous Sequential Circuits 

Implication Table Method 

Implication table provides a more systematic approach towards solution of a complex state reduction 
problem. For n states in the initialdescription we have n-1 rows in implication table and as many number 
of columns. Refer to implication table of Fig. 11.16a for the given state reduction problem. The cross-point 
in an implication table is the location where a row and a column meet. Here, the conditions for equivalence 
between the states crossing each other are tested. We use state table ofFig. 11.15a derived from state transition 
diagram to fill up implication table. The steps to be followed are given next. 

b 

e 

d 

e 

f 

a b e d e 
(a) 

e:e 
d: e (di) 

e: e (df) (ee) = (df) (ce) 

b: (df) (ce) (be)= (df) (bee) 

a: a (df) (bee) 

P = (df) (bee) (a) 

(b) 

Implication table method of state reduction: (a) Implication table, 
(b) Partition table 

In Step 1, we identify the states, which cannot be equivalent, as their outputs do not match. This we denote 
by putting a double-cross in respective cross points. In this problem stated and/ only have output= l for X = 
1 unlike other states. Thus, intersection of d and/ with others except themselves are double crossed. 

In Step 2, for other cross points, we write necessary conditions for equivalence of intersecting states. 
As an example, let us look at intersection of states a and b. To get the necessary condition we refer to rows 
starting with a and b in state table of Fig. 11.15a. We find that at X = 0, a stays at a while b goes to c and atX = 
1, a goes to b while b goes to d. Thus, a and b can only be equivalent if next states a and care equivalent and 
also if b and dare equivalent. This is written at cross point of a and b in implication table. Note that output 
of a and b match, else, it would have got a double cross in Step 1. We similarly fill up other cross points and 
note that b and e are equivalent and does not require any equivalence between other statesand a double tick 
mark is placed at that cross point. 

In Step 3, we use relationships obtained in Steps 1 and 2, specially the ones represented by double cross and 
double tick mark and check if any other cross points can be crossed or ticked. Since df equivalence depends 
only on equivalence be which is true, they are equivalent and that cross point can be ticked. Similarly, ac 
cannot be equivalent, as it requires bfto be equivalent which is not true. Hence, ac intersection is crossed. 

In Step 4, we keep repeating Step 3 and cross or tick (if possible) as many cross points in the implication 
table as possible. We see ab and ae cross points can be crossed as they need ac to be equivalent which is 
crossed in the previous step. With no further crossing and ticking possible the implication table is fully 
prepared and we go to Step 5. 

In Step 5, we check pairwise equivalence starting from rightmost column e of implication table. Since, 
the only cross point, representing ef equivalence along column e is crossed there is no equivalence possible 



Digital Principles and Applications 

at column e and we write e in Fig. 11.16b in the first place. In column d, we find df are equivalent and along 
din Fig. 11.16b the same is written. In column c, we find ce are equivalent as df is equivalent. In column b, 
equivalence between be and be can be observed as ce and df are already considered equivalent and the same 
are written along c and b. Note that if p and q are equivalent and so are q and r then p and q are equivalent. In 
that case, pqr can form one group and any one of its members can represent the group. Since, column a does 
not give any equivalent pair the final partition table is represented as P = ( d/) (bee) (a) and has three partitions. 
Then three states are sufficient to solve this problem each representing one partition. If d represents any of 
df and b represents bee in Fig. 11.16b we get reduced state table as shown in Fig. 11.15d and corresponding 
reduced state diagram is shown in Fig. l l.l 5e. 

Note that the final result is same by both the state reduction method. However, in row elimination method 
one has to draw many tables for a complex state reduction problem and depend a lot on observation power. 
The implication method being more systematic is more conclusive. 

We shall discuss state reduction technique for incompletely specified state table in connection with 
asynchronous sequential circuit design in Section 11.10. In such problems some of the next states or output 
remains unspecified and treated as don't care condition. 

Present state 

a 
,fb 

C 

vd 
e 

Reduce state transition diagram (Moore Model) ofFig. 11. l 7a by (i) row elimination method 
and (ii) implication table method 

0 

Next state Present output Present state Next state Present output 
X=O X= 1 X=O X=l 

a b 0 a a b 0 
C d 0 b C b 0 
d e 1 {c b e 1 
C b 0 {e b C 1 
b C 1 

(b) Original table (c) Table after elimination of one row 

Present state Next state Present output 
X=O X=l 

a a b 0 
b C b 0 
C b C 1 

(d) Final reduced table after elimination of two rows 

Reduction by row elimination method 



Design of Synchronous and Asynchronous Sequential Circwrs 

Solution 

(i) Refer to state 1:able ofFig. I L17b obtain.ed from state transition dia~m. Comparing row b anddwe see they 
are equivalent because that needs no other consideration except equivalence· between themselves. Retaining b 
andreplacing dby bin rest of the table we get Table of Fig. 11.17c. There we find c and e are equivalent and we 
retain c and replacing e by c get Fig.11: 17d.Weseenb further reduction is possible .and final reduced state table 
thathas three states. 

(ii) Refer to state transition diagram and state table developed from it. Implication table is shown in Fig. 11.18. The 
non-compliance of output makes cross-points de, be, ae, cd, be, ac non-equivalent and hence double· cros:;;ed. 
From this we find ab and ad cannot be equivalent as that requires ac to be equivalent which is not. true. Finally 
moving· columnwise starting from d we get· partition table and final partition P has three groups. Hence, the 
number of states is .reduced to 3 from 5 by this technique. 

8. What is an ASM chart? 
What is an implication table? 

~at.faagartitiontable? 
What is. the usefulness ofsfute.reduction technique? 

d:d 
c :if(ce) 

b ; d(ce) (bd) = (ce ) (bd) 

a: (c~) (bd) a 

P•.= .(ce)(bd) (a) 

PART B: ASYNCHRONOUS SEQUENTIAL CIRCUIT 

Asynchronous Sequential Circuit, also called Event Driven Circuit does not have any clock to trigger change 
of state. State changes are triggered by change in input signal. In clock driven circuit all the memory elements 
change their states together. In spite of all the advantages it offers, there are certain limitations with such 
circuit. The most important being the speed of operation. This is limited by the clock frequency since, state 
change can only take place at time t = nT, where T = Time period of dock signal and inverse of frequency 
and n is an integer. If the input changes in a manner that warrants change in the state, it cannot do that 
immediately and wait till the next clock trigger comes. Asynchronous sequential circuit is a solution to this 
however, design of such circuit is very complex and has several constraints to be taken care of, which is not 
required for synchronous circuit. Here, we shall discuss jimdamental mode of operation of asynchronous 
sequential circuit where output change depends on change in input level. There is another type of such circuit 
called pulse mode where output change is affected by edge of the input pulse. 



Digital Principles and Applications 

11.8 ANAL YSDS OF ASYNCHRONOUS SEQUENTIAL CIRCUIT 

As we have already noted memory is the most important element in sequential logic circuit. In synchronous 
system we use clock driven flip-flops which we cannot work here. This is done through feedback similar to 
basic latch portion of a flip-flop. Before we discuss that let us see how a two input AND gate and two input 
NAND gate behave with output fed back to one of the input. We shall use Karnaugh map for the analysis. 

AND Gate 

The two input AND gate with output fed back as one input is shown in Fig. 11.19a. The circuit can be redrawn as 
shown in Fig. 11.19b that includes the effect of propagation delay of the gate (say, r), the finite time after which a 
gate reacts to its input. Thus, if Xis current output obtained following logic relation and xis the feedback output 
we write, x = X(t-r). The truth table is also called state table and each location in Karnaugh map a state of the 
asynchronous sequential circuit. Figure. 11.19c shows the truth table of given circuit and encircled states indicate 
stable condition of the circuit. For example, if A= 0 and by any reason previous output(that is currently fed back) 
x = 0 then, X = x.A = 0. 0 = 0. After time t = r, x takes the value of X, i.e. 0 and because of that output X does 
not change. Thus, x = 0, A = 0 represents a stable state and is encircled. Similarly x = 0, A = 1 position and x 
= 1, A = I positions are also stable as in each of these cases X = x and no change in output is necessary. 

A 

(a) AND gate (b) AND gate with 
propagation delay 

A O l 
X ',----,~-, 

0@@ 

o CD 
X=x.A 

( c) Truth table 

Two input AND gate with output feedback 

Let us now consider the following case. The circuit is atx = l,A = 1, a stable state. Now A is made 1 and 
held at that value. How does the circuit react? First of all, following Kamaugh map the circuit moves one step 
left, i.e from x = 1, A = I to x = 1, A = 0 position because x, the feedback input takes finite time, r to react. At 
this position X = 0. Therefore after time r, x becomes 0, i.e. we move up by one position in Karnaugh map to 
x = 0, A= 0 position. Here,X = 0 and thus x = X and as long as A does not change the circuit remains in this 
position, a stable one. Thus, we find x = 1, A = 0 position is unstable. 

We make. an important observation from this discussion which is universally true. for asynchronous 
sequential circuit. For any state, ifx = X then the circuit is stable and if x ;t. X it is unstable. 

NANO Gate 

We extend the above observation to feedback NAND circuit shown in Fig. l l.20(a) and an-ive at the Truth 
Table given in Fig. 11.20( c ). It is interesting to note that for A = 1 there is no stable state and x = X' for both 
x = 0 and x = 1. Thus there is oscillation between x = 0, A = I and x = 1, A = 1 state. 

Two Input NANO latch 

In analysis of asynchronous sequential circuit there is an important constraint to be followed. Though there 
can be more than one input feeding the circuit, at a time only one input variable can change. The other input 



A 

Design of Synchronous and Asynchronous Sequential Circuits 

CD 
X=xA 

(a) NAND gate (b) NAND gate with 
propagation delay 

(c) Truth table 

Two input NANO gate with output feedback 

can change only when the circuit is stabilized following the previous input change. The time required to 
stabilize the circuit is in the order of propagation delay of a gate, i.e. in nanosecond order. Similarly, if there 
are two or more output variables only one output variable can change at any time instant, as propagation 
delays in different paths are different. While analyzing the NAND latch given in Fig.ll.2Ia we shaUkeep 
this in mind. 

A 
B 

(a) NAND latch with propagation delay 

AB 
x r-oo___,..-.--,---, 

0 1 

CD 
(b) Truth table 

Two input NANO latch 

The stable and unstable states are arrived at (Fig.11.21 b) following discussion in preceding section, i.e. for 
any given combination of x, A, B if, X = x, the circuit is stable otherwise not. Stables states are encircled and 
arrows show the movements from transient states. Now let us see how input changes affect the output. For 
each input combination the circuit has at least one stable state and this stable state will be the starting point 
of our discussion in each case. 

Input AB Change from 00 to 01 The circuit moves from xAB = 100, a stable position to xAB = 101 
(Note, x takes a time rto react to a new set of input) which is unstable and then moves to xAB = 00 I, a stable 
state that has output O. Therefore, a 00 ~o 1 transition in AB has output X making 1 ~O transition. 

Input AB Changes from 00 to 10 The circuit moves from xAB = 100, a stable position to xAB = llO, 
another stable state that has output 1. Therefore, a 00~ 10 transition in AB does not alter the value of output, 
X= 1. 

Note that AB cannot change from 00 to 11 as there will be a finite delay, however small it may be between 
A and B change. Thus, the transition path of AB is either 00~01 ~ 11 (then output changes as l ~O~O) or 
00~ 10~ 11 ( output changes as 1 ~ 1 ~ 1) depending on which of A or B changes earlier. Therefore, output is 
0 or 1 depending on intermediate value and in asynchronous logic design such transitions are not allowed. 

Following this procedure, we look at other possible transitions of state (xAB) for input change and get 
transition Table 11.5. Note that, at AB= 11, there are two stable states xAB = 0 ll and xAB = 111. Transition 
of AB, 01 ~ 11 reaches xAB = OU state while 10~11 reaches xAB = 111. Thus looking at output of the 
circuit when AB = 11 ( also called idle input that does not force change) one can tell whether AB =.01 or 10 
before AB becomes 11. Thus at AB = 11, the circuit generates output x = X from memory or it has latched the 



Digital Principles and Applications 

Transition Table of NANO Latch 

lnputAB State(xAB) transition 

00-tOl 100-tlOl-tOOI 
00-tJO 100-tllO 
01-tOO 001-tOOO-tlOO 
01-tll 001-+011 
IO-tOO 110-tlOO, 
10-tll 110-tlll 
11-tOl 011-tOOl, lll-t 101-tOOl 
11-tIO 011-tOlO-tlOl, 111-tllO 

before AB becomes 11. Thus at AB = 11, the circuit 
generates output x = X from memory or it has latched 
the infonnation of previous input combination. 

(i) Analyze the Mealy model 
asynchronous sequential circuit 

OutputX 

1-tO-tO 
1-t l 
0-tl-tl 
0-tO 

0-tO, 1-tO-tO 
0-tl-+l, I 

Remark 

AtAB=OO, 
stable x = 1, 
AtAB=OI, 
stablex = 0, 
At AB= 10, 
stable x = I, 
At AB= 11, 
stable x = 0, I. 

y 

of Fig. 11.22 and show its stable 
state and c01Tesponding outputs. 
(ii) Give the state diagram of this 
circuit. 

An asynchronous sequential 
circuit: Mealy model 

Solution To analyze the circuit we consider x = X(t-t)where .- is thecumtilative propagati~n delayfrom inputside 
µp to X. For all possible combinations ofxAB we getXand. Yfollowing logic relation shownin the circuit and prepare 
~augh map of Fig. 11.23a. States where X =e x are stable and .encircled. Outputs corresponding to each state a.nd 
input c0111bination ai-e sh9wn beside, {ii) Since, the:re are two stable states x ""' 0 and x .=:• I the state diagram can be 
drawn from Table I 1.5 by considering al! possible input combinations fof each stateas shown: inFig. ll .23b, Notethat. 
the output is dependent on inputs as well as state and is shown along the transition path beside the input 

11 10 

LIO @/0 

Q)/1 Q)/0 

(a) 

00/0 
01/0 
10/0 

11/0 

(a} Karnaugh map, (b) State diagram. for asynchronous circuit shown in 
fig .. 1 l.22 

12. what is runctamentaimode or operationof asynchron~us sequ~nti~1 circrut? 
13. If there are more than one input to such a. circuit what constraint is, imposed on them? 



Design of Synchronous and Asynchronous Sequential Circuits 

11.9 PROBLEMS WITH ASYNCHRONOUS 
SEQUENTIAL CIRCUITS 

Before we go for design of asynchronous sequential circuit we would like to look into some impo1iant design 
related issues. These are non-issues in synchronous circuit where external clock trigger arrives after all the 
inputs are stabilized. Asynchronous circuit responds to all the transient values and problems like oscillation, 
critical race, hazards can cause major problem unless they are addressed at design stage. To explain these 
problems we take help of Truth Table shown in Fig.11.24 where the circuit has two external inputs A, Band 
two outputs X, Y. Both the outputs are fed back to the input side in the form of x and y but with different 
propagation delays. Thus x, y cannot change simultaneously but with time delays -rl and i2 respectively and 
we can write x = X(t--rl) andy = Y(t-'X'2). 

AB 
xy 00 01 11 10 

00 @) 01 

Oscillation 
y 

Asynchronous y 01 00 00 
X sequential 

B circuit 11 @ 
A 

X 

10 @) 
Critical Noncritical 

race race 
(a) Block diagram (b) Trnth table 

(a) Block diagram, (b) Truth table of a 2-input, 2-output circuit 

Refer to the discussion in Section 11.8. The stable states are encircled in the circuit where xy = XY. But 
there are certain major problems with this truth table which we discuss in a future section. 

Oscillation 

Consider, the stable state xyAB = 0000, where x = X and y = Y. If input AB changes from 00 to 10, the circuit 
goes to xyAB = 00 l O state and then output XY = 01. This is a transient state because xy :t: XY. After time -r2, 
y takes the value of Y = 1 and the circuit goes to xyAB = 0110 where outputXY = 00. This again is a transient 
state and after another propagation delay of -r2, the circuit goes to xyAB = 0010. Thus the circuit oscillates 
between state 0010 and O 110 and the output Y oscillates between O and 1 with a time gap -r2. In asynchronous 
sequential circuits for any given input, transitions between two unstable states like these are to be avoided to 
remove oscillation. 

Critical Race 

Next we discuss race condition that could be a major problem in asynchronous sequential circuit. This occurs 
when an input change tries to modify more than one output. In the truth table of Fig. l 1.24b, consider the 
stable state xyAB = 0000. Now, if AB changes to 01 the circuit moves to xyAB = 0001 where XY = 11. Now 



Digital Principles and Applications 

depending which of 'Tl and 'T2 is lower, xy moves from 00 to either O 1 or 10. If 'Tl is lower, x changes earlier 
and the circuit goes to.\yAB = 1001 which is a unstable state with outputXY= 11 andxy ;t:XY. The circuit next 
moves to state xyAB = 1101 which is a stable state and final output XY = 11. If i2 is lower, y changes earlier 
and the circuit goes to xyAB = 0101, a stable state and the final output is O 1. Thus, depending on propagation 
delays in feedback path, the Circuit settles at two different states generating two different set of outputs. Such 
a situation is called critical race condition and is to be avoided in asynchronous sequential circuit. 

Race can be non-critical too, in which case its presence does not pose any problem for the circuit behavior. 
In the truth table, consider stable state xyAB = 1110. If input AB changes to 11, the circuit goes to xyAB = 
1111 where outputXY=OO. Note that both the output variables are supposed to change which cannot happen. 
Again depending on propagation delays xy becomes either O 1 or 10. If xy = 01 then the circuit moves to xyAB 
= 0111 and then to 0011 and settles there. If xy = 10 then the transition path is 1111 ~ 1011-, 0011. In both 
the cases final state is 0011 and output is 00. Since, the race condition does not lead to two different state it 
is termed as non-critical race. 

Hazards 

Static and dynamic hazards causes malfunctioning of asynchronous sequential circuit. Situations like Y = A 
+ A' or Y = AA' are to be avoided for any input output combination with the help of hazard covers in truth 
table. A detailed discussion on how to avoid hazard appears in Section 3.9. In circuit with feedback even 
when these hazards are adequately covered there can be another problem called essential hazard This occurs 
when change in input does not reach one part of the circuit while from other part one output fed back to the 
input side becomes available. Essential hazard is avoided by adding delay, may be in the form of additional 
gates that does not change the logic level, in the feedback path. This ensures effect of input change propagates 
to the all parts of the circuit and then only feed back output, generated from that input-change makes its 
presence felt. 

In an asynchronous sequential circuit, the 4.B , 

state variable outputs of X and Y are related 
with primary inputs A and B and its own 
feedback x and y as shown in Kamaugh 
map of Fig. 11.25. Can the circuit face any 
problem in its operation? 

Solution Yes, the circuit may face problem in its operation. When 

~e circuit}s afstablestate xy,!B "' .. 1111 and input AB changes from 
H-,10 the circuit oscillates between xyAB = U 10 and xyAB = 1010, 
Also there can be a critical race problem if at stable state xyAB = 
OOOl;inputAB change from 01 to 00. The circuit may settle atxyAB 
?c0100orx:yAB =:1000 depending on which ofxandy changes firstat 
the feedlnu::1' path, Non,critiqal race situation occurs if at stable state 
xyAB =OOlOtheinputAB change from 10 to 00. 

.:I.JI 

00 

01 

11 

10 

00 

11 

® 
10 

@ 

01 11 10 

@ 11 @ 

11 11 ® 
11 @ 10 

@ 11 11 

Karnaugh map for 
Example 11.7 

14. What is racing? Whatis the. difference between critical and non-critical race? 
15. What is essential hazard? 



Design of Synchronous and Asynchronous Sequential Circuits 

DESIGN Of ASYNCHRONOUS 
UENTIAl CIRCUIT 

The discussions in previous sections show several design constraints for asynchronous sequential circuit. 
This makes the design of such circuit complex and cumbersome and if benefits like speed are not of critical 
importance, synchronous design is preferred to asynchronous design. In this section we explain the design 
steps of asynchronous sequential circuit through an example. The problem we attempt to solve is described 
next. 

The Problem 

A digital logic circuit is to be designed that has 
two inputs A, B and one output X. X goes high if 
at A = 1, B makes a transition 1 ~ 0. X remains 
high as long as this A = 1, B = 0 are maintained. If 
any of A or B changes at this time output X goes 
low. It becomes high again when at A = 1, B goes 
from l to 0. The timing diagram corresponding to 
this problem is shown in Fig. 11.26. 

State Transition Diagram 

A 

B 

x--------' 

Timing diagram of the problem 

From the problem statement we first develop a state transition diagram, say using Moore model. The state 
symbol and output at that state is shown together within a circle in this diagram (Fig. 11.27). Let the initial 
state be considered as a when AB = 00 with output 0. As long as AB remains 00, the circuit remains at a. 
Note that in synchronous sequential circuit between two clock trigger input might change but the state of the 
circuit remains same. Here, as soon as one of A or B changes the circuit may immediately move to different 
states. Note that A and B cannot change together, a constraint we have to adhere to in asynchronous design. 
At state a, if input AB= 01, the circuit goes to state band if input AB= 10 it goes to c (00~ ll prohibited). 
Both b and c generate output O as they have not yet ful
filled the condition stated in the problem for assertion 
of output. The circuit remains at b for AB = 01. If AB 
changes to 11, the circuit moves to state d with output 
X = 0 and if AB becomes 00 the circuit goes back to 
a. Similarly the circuit stays at c if input stays at 10 
but goes to d receiving 11 and to a receiving 00. Note 
that at state d, the input AB = 11 and now if B ~ 0 then 
condition for output X = 1 is fulfilled and next state e 

for AB = 10 shows output as 1. The circuit remains at 
state e as long as AB= 10. It goes back to state d if AB 
becomes 11 because if B again goes to O output should 
be high. However at e, if AB changes to 00 the circuit 
goes to initial state a as AB becoming 10 following 00 
will not assert output. 

10 

State transition diagram of 
the problem 



Digital Principles and Applications 

Primitive Table 

The next step is to form state table from state transition dia
gram. In this table if all the rows representing a state has 
only one stable state for all possible input combinations and 
it is termed as primitive table, or primitive flow table or sim
ply flow table. Often we can skip step one and directly go 
to primitive table from problem statement. Primitive table 
prepared from state transition diagram is shown in table Fig. 
11.28. 

Note that each row in this table has one don't care state. 
The don't care state in each row comes which asks for both 
the input variables to change to move from stable state, a 
condition not allowed in asynchronous sequential logic. The 
don't care states have been given suffix like 1, 2 which is 
not a must. However, this helps in next step where we check 
state redundancy. 

State Reduction 

00 

a 0 
b a 

C a 

d x4 

e a 

AB 

01 11 10 X 

b xl C 0 

(i) d x2 0 

x3 d 0 0 

b 0 e 0 

x5 d 0 1 

Primitive table for the 
problem 

It is always useful to check state redundancy before going for actual circuit design. Removing redundant 
states helps in generating the circuit in a simpler way and with less hardware. We use implication table for 
this example to remove redundant state, ifthere is any. The implication table, drawn from primitive table and 
state reduction is shown in Fig. 11.29. For preparation of implication table refer to discussion in Section 11. 7. 
Note that in asynchronous design, when there are don't care states in state table, this is called incompletely 
specified table. For this, state reduction can be done as follows. 

b 
d,xl 

d:d c,x2 
C: Cd 

d,xl b,x3 
b: cd(bc)=d(bc) x2-=-c, x3 -=-b C b,x3 c,x2 
a: d (be) (ab) (ac) = (abc) xi -=-d 

d 
P = (abc) (d) (e) 

e 

a b C d 

State reduction by implication table 

Since state e cannot be equivalent with any of a, b, c and d (output being different) we put double cross 
right in the beginning for row e of implication table. Next we find a and d cannot be equivalent as that requires 
c and e to be equivalent which is not. Similarly, c and d cannot be equivalent and we cross these two places 
in row cl of implication table with single line. Now let us try to find equivalence by moving along columns. 
In column cl and c there is no equivalence possible. In column b, equivalence between either of b and c orb 
and dis possible. But, both (be and bd) equivalences are not possible as it requires don't care state x2 to be 
made equivalent to c and e while ce themselves are not equivalent. In column a, we see (c, x2) equivalence 



Design of Synchronous and Asynchronous Sequential Circuits 

may make a and b equivalent. Therefore, from column b, we get (be) equivalence by making e, x2 and b, x3 
equivalent. In column a, by assigning xl to d we can make (ab) and (ae) equivalent and there is no conflict 
with assignment of don't care states. Since, (be) (ab) (ae) = (abe} partition table has three different groups 
(abe), (d) and (e). Thus the states are reduced to 3 from 01iginal 5. Let state a represent the group (abe). Now 
the reduced state table is as shown in Fig. 11.30a and reduced state transition diagram in Fig. 11.30b. 

State Assignment 

This step in asynchronous sequential circuit design has 
to be done very carefully so that a valid state transition 
does not require two or more output variables to change 
simultaneously which may lead to racing problem. In this 
problem there are three states in the reduced state diagram 
which needs two variables to represent them. Figure 
11.30 shows that we cannot avoid two variables changing 
together in one or more occasions for the reduced state 
transition diagram. If {a,d,e} is represented by {00,01,10} 
it occurs twice for d-?e and e-?d transitions in state 
transition diagram. A representation of {00,01,11} requires 
two variables to change only once when e-?a transition 
occurs. The solution to this may be found if the unused 
fourth combination of two variable representation is used 
as a dummy state, say <f,. We include </> between e and a. 
Note that, if one dummy state is not enough we may need 
to use a third variable to represent the states that will make 
23-3 = 5 dummy variable available for this purpose. Let us 
represent the states in this problem by two variables PQ in 
the following way 

a:00 d:01 e: 11 <f,: 10 

The modified state diagram and state table with dummy 
variable</> =10 included are shown in Fig. 11.31. Note that 
</> is an unstable state and before the input can change it 
goes to next stable state a. We represent state variables by 
P and Q, the corresponding feedback variables are repre
sented by p and q respectively. 

Design Equations and Circuit Diagram 

We use Kama ugh map to get expression of state variables 
P and Q as a function of input A,B and feedback variables 
p and q. The equations derived from Kamaugh map are 
shown in Fig. 11.32. The equation of outputX is generated 
from P and Q as we use Moore model. The final circuit is 
developed from these equations and is shown in Fig. 11.33. 

a 

d 

e 

00 

0 
x4 

10 
00 
01 

a 

AB 

01 11 10 X 

0 d 0 0 

a 0 e 0 

x5 d 0 I 

(a) 

11 

(b) 

Reduced (a) State table, 
(b) State transition 
diagram 

11 

Modified state transition 
diagram 



Digital Principles and Applications 

AB 

p q 00 01 11 

00 @) @) 01 

01 X 00 @) 
11 10 X 01 

IO 00 X X 

(a) 

AB 

p q 00 01 11 
~ 

00 0 0 1 

01 X 0 1 

11 0 X 1 

IO 0 X X 
~ 

Q qA+AB 

(c) 

10 

@) 
11 

@ 
X 

10 

0 

1 

1 

X 

AB 

p q 00 

00 0 

- -01 X 

11 1 - -
10 0 

01 11 

0 0 

0 0 

X 0 

X X 

P=qB 

(b) 

m
QO 1 

0 0 0 

1 0 l 

X=PQ 

(d) 

JO 

0 

- I-

1 

1 
~ I-

X 

(a) Reduced state diagram from fig. 11.27, (b)-(d) Karnaugh map and 
design equations 

It is left to the reader to analyze this circuit A ~----r, 
and verify the timing diagram shown along with 
the problem statement. Now, that we have seen 
all the steps in asynchronous sequential logic de
sign we are in a position to appreciate how com
plex the process is compared to synchronous se
quential logic design. Thus the later is preferred 
if issues like speed, clock skew, etc. are not of 
critical importance. 

Design an asynchronous 
sequential logic circuit for state 
transition diagram shown in 
Fig. 11.34. 

S<ilution ••.• J]etthetW°:input v~.~bl;~h~t#;a A and b' 
in order. Figure lL35a:shows state tabfo tnrougI1Karnat1gh 
map. Since the state transition diagram has two states we 
need one (log

2
2) output feedback serving as memory. Let 

the output variable be tenned X and its feedback x. lf we 
represent current state a as x = 0 and b as x = I then output 

00 
01 

X 

Circuit diagram of asynchronous 
sequential logic for the problem 
in fig. 11.23 

10 
11 

00 

01 
10 
11 

State transition diagram for 
Example 11.8 



Design of Synchronous and Asynchronous Sequential Circuits 

Xcan be expressed as shown in Fig. 11.35b. The asynchronous sequential logic circuit drawn from design equation 
is showniri Fig. ll.35c. 

16. What is a primitive :flow table? 
17. What is an incompletely specified table? 
18. What is a dummy variable? 
19. What is the advantage · and · disadvantage of . asynchronous over. synchronous sequential 

circuits? 

ll.11 fSM IMPLEMENTATION.IN HDl 

We shall conclude our discussion on HDL showing how one can represent a Finite State Machine (FSM) in 
HDL. We take up the Mealy Model shown in Fig. 11.2b as illustration and the code is given next. Note that, 
we have introduced two variables Clock and Reset, which is not explicit in the figure. The clock is used for 
synchronous state transition of the circuit ( at negative edge) and active low asynchronous Reset is used to 
initialize the circuit to state a. 

module 

output Y; 

regY; 
reg[l:O] PS,NS; 
parameter , b=2f 

if 
else if 

(negedge 



Digital Principles and Applications 

always.@ (PS or X} //Determines output which is 
if (PS==c && X==O) Y=l; //state and present input as 
el.se Y=O; 

End.modul.e 

both on 
Mealy Model 

We have defined each state by an equivalent binary number through keyword parameter. The first always 
block does state change at negative edge of clock when Reset is held HIGH. The second always block 
decides what will be next state if current state and current input is in some combination. The third always 
block decides output based on current state and current input. Note that all these assignments follow the 
conditions stated in FSM Mealy model of Fig. 11.2b. 

Now let us try to test this circuit by feeding an input X = 0 IO 11001101 (first value of X fed is O as if data 
is coming from right) by creating a test bench and appending it to above code. Let us verify whether the 
circuit can detect pattern '110' (as data is considered to come from right) and generate appropriate output. 
The following test bench can generate such pattern and the output is plotted against clock and input X in the 
subsequent timing diagram, obtained from Verilog simulation. 

(); 
reg 
wire Y; 
initial. 
begin Reset 0; //Initial value 
X=O; II input is Oat start 
#10 Reset 

X=l; #20 X=l; #20 X=l; 
X=O; #20 X=O; #20 X=l; #20 X=l; 
X=O; #20 

end 
II Clock generator follows 
initial 

begin 
Clock= l'bO; 
repeat (21) 

inverts at every lOns so 

at 
of 10 ns 

f:i::om 30 ns. 

no 
end 

MealyFSM 
end.modul.e 

of clock comes at even multiple of 10 ns 

I ~n~ 
testMealy.Y 

testMealy.Clock 

testMealy.Reset 

testMealy.X 



Design of Synchronous and Asynchronous Sequential Circuits 

Find from the timing diagram X = 0 up to 30 ns from start and remains 1 till 50 ns and so on. Clock 
negative edge comes at 20 ns, 40 ns etc. When X remains 1 at two negative edges of clock and a O follows 
like in between 110-120 ns Y = 1 and similarly between 190-200 ns. Y = 0 elsewhere and this is what the 
FSM is supposed to perform, i.e. detect '11 O' ( data from right, if from left 'O 11 ') that is input bit 1, followed 
by another 1 followed by 0. 

Give Verilog HDL description of the Moore Model shown in Fig. 11.2a 

Solution 

module MooreFSM(X, Clock,Reset,Y); 

input X,Clock,Reset; 
output Y; .reg Y; 
.reg 1:0] PS,NS; Present State, NS Next State 
parameter a=2'b00, c=2'bl0, d=2'bll; //Four states given binary value 
always@ (negedge Clock o.r negedge.Reset) //Reset or state 

if (-Reset) PS=a; 

else 
always@ o.r X) next state 

if. {PS==a 

else 
else if (PS==b 

else if (PS==b 

else if ( 

else if (PS==c 

else if {PS==d 

else if 
always @ (P&) 

if 
else Y=O; 

endmodule 

&& 
&& 
&& X==lJ 
&& ) 

&& X==l) 

&& X==O) 

NS=a; 

NS=c; 
NS=d; 

NS=c; 

NS=a; 

output which is dependent only on 
state due to Moore Model 

We conclude our discussion on HDL here. The objective had been to make one get started with basics 
of HDL design. Dedicated books and courses deal with this subject in greater details. One should note that 
free or student version of Verilog compliler has limited ability and trial full versions are free only for the 
trial period. Also the hardware device on which the design is exported is not cheap. It is thus not useful for 
simple design problem except for finding functional error through simulation. But it definitely is cheaper and 
convenient if one considers a large complex design problem. The hardware devices commonly used to load 
HDL codes are discussed in Section 13 .6 of Chapter Memory. 

PROBLEM SOLVING WITH MULTIPLE METHODS 

Apart of the simplistic digital control unitofahypotheticalAutomatic Teller Machine (ATM) 
works like this. The ATM senses ATM card insertion by assertion of an input!. A correct typing 
of Personal Identification Number (PIN) is sensed by P. Transaction is done by asserting 



Digital Principles and Applications 

TR and card return by CR is if P = 1. If the process is cancelled by pressing push button 
'Return' that asserts R, transaction does not take place but card is returned. Ifnot cancelled, 
the user gets two more opportunities to enter PIN. But third incorrect entry locks the card 
by asserting CL. 

Solution The input and output variables assertions are as follows. 

Input: 

Output: 

Card inserted I = I, Card not inserted I= 0. 

'Return' button pressed R = l, 'Return' button not pressed R = 0. 
PIN correctly entered P = I, PIN incorrectly entered P = 0. 

Card to be returned CR.=. l, Card not to be returned CR =O. 

Transaction allowed TR = 1, Transaction notallowed TR= 0. 

Card to be locked = 1, Card not to be lo:eked 0. 

In Method-1, we make use of Moore Model andASM chart which is shown in Fig. 1L36, 
We find there are six rectangular boxes or six states (a to j). Thus,jtrequires thr<!e flip,.fiops which 

can handle up to eight states. The three inputs and three present states of flip-flops would requirelol3l 3 
+ 3 = 6 variable Karnaugh Map for design. The ROM-Delay flip-flop approachmay thus be preferred. 

Let the state assignme11ts of three flip-flops, B, and A be as follows 

a: CBA = 000, b: CBA = 001, c: 010, 

d: CBA =011, e: CBA = WO, 

Since, it is a Moore Model,. the output corresponding to each state 

: CR = O,TR CL O b : 0, CL= 0 
c : CR = 0, 0~ CL = 0 d: CR TR = 0, £'£ = 1 
e:CR TR=O, ""o CR=l,TR=l, =O 

Then the state transition table can be as given in U.37. 

Tll!ee l?:esent states.and three inputs ~all for a 6to 64 decoder. Three next states requireastorage of 
thi:e~ bits in eachROM address, Thus this implementation will require 3 flip-flops, one 6 to 64 decoder 
and one 64x 3 ROM. 

T~e. Olltputsa:e qerived from present.state, . flip~flops.i11aMoore ~odet The combinatorial cir-, 
cuit req1.tired for thj.s is arrived fro111Kllrnimgh Maps presented in fig, 11) g. 

The fini:1] r<!#iZ<ttionj~ sh,own iµ Fig.1L39. 
Note that the requirement for decoder, ROM, etc. can be reduced noting that not all 64 cotnbinations 

are required for the solution, e.g., 0, no matter what the other values are,. the circuit remains in 
state a. 



_________ D_e_si_gn_o_f_Sy_n_ch_ro_n_o_us_a_n_dA_s_y_nc_h_ro_no_u_s_Se_q_ue_n_tia_l_C_irc_u_its ________ (gj) 

CR =O 
TR =O 
CL=O 

CR= 1 
TR=O 
CL=O 

e 

y 

y 

y 

y 

CR=O 
TR=O 
CL=O 

CR=O 
TR=O 
CL=O 

CR=l 
TR=O 
CL= 1 

CR=l 
TR= 1 
CL=O 

ASM chart for Moore Model: Solution using Method-1 



Digital Principles and Applications 

Present State Input Next State 

Cn Bn An I R p Cn+1 Bn+1 An+t 

a: 0 0 0 0 X X 0 0 0 

a: 0 0 0 1 0 0 0 0 1 

b: 0 0 1 1 1 X 1 0 0 

b: 0 0 1 1 0 1 1 0 1 

b: 0 0 1 1 0 0 0 1 0 

c: 0 1 0 1 1 X 1 0 0 

c: 0 1 0 1 0 1 1 0 1 

c: 0 1 0 1 0 0 0 1 1 

d: 0 1 1 X X X 0 0 0 

e: 1 0 0 X X X 0 0 0 

f: 1 0 1 X X X 0 0 0 

State Transtion Table for Moore Model: Solution using Method-1 

BA BA BA 
C 00 01 11 10 C 00 01 11 10 C 00 01 11 10 

0 0 0 0 0 0 0 0 
r-, 
I 1 I 

I 
0 0 0 0 0 0 

--, 
'x' 

r-- --1 

:_I_ X X 1 0 0 ~-J X 0 I 1 ~XI X 
--- __ I '-- --J 

CR C CL=BA TR=CA 

Combinatorial Logic for Moore Model: Solution using Method-1 

We find there are three rectangular boxes or three states (a to c). Thus it requires two flip-flops which 
can handle up to four states. We continue with the ROM~Delay flip~flop approach, 

Let the state assignments of two flip-flops, say B and A be as follows 

a: BA = 00, b: BA = 01, c: BA = IO 

Then the state transition table can be as givenin Fig. 11.4 L 

Two present states and three inputs call for a 5 to 32 decoder. Two next states require storage of 
two bits and in each ROM address. The three outputs can also be directly generated from ROM which 
require additional three bits in each location.Thus thls implementation will require 2 flip-flops, one 5 
to 32 decoder and one 32 x 5 ROM. The final.realization is slmwn in Fig. 11.42. 

Other Methods: As already mentioned, both Moore and Mealy Model can be realized by flip-flops 
and combinatorial circuits, as done for vending machine problem in Fig. 11. ll. But this becomes 
cumbersome when the problem is relatively more complex with Karnaugh Map requiring solution for 
more than four variaple~. ButJhen, QM algorithmcan be used forwl1ichcomputer code also exists. The 
state transition diagram is avoided here as for larger number of input variables, every node will have 
too many branches spreadiµg out, making the diagram very complex. 



Design of Synchronous and Asynchronous Sequential Circuits 

000000 000 

000100 001 

001100 010 
001101 1 0 1 
OOlllO 100 

I- 001111 I O 0 

R-
010100 0 1 1 
010101 1 0 1 

P- 010110 I O 0 
010111 100 
011000 XXX 

111111 XXX 

CQ D 

Q CK< t--

I BQ D \ 

Q CK< ._ 

AQ D 

Q CK< -
~ ~ 

Clock 

CR TR CL 

Realization using ROM: Solution using Method-1 



(;) ______________ D....cig_ita_l_P_rin_c_ip_le_s_a_nd_A_p-'-p_lic_a_ti_on_s ____________ _ 

CR= 1 
TR=O 
CL=O 

y 

y 

y 

y 

y 

y 

y 

CR= 1 
TR= 1 
CL=O 

ASM chart for Mealy Model: Solution using Method-2, *represents 
CR = 0, TR = O, CL = 0 



_________ o_e_si_gn_o_f_S_yn_c_h~_on_o_u_s_an_d_A_sy'-n_ch_ro_n_o_us_S_e_;q_ue_n_tia_l_C_irc_u_its _________ fgi) 
Present State 

Bn An 

a: 0 0 

a: 0 0 

a: 0 0 

a: 0 0 

b: 0 1 

b: 0 1 

b: 0 1 

c: 1 0 

c: 1 0 

c: 1 0 

Input Next State Output 

I R p Bn+1 An+1 CR TR 

0 X X 0 0 0 0 

1 0 0 0 1 0 0 

1 0 1 0 0 1 1 

1 1 X 0 0 1 0 

1 0 0 1 0 0 0 

1 0 1 0 0 1 1 

1 1 X 0 0 1 0 

1 0 0 0 0 0 0 

1 0 1 0 0 1 1 
1 1 X 0 0 1 0 

State Table for Mealy Model: Solution using Method-2 

00000 

00100 
00101 
00110 
00111 

01100 
1- 01101 

OlllO 

R- 01111 

10100 
P- 10101 

10110 
10111 
11000 

11111 

BQ D 

Q CK< 

AQ D 

Q CK< 

~ 

'--

Clock 

00000 

01000 
0 0 1 1 0 
00100 
00100 

10000 
0 0 I 1 0 
00100 
00100 

00001 
0 0 I 1 0 
00100 
00100 
XX,-XXX 

xxxxx 

L CL 

TR 

CR 

Realization using ROM: Solution using Method-1 

CL 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 



Digital Principles and Applications 

The most popular sequential logic circuit design uses an external clock for triggering and the state changes 
occur synchronously with clock. In Moore model, such design output is derived directly from state outputs, 
also called secondary outputs. In Mealy model, output is generated from primary or actual input to circuits 
and secondary inputs. Word or timing description of a problem is first converted to state transition diagram 
or ASM.chart followed by state synthesis table. In one implementation circuit can.be realized using any 
type of flip-flop using flip-flop excitation table and excitation map. In other ROM and delay flip-flops 
are used where ROM stores the next state information. State reduction techniques are. used to remove 
redundant states thereby can reduce the circuit complexity. Asynchronous system is not dependent on 
any external clock thus operates at a higher speed. But the circuit reacts to any and every change in the 
inputs and are prone to problems like racing, oscillations and different types of hazards. Design of such 
circuits are much more difficult compared to synchronous circuit and are attempted only for time critical 
applications where a very fast response to any input changeis required. 

• ASM chart a flow chart describing state 
transition with timing information 

• asynchronous sequential circuit not 
synchronous with any external clock 

• critical race leads to two different outputs of 
circuit depending on which feedback variable 
changes earlier 

• dummy variable an additional variable 
preventing simultaneous change of two state 
variables in asynchronous sequential circuit 

• essential hazard a condition when following 
an input change, one feedback variable tries to 
change the output before the other part of the 
circuit could respond to change in input. 

• excitation map relationship that gives design 
equation for flip-flop inputs 

• incompletely specified table state table where 
some of the next state or output or both remain 
unspecified. 

• Mealy model where output depends both on 
state variable and input 

• Moore model where output depends only on 
state variables 

• non critical race leads to same output 
irrespective of propagation delay in a race 
condition 

• oscillation circuit moving between two 
unstable states 

• primitive flow table that directly maps state 
transition diagram in a state table where each 
row has only one stable state. 

• racing a condition when more than one 
feedback variables try to change its value 

• ROM Read Only Memory 
• state memory values of a sequential circuit 
• state transition diagram depicts state 

transition of a circuit pictorially 
• synchronous sequential circuit works 

synchronously with external clock trigger 
• state synthesis table state transition and flip

flop input description that leads to synthesis of 
sequential logic circuit 



11.1 

11.2 

11.3 

11.4 

11.5 

11.6 

11.7 

11.8 

Design of Synchronous and Asynchronous Sequential Circuits 

Draw state transition diagram of synchronous 
sequential logic circuit using Mealy model 
that detects three consecutive zeros from an 
input data stream, X and signals detection by 
making output, Y = 1. 
Convert Mealy model of Problem 11.1 to 
Moore model using conversion rules. 
Using Moore model draw state transition 
diagram of a serial parity checker circuit. If 
the number of' 1 's received at input Xis even, 
parity checker output, Y = 0. If odd number of 
'1 's are received at X then Y = 1. 
Convert Moorem model of Problem 11.3 to a 
Mealy model. 
Using Moore model draw state transition 
diagram of the circuit that generates a single 
pulse of width equal to clock period when 
enabled by E = 1. The circuit is reset by E = 0 
at any stage. 
Draw state transition diagram of sequence 
detector circuit that detects '1101' from input 
data stream using both Mealy and Moore 
model. 

For Mealy model state trans1t1on diagram 
of sequence detector problem shown in Fig. 
11.2b use following state assignment and get 
corresponding state synthesis table for JK flip
flop based solution. 

a: B = 0, A = 0 b: B = 0, A = 1 

c: B= l,A = 1 

For Mealy model state transition diagram 
of sequence detector Problem shown in Fig. 
11.2b use following state assignment and get 
corresponding state synthesis table for JK flip
flop based solution. 

a: B = 0, A = 0 b: B = 0, A = I 
c: B= 1,A = 1 d: B= 1,A=O 

11.9 Give design equations for Problem 11.7. 
Compare this with solution given in Section 
11.4. 

11.10 Give design equations for Problem 11.8. 
Compare this with solution given in Section 
11.4. 

11.11 Give design equations for Problem 11.1 for 
implementation with D flip-flops. 

11.12 Implement circuit diagram for Problem 11.1 
using JK flip-flops. 

11.13 How many memory elements are necessary 
for Mealy and Moore models in sequence 
detector Problem 11.6. 

11.14 Implement (a) parity checker circuit of 
Problem 11.3 and (b) single pulse generator 
circuit of Problem 11.5. 

11.15 Show how using an additional column in 
ROM the combinatorial circuit ofFig. 11. 7 for 
sequence detector problem can be dispensed 
with. 

11.16 Implement ROM based solution for Problem 
11.6 where output is directly . derived from 
ROM. 

11.17 In vending machine problem of Section H.6 
we want to add an additional function. We give 
the customer an option to get back the coins 
he has deposited if he finds himself short of 
money or changes his mind midway. However, 
this function does not work if the cost of the 
product is reached. A push button switch, P is 
used for this which when pressed generates P 
= l and returns the coin deposited thus far by 
activating C = · 1. Show what changes in ASM 
chart of Fig. 11.10 are necessary for this. 

11.18 Draw ASM chart for Problem 11.5 and 
implement the circuit using ROM. 

11.19 Find the minimum number of states necessary 
to represent following state table both by row 
elimination and implication table method. 



~ ______________ D-'ig'-it_al_P_ri_nc-'ip_le_s_a_n_d_A_pp_h_·ca_tt_·o_ns ____________ _ 

Present State Next State Present Output 
X=O X= l 0 X=I 

a f d 1 
C f l 

C f b 1 l 
d e g 1 1 
e a d I 1 
f g b 0 1 
g a d 0 1 

11.20 Reduce following state table using implication 
table method. 

Present State Next State Present Output 

X=O X= l ·x=o X=1 

a h C 0 
b C d 
C h b 

f h 
e C f l 
f f g 0 
g g C 0 
h a C 0 

11.21 State the condition of stability in asynchronous 
sequential logic. 

11.22 One of the two inputs of a two input NOR 
gate is fed back from the output. Write its state 
stable and encircle stable states, if any. 

11.23 For state table in Problem 11.30 show the 
stable states, if any. 

11.24 For state table in Problem 11.30 show how the 
circuit behaves when xy = 11 and A changes as 
1~0. 

11.25 There are three inputs A, B and C to an 
asynchronous sequential logic system. If ABC 
= 111 . at any given timc- write the allowed 
combination of inputs that can follow. 

11.26 Draw state table of adjacent asynchronous 
sequential logic circuit. 

11.27 When does oscillation occur in an asynchro
nous sequential logic circuit? 

11.28 

11.29 

11.30 

How can essential hazard be prevented in 
asynchronous sequential logic circuit? 

There are two inputs A, B and three feedback 
outputs x, y and z of an asynchronous sequen
tial logic system. If xyzAB = 10011 gives a 
stable state and input AB changes as 11 ~ 10, 
which of the following next state does not 
give racing problem - 10110, 00110, 11010, 
00010 and 11110? 

Find out potential problems in following state 
table where A is input and x and y are output 
feedbacks. 

xy 
A 

0 

I 

00 

01 

00 

01 11 10 

00 10 10 

01 11 01 

11.31 The Tflip-flop has a single input T, and single 
output Q. For T= 0, output does not change. 
For T= 1, output complements and remains at 
that value as long as T= 1. Draw its (a) state 
diagram and (b) primitive flow table. 

11.32 For Problem 11.31, use state reduction 
technique to check if a reduced flow table is 
possible. 

11.33 Find design equations for Problem 11.31 after 
appropriate state assignment. 

11.34 Design a parity generator using asynchronous 
sequential logic that gives output = 1 when it 
receives odd number of pulses and output = 0 



Design of Synchronous and Asynchronous Sequential Circuits 

if the number of pulses received is even. 
(Hint: State transition diagram is same as 
Problem 11.31.) 

11.35 Draw state transition diagram of a modulo-3 
· counter for asynchronous sequential logic. The 

counter counts number of pulses appearing at 
its input and generates output = 1 when three 
pulses arrive else output= 0. 

11.36 Design modulo-3 counter stated in Problem 
11.3 5 using asynchronous sequential logic. 

AtM: The.·. aim of.this experiment is to 
implement a Moore Model and a Mealy Model 
for a sequence detector that detects a sequence 
'11 O' from the incoming data stream. 

X 

11.37 We require a circuit which will suppress 
narrow positive spikes on a signal line. The 
output of the circuit will be an inverted and 
slightly delayed version of the input minus the 
spikes. Construct the primitive flow table and 
show one state assignment scheme. 

11.38 Get design equations for Problem 11.37 and 
implement the circuit. Verify how it does 
noise suppression. 

A 

1 

Theory: The Moore Model generates final 
output solely from flip-flop states while 
Mealy Model can use input data too .. Moore 
Model, usually takes more hardware· but in 

B 
y 

Ii 

y 

B 



Digital Principles and Applications 

Mealy Model, unwa)lted. fluctuations .. in input 
get directly reflected· at the . output. Section 
I L7 of the book explains the• design. of these 
models>apd reprod.uces the circuits to be 
implemented. 

Apparatus: +5V DGPower supply, Multi
meter, Bread I3oard, Clock Generator, and Os
cilloscope. 

Work element: Connect the circuit as 

L State transition diagran1is a visualdescription 
of how state of sequential circuit change in 
each clock cycle. 

2. In Moore machine, outpufis associated with 
a· state and writteninside a circle. In Mealy 
machine it is assopiatedwith inputand -written 
along the arrow-headedtrfl)lsifion.path ••.. 

3. Excitation map is Karnaugh fl'!ap repre:sen
tation·.of flip-flop. inputs in.terms of present 
state and present circuit input that gives de" 
sign equations forflip-flops. 

5. 

Moore model normally reqµireffiorehardware 
as it needs more number of states todescribe 
a probletn. 

Clock Input 
Cycle 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

sh()wn. Yo.u can manually give input; or a 
counter can be used to generate a rypetitive 
sequence thatco)ltain$ 'llQ',Cheqkthepµtput. 
For mantml input, checkthe perform.inc~ for 
both the ¥odels wllen debounce swit<ih is 
used and whellitis not used.. Learn to debug 
the circuit by verifying. outputs of ind.iyid.ual 
building blocks say flip-flops and logfogates 
for diffen.!nt inputs. 

6. 'Thl:l. excitation table and . excitation .map 
pf Jiip7flops . are not 11sed .··in.·· ROM base~ 
implementation: Flip~flops used there only 
:for. the purpose of delaying information·. by 
one clockperiod. 

7. The output same for Moore and Mealy 

9. 

modl:l.ls and same as Mealy output of Q. 5. 

,A.Sl\lI c~art is fl~w chart .typl:l · repreSl:lI1tation 
of sequential logic circuit with better time 
indexation. 
Implication table is a mappillg of state 
variables th.it identifit!s state redundancy 
easily. 
Partition·. tables partitions·· state variables in 
groups which consists of equivalent 
variables. 
By this, the redundanfstates can be removed. 
'This in tilQ1 reduces hardware requireme:nt 
Output change is based on change in input 
level. 
Not more than one input catlchange at a 
time . 
.R,ai::ing occurs when an inputc~ange triesf() 
change · more than· one feedback variables. 



Design of Synchronous and Asynchronous Sequential Circuits 

Depending on which changes earlier. the 
circuit may stabilize in two different states of 
the · · ti cal race. Ifitstabilizes 

Non~criticalrace; 
15. whenfollowing an input 

change, one .. feedbacksYm~o,1~,triest? ch~g~ 
the output before the ~ther p~fo~ the. ~ircttit 
could respond to change in input. · 

16. This directly maps state trrusjti~~ ,a~ip 
in a state table where each rowhas<inlyone 
stable state. 

17. State table where some of the next state or 
output or both remain unspecified. 

18. An additional variable, which is not required 
as• such but prevents simultatteous chatlge of 
two state variables in asynchronous sequential 
circuit 
~s,>11chron.o,s circuit does not depend on 
clock trigger, hence faster. But there are 
s,ev~ral practical. constraints that makes 
design of such circuit very complex. 



D/ A Conversion and 
AID Conversion 

+ Be able to do calculations related to variable resistor and binary ladder networks 
+ Recall some of the sections of a typical DIA converter and calculate DIA resolution 
+ Understand AID conversion using the simultaneous, counter, continuous, and dual-

slope methods 
+ Discuss the accuracy and resolution of AID converters 

Digital-to-analog (DI A) and analog-to-digital (AID) conversion form two very important aspects of digital 
data processing. Digital-to-analog conversion involves translation of digital information into equivalent 
analog information. As an example, the output of a digital system might be changed to analog form for the 
purpose of driving a pen recorder. Similarly, an analog signal might be required for the servomotors which 
drive the cursor arms of a plotter. In this respect, a DI A converter is sometimes considered a decoding 
device. 

The proces~ of changing an analog signal to an equivalent digital signal is accomplished by the use of an 
AID converter. For example, an AID converter is used to change the analog output signals from transducers 
(measuring temperature, pressure, vibration, etc.) into equivalent digital signals. These signals would then be 
in a form suitable for entry into a digital system. An AID converter is often referred to as an encoding device 
since it is used to encode signals for entry into a digital system. 

Digital-to-analog conversion is a straightforward process and is considerably easier than AID conversion. 
In fact. a D1 A convener is usually an integral part of any AID converter. For this reason, we consider the DI A 
co11Yt::rs1on process first. 



DIA Conversion and AID Conversion 

12.1 VARIABLE, RESISTOR NETWORKS 

The basic problem in converting a digital signal into an equivalent analog signal is to change the n digital 
voltage levels into one equivalent analog voltage. This can be most easily accomplished by designing a 
resistive network that will change each digital level into an equivalent binary weighted voltage ( or current). 

Binary Equivalent Weight 

As an example of what is meant by binary equivalent weight, consider the truth table 
for the 3-bit binary signal shown in Fig. 12.1. Suppose that we want to change the eight 
possible digital signals in this figure into equivalent analog voltages. The smallest 
number represented is 000, let us make this equal to O V. The largest number is 111: let 
us make this equal to +7 V. This then establishes the range of the analog signal to be 
developed. (There is nothing special about the voltage levels chosen; they were simply 
selected for convenience.) 

Now, notice that between 000 and 111 there are seven discrete levels to be defined. 
Therefore, it will be convenient to divide the analog signal into seven levels. The 
smallest incremental change in the digital signal is represented by the least-significant 

0 
0 
0 
0 
1 
l 
1 
1 

0 
0 
I 
1 
0 
0 
1 
1 

0 
I 
0 
I 
0 
I 
0 
1 

bit (LSB), 2°. Thus we would like to have this bit cause a change in the analog output that is equal to one
seventh of the full-scale analog output voltage. The resistive divider will then be designed such that a 1 in the 

I 
2° position will cause + 7 x 7 = + 1 V at the output. 

Since 21 = 2 and 2° = 1, it can be clearly seen that the 21 bit represents a number that is twice the size of the 
2° bit. Therefore, a l in the i bit position must cause a change in the analog output voltage that is twice the 
size of the LSB. The resistive divider must then be constructed such that a 1 in the 21 bit position will cause 

2 .• 
a change of +7 x 7 = +2 V m the analog output voltage. 

Similarly, 22 = 4 = 2 x 2 1 = 4 x 2°, and thus the 22 bit must cause a change in the output voltage 

equal to four times that of the LSB. The 22 bit must then cause an output voltage change of +7 x ~ = +4 V. 

The process can be continued, and it will be seen that each successive bit must have a value twice that of 

the preceding bit. Thus the LSB is given a binary equivalent weight of~· or I part in 7. The next LSB is given 
2 

a weight of 7 , which is twice the LSB, or 2 parts in 7. The MSB (in the case of this 3-bit system) is given a 
4 

weight of 7 , which is 4 times the LSB or 4 parts in 7. Notice that the sum of the weights must equal 1. Thus 
I 2 4 7 

7 + 7 + 7 = 7 = 1. In general, the binary equivalent weight assigned to the LSB is 1 /(2n - 1 ), where n is the 
number of bits. The remaining weights are found by multiplying by 2, 4, 8, and so on. Remember, 

LSB weight= (2,, - l) 

Find the binary equivalent weight of each bit in a 4-bit system. 

Solution The LSB has a weight of l/(24 - 1) = l/( I 6 - I) = ~, or 1 part in 15. The second LSB has a weight of 2 x 

1
~ = 1

2
5 • The third LSB has a weight of 4 x 

1
1
5 

= -~, and the MSB has a weight of 8 x 1~ = ts . As a check, the sum 

of the weights must equal 1. Thus 
1
~ + 1~ + 

1
~ + 

8 !~ = I. The binary equivalent weights for 3-bit and 4-bit systems 
are summarized in Fig. 12.2. 



Digital Principles and Applications 

Bit Weight Bit Weight 

20 1/7 20 1/15 
21 2/7 21 2/15 
22 4/7 22 4/15 

23 8/15 

Sum 7/7 Sum 15/15 

(a) (b) 

Binary equivalent weights 

Resistive Divider 

What is now desired is a resistive divider that has three digital inputs and 
one analog output as shown in Fig.12.3a. Assume that the digital input 
levels are O = 0 V and 1 = +7 V. Now, for an input of 001, the output will 
be + 1 V. Similarly, an input of O 10 will provide an output of+ 2 V and an 
input of 100 will provide an output of +4 V. The digital input O 11 is seen to 
be a combination of the signals 001 and 010. If the+ 1 V from the 2° bit is 
added to the + 2 V from the 21 bit, the desired + 3 V output for the 22 

011 input is achieved. The other desired voltage levels are shown 
in Fig. 12.3b; they, too, are additive combinations of voltages. 

20 
Analog 

21 

22 
output 

(a) 

Digital input Analog output 

0 0 0 +OV 
0 0 1 +l V 
0 1 0 +2V 
0 1 1 +3 V 
I 0 0 +4V 
1 0 1 +5V 
1 1 0 +6V 
1 1 1 +7V 

(b) 

Thus the resistive divider must do two things in order to change 
the digital input into an equivalent analog output voltage: 

1. The 2° bit must be changed to + I V, and 21 bit must be 
changed to +2 V, and 22 bit must be changed to +4 V. 

'-------------Analog 

2. These three voltages representing the digital bits must be 
summed together to form the analog output voltage. 

A resistive divider that performs these functions is shown in 
Fig. 12.4. Resistors Ro, R1, and R2 form the divider network. Re
sistance RL represents the load to which the divider is connected 
and is considered to be large enough that it does not load the divider network. 

Assume that the digital input signal 001 is applied to this network. 
Recalling that O = 0 V and 1 = + 7 V, you can draw the equivalent 
circuit shown in Fig. 12.5. Resistance RL is considered large and is 
neglected. The analog output voltage VA can be most easily found by 
use of Millman's theorem, which states that the voltage appearing 
at any node in a resistive network is equal to the summation of the 
currents entering the node (found by assuming that the node voltage 
is zero) divided by the summation of the conductances connected to 
the node. In equation form, Millman's theorem is 

V = Vi I R1 + V2 I R2 + V3 I R3 + · · · 

1/ R1 + 1/ R2 + 1/ R3 + · · · 

Vo 
+7 V 

output 



DIA Conversion and AID Conversion 

Applying Millman's theorem to Fig. 12.5, we obtain 

Vol Ro+ Vil(Rol2) + Vzl(Ro/4) 
VA=------------

1/ R0 + l/(R0 /2) + ll(Ro/4) 

= ___ 7_!~~--= 2 = + 1 V 
11 R0 + 2/ R0 + 4/ R0 7 

Drawing the equivalent circuits for the other 7-input combinations and applying Millman's theorem will 
lead to the table of voltages shown in Fig. 12.3 (see Prob. 12.3). 

To summarize, a resistive divider can be built to change a digital voltage into an equivalent analog voltage. 
The following criteria can be applied to this divider: 

1. There must be one input resistor for each digital bit. 
2. Beginning with the LSB, each following resistor value is one-half the size of the previous resistor. 
3. The full-scale output voltage is equal to the positive voltage of the digital input signal. (The divider 

would work equally well with input voltages of O and -V.) 
4. The LSB has a weight of 1/(211 1 ), where n is the number of input bits. 
5. The change in output voltage due to a change in the LSB is equal to V/(211 1), where Vis the digital 

input voltage level. 
6. The output voltage VA can be found for any digital input signal by using the following modified form 

ofMillman's theorem: 

V _ Vo2°+v;21 +V22 2 +V:i23 +-··+V,,_,2n-l 
A - 2 11 -1 ( 12.1) 

where V0, V1, V2, V3, . •• , V,1-I are the digital input voltage levels (0 or V) and n is the number of input bits. 

Solution 

For a 5-bit resistive divider, determine the following: (a) the weight assigned to the LSB; (b) 
the weight assigned to the second and third LSB; (c) the change in output voltage due to a 
change in the LSB, the second LSB, and the third LSB; ( d) the output voltage for a digital 
input of 10101. Assume O = 0 Vand 1 = + 10 V. 

(a) The LSBweight is 1/(25 1) = l/3L 
{b) The second LSB weight is 2/31, and the third LSB weight is 4/31. 
(c) The LSB causes a change in the output voltage of 10/31 V. The second LSB causes an output voltage change of 

20/31 V, and the third LSB causes an output voltage change of 40/31 V. 
(d) The output voltage for a digital input of 10101 is 

VA= 10 x 2° + 0 x 21 + 10 x 22 +0 x2
3 

+ 10 x2
4 

.,-.1 

= 10(1+4+16) 210 =+ 6_77 V 
32-1 31 

This resistive divider has two serious drawbacks. The first is the fact that each resistor in the network has 
a different value. Since these dividers are usually constructed by using precision resistors, the added expense 
becomes unattractive. Moreover, the resistor used for the MSB is required to handle a much greater current 
than that used for the LSB resistor. For example, in a 10-bit system, the current through the MSB resistor is 



Digital Principles and Applications 

approximately 500 times as large as the current through the LSB resistor (see Prob. 12.5). For these reasons, 
a second type of resistive network, called a ladder, has been developed. 

1. What is the LSB weight of a 6-bit resistive ladder? 
2. What is the value of VA inExample 12.2 if the MSB is O? 

12.2 BINARY LADDERS 

The hina,y ladder is a resistive network whose 
output voltage is a properly weighted sum of the 
digital inputs. Such a ladder, designed for 4 bits, 
is shown in Fig. 12.6. It is constructed of resistors 
that have only two values and thus overcomes one 
of the objections to the resistive divider previously 
discussed. The left end of the ladder is terminated 
in a resistance of 2R, and we shall assume for the 

2R 

\l\r---\1 11,.-...--..... VA 
D 

moment that the right end of the ladder (the output) Binary ladder 
is open-circuited. 

Let us now examine the resistive properties of the network, assuming that all the digital inputs are at ground. 
Beginning at node A, the total resistance looking into the terminating resistor is 2R. The total resistance 
looking out toward the 2° input is also 2R. These two resistors can be combined to form an equivalent resistor 
of value Ras shown in Fig. 12.7. 

21 22 23 

2R 

D 
VA 

i2 23 23 

2R 2R 

R R 
V:.1 

D 
VA 

-



_____________ D_VA_C_on_v_e_rs_io_n_a_nd_M_D_C_o_nv_e_rs_io_n _____________ (;) 

Now, moving to node B, we see that the total resistance looking into the branch toward node A is 2R, as is 
the total resistance looking out toward the 21 input. These resistors can be combined to simplify the network 
as shown in Fig.12.7. 

From Fig. 12.7, it can be seen that the total resistance looking from node C down the branch toward nodeB 
or out the branch toward the 22 input is still 2R. The circuit in Fig. 12.7 can then be reduced to the equivalent 
as shown in Fig. 12.7. 

From this equivalent circuit, it is clear that the resistance looking back toward node C is 2R, as is the 
resistance looking out toward the 23 input. 

From the preceding discussion, we can conclude that the total resistance looking from any node back 
toward the terminating resistor or out toward the digital input is 2R. Notice that this is true regardless of 
whether the digital inputs are at ground or +V. The justification for this statement is the fact that the internal 
impedance of an ideal voltage source is O Q, and we are assuming that the digital inputs are ideal voltage 
sources. 

We can use the resistance characteristics of the ladder to determine the output voltages for the various 
digital inputs. First, assume that the digital input signal is 1000. With this input signal, the binary ladder can 
be drawn as shown in Fig. 12.8a. Since there are no voltage sources to the left of node D, the entire network to 
the left of this node can be replaced by a resistance of 2R to form the equivalent circuit shown in Fig. 12.8b. 
From this equivalent circuit, it can be easily seen that the output voltage is 

v =Vx 2R = +v 
A 2R+2R 2 

Thus a 1 in the MSB position will provide an output voltage of +V/2. 

+V +V 

A:v, 
(b) 

(a) Binary ladder with a digital input of 1000, (b) Equivalent circuit for a 
digital input of 1000 

To determine the output voltage due to the second MSB, assume a digital input signal of O 100. This can 
be represented by the circuit shown in Fig. 12.9a. Since there are no voltage sources to the left of node C, 
the entire network to the left of this node can be replaced by a resistance of 2R, as shown in Fig. 12.9b. Let 
us now replace the network to the left of node C with its Thevenin equivalent by cutting the circuit on the 
jagged line shown in Fig. 12.9b. The Thevenin equivalent is clearly a resistance R in series with a voltage 
source +V/2. The final equivalent circuit with the Thevenin equivalent included is shown in Fig. 12.9c. From 
this circuit, the output voltage is clearly 

+V 2R +V 
VA=-X =-

2 R+R+2R 4 

Thus the second MSB provides an output voltage of +V/4. 



Principles and Applications 

+V 

2R 

V:1 
-

+V +V/2 

2R 2R 
2R R 

V:1 
C D 

VA 

-
(b) (c) 

(a) Binary ladder with a digital input of 0100, (b) Partially reduced 
equivalent circuit, (c) Final equivalent circuit using Thevenin's theorem 

This process can be continued, and it can be shown that the third MSB provides an output voltage of+ V/8, 
the fourth MSB provides an output voltage of+ V/16, and so on. The output voltages for the binary ladder 
are summarized in Fig. 12.10; notice that each digital input is transformed into a properly weighted binary 
output voltage. 

What are the output voltages caused by each bit in a 5-bit ladder if the input levels are O = 0 
V and I = +IO V? 

Solution The output voltages can be easily calculated by using 
Fig. 12.10. They are 

V +10 
FirstMSB VA ::::-=-=+5V 

2 2 

SecondMSB 

ThirdMSB 

+10 
Fourth MSB .• VA =--,- = -. = + 0.625 Y 

16 16 

V ·. +10 
LSB=fifthMSB V;1 =-=-. -. =+0.3125V 

32 32 

Bit 
position 

MSB 
2dMSB 
3dMSB 

4thMSB 
5thMSB. 
6thMSB 
7thMSB 

Binary Output 
weight voltage 

Binary. la~der 
output voltages 

Since this ladder is composed oflinear resistors, it is a linear network and the principle of superposition 
can be used. This means that the total output voltage due to a combination of input digital levels can be 
found by simply taking the sum of the output levels caused by each digital input individually. 



DIA Conversion and AID Conversion 

In equation form, the output voltage is given by 

V V V V V 
VA=-+-+-+-+···+-

2 4 8 16 2" 
(12.2) 

where n is the total number of bits at theinput. 

This equation can be simplified somewhat by factoring and collecting terms. The output voltage can then 
be given in the form 

(12.3) 

where V0, Vi, V3, ... , V,,_1 are the digital input voltage levels. Equation (12.3) can be used to find the output 
voltage from the ladder for any digital input signal. 

Find the output voltage from a 5-bit ladder that has a digital input of 11010. Assume that 
O=OVand I =+IOV 

'.fhlssoluti()n wn be .chei::ke.4 by aclding the indiviclualbit .~ntributions calculated. in Example .12.3. 

Notice thatEq. (12.3) is very similar to Eq. (12.1), which was developed for the resistive divider. They are, 
in fact, identical with the exception of the denominators. This is a subtle but very important difference. Recall 
that the full-scale voltage for the resistive divider is equal to the voltage level of the digital input l. On the 
other hand, examination ofEq. (12.2) reveals that the full-scale voltage for the ladder is given by 

VA = V (.!. + _!. + _!. + _!_ + · · · + _l ) 
2 4 8 16 211 

The terms inside the brackets form a geometric series whose sum approaches 1, given a sufficient number 
of terms. However, it never quite reaches 1. Therefore, the full-scale output voltage of the ladder approaches 
Vin the limit, but never quite reaches it. 

What is the full-scale output voltage of the 5-bit ladder in Example 12.4? 

Solution The fuU0scale voltage is sinlply the sum. of the individua[bit voltages. Thus 

V=.5+2.5 + L25 +0.625 +0.3125 +9.6875 V 

To keep the ladder in perfect balance and to maintain symmetry, the output of the ladder should be 
terminated in a resistance of 2R. This will result in a lowering of the output voltage, but if the 2R load is 
maintained constant, the output voltages will still be a properly weighted sum of the binary input bits. If the 
load is varied, the output voltage will not be a properly weighted sum, and care must be exercised to ensure 
that the load resistance is constant. 

Terminating the output of the ladder with a load of 2R also ensures that the input resistance to the ladder 
seen by each of the digital voltage sources is constant. With the ladder balanced in this manner, the resistance 



Digital Principles and Applications 

looking into any branch from any node has a value of 2R. Thus the input resistance seen by any input digital 
source is 3R. This is a definite advantage over the resistive divider, since the digital voltage sources can now 
all be designed for the same load. 

Suppose that the value of R for the 5-bit ladder described in Example 12.3 is 1000 Q. 
Determine the current that each input digital voltage source must be capable of supplying. 
Also determine the full-scale output voltage, assuming that the ladder is terminated with a 

load resistance of2000 n. 

Solution The input resistance into the ladder seen .by each of 
th~ digitalsources .is 3R = 3000 Q. Thus, for a voltage level of+ l 0 
V; each source must be capable of supplying I= 10/(3 x 103) = 3 
J_ mA. (wi1?out _the 2R load resistor, the resistance looking into the 
MSB tennmal 1S actually 4R). The no-load. output voltage of the 
ladder has already been determined in Example 125. This open
circuit output voltage along with the open-circuit output resistance 
cat1 be used to form aThevenin equivalent circuit for the output of 
tliefadder. The resista11ceJooking back into theladder is clearly R 
= 1000 Q. Thus theThevenin equivalent is as shown in Fig.12. JL 
From this figure, the output voltage is 

=+9.6875x lR .=+6.4583V 
2R+R 

Ladder Thevenin equivalent 
r-- - --------- I 

l R l 
: /\,---: ------
' I I I 
t 'f 
I I 
I I 
I I 
I I 
I I 
I I 
l I 

L----- ---------'- - j 

Example 12.6 

The operational amplifier (OA) shown in Fig. 12.12a is connected as a unity-gain noninverting amplifier. 
It has a very high input impedance, and the output voltage is equal to the input voltage. It is thus a good buffer 
amplifier for connection to the output of a resistive ladder. It will not load down the ladder and thus will not 
disturb the ladder output voltage VA; VA will then appear at the output of the OA. 

2n 

-15 
- Vdc 

(a) 

(b) 



DIA Conversion and AID Conversion 

Connecting an OA with a feedback resistor Ras shown in Fig. 12.12b results in an amplifier that acts as 
an inverting current-to-voltage amplifier. That is, the output voltage VA is equal to the negative of the input 
current I multiplied by R. The input impedance to this amplifier is essentially O n: thus, when it is connected 
to an R-2R ladder, the connecting point is virtually at ground potential. In this configuration, the R-2R ladder 
will produce a current output I that is a binary weighted sum of the input digital levels. For instance, the MSB 
produces a current of Vl2R. The second MSB produces a current of Vl4V, and so on. But th_e OA multiplies 
these currents by -R, and thus VA is 

VA =(-R)(2: +: +···)=-:-: -··· 
This is exactly the same expression given in Eqs. (12.2) and (12.3) except for the sign. Thus 

the DIA converter in Fig. 12.12a and b will provide the same output voltage VA except for sign. In 
Fig. 12.12a, the R-2R ladder and OAare said to operate in a voltage mode, while the connection in Fig.12.12b 
is said to operate in a current mode. 

3. If the ladder in Example 12.4 is increased to 6 bits,whatisthe output voltage due to the sixth 
bit alone? 

4. If the ladder in Example 12.4 is increased to 6 bits, what is its full-scale output voltage? 

12.3 0/A CONVERTERS 

Either the resistive divider or the ladder can be used as the basis for a digital-to-analog (DIA) converter. It is 
in the resistive network that the actual translation from a digital signal to an analog voltage takes place. There 
is, however, the need for additional circuitry to complete the design of the DI A converter. 

As an integral part of the DI A converter there must be a register that can be used to store the digital 
information. This register could be any one of the many types discussed in previous chapters. The simplest 
register is formed by use of RS flip-flops, with one flip-flop per bit. There must also be level amplifiers 
between the register and the resistive network to ensure that the digital signals presented to the network are all 
of the same level and are constant. Finally, there must be some form of gating on the input of the register such 
that the flip-flops can be set with the proper infomation from the digital system. A complete DI A converter in 
block-diagram form is shown in Fig. 12.13a. 

Let us expand on the block diagram shown in this Fig. 12.13a by drawing the complete schematic for a 
4-bit DI A converter as shown in Fig. 12.13b. You will recognize that the resistor network used is of the ladder 
type. 

The level amplifiers each have two inputs: one input is the + 10 V from the precision voltage source, and 
the other is from a flip-flop. The amplifiers work in such a way that when the input from a flip-flop is high, 
the output of the amplifier is at +IO V. When the input from the flip-flop is. low, the output is O V. 

The four flip-flops form the register necessary for storing the digital information. The flip-flop on the right 
represents the MSB, and the flip-flop on the left represents the LSB. Each flip-flop is a simple RS latch and 
requires a positive level at the R or S inpµt to reset or set it. The gating scheme for entering information into 
the register is straightforward and should be easy to understand. With this particular gating scheme, the flip
flops need not be reset (or set) each time new information is entered. When the READ IN line goes high, only 



Digital Principles and Applications 

Digital input data 

Input gates 

N-bit register 

Resistive divider 

(a) 

Digital input 

_n_ READ IN 
~-&--1---+-----l---+----+---+--&---«>--+- (strobe) 

pulse 

'-----1R Q L----IR Q 

Precision 
~----+--<------+-----------l voltage 

~.....,,~ sou:rce 

(b) 

4-bit DIA converter 

one of the two gate outputs connected to each flip-flop is high, and the flip-flop is set or reset accordingly. 
Thus data are entered into the register each time the READ IN (strobe) pulse occurs. D flip-flops could be 
used in place of the RS flip-flops. 



DIA Conversion and AID Conversion 

Multiple Signals 

Quite often it is necessary to decode more than one signal-for example, the X and Y coordinates for a 
plotting board. In this event, there are two ways in which to decode the signals. 

The first and most obvious method is simply to use one DI A converter for each signal. This method, shown 
in Fig. 12.14a, has the advantage that each signal to be decoded is held in its register and the analog output 
voltage is then held fixed. The digital input lines are connected in parallel to each converter. The proper 
converter is then selected for decoding by the select lines. 

Digital input lines 
~ 

DI A converter ~ VAn 

(a) 

(b) 

Analog 
outputs 

Decoding a number of signals: (a) Channel selection method, 
(b) Multiplex method 

The second method involves the use of only one DI A converter and switching its output. This is called 
multiplexing, and such a system is shown in Fig. 12.14b. The disadvantage here is that the analog output 
signal must be held between sampling periods, and the outputs must therefore be equipped with sample-and
hold amplifiers. 

Sample and Hold Circuit 

An OA connected as in Fig. 12.15a is a unity-gain noninverting voltage amplifier-that is, V0 = Vi- Two such 
OAs are used with a capacitor in Fig. 12.15b to form a sample-and-hold amplifier. When the switch is closed, 
the capacitor charges to the DIA converter output voltage. When the switch is opened, the capacitor holds the 
voltage level until the next sampling time. The operational amplifier provides a large input impedance s0 as 
not to discharge the capacitor appreciably and at the same time offers gain to drive external circuits. 



Digital Principles and Applications 

(a) (b) 

(a) Unity gain amplifier, (b) Sample-and-hold circuit 

When the DI A converter is used in conjunction with a multiplexer, the maximum rate at which the converter 
can operate must be considered. Each time data is shifted into the register, transients appear at the output of 
the converter. This is due mainly to the fact that each flip-flop has different rise and fall times. Thus a settling 
time must be allowed between the time data is shifted into the register and the time the analog voltage is read 
out. This settling time is the main factor in determining the maximum rate of multiplexing the output. The 
worst case is when all bits change ( e.g., from 1000 to O 111 ). 

Naturally, the capacitors on the sample-and-hold amplifiers are not capable ofholding a voltage indefinitely; 
therefore, the sampling rate must be sufficient to ensure that these voltages do not decay appreciably between 
samples. The sampling rate is a function of the capacitors as well as the frequency of the analog signal which 
is expected at the output of the converter. 

At this point, you might be curious to know just how fast a signal must be sampled in order to preserve its 
integrity. Common sense leads to the conclusion that the more often the signal is sampled, the less the sample 
degrades between samples. On the other hand, if too few samples are taken, the signal degrades too much (the 
sample-and-hold capacitors discharge too much), and the signal information is lost. We would like to reduce 
the sampling rate to the minimum necessary to extract all the necessary infom1ation from the signal. The 
solution to this problem involves more than we have time for here, but the results are easy enough to apply. 

First, if the signal in question is sinusoidal, it is necessary to sample at only twice the signal frequency. 
For instance ifthe.csignal is a 5-kHz sine wave, it must be sampled at a rate greater than or equal to 10 kHz. 

! I 
In other words, asample must be taken every 1000 s = 100 µs. What if the waveform is not sinusoidal? Any 
waveform that is periodic can be represented by a summation of sine and cosine terms, with each succeeding 
term having a higher frequency. In this case, it will be necessary to sample at a rate equal to twice the highest 
frequency of interest. 

D/A Converter Testing 

Two simple but important tests that can be performed to check the proper operation of the DI A converter are 
the steady-state accuracy test and the monotonicity test. ' 

The steady-state accuracy test involves setting a known digital number in the input register, measuring the 
analog output with an accurate meter, and comparing with the theoretical value. 

Checking for monotonicity means checking that the output voltage increases regularly as the input digital 
signal increases. This can be accomplished by using a counter as the digital input signal and observing the 
analog output on an oscilloscope. For proper monotonicity, the output waveform should be a perfect staircase 
waveform, as shown in Fig. 12.16. The steps on the staircase waveform must be equally spaced and of the 
. exact same amplitude. Missing steps, steps of different amplitude, or steps in a downward fashion indicate 
malfunctions. 



DIA Conversion and AID Conversion 

The monotonicity test does not check the system for accuracy, but if the system passes the test, it is 
relatively certain that the converter error is less than 1 LSB. Converter accuracy and resolution are the 
subjects of the next section. 

A DI A converter can be regarded as a logic block having numerous digital inputs and a single analog 
output as seen in Fig. 12.16b. It is interesting to compare this logic block with the potentiometer shown in 
Fig. 12.16c. The analog output voltage of the DI A converter is controlled by the digital input signals while 
the analog output voltage of the potentiometer is controlled by mechanical rotation of the potentiometer 
shaft. Considered in this fashion, it is easy to see how a DI A converter could be used to generate a voltage 
waveform (sawtooth, triangular, sinusoidal, etc.). It is, in effect, a digitally controlled voltage generator! 

+V +V 

(a) (b) (c) 

Correct output voltage waveform for monotonicity test 

Suppose that in the course of a monotonicity check on the 4-bit converter in Fig. 12.13 
the waveform shown in Fig. 12.17 is observed. What is the probable malfunction in the 
converter? 

o- o- o-
00 -- 00 
0 00 0 --
00 00 00 

o- NM """<(") 

o-----00 

~1 Correct output 
~ _-voltage staircase 

Actual 
output 
voltage 

0 -o -o -o -00 -- 00 --0 00 o- -- --- -- -- --
'O t"' 00 0\0 -N """"" <(") 

,-1 .-I ..- -- -
Irregular output voltage for Example 12.7 

S,p!utio71 . There is obviously some malfunction sin~(! the a(;tlllltoutput waveform is not conti:nuously increasing as 
.itshould be.The actual digitalinputs are shown directly below the wave-form.· Notice that the converter functions 



Digital Principles and Applications 

correctly uptocount3 .. · count 4, ~owever, the output should be 4 units in amplitude. lnstead,it drops to (t It 
remains 4 units below the correct level until it reaches count 8. Then, from count 8 to 11, the output level is corre.ct. 
But again at COU!)t 12 the output falls 4 units. below the correct level and remains there for the next four. levels. If you 
examine the waveform carefully, you will note that the output is 4 units below normal during the time when the 22 bit 
is supposed to be high. This then suggests that the 22 bit is being dropped (i.e.,• the 22 input to the laddeds not being 
held high) .• This means that the 2 2-Ievel amplifier is malfunctioning or the. 22AND gateis not operating properly. In 
any case, the monotonicity check has clearly shown that the second MSB is not being used and that the converter is 

not operating properly. 

Available D/A Converters 

DI A converters, as well as sample-and-hold amplifiers, are readily obtainable commercial products. Each unit 
is constructed in a single package; general-purpose economy units are available with 6-, 8-, 10-, and 12-bit 
resolution, and high-resolution units with up to 16-bit resolution are available. 

An inexpensive and very popular DIA converter is the DAC0808, an 8-bit DIA converter available from 
National Semiconductor. Motorola manufactures an 8-bit DIA converter, the MC1508/1408. In Fig. 12.18, a 
DAC0808 is connected to provide a full-scale output voltage of V0 =+IO V de when all 8 digital inputs are Is 
(high). If the 8 digital inputs are all Os (low), the output voltage will be V0 = 0 Vdc. Let's look at this circuit 
in detail. 

First of all, two de power-supply voltages are required for the DAC0808: V cc= +5 V de and VEE= -15 
Vdc. The 0.1-µF capacitor is to prevent unwanted circuit oscillations, and to isolate any variations in VEE· 
Pin2 is ground (GND), and pin 15 is also referenced to ground through a resistor. 

Vcc=+5 Vdc 

Rref= 5 kQ Vref= +10 Vdc 

(MSB) A1 5 13 14 
Az 6 -D !ref 
A3 7 A 15 

Digital A4 8 C 
inputs As 9 

0 2 R=5kQ 
8 

A6 10 0 - +15 
A7 11 8 4 Vdc -(LSB) Ag 12 16 Io + 

0.1 µF 
-15 Vdc Vo 

-
VEE=-15 Vdc 

The output of the D/A converter on pin 4 has a very limited voltage range (+0.5 to -0.6 V). Rather, it is 
designed to provide an output current 10 • The minimum current (all digital inputs low) is 0.0 mA, and the 
maximum current (all digital inputs high), is Iref· This reference current is established with the resistor at pin 
14 and the reference voltage as 

(12.4) 



DIA Conversion and AID Conversion 

The D/ A converter output current I0 is given as 

I = I i·(Al + A2 + A3 + ... + A8) 
0 re 2 4 8 256 

where Ai, A2, A3, ... , A8 are the digital input levels (1 or 0). 

The OA is connected as a current-to-voltage converter, and the output voltage is given as 

V0 =I0 xR 

Substituting Eqs. (12.4) and (12.5) into Eq. (12.6), 

(
Al A2 A3 A8) 

V. =V.r!R rX -+-+-+···+- xR 0 
re re 2 4 8 256 

Ifwe set the OA feedback resistor R equal to Rref, then 

V. = V. r(Al + A2 + A3 + ... + A8) 
0 re 2 4 8 256 

Let's try out Eq. (12.8). Suppose all digital inputs are Os (all low). Then 

V, = V. f X (.2. + .2_ + .2_ + ... + _2_) 
0 

re 2 4 8 256 

= Vref X O = 0.0 V de 

Now, suppose all digital inputs are ls (all high). Then 

V, = V. f X (.!. + _!. + _!. + ... + _1_) 
0 re 2 4 8 256 

(
255) = (Vrer) X - = 0.996 X Vref 
256 

(12.5) 

(12.6) 

(12.7) 

(12.8) 

·Since Vrerin Fig. 12.18 is +10 Vdc, the output voltage is seen to have a range between 0.0 and 
+9.96 Vdc. It doesn't quite reach +10 Vdc, but this is characteristic of this type of circuit. This cir
cuit is essentially the current-mode operation discussed in the previous section and illustrated in 
Fig. 12.12b. 

Solution 

In Fig. 12.16, Al is high, A2 is high, A5 is high and A? is high. The other digital inputs are 

all low. What is the output voltage V0 ? 

5. What is a monotonicitytest? 
6. What would be the full-scale output voltage in Fig.12.18 if Vrefwere changed to +5 V de? 



Digital Principles and Applications 

l.2.4 0/A ACCURACY AND RESOLUTION 

Two very important aspects of the DIA converter are the resolution and the accuracy of the conversion. There 
is a definite distinction between the two, and you should clearly understand the differences. 

The accuracy of the DIA converter is primarily a function of the accuracy of the precision resistors used 
in the ladder and the precision of the reference voltage supply used. Accuracy is a measure of how close the 
actual output voltage is to the theoretical output value. 

For example, suppose that the theoretical output voltage for a particular input should be+ 10 V.An accuracy 
of l O percent means that the actual output voltage must be somewhere between +9 and + 11 V. Similarly, 
if the actual output voltage were somewhere between +9.9 and+ 10.1 V, this would imply an accuracy of 1 
percent. 

Resolution, on the other hand, defines the smallest increment in voltage that can be discerned. Resolution 
is primarily a function of the number ofbits in the digital input signal; that is, the smallest increment in output 
voltage is determined by the LSB. 

In a 4-bit system using a ladder, for example, the LSB has a weight of 1~ . This means that the 

smallest increment in output voltage is 1~ of the input voltage. To make the arithmetic easy, let 
us assume that this 4-bit system has input voltage levels of + 16 V. Since the LSB has a weight of 

1
~ , a change in the LSB results in a change of 1 V- in the output. Thus the output voltage changes 

in steps (or increments) of 1 V. The output voltage of this converter is then the staircase shown in 
Fig. 12.16 and ranges from Oto+ 15V in 1-V increments. This converter can be used to represent analog 
voltages from O to + 15 V, but it cannot resolve voltages into increments smaller than 1 V. If we desired to 
produce +4.2 V using this converter, therefore, the actual output voltage would be +4.0 V. Similarly, if we 
desired a voltage of+ 7 .8 V, the actual output voltage would be +8.0 V. It is clear that this converter is not 
capable of distinguishing voltages finer than 1 V, which is the resolution of the converter. 

If we wanted to represent voltages to a finer resolution, we would have to use a converter with more 

input bits. As an example, the LSB of a 10-bit converter has a weight of 10~4 . Thus the smallest incremental 

change in the output of this converter is approximately 1~ of the full-scale voltage. If this converter has a 

+ 10-V full-scale output, the resolution is approximately+ 10 x 1~ = IO mV. This converter is then capable 
of representing voltages to within 10 m V. 

What is the resolution of a 9-bit DI A converter which uses a ladder network? What is this 
resolution expressed as a percent? If the full-scale output voltage of this converter is +5 V, 
what is the resolution in volts? 

a resolution of 1 part in 512. 

The voltage resolution is obtained by 
1 

nm,tn,e.re:s0Iut1<>ll in volts is 512 x5 = lOmV. 

How many bits are required at the input of a convener if it is necessary to resolve voltages 
to 5 m V and the ladder has+ l O V full scale? 

l 
The LSB of an II-bit system has a resolution of 2048 . This would provide a resolution at the output of 

204.8 x+lO = +5 mV. 



DIA Conversion and AID Conversion 

It is important to realize that resolution and accuracy in a system should be compatible. For example, in 
the 4-bit system previously discussed, the resolution was found to be 1 V. Clearly it would be unjustifiable to 
construct such a system to an accuracy of 0.1 percent. This would mean that the system would be accurate to 
16 m V but would be capable of distinguishing only to the nearest I V. 

Similarly, it would be wasteful to construct the 11-bit system described in Example 12.19 to an accuracy 
of only 1 percent. This would mean that the output voltage would be accurate only to 100 m V, whereas it is 
capable of distinguishing to the nearest 5 m V. 

7. What is the resolution of the DAC0808 in Fig. 12.18? 

12.5 AID CONVERTER-· SIMULTANEOUS CONVERSION 

The process of converting an analog voltage into an equivalent digital signal is known as analog-to-digital 
(AID) conversion. This operation is somewhat more complicated than the converse operation of DIA 
conversion. A number of different methods have been developed, the simplest of which is probably the 
simultaneous method. This is also known as AID converter, flash type, the reason for which will be clear 
shortly. 

The simultaneous method of AID conversion is based on the use of a number of comparator circuits. One 
such system using three comparator circuits is shown in Fig. 12.19 below. The analog signal to be digitized 
serves as one of the inputs to each comparator. The second input is a standard reference voltage. The refer
ence voltages used are+ V/4, + V/2, and+ 3 V/4. The system is then capable of accepting an analog input volt
age between O and + V. 

If the analog input signal exceeds the reference voltage to any comparator, that comparator turns on. (Let's 
assume that this means that the output of the comparator goes high.) Now, if all the comparators are off, the 
analog input signal must be between O and + V/4. If C1 is high ( comparator C1 is on) and C2 and C3 are low, 
the input must be between+ V/4 and+ V/2 V. If C1 and C2 are high while C3 is low, the input must be between 
+ V/2 and+ 3 V/4. Finally, if all comparator outputs are high, the input signal must be be.tween+ 3 V/4 and+ V. 
The comparator output levels forthe various ranges of input voltages are summarized in Fig. 12.19. 

Analog input Input voltage 
Comparator output 

voltage O to o--+-------1 Comparator 
outputs 

C1 Cz C3 

Vvolts 

(a) 

0 to+ V/4 
+V/4 to+ V/2 
+V/2 to+ 3V/4 

+3V/4 to+ V 

Low Low Low 
High Low Low 
High High Low 
High High High 

(b) 

Simultaneous AID conversion: (a) Logic diagram, (b) Comparator 
outputs for input voltage ranges 



Digital Principles and Applications 

Examination of Fig. 12.19 reveals that there are four voltage ranges that can be detected by this converter. 
Four ranges can be effectively discerned by two binary digits (bits). The three comparator outputs can then 
be fed into a coding network to provide 2 bits which are equivalent to the input analog voltage. The bits of 
the coding network can then be entered into a flip-flop register for storage. The complete block diagram for 
such an AJD converter is shown in Fig. 12.20. 

s Q 
21 

Analog R Q input 
Coding READ 

}mgiU] 
voltage output 

network gates 20 s Q 
R Q 

2-bit simultaneous AID converter 

In order to gain a clear understanding of the operation of the simultaneous AID converter, let us investigate 
the 3-bit converter shown in Fig. 12.21a. Notice that in order to convert the input signal to a digital signal 
having 3 bits, it is necessary to have seven comparators (this allows a division of the input into eight ranges). 
For the 2-bit converter, remember that three comparators were necessary for defining four ranges. In general, 
it can be said that 2" - 1 comparators are required to convert to a digital signal that has n bits. Some of the 
comparators have inverters at their outputs since both C and C are needed for the encoding matrix. 

The encoding matrix must accept seven input levels and encode them into a 3-bit binary number (having 
eight possible states). Operation of the encoding matrix can be most easily understood by examination of the 
table of outputs in Fig. 12.22. 

The 22 bit is easiest to determine since it must be high (the 22 flip-flop must be set) whenever C4 is high. 

The 21 line must be high whenever C2 is high and c4 is high, or whenever C6 is high. In equation form, 
we can write 21 = C2C4 + C6. 

The logic equation for the 2° bit can be found in a similar manner; it is 
0 - - -

2 =C1C2+C3C4+CsC6+C7 

The transfer of data from the encoding matrix into the register must be carried out in two steps. First, a 
positive reset pulse must appear on the RESET line to reset all the flip-flops low. Then, a positive READ 
pulse allows the proper READ gates to go high and thus transfer the digital information into the flip-flops. 

Interestingly, a convenient application for a 9318 priority encoder is to use it to replace all the digital 
logic as shown in Fig. 12.21b. Of course, the inputs C1, C2, ... , C7 must be TTL-compatible. In essence, the 
output of the 9318 is a digital number that reflects the highest-order zero input; this corresponds to the lowest 
reference voltage that still exceeds the input analog voltage. 

The construction of a simultaneous AID converter is quite straightforward and relatively easy to understand. 
However, as the number of bits in the desired digital number increases, the number of comparators increases 
very rapidly (2" - 1 ), and the problem soon becomes unmanageable. Even though this method is simple and 
is capable of extremely fast conversion rates, here are preferable methods for digitizing numbers having more 
than 3 or 4 bits. Because it is so fast, this type of converter is frequently called a flash converter. 



DIA Conversion and AID Conversion 

Analog input voltage 

+3V/4 Cs 

+V/2 C3 

+VIS 

Comparators 

c6 

C4 

Encoding matrix 

(a) 

Analog input voltage 

7V/8 

SV/8 

V/2 

V/4 

VIS 

(b) 

READ 
line SL 

RESET 
SL line 

R 

READ R Q 

9318 

gates 
Output register 

22} 
21 Digital 

outputs 
20 

Digital 
output 

3-bit simultaneous AID converter: (a) Logic diagram, (b) Using a 9318 
priority encoder 



Digital Principles and Applications 

Input Comparator for level 
Binary 
output 

voltage C1 C2 C3 C4 Cs c6 C7 22 21 20 
0 to V/8 Low Low Low Low Low Low Low 0 0 0 

V/8 to V/4 High Low Low Low Low Low Low 0 0 1 
V/4 to 3V/8 High High Low Low Low Low Low 0 1 0 
3V/8 to V/2 High High High Low Low Low Low 0 1 1 
V/2 to 5V/8 High High High High Low Low Low 1 0 0 

5V/8 to 3V/4 High High High High High Low Low 1 0 1 
3V/4 to 7V/8 High High High High High High Low 1 1 0 
7V/8 to V High High High High High High High 1 1 1 

Logic table tor the converter in Fig. 12.19(a) 

The Motorola MC10319 is an example of an 8-bit flash AID converter. The input has 256 parallel 
comparators connected to a precision voltage divider network. The comparator outputs are fed· to latches 
and then to an encoder network that captures the digital signal in Gray code. Gray code is used to ensure 
that small input errors do not result in large digital signal errors. The Gray code is then decoded into straight 
binary and presented to the outputs, which are tri-state TTL= compatible. The flash AID converter is capable 
of operation with a 25-MHz clock! It comes in a 24-pin DIP and requires two de supply voltages-typically 
+5 Vdc and -5 Vdc. Possible applications include radar signal processing, video displays, high-speed 
instrumentation, and television broadcasting. 

8. Why is a simultaneous AID converter called a flash converter? 
9. What is one application for a flash converter? 

12.6 AID CONVERTER-COUNTER METHOD 

A higher-resolution AID converter using only one comparator could be constructed if a variable reference 
voltage were available. This reference voltage could then be applied to the comparator, and when it became 
equal to the input analog voltage, the conversion would be complete. 

To construct such a converter, let us begin with a simple binary counter. The digital output signals will be 
taken from this counter, and thus we want it to be an n-bit counter, where n is the desired number of bits. Now 
let us connect the output of this counter to a standard binary ladder to form a simple DI A converter. If a clock 
is now applied to the input of the counter, the output of the binary ladder is the familiar staircase waveform 
shown in Fig. 12.16. This waveform is exactly the reference voltage signal we would like to have for the 
comparator! With a minimum of gating and control circuitry, this simple DI A converter can be changed into 
the desired AID converter. 

Figure 12.23 shows the block diagram for a counter-type AID converter. The operation of the counter 
is as foHows. First, the counter is reset to all Os. Then, when a convert signal appears on the START line, 
the gate opens and clock pulses are allowed to pass through to the input of the counter. The counter ad
vances through its normal binary count sequence, and the staircase waveform is generated at the output of 



DIA Conversion and AID Conversion 

the ladder. This waveform is applied to one side 
of the comparator, and the analog input voltage 
is applied to the other side. When the reference 
voltage equals (or exceeds) the input anafogvolt
age, the gate is closed, the counter stops, and the 
conversion is complete. The number stored in the 
counter is now the digital equivalent of the analog 
input voltage. 

Notice that this converter is composed of a 
DIA converter (the counter, level amplifiers, and 
the binary ladder), one comparator, a clock, and 
the gate and control circuitry. This can really 
be considered as a closed-loop control system. 
An error signal is generated at the output of the 
comparator by taking the difference between 
the analog input signal and the feedback signal 

Clock 

Analog 
input 

voltage 

START 

/Ref. 
/ v~ltage 

-·Nlines--

1..,-----y---1 

Digital output 

Counter type AID converter 

(staircase reference voltage). The error is detected by the control circuit, and the clock is allowed to advance 
the counter. The counter advances in such a way as to reduce the error signal by increasing the feedback 
voltage. When the error is reduced to zero, the feedback voltage is equal to the analog input signal, the control 
circuitry stops the clock from advancing the counter, and the system comes to rest. 

The counter-type AID converter provides a very good method for digitizing to a high resolution. This 
method is much simpler than the simultaneous method for high resolution, but the conversion time required 
is longer. Since the counter always begins at zero and counts through its nom1al binary sequence, as many as 
2n counts may be necessary before conversion is complete. The average conversion time is, of course, 2"/2 
or 2n-l counts. 

The counter advances one count for each cycle of the clock, and the clock therefore determines the 
conversion rate. Suppose, for example, that we have a 10-bit converter. It requires 1024 clock cycles for a 
full-scale count. Ifwe are using a I-MHz clock, the counter advances 1 count every microsecond. Thus, to 
count full scale requires 1024 x 1 o-6 = 1.024 ms. The converter reaches one-half full scale in half this time, 
or in 0.512 ms. The time required to reach one-half full scale can be considered the average conversion time 
for a large number of conversions. 

Solution 

Suppose that the converter shown in Fig. 12.23 is an 8-bit converter driven by a 500-kHz 
clock. Find (a) the maximum conversion time; (b) the average conversion time; (c) the 

maximum conversion rate. 

·· M An 8-bit (;()nverteiJllls a ~fullm of28 =25~ counts. With a 500-kHz clock,the counter advances at the rate 
<:>f.l .C<.lUllt each 2_1fli .. :r(.) advante256COllllts requires 256 X2 xrn-6 512 X 10-6 .= 512 µs. 

(b) The average conversion time is one-half the maximtun conversion time. Thus it is 1/2 x 0.512 x 10-3 = 0.256 
ms. 
The maximum coriv~sfonrate is determined by the longest conversion time. Since the converter has a maximum 
conversio11timeuf0.512,ms;itis capable of making at least 1/(0.5.12 x 10-3) = 1953 conversions per second. 

Figure -12.24shows one method ofimplementing the control circuitry for the converter shovm in Fig. 12.23. 
The waveforms for one conversion are also shown. A conversion is initiated by the receipt of a START signal. 



Analog input 
voltage 

Digital Principles and Applications 

To RESET --- counter 

Clock 

.----->-1R Q 

Control 
flip-flop 

fovoltage 

(a) 

START Jl'----------1 1----

0S _fl~-------1 i----
Control flip-flop 

Clock~ s-fl-fl-
Analog input -----------------------------
voltagelevel ~ 

Refvoltage .· ~ 
OV-~ 

Comparator 
output ------------~ 

(b) 

Clock pulses 
to counter 

Control of the AID converter in Fig. 12.21 

The positive edge of the START pulse is used to reset all the flip-flops in the counter and to trigger the one
shot. The output of the one-shot sets the control flip-flop, which makes the AND gate true and allows clock 
pulses to advance the counter. 

The delay between the RESET pulse to the flip-flops and the beginning of the clock pulses ( ensured by the 
one-shot) is to ensure that all flip-flops are reset before counting begins. This is a definite attempt to avoid 
any racing problems. 

With the control flip-flop set, the counter advances through its normal count sequence until the staircase 
voltage from the ladder is equal to the analog input voltage. At this time, the comparator output changes 
state, generating a positive pulse which resets the control flip-flop. Thus the AND gate is closed and counting 
ceases. The counter now holds a digital number which is equivalent to the analog input voltage. The converter 
remains in this state until another conversion signal is received. 

If a new start signal is generated immediately after each conversion is completed, the converter will 
operate at its maximum rate. The converter could then be used to digitize a signal as shown in Fig. 12.25a 
Notice that the conversion times in digitizing this signal are not constant but depend on the amplitude of the 
input signal. The analog input signal can be reconstructed from the digital information by drawing straight 



DIA Conversion and AID Conversion 

Voltage Analog input voltage 
Voltage 

Ladder voltuge Time Time 
(a) (b) 

(a) Digitizing an analog voltage. (b) Reconstructed signal from the digital data. 

lines from each digitized point to the next. Such a reconstruction is shown in Fig. 12.25b; it is, indeed, a 
reasonable representation of the original input signal. In this case, it is important to note that the conversion 
times are smaller than the transient time of the input waveform. 

On the other hand, if the transient time of the input wavefonn approaches the conversion time, the 
reconstructed output signal is not quite so accurate. Such a situation is shown in Fig. 12.26a and b. In this 
case, the input waveform changes at a rate faster than the converter is capable of recognizing. Thus the need 
for reducing conversion time is apparent. 

10. The AID converter in Fig. 12.23 has 8 bits and is driven by a 2-MHz clock. What is the 
maximum conversion time? 

11. What is the average conversion time for the conve11er in question 1 O? 

12.7 CONTINUOUS A/D CONVERSION 

An obvious method for speeding up the conversion of the signal as shown in Fig. 12.26 is to eliminate the 
need for resetting the counter each time a conversion is made. If this were done. the counter would not begin 
at zero each time, but instead would begin at the value of the last converted point. This means that the counter 
would have to be capable of counting either up or down. This is no problem; we are already familiar with the 
operation of up-down counters. 

Voltage 

I 
I 

(a) 

I 
I 

I 

I 

I 
I 

I 

Time 

Voltage 

Time 
(b) 

(a) Digitizing an analog voltage, (b) Reconstructed signal from the digital data 



Digital Principles and Applications 

There is, however, the need for additional logic circuitry, since we mustd~cide whether to count up or . 
down by examining the output of the comparator. An AID converter which uses an up-down counter is shown 
in Fig. 12.27 below. This method is known as continuous conversion, and thus the converter is called a con
tinuous-type AID converter. Since the converter's digital output always tries to track the analog input to the 
converter, this is also known as AID converter-tracking type. 

Clock 

,__,.._ __ s Q,_u_P __ ~ 
I --L_______,, 

Up 

,___, _ _, S Q Down 
,--L __ ___,, 

Down 

up 

Clock 

OS 

Up 

Down 

Up flip-flop 

Down flip-flop 

_ Down 
s Qi----' 

1------0 Analog input 

(a) 

____ __, 

_____ __, 

(b) 

Advancer------. 
Count up Up/down 

Countdown 

._______.., 
Digital output 

Continuous AID converter 

The D/ A portion of this converter. is the same as those previously discussed, with the exception of the 
counter. It is an up-down counter and has the up and down count control lines in addition to the advance line 
at its input. 

The output of the ladder is fed into a comparator which has two outputs instead of one as before. When 
the analog voltage is more positive than the ladder output, the up output of the comparator is high. When the 
analog voltage is more negative than the ladder output, the down output is high. 



DIA Conversion and AID Conversion 

If the up output of the comparator is high, the AND gate at the input of the up flip-flop is open, and the 
first time the clock goes positive, the up flip-flop is set. If we assume for the moment that the down flip-flop is 
reset, the AND gate which controls the count-up line of the counter will be true and the counter will advance 
one count. The counter can advance only one count since the output of the one-shot resets both the up and the 
down flip-flops just after the clock goes low. This can then be considered as one count-up conversion cycle. 

Notice that the AND gate which controls the count-up line has inputs of up and down . Similarly, the count
down line AND gate has inputs of down and up. This could be considered an exclusive-OR arrangement and 
ensures that the cou11t-downand count-up lines cannot both be high at the same time. 

AsJ011gas theup line out of the comparator is high, the converter continues to operate one conversion 
cycle at a time. Atthe point where the ladder voltage becomes more positive than the analog input voltage, 
the up line of the comparator goes low and the down line goes high. The converter then goes through a 
count-down conversion cycle. Atthis point, the ladder voltage is within 1 LSB of the analog voltage, and the 
converter oscillates about this point. This is not desirable since we want the converter to cease operation and 
not jump around the finalvalue. The trick here is to adjust the comparator such that its outputs do not change 
atthe same time. 

We can accomplish this byadjusting the comparator such that the up output will not go high unless the 
ladder voltage is more than 1/2 LSB below the analog voltage. Similarly, the down output will not go high 
unless the ladder voltage is more than 1/2 LSB above the analog voltage. This is called centering on the LSB 
and provides a digital output which is within 1/2 LSB. 

A.waveform typical of this type of converter is shown in Fig. 12.28. You can see that this converter is 
Cilpable of following input voltages that change at a much faster rate. 

Voltage Analog 
input voltage 

Voltage Reconstructed waveform 
/ 

Time Time 

Continuous AID conversion 

Quite often, additional circuitry is added to a continuous converter to ensure that it cannot 
countoffscale in either direction. For example, if the counter contained all ls, it would be 
undesirable to allow it to progress through a count-up cycle, since the next count would 

advance it to all Os. We would like to design the logic necessary to prevent this. 

lnr1it.t)(}lJllts.wl1t1Cllmust bedetectectare an 1s and allO>?in the.cou11ter .. Suppose that we construct 
''"''"'''r n, .. ~.,-..,,µ,, as its inputs, The output of this gate will be true whenever 

t11e11.corun.ec,tedto the reset side of the up flip-flop, the counter will be unable 

.. Similarly, we might construct an AND gate in which the inputs are the O sides of all the counter flip-flops. 
The output of this gate can be connected to the reset side of the down flip-flop, and the counter will then be 
unable to count beyond all Os. The gates are shown in Fig. 12.29. 



Digital Principles and Applications 

~~.To reset side of 
up flip-flop 

8 : 
2N • 

i~Toresetsideof 
_ down flip-flop 
8 : 

2N • 

Count-limiting gates for the converter in Fig. 12.25 

12. How does the continuous-type AID conve11er differ from the simple counter-type A,ID 
converter? 

13. What advantage does the continuous-type AID converter offer over the counter-type AID 
converter? 

12.8 AID TECHNIQUES 

There are a variety of other methods for digitizing analog signals-too many to discuss in detail. Nevertheless, 
we shall take the time to examine two more techniques and the reasons for their importance. 

Probably the most important single reason for investigating other methods of conversion is to determine 
ways to reduce the conversion time. Recall that the simultaneous converter has a very fast conversion time. 
The counter converter is simple logically but has a relatively long conversion time. The continuous converter 
has a very fast conversion time once it is locked on the signal but loses this advantage when multiplexing 
inputs. 

Successive Approximation 

If multiplexing is required, the successive-approximation converter is most useful. The block diagram for this 
type of conve11er is shown in Fig. 12.30a. The converter operates by successively dividing the voltage ranges 
in half. The counter is first reset to all Os, and the MSB is then set. The MSB is then left in or taken out (by 
resetting the MSB flip-flop) depending on the output of the comparator. Then the second MSB is set in, and 
a comparison is made to determine whether to reset the second MSB flip-flop. The process is repeated down 
to the LSB, and at this time the desired number is in the counter. Since the conversion involves operating on 
one flip-flop at a time, beginning with the MSB, a ring counter may be used for flip-flop selection. 

The successive-approximation method thus is the process of approximating the analog voltage by trying 1 
bit at a time beginning with the MSB. The operation is shown in diagram form in Fig. 12.30b. It can be seen 
from this diagram that each conversion takes the same time and requires one conversion cycle for each bit. 
Thus the total conversion time is equal to the number of bits, n, times the time required for one conversion 
cycle. One conversion cycle normally requires one cycle of the clock. As an example, a IO-bit converter 
operating with a I-MHz clock has a conversion time of 10 x 1 o-6 = 1 o-5 = 10 µs. 

When dealing with conversion times this short, it is usually necessary to take into account the other delays 
in the system (e.g. switching time of the multiplexer, settling time of the ladder network, comparator delay, 
and settling time). 



DIA Conversion and AID Conversion 

All the logic blocks inside the dashed line in Fig. 12.30a, or some equivalent arrangement, are frequently 
constructed on a single MSI chip; this chip is called a successive-approximation register (SAR). For example, 
the Motorola MC6 l 08 shown in Fig. 12.28c is an 8-bit microprocessor-compatible AID converter that includes 
an SAR, DI A conversion capabilities, control logic, and buffered digital outputs, in a 28-pin DIP. 

V., 
Analog 
input 

The ADC0804 

SAR 

(a) 

-Nlines-

Ladder 

-N lines
~ 
Digital output 

Analog 
input 

- 1111 
/ 1111 --- lll 0 lllO 

/ '-.... 1101 --- 1101 
1100 --.... 1100 

I 
"\. ..-- 1011 

"- / 
1011 

--...... 1010 
1010 

'--... 1 00 1 __.,,- lOO l --... 
ggoJ-1000\ - ~~~~ 

(c) 

3-state 
buffers 

Motorola MC6108 ADC 

/ Olll -.. 0110 
0110, O O 

/ '"'0101 ..-- l l 
0100 --.... 0100 

"\. ..-- 0011 
" / 0011 --...... 0010 

0010 

(b) 

'--... 0001 __.,,- 000 I 
--... 0000 

Successive approximation converter 

The ADC0804 is an inexpensive and very popular AID converter which is available from a number of 
different manufacturers, including National Semiconductor. The ADC0804 is an 8-bit CMOS microprocessor 
compatible successive-approximation AID converter that is supplied in a 20-pin DIP. It is capable of digitizing 
an analog input voltage within the range O to + 5 V de, and it only requires a single de supply voltage-usually 
+5 Vdc. The digital outputs are both TTL- and CMOS-compatible. 

The block diagram ofanADC0804 is shown in Fig. 12.31. In this case, the controls are wired such that the 
converter operates continuously. This is the so-called free-running mode. The 10-k.Q resistor, along with the 



Digital Principles and Applications 

R C 
lOkQ 150pF 

MSB 11 20 19 ~ CLKR 
12 4 

CLKIN 
13 

Digital 14 
output 15 

16 

I? ADC0804 6 
V;(+) 

LSB 18 } ~alog 

WR 7 
mput 

3 V;(-) 
INTR 5 -

9 Vcc/2 
Start cs 

- --

150-pF capacitor, establishes the frequency of operation according to f""' 1/1.l(RC). In this case, 

i""' 1 
1.1 X (10 kQ X 150 pF) 

= . 
1 

=607 kHz 
1.1 X (104 X 1.5 X 10-12

) 

A momentary activation of the START switch is necessary to begin operation. A detailed discussion of the 
ADC0804 is given in Section 15.4. 

Section Counters 

Another method for reducing the total conversion time of a simple counter converter is to divide the counter 
into sections. Such a configuration is called a section counter. To determine how the total conversion time 
might be reduced by this method, assume that we have a standard 8-bit counter. If this counter is divided into 
two equal counters of 4 bits each, we haye a section converter. The converter operates by setting the section 
containing the four LSBs to all Is and then advancing the other sections until the ladder voltage exceeds the 
input voltage. At this point the four LSBs are all reset, and this section of the counter is then advanced until 
the ladder voltage equals the input voltage. 

Notice that a maximum of24 = 16 counts is required for each section to count full scale. Thus this method 
requires only 2 x 24 = 25 = 32 counts to reach full scale. This is a considerable reduction over the 28 = 256 
counts required for the straight 8-bit counter. There is, of course, some extra time required to set the counters 
initially and to s\vitch from cou:1ter to counter during the conversion. This logical operation time is very 
small, however, compared with the total time saved by this method. 



DIA Conversion and AID Conversion 

This type of converter is quite often used for digital voltmeters, since it is very convenient to divide the 
counters by counts of 10. Each counter is then used to represent one of the digits of the decimal number 
appearing at the output of the voltmeter. We discuss this subject in detail in the next chapter. 

14. What does SAR stand for in Fig.12.30c? 
15. Whatis an ADC0804? · 

12.9 DUAL-SLOPE AID .. CONVERSION 

Up to this point, our interest in different methods of AID conversion has centered on reducing the actual 
conversion time. If a very short conversion time is not a requirement, there are other methods of AID 
conversion that are simpler to implement and much more economical. Basically, these techniques involve 
comparison of the unknown input voltage with a reference voltage that begins at zero and increases linearly 
with time. The time required for the reference voltage to increase to the value of the unknown voltage is 
directly proportional to the magnitude of the unknown voltage, and this time period is measured with a 
digital counter. This is referred to as a single-ramp method, since the reference voltage is sloped like a 
ramp. A variation on this method involves using an operational amplifier integrating circuit in a dual-ramp 
configuration. The dual-ramp method is very popular, and widely used in digital voltmeters and digital panel 
meters. It offers good accuracy, good linearity, and very good noise-rejection characteristics. 

Single-Ramp A/0 Converter 

Let's take a look at the single-ramp AID converter in Fig. 12.32. The heart of this converter is the ramp 
generator. This is a circuit that produces an output voltage ramp as shown in Fig. 12.33a. The output voltage 
begins at zero and increases linearly up to a maximum voltage Vm. It is important that this voltage be a 
straight line-that is, it must have a constant slope. For instance, if Vm = l.O Vdc, and it takes l.O ms for the 
ramp to move from 0.0 up to l.O V, the slope is I Vims, or 1000 Vis. 

This ramp generator can be constructed in a number of different ways. One way might be to use a 
DI A converter driven by a simple binary counter. This would generate the staircase waveform previously 
discussed and shown in Fig. 12.16a. A second method is to use an operational amplifier (OA) connected as 
an integrator as shown in Fig. 12.33b .. For this circuit, if V; is a constant, the output voltage is given by the 
relationship V0 = (V;IRC)t. Since V;, R, and Care all constants, this is the equation of a straight line that has a 
slope (V;IRC) as shown in Fig. 12.33a. Now that we have a way to generate a voltage ramp and we understand 
its characteristics, let's return to the converter in Fig. 12.32. 

We assume that the clock is running continuously and that any input voltage Vx that we wish to digitize 
is positive. Ifit is not, there are circuits that we can use to adjust for negative input signals. The three decade 
counters are connected in cascade, and their outputs can be strobed into three 4-flip-flop latch circuits. The 
latches are then decoded by seven-segment decoders to drive the LED displays as units, tens, and hundreds 
of counts. We can begin a conversion cycle by depressing the MANUAL RESET switch. 

Refer carefully to the logic diagram and the waveforms in Fig. 12.32. MANUAL RESET generates a 
RESET pulse that clears all the decade counters to Os and resets the ramp voltage to zero. Since V xis positive 
and RAMP begins at zero, the output of the comparator OA, Ve, must be high. This voltage enables the 



Analog input Vx 

Digital Principles and Applications 

Clock 
>----~ 

osc 

Comparator 

'---------ic--l 
Ramp 

Ramp gen 

1 

CLK 

+10 
100 s 

* Control RESET 

_[-:' Strobe 
=MANUAL 

RESET 

(a) 

One 

7-seg. 
de

coder 

f,<-conversion-J 
I cycle ; 

RESET~ 

7-seg. 
de

coder 

Rrunp Vx-~ •I 

0 t1 t2 

Ve~ 
I I I 

CLK~ 
I I I 

Strobe : n .: : '-,-~-
RESET ____J____jl_ 

(b) 

Single-slope AID converter 

7-seg. 
de

coder 

CLOCK gate allowing the clock, CLK, to be applied to the decade counter. The counter begins counting 
upward, and the RAMP continues upward until the ramp voltage is equal to the unknown input Vx. 

At this point, time !1, the output of the comparator Ve goes low, thus disabling the CLOCK gate and the 
counters cease to advance. Simultaneously, this negative transition on Ve generates a STROBE signal in the 
CONTROL box that shifts the contents of the three decade counters into the three 4-:flip-:flop latch circuits. 



v(V) 

vm 

(a) 

DIA Conversion and AID Conversion 

V 
Slope = R~ = constant V; 

C 

>--<t--rO+ 

If V v
0 
=- idt=-' xtwhen 
t C RC 

_____ _,_ - V; = constant 

(b) 

An integrating circuit 

Shortly thereafter, a reset pulse is generated by the CONTROL box that resets the RAMP and clears the 
decade counters to Os, and another conversion cycle begins. In the meantime, the contents of the previous 
conversion are contained in the latches and are displayed on the seven-segment LEDs. 

As a specific example, suppose that the clock in Fig. 12.32 is set at 1.0 MHz and the ramp voltage slope is 
1.0 V /ms. Note that the decade counters have the ability to store and display any decimal number from 000 up 
to 999. From the beginning of a conversion cycle, it will require 999 clock pulses (999 µs) for the counters to 
advance full scale. During this same time period, the ramp voltage will have increased from 0.0 V up to 999 
m V. So, this circuit as it stands will display the value of any input voltage between 0.0 V and 999 m V. 

In effect, we have a digital voltmeter! For instance, if Vx= 345 mV, it will require 345 clock pulses for the 
counter to advance from 000 to 345, and during the same time period the ramp will have increased to 345 m V. 
So, at the end of the conversion cycle, the display output will read 345-we supply the units of millivolts. 

One weakness of the single-slope AID converter is its dependency on an extremely accurate ramp voltage. 
This in tum is strongly dependent on the values of R and C and variations of these values with time and 
temperature. The dual-slope AID converter overcomes these problems. 

Dual-Slope A/D Converter 

The logic diagram for a basic dual-slope AID converter is given in Fig. 12.32. With the exception of the ramp 
generator and the comparator, the circuit is similar to the single-slope AID converter in Fig. 12.32. In this 
case, the integrator forms the desired ramp-in fact, two different ramps-as the input is switched first to the 
unknown input voltage Vxand then to a known reference voltage Vr. Here's how it works. 

We begin with the assumptions that the clock is running, and that the input voltage Vx is positive. A 
conversion cycle begins with the decade counters cleared to all Os, the ramp reset to 0.0 V, and the input 
switched to the unknown input voltage Vx. Since Vx is positive, the integrator output Ve will be a negative 
ramp. The comparator output Vg is thus positive and the clock is allowed to pass through the CLOCK GATE 
to the counters. We allow the ramp to proceed for a fixed time period t1, determined by the count detector 
for time t1• The actual voltage Ve at the end of the fixed time period t1 will depend on the unknown input Vx, 
since we know that Ve= -(VxlRC) x t1 for an integrator. 

When the counter reaches the fixed count at time ti, the CONTROL unit generates a pulse to clear the 
decade counters to all Os and switch the integrator input to the negative reference voltage V, .. The integrator 
will now begin to generate a ramp beginning at-Ve and increasing steadily upward until it reaches 0.0 V. All 
this time, the counter is counting, and the conversion cycle ends when Ve = 0.0 V since the CLOCK GATE 



C 
Comparator 

Digital Principles arid Applications 

Clock 
osc. 

COUNT DETECTOR FOR TIME T1 

R 

Switch 

Analog 
input 

Vx 

0 

Control RESET 

Strobe 

+IO 
1000s 

+10 
100s 

1- t1 ---- 12 -l Q ,,------------,;
1
--Time 
I 
I 

,-1 
Ct 

I 
I 
I 
I 
I 

~ 
I 
I 
I 

----------- I Decimal point I I 

F!xed '--->-1- Fixed -j 
tnne , slope , 

Vx : VR : 
Ve= - x t1 , V.c = -- x t?, 

RC ' RC _, 

Dual-slope A/D converter 

+10 +10 

is now disabled. The equation for the positive ramp is Ve= (V,.!RC) x t2 . In this case, the slope of this ramp 
(V,.IRC) is constant, but the time period t2 is variable. 

In fact, since the integrator output voltage begins at 0.0 V, integrates down to -Ve, and then integrates back 
up to 0.0 V, we can equate the two equations given for Ve. That is: 

Vx V,. 
-Xt1 =-Xt2 
RC RC 

The value RC will cancel from both sides, leaving 

l/ V: t2 ix= ,.x-
t1 

Since V,. is a known reference voltage and t1 is a predetem1ined time, clearly the unknown input voltage 
is directly proportional to the variable time period t2 . However, this time pe1iod is exactly the contents of the 
decade counters at the end of a conversion cycle!· The obvious advantage here is that the RC terms cancel 
from both sides of the equation above-in other words, this technique is free from the absolute values of 
either R or C and also from variations in either value. 



DIA Conversion and AID Conversion 

As a concrete example, let's suppose that the clock in Fig. 12.34 is 1.0 MHz, the reference voltage is -1.0 
Vdc, the fixed time period t1 is 1000 µs, and the RC time constant of the integrator is set at RC= 1.0 ms. 
During the time period t1, the integrator voltage Ve, will ramp down to -1.0 Vdc if Vx= 1.0 V. Then, during 
time t2, Ve will ramp all the way back up to 0.0 V, and this will require a time of l 000 µs, since the slope of 
this ramp is fixed at 1.0 Vims. The output display will now read 1000, and with placement of a decimal as 
shown, this reads 1.000 V. 

Another way of expressing the operation of this AID converter is to solve the equation 
V,1;= VrCt2lt1) for t2, since t2 is the digital readout. Thus t2 = (Vx!V,.)t1. lfthe same values as given above are 
applied, an unknown input voltage V,y= 2.75 V will be digitized and the readout will be t2 = (2.75/1.0)1000 
= 2750, or 2. 75 V, using the decimal point on the display. Notice that we have used t1 = 1000, the number of 
clock pulses that occur during the time period t 1. Likewise, t2 is the number of clock pulses that occur during 
the time period t2 . 

16. Is a. single-ramp AID .converter slower or foster than a .. successive-approximation AID 
converter? 

17. What is the greatest weakness of a single~ramp AID converter? 
18. What advantage does the dual-slope AID converter offer over the single-ramp AID 

converter? 

12.10 AID ACCURACY AND RESOLUTION 

Since the AID converter is a closed-loop system involving both analog and digital systems, the overall 
accuracy must include errors from both the analog and digital positions. In determining the overall accuracy 
it is easiest to separate the two sources of error. 

If we assume that all components are operating properly, the source of the digital error is simply determined 
by the resolution of the system. In digitizing an analogvoltage, we are trying to represent a continuous analog 
voltage by an equivalent set of digital numbers. When the digital levels are converted back into analog form 
by the ladder, the output is the familiar staircase waveform. This wavefom1 is.a representation of the input 
voltage but is certainly not a continuous signal. It is, in fact, a discontinuous signal composed of a number of 
discrete steps. In trying to reproduce the analog input signal, the best we can do is to get on the step which 
most nearly equals the input voltage in amplitude. 

The simple fact that the ladder voltage has steps in it leads to the digital error in the system. The smallest 
digital step, or quantum, is due to the LSB and can be made smaller only by increasing the number of bits 
in the counter. This inherent error is often called the quantization error and is commonly ± 1 bit. If the 
comparator is centered, as with the continuous converter, the quantization error can be made ± 1/2 LSB. 

The main source of analog error in the AID converter is probably the comparator. Other sources of error 
are the resistors in the ladder, the reference-voltage supply ripple, and noise. These can, however, usually be 
made secondary to the sources of error in the comparator. 

The sources of error in the comparator are centered around variations in the de switching point. The 
de switching point is the difference between the input voltage levels that cause the output to change state. 
Variations in switching are due primarily to offset, gain, and linearity of the amplifier used in the comparator. 
These parameters usually vary slightly with input voltage levels and quite often with temperature. It is these 
changes which give rise to the analog error in the system. 



Digital Principles and Applications 

An important measure of converter performance is given by the differential linearity. Differential linearity 
is a measure of the variation in voltage-step size that causes the converter to change from one state to the 
next: It is usually expressed as a percent of the average step size. This performance characteristic is also a 
function of the conversion method and is best for the converters having counters that count continuously. The 
counter-type and continuous-type converters usually have better differential linearity than do the successive
approximation-type converters. This is true since the ladder voltage is always approaching the analog voltage 
from the same direction in the one case. In the other case, the ladder voltage is first on one side of the analog 
voltage and then on the other. The comparator is then being used in both directions, and the net analog error 
from the comparator is thus greater. 

The next logical question that might be asked is: what should be the relative order of magnitudes of 
the analog and digital errors? As mentioned previously, it would be difficult to justify construction of a 
15-bit converter that has an overall error of 1 percent. In general, it is considered good practice to construct 
converters having analog and digital errors of approximately the same magnitudes. There are many arguments 
for and against this, and any final argument would have to depend on the situation. As an example, an 8-bit 

converter would have a quantization error of 2~6 = 0.4 percent. It would then seem reasonable to construct 
this converter to an accuracy of 0.5 percent in an effort to achieve an overall accuracy of 1.0 percent. This 
might mean constructing the ladder to an accuracy of 0.1 percent, the comparator to an accuracy of 0.2 
percent, and so on, since these errors are all accumulative. 

What overall accuracy could one reasonably expect from the construction of a 10-bit AID 
converter? 

Solution A 10-bit converter has a quantization.errorof 10~4 = OJ per~ent.1fthe ~alog portioncan be constructed 
to an accuracy of 0.1 percent, it would seem reasonable to strive for an overall accuracy of0.2 percent. 

Digital-to-analog conversion, the process.of converting digital inputlevels intoan equivalent analog output 
voltage, is.most easily accomplished by the use of resistance networlg;, Th!:!binary fadder has 1:ieenfo1.lild 
to have definite advantages over the resistance divider. The complete D/A converter consists of a binary 
ladder (usually) and a flip-flop register to hold the digital inpuflnformation. 

The simultaneous method for A/D .conversion is very fast but be.comes cumbersome for Inore 
than a few bits of resolution. The counter-type AID converter is somewhat slower but represents 
a much more. reasonable solution for digifizing high-resolution .. signals. The c?ntinu~us-c~nvel'ter 
method, the successive-approximation metho1,. and. the .section-counter method. ru:e all.variations 
of the basic counter-type AID converter which lead. to· a much. faster conversion time. Adual-sl~pe• 
AID converter is somewhat slower than the previousltdiscussed methods but offers excellent accuracy in 
a relatively inexpensive circuit. Dual-slope AID converters are widely used in digital voltmeters. 

The D/Aconverter and AID converter logic drcuits given in this cliapter are aff drawrtinJogi~block 
diagram form and can all be constructed by simply connecting these commercially avaifablelogic bl~cks. 
For instance, a D/A converter can be constructed by connectingresistorsthathave values ofRand 2R, oran 
AID converter can be constructed by connecting the various inverters, gates, flip-flops, and so on; however, 
you must realize. that these units are now readily available as MSI circuits. The only really practical and, 
e1:onomical way to build DI A converters or AID converters is to make use of these commercially available 
circuits; this is exactly the subject pursued in the next cl1apter. 



DIA Conversion and AID Conversion 

• AID conversion The process of converting an 
analog input voltage to a number of equivalent 
digital output levels. 

• AID converter flash type Effects fast and 
simultaneous conversion of analog data to 
digital through number of comparators. 

• A/D converter tracking type Effects tracking 
of analog input through its. continuous 
comparison with converter's digital output. 

• binary equivalent weight The value assigned 
to each bit in a digital number, expressed as a 
fraction of the total. The values are assigned 
in binary fashion according to the sequence 1, 
2, 4, 8, ... , 211, where n is the total number of 
bits. 

• DIA conversion The process of converting 
a number of digital input signals to one 
equivalent analog output voltage. 

• differential linearity A measure of the 
variation in size of the input voltage to an 

12.1 What is the binary equivalent weight of each 
bit in a 6-bit resistive divider? 

12.2 Draw the schematic for a 6-bit resistive 
divider. 

12.3 Verify the voltage output levels for the network 
in Fig. 12.4, using Millman's theorem. Draw 
the equivalent circuits. 

12.4 Assume that the divider in Prob. 12.2 has+ 10 
V full-scale output, and find the following: 

a. The change in output voltage due to a 
change in the LSB 

b. The output voltage for an input of 
110110 

12.5 A 10-bit resistive divider is constructed such 
that the current through the LSB resistor is 
100 µA. Determine the maximum current that 
will flow through the MSB resistor. 

AID converter which causes the converter to 
change from one state to the next. 

• Millman 's theorem A theorem from network 
analysis which states that the voltage at any 
node in a resistive network is equal to the sum 
of the currents entering the node divided by 
the sum of the conductances com1ected to the 
node, all determined by assuming that the 
voltage at the node is zero. 

• monotonicity A consistent increase in output 
in response to a consistent increase in input 
(voltage or current). 

• quantization error The error inherent in any 
digital system due to the size of the LSB. 

• sample and hold circuit Samples analog 
voltage signal and holds briefly to facilitate 
analog to digital conversion. 

• SAR Sequential approximation register, used 
in a sequential AID converter. 

12.6 What is the full-scale output voltage ofa 6-bit 
binary ladder ifO = 0 V and 1 = +10 V? Ofan 
8-bit ladder? 

12. 7 Find the output voltage of a 6-bit binary ladder 
with the following inputs: 

a. 101001 b. 111011 

C. 110001 

12.8 Check the results of Prob. 11-7 by adding the 
individual bit contributions. 

12.9 What is the resolution ofa 12-bit DI A converter 
which uses a binary ladder? If the full-scale 
output is + 10 V, what is the resolution in 
volts? 

12.10 How many bits are required in a binary ladder 
to achieve a resolution of 1 mV if full scale is 
+5V? 



Digital Principles and Applications 

12.11 How many comparators are required to build 
a 5-bit simultaneous AID converter? 

12.12 Redesign the encoding matrix and READ 
gates in Fig. 12.20, using NAND gates. 

12.13 Assuming that the input reference voltage is 
V = 10. O V de, detennine the digital output of 
the AID converter in Fig. 12.21a for an input 
voltage of: 

a. 1.25 V 
c. 8.05 V 

b. 3.33 V 

12.14 Find the following for a 12-bit counter-type 
AID converter using a I -MHz clock: 

a. Maximum conversion time 
b. Average conversion time 
c. Maximum conversion rate 

12.15 What clock frequency must be used with a 1 O
bit counter-type AID converter if it must be 
capable of making at least 7000 conversions 
per second? 

12.16 Design additional control circuitry for Fig. 
12.24 such that the A/D converter in Fig. 
12.23 will continue to make conversions after 
an initial START pulse is applied. 

.8 

12.17 What is the conversion time of a 12-bit 
successive-approximation-type AID converter 
using a I-MHz clock? 

I 2.18 What is the conversion time of a 12-bit 

I. 1/63 
2. 30/I5=2V 
3. 0.15625V 
4. 9.84375 V 
5. A monotonicity test checks to see that the 

DIA output voltage increases regularly as 
the input digital signals increase. 

section-counter-type AID converter using a I -
MHz clock? The counter is divided into three 
equal sections. 

12.19 For the integrator in Fig. 12.31, show that 
the output voltage is given by V0 = { V;I 
RC)t, assuming that the input voltage V; is a 
constant. [Hint: Using Kirchhoff's current law 
at node A, the resistor current i R is equal to the 
capacitor current ic, but iR = V;IR and ic = qlt 
= (V:,C)lt.] 

12.20 Design the control logic for the CONTROL 
box in Fig. I2.32 to generate the proper 
control signals shown in that figure. 

12.21 Calculate a value for C in Fig. 12.33 to obtain 
a fixed slope V;l(RC) = 1000 V/s, given V; = 
1.0 Vdc and R = 100 kQ. 

12.22 Can you design an amplifier such that the 
output is always positive and is equal to the 
magnitude of the input voltage? In other 
words, the input can be either + V; or -V; but in 
either case, the output will be +V;. 

12.23 Design the CONTROL logic for the converter 
in Fig. 12.34. 

I2.24 What overall accuracy could you reasonably 
expect from a 12-bit AID converter? 

12.25 Discuss the overall acceptable accuracy of a 
10-bit AID converter in terms of quantization 
error, ladder accuracy, comparator accuracy, 
converter accuracy, and other factors. 

6. +5 Vdc 
7. Resolution =10/256 = 39.06 mV 
8. Its conversion time is very fast. 
9. Possibilities include radar signal process in~, 

. videodisplays,.high-speedinstrumentation, 
and television broadcasting. 

10. 128 µs 



DIA Conversion and AID Conversion 

lL 64µs 
12, The£g~!~~e~~eA/D converter uses an 

up-d~~~;~~~ttJ-6 
13. The continuQus:.cyp~A/D converter is faster 

than the counter-type AID converter. 
14. SAR.stands for successive-approximation 

register. 
15. The ADC0804 is an 8-bii.: CMOS 

successive-approximation AID converter. 

16. Slower 
17. One major weakness of the single-slope 

All) converter is tllat . if Js t::Xtt'flpely 
sensitive to variations inramp voltage and 
hence to errors in ramp voltage. 

18. TheRCtimeconstant cancelsout,makingthe 
conversion much less sensitive to variations 
inramp voltage accuracy. 



Memory 

+ List the various forms of magnetic and optical memory and explain how each works 
+ Discuss memory addressing techniques 
+ Describe ROM, PROM, and EPROM and their characteristics and differences 
+ Compare the advantages and disadvantages of SRAM and DRAM and be familiar with 

the basic features of SRAM and DRAM chips 
+ Describe how content addressable memory works 

The ability to store information (to remember) is an important requirement in a digital system. Circuits and/ 
or systems designed specifically for data storage are referred to as memory. In the simplest application, the 
memory may be a flip-flop, or perhaps a number of flip-flops connected to fonn a register. In a larger system, 
such as a microcomputer, the memory may be composed of semiconductor memory chips. Semiconductor 
memories are composed of bipolar transistors or MOS transistors on an integrated circuit (IC), and are 
available in two general categories-read-only memory (ROM) and random-access memory (RAM). ROM 
and RAM memories can be constructed to store impressive amounts of data entirely within a computer 
system. Both programmed instructions and data are stored in a computer by means of ROM and RAM. But 
really large amounts of data (such as banking or insurance records) are generally stored using magnetic 
memory techniques. Magnetic memory includes the recording of digital information on magnetic tape, hard 
disks, and floppy disks. Magnetic storage systems are quite sophisticated and are usually externally accessed, 
as shown in Chapter I in Fig. 1.28 and repeated here for reference. However, in last two decades there has 
been tremendous growth in optical memory devices like compact disk, digital versatile disk etc. that gives 
low cost high capacity alternative storage solution. 



Voice 
input 

MUX 

Keyboard 

Inputs 

Memory 

Digital 
computer 

Disk drive 
or 

tape drive 

13.1 BASIC TERMS AND IDEAS 

Semiconductor Memory 

DEMUX 

[J ( ___ ) 
CRT Printer 

Outputs 

Audio 
output 

Disk drive 
or 

tape drive 

Recent advances in semiconductor technology have provided a number of reliable and economical MSI and 
LSI memory circuits. The typical semiconductor memory consists of a rectangular array of memory cells, 
fabricated on a silicon wafer, and housed in a convenient package, such as a DIP. The basic memory cell is 
typically a transistor flip-flop or a circuit capable of storing charge and is used to store 1 bit of infonnation. 
Memories are usually classified as either bipolar, metal oxide semiconductor (MOS), or complementary 
metal oxide semiconductor (CMOS) according to the type of transistor used to construct the individual 
memory cells. The total number of cells in a memory determine its capacity. For instance, a 1024 bipolar 
memory chip is a semiconductor memory that has 1024 memory cells, each cell consisting of a flip-flop 
constructed with the use of bipolar transistors. Chip is a term commonly used to refer to a semiconductor 
memory device. In general, faster operation is obtained with a bipolar memory chip, but greater packing 
density and thus reduced size and cost, as well as lower power requirements, are characteristics of MOS and 
CMOS memory chips. 

Characteristics 

The two general categories of memory, RAM and ROM, can be further divided as illustrated in Fig. 13 .1. 
A de power supply is required to energize any semiconductor memory chip. Once de power is applied to a 
static RAM (SRAM), the SRAM retains stored information indefinitely, without any further action. A dynamic 
RAM (DRAM), on the other hand, does not retain stored data indefinitely; any stored data must be stored again 
(refreshed) periodically. Both SRAMs and DRAMs are used to construct the memory inside a microcomputer 
or minicomputer (see Fig. 1.34 in Chapter 1 ). DRAMs are used as the bulk of the memory, and high-speed 
SRAMs are used for a smaller, rapid-access type of memory known as cache memo,y. The cache is used 
to momentarily store selected data in order to improve computer speed of operation. SRAMs can be either 
bipolar or MOS, but all DRAMs are MOS. 



Digital Principles and Applications 

The information (data) stored in a ROM is .fixed 
and will be retained permanently even if de power is 
removed. Clearly, a ROM is ideal for storing permanent 
instructions necessary for the startup and operation of 
a computer. These instructions are retained, even when 
the computer is off, and become immediately available 
each time the computer is turned on. Data stored in a 
pogrammable ROM (PROM) is permanent-a PROM 
can be programmed only once! However, the data stored 
in an erasable PROM (EPROM) can be "erased"; the 
EPROM can then be used to store new data. PROMs can 
be either bipolar or MOS, but all EPROMs are MOS. 

I Random-~~s memory I 

RAM 

A block diagram of a typical RAM chip is shown in Fig. 
13.2a. An application in which data changes frequently 

t 
SRAM 

Static RAM 

Bipolar! MOS 

I 
t 

PROM 
Programmable 

ROM 
Bipolar! MOS 

t 
DRAM 

Dynamic RAM 

MOS 

ROM 
Read-only memory 

t t 
EPROM EEPROM 
Erasable Electricalg 
PROM erasable PR M 
MOS MOS 

calls for the use of a RAM. The logic circuitry associated with a RAM will allow a single bit of information to 
be stored in any of the memory cells-this is the write operation. There is also logic circuitry that will detect 
whether a O or a 1 is stored in any particular cell-this is the read operation. The fact that a bit can be written 
( stored) in any cell or read ( detected) from any cell suggests the description random access. A control signal, 
usually called chip-select or chip-enable, is used to enable or disable the chip. In the read mode, data from 
the selected memory cells is made available at the output. In the write mode, information at the data input 
is written into (stored in) the selected cells. The address lines determine the cells written into or read from. 
Since each cell is a transistor circuit, a loss of de power means a loss of data-a RAM that has this type of 
memory cell is said to provide volatile storage. 

ROM 

A typical ROM chip is shown in Fig. 13.2b. An application in which the data does not change dictates 
the use of a ROM. For instance, a "lookup table" that stores the values of mathematical constants such as 
trigonometric functions or a fixed program such as that used to find the square root of a number could be 
stored in a ROM. The content of a ROM is fixed during manufacturing, perhaps by metallization or by the 

Enable 

'--v--' 

Address 
lines 
(a) 

Enable 

'--v--' 

Address 
lines 
(b) 



Memory 

presence or absence of a working transistor in a memory cell, by opening or shorting the gate structure, or 
by the oxide-layer thickness. A ROM is still random access, since there are logic circuitry and address lines 
to select any desired cell in the memory. When enabled, data from the selected cells is made available at the 
output. There is, of course, no write mode. Since data is permanently stored in each cell, a loss of power does 
not cause a loss of data, and thus a ROM provides nonvolatile data storage. 

An application in which the data does not change but the required data will not be available until a later 
time suggests the use of a PROM, where the stored data can be set in the memory by writing into the PROM 
at the user's convenience. An application in which the data may change from time to time might call for the 
use of an EPROM. 

State the most likely type of semiconductor memory for each application: (a) main memory 
in a hand calculator; (b) storing values oflogarithms; ( c) storing prices of vegetable produce; 
( d) emergency stop procedures for an industrial mill now in the design stage. 

Solution (a) RAM; (b) ROM; (c) EPROM; (d) PROM. 

L What is the operational difference between an SRAM and a DRAM? 
2. What is an EPROM? 
3. What is a cache meniory? 

13.2 MAGNETIC MEMORY 

Magnetic tape, floppy disks, and hard disks are all capable of storing large quantities of digital data. A hard 
disk drive and a floppy disk drive are important components in nearly all microcomputer and minicomputer 
systems. Large reels of magnetic tape are economical and widely used mass storage components in large 
computer systems. The basic principle involved in each case is the magnetization of small spots in a thin film 
of magnetic material. 

Magnetic Recording 

Magnetic tape is produced by the deposition of a thin film of magnetic material on a long strip of plastic, 
which is then wound on a reel. Magnetic material deposited on a rigid disk forms the basis of a hard disk; the 
same material on a semirigid disk is used to construct a floppy disk. Digital information is recorded on any of 
these surfaces in essentially the same fashion. 

A current i in the coil shown in Fig. 13.3a or, the next page will produce a magnetic field across the gap. A 
portion of this field will extend into the magnetic material below the gap, and the material will be magnetized 
with a fixed orientation. When the current is removed, a magnetized spot remains, as shown in Fig. 13.3b. 
Thus, information has been stored. If the current is reversed in direction, a spot will again be magnetized, but 
with the opposite fixed orientation, as shown in Fig. 13.3c. Clearly this is a binary system, and it can be used 
to store binary infonnation. For example, one could "define" Part b of Fig. 13.3 as 1 (high) and Part c as 0 
(low). Introducing current i to record a O or a I is writing (or recording or storing) data. 

Now if a fixed, magnetized spot with a given orientation is moved past a gap as shown in 
Fig. 13 .4a on the next page, a current with the direction shown will be induced in the coil. But if a magnetized 



Digital Principles and Applications 

Magnetic oxide 
1--~~....---layer 

-Base 

(a) Recording on a magnetic film (b) Recording a 1 ( c) Recording a 0 

spot with the opposite orientation is moved past the gap, a current will be induced in the opposite direction, 
as shown in Fig.13.4b. Detecting the orientation of the magnetized spot by measuring the induced current is 
reading information (1 or 0). 

__ Direction of 
motion 

(a) Reading a 1 

_ Direction of 
motion 

(b) Reading a 0 

Induced Applied 
read t write 

current current ~--~~--~ 
Read 
head 

Write 
head 

Dual read-write head 

The same magnetic read-write head in Fig. 13.3a can be used to write digital data or to read digital data. 
However, the dual read-write head in Fig. 13.5 is more common. Here's why. The tape or disk is moved under 
the heads in the direction shown. At time t

1
, a spot is recorded under the write head. A short time later, at time 

t
2

, this spot passes under the read head. It can then be read out and a check can be made to ensure that the 
correct data was in fact recorded. 

Magnetic Tape 

Either seven or nine dual read-write heads are connected in parallel for use with magnetic tape as illustrated 
in Fig. 13.6a. As the tape moves past the heads, data is read or written, 7 (or 9) bits at a time. In the 7-bit 
system, alphanumeric info1mation is recorded in coded form, and there is 1 parity bit ( even or odd). There 
are numerous coding schemes, but a portion of a commonly used IBM code is shown in Fig. 13.6b. In the 
9-bit system, a data word is composed of 8 bits, and the ninth bit is for parity ( either even or odd). Data can 
be stored in coded form or in straight binary form. 



Memory 

Check {C 

Zone rn. 
Numeric {f 

(a) Magnetic tape recording 

012345 ----ABCDE----
I I I I 

I I 
I I 

I I I I 
I I I I 

I 

A 1 is shown with a mark ( 1) 
A O has no mark 

(b) A common 7-bit code 

Data storage on a magnetic tape is sequential. That is, data is stored one word after another, in sequence. 
To recover (read) data from the tape requires sequential searching. Clearly, the storage ( or recovery) of data 
in a sequential system such as this requires considerably more time than storage (or recovery) using RAM. 
Tape is said to have a longer access time than RAM. Typical access times are measured in seconds, compared 
with nanosecond access times for RAMs. 

Hard Disks 

Magnetic material deposited on a rigid disk (usually aluminum) is the basis for a hard disk system. One or 
more of these disks are mounted in an enclosure similar to that shown in Fig. 13.7a. The hard disks used in 
small computer systems are typically 3.5 in. or 5.25 in. in diameter. Hard disk drives with 40 to 400 gigabyte 
capacities are common in microcomputer systems. The disk is rotated at speeds between 3600 to 7200 rpm 
and in high end servers up to 15000 rpm resulting in typical access time of 16 ms to 3.6 ms. Because of 
the relatively short access times and the high storage density, hard disks are widely used in all computer 
systems. 

(a) 

I 
I 

I 

, 
I 

/~ , 
/ , 

I 
I 

5.25 in : 
I 
I 
I 

j 
I 
I 
\ 
\ 

' ' 

I 
\ 

' ' ' 
' ',_ 

(b) Hard disk 

Hard disk system 

Inner 
track 

An inner 
track 

Outer 
track 



Digital Principles and Applications 

Information is stored in tracks ( concentric rings) around the disk. The disk is further divided into sectors 
(pie-shaped sections), as shown in Fig. 13.7b. The number of tracks and sectors differ, depending on the 
computer system and on the individual manufacturer. The smaller hard disks used in microcomputer systems 
typically have 300 or so tracks. 

Besides internal Hard Disks, a modern computer has the option to use external 3.5 inch hard drives having 
capacity of 80 GB and above, portable external 2.5 inch hard drive of capacity 40 GB to 120 GB and palm 
size pocket hard drive of capacity 2.5 GB or 5 GB. 

Floppy Disks 
A floppy disk is formed by the deposition of magnetic material on a semirigid plastic disk housed in a 
protective cover as shown in Figs. 13.8a and b. The read-write opening provides access for the read-write 
head, and the index access hole allows the use of a photosensor to establish a reference position. When 
the write-protect notch is covered, data cannot be recorded on the disk, preventing accidental loss of data. 
Double-sided high-density 5.25-in disks have a capacity of 1.2 MB. Double-sided high-density 3.5-in disks 
have a capacity of2.88 MB. 

Spindle 
drive Write-
hole . protect -

Read:o t 
acc~o Index 

(a) 5.25-in floppy disk 
(minifloppy) 

Read-write Sliding metal 
opening beneath / cover 

cover'-.. 

n D 
Write-

0 protect_.. 0 

(b) 3.5-in floppy disk 
(microfloppy) 

Read/write ~ Index access 
access hole 
hole \ 

@i? 

( c) Floppy disk drive 



Memory 

As with hard disks, data is stored in tracks and the disk is divided into sectors; In IBM format, 5.25-in 
disks have 40 tracks per side and 3.5-in disks have 77 tracks per side. The IBM standard for sectors is nine. 

The floppy disk is portable, and it must be inserted into a disk drive as shown in Fig. 13.8c. The drive 
unit consists of a single read-write head, read-write and control electronics, a drive mechanism, and a track
positioning mechanism. The spindle drive rotates the magnetic disk at a speed of 360 rpm. Access time is thus 
somewhat higher than the hard disk, being about 80 ms on average. 

Note that, all the numbers that refer to maximum capacity, speed, given in this section or at other places 
are improving day by day by rapid technological advancements in this field. 

4, Does the code inl'ig. 13.(ib have even or odd parity? ··.. C ••..... · ... ·· . >< . 
Ma.gnetic tape provides inexpensive storage oflarge qU!lntities of digittt! ~ta. )Vhy rt<>tuse i( 
instead of RAM, in a microcon1putel'? 

6: How can binary information be recordc<,t on ~gnetic µIm? 

13.3 OPTICAL MEMORY 

Introduced in 1982 jointly by Philips and Sony for storing digital audio data, Compact Disk (CD) found its 
way into computer storage in 1985. There was no looking back since then and today we find different types of 
CDs flooding the market where binary data is optically .coded. The memory capacity of a CD is in the range 
of 650-700 MB, i.e. nearly 500 times more than 1.44 MB magnetic floppy disk. Both come in movable data 
storage category with almost same price tag but data integrity in optical disk is maintained over much longer 
period of time. Its newer variety called Digital Versatile Disk (DVD) can store data from 4.7 GB to 17.1 GB 
depending on configuration and make. Thus, the growth in optical storage media has beenspectacular in last 
two decades. In this section we'll first discuss how CDs store binary data, what differentiates one type of CD 
from the other and then we'll look into DVD features. 

CD. ROM 

CD ROM or CD Read Only Memory devices are mass produced in factory using a stamp press technology. 
CD ROM drives uses LASER (Light Amplification by Stimulated Emission of Radiation) technology to read. 
data from it. A semiconductor LASER generates a high intensity light wave of stable wavelength"' 780 run. A 
lens system is used to direct the LASER towards the disk over approximately 1 micron diameter spot. Refer 
to simplified diagram ofFig. 13.9a. The intensity of the reflected light from metallic reflection layer, received 
by photo sensors gives the information of binary data is stored in CD. There are two different surfaces called 
pzt and land from which reflection occurs. The pit is approximately 0: 12 micron deep compared to land and 
reflected intensities are about 25% and more than 70% respectively (Fig. B.9b ). Every time laser beam trav
els from land to pit or pit to land there is a change in intensity of reflected light. This change is read as binary 
digit 1 and a constant intensity reflected light is interpreted as zero. The pit width is such that there is at least 
2 and at most 10 zeroes between every 1. This is achieved by converting every 8-bit byte into a 14-bit value, 
a process called Eight to Fourteen Modulation (EFM). Such arrangement makes it easy for the read laser to 
detect bits and also helps in synchronization of internal clock as CDs are essentially self docking. Data cor
responding to a small portion of the track is shown above label in Fig. 13.9a. 



Digital Principles and Applications 

00000010010000000!00010000 Label 

prism 

Protective layer 

Reflective layer 

Substrate 

Lens system 

Lens 

n Laser diode 

(a) 

Good reflectivity 

LAND 

~ 
Poor reflectivity 

PIT 

~ 
(b) 

A compact disk reading system 

A compact disk normally comes in 12 cm diameter. The 1.2 mm thickness has four distinct pa11s. They are 
( a) label layer, (b) protective layer, ( c) reflective layer, and ( d) a transparent substrate layer on which land and 
pits are formed. The high reliability of CD comes from protection of data on one side by 10-20 microns thick 
protective lacquer layer and label and on the other side a tough approximately 1.2 mm thick polycarbonate 
layer. Thus, data integrity is maintained for years against most normal physical abuses and also for the fact 
that it is not susceptible to magnetic fields or radiations. Note that, small scratches on the surface of CD do not 
directly erase the data, but create additional areas oflight scattering. This can make things difficult for drive's 
electronic, which is also much less sensitive to radial scratches. than to the circumferential ones. The otherreason 
that increases reliability of data stored in a CD is the ability to use efficient error correction codes. The data is 
stored in the form of a spiral of around 20000 windings totaling approximately 4.5 km oflength and contains 
nearly 2 billion shallow pits on its surface. A macroscopic view of a part of CD is presented in Fig. 13.10. 

You definitely have seen some kind of symbol like 48X, 52X etc. written on a CD. What is that? It gives 
the speed at which data is read from CD where IX stands for 150 KB/Sec. Earlier versions of CD ROM drive 
below I2X were built on constant linear velocity (CLV) where motor had variable speed to maintain CLV. 
Present-day drives are based qn constant angular velocity (CAY) where motor rotates at constant speed and 
this requires less seek time to access data from CD. 

CD-R 

CD-R or CD-Recordable allows user to write data but once. The CD-R drive has laser unit which uses 
higher intensity light wave for write operations than read. CD-R disk does not have pits and lands but a 
photosensitive organic dye (between reflective layer and polycarbonate substrate) that write laser heats 



Memory 

A macroscopic view of a part of compact disk surface 

to approximately 250°C. This melts or chemically decomposes the dye to form a depression mark in the 
recording layer in appropriate places. The places burnt have lower reflectivity of light. Thus read laser gets 
two different intensities on reflected light while reading the disk, similar to read operation of a CD ROM. 
Earlier versions of CD-R called WORM, abbreviation of write once read many times required data to be 
written in only one session or one go. Now it is possible to write data in CD-R in multiple sessions till it is 
completely filled. The writing speed of CD-R is much slower than the read speed. 

CD-RW 

CD-RW or CD Read Write, previously known as CD-Erasable gives user facility to write and erase data 
many times, unlike CD-R. CD-RW uses an active layer of Ag-In-Sb-Te (silver-indium-antimony-tellurium) 
alloy that has a polycrystalline structure making it reflective (reflectivity 25%). Writing data on disk uses 
highest power of laser that heats up selected spots to 500°-700°C. At this temperature the chemical structure 
liquefies losing its polycrystalline structure and on cooling solidifies to an amorphous state that has reduced 
reflectivity of 15%. The read process is like CD-ROM and CD-R that notes the difference in reflectivity of 
the reflecting surface. 

To reverse the phase or erase data, the laser operates at a lower power setting and heats the active material 
to nearly 200 °C. This reverses the material from its amorphous to its polycrystalline state and then becomes 
reflective again. According to manufacturers, in a CD-RW the rewrite operations can be done 1000 times or 
more. The main drawback ofCD-RW is very low reflectivity of the material and the difference between two 
levels is also not much. This often limits readability of these devices. Note that CD-Recordable drives often 
come with three different speed ratings, one speed for write-once operations, one for re-write operations, and 
one for read-only operations. The speeds are typically listed in that order, e.g. 12X/l OX/32X. This means 
CPU and media-permitting, CD drive can write to CD-R disks at I2X speed, write to CD-RW disks at lOX 
speed and read from CD disks at 32X speed. 

DVD 

Digital Versatile Disk or Digital Video Disk, popular as DVD resemble compact disk in dimension and look 
but contains much higher storage space. DVD driver uses smaller wavelength ( 635 nm or 650 nm) and lower 
numerical aperture of lens system to read smaller dimension land and pits. Each side can have two layers 



Digital Principles and Applications 

from which data is read andin certain disks data is written on both thesides. Single sided, single layer has 
capacity of 4. 7 GB, single sided double layer has 8.5 GB, double sided single layer has 9 .4 GB while double 
sided double layer has 17 .1 · GB of storage space. The better quality of DVD output compared to CD comes 
from better channel coding; error correction scheme and of course a higher data transfer rate. Note that in 
DVD terminology, l X refers to L32 MB/Sec µnlike 150 J{B,/Sec of <;D,pke Cr>, different.varieties of DVD 
like DVD-R, DVD-RW, DVD-RAM are being devel9pedand entering the market. 

Handling Tips 

Before we complete this sectiordet us provide y6u some useful tips for handling CDs, the most used movable 
storage device of these days. ()f crurse, the listjs n(); exll~ustive and the requirements come mainly from 
maintaining a good reflecting surface and physical ba.lanee of the CD: · 

(i) Handle disks by the outer edge or the center hole. Dotft fotlch the surface of the disk to avoid leaving 
fingerprints and oil behincl. Keep.the diskfree ()fdirt .•. 

(ii) Clean dirt,.· smudges, and liquids from disks by· wiping with a clean <:otton fabric in· a straight line 
radially outward from the center of the disk. Don't wipe in circles. The error correction codes on 
the clisk can handle only small inten:uptions like scratch that travels across the spiral. You may clean 
stubborn dirt and foreign substances with 99% isopropyl alcohol or 99% methyl alcohol. First apply 
the cleaner to a cotton, µfen rub the cloth across the.disk, taking care not to.get any fluid on the label 
side of the disk. 

(iii) Label the disk with anon-solvent ... based felMip permanent marker, Beware of permanent markers that 
contain strong solvents. The use of adhesive labels is not recommended. If you use a label, don't try to 
remove or reposition it.. 

(iv) Never ever bend the disk Flexing the disk can cause stress patterns toform in the polycarbonate, and if 
you stretch it far enough the reflective and recording layers get deformed. Store disks vertically. Over 
along period, gravity will warp the disk ifit's left flat 

(v) Store disks ih a cool, dry, dark environmentin which the airis clean to avoid corrosion. Keep itaway 
from areas that are excessively hot· or damp· and also from :dfrect sunlight and other ultraviolet· light 
sources. Do not expose the disk to rapid changes in temperature or humidity. 

Cell Selection 

Addressing is the process of selecting one of the cells in a memory to be written into or to be read from, In 
order to facilitate selection, memories are generally arranged by placing cells in a rectangular arrangement 
of rows and columns as shown in Fig. 13 .11 a. In this particular case, there are m rows and n · columns, for a 
totalof n X m cells in the memory. 



Memory 

The control circuitry that accompanies the basic memory array is designed such that if one and only one 
row line is activated and one and only one column line is activated, the memory cell at the intersection of 
these two lines is selected. For instance, in Fig. 13.llb, ifrow A is activated and column Bis activated, the 
cell at the intersection of this row and column is selected--that is, it can be read from or written into. For 
convenience, this cell is then called AB, corresponding to the row and the column selected. This designation 
is defined as the address of the cell. The activation of a line (row or column) is achieved by placing a logic 1 
(or perhaps a logic 0) on it. 

1 
2 
3 

m columns 

1 2 3 n 
Memory 
cell AB 

mrows n x m cells Row A 

Matrix Addressing 

m 

(a) (b) 

(a) A rectangular array of m x n cells, (b) Selecting the cell at memory 
address AB 

Let's take a little time to consider the various possible configurations for a rectangular array of memory cells. 
The different rectangular arrays of 16 cells are shown in Fig. 13.12. In each of the five cases given, there are 
exactly 16 cells. The 16 x land the 1 x 16 arrangements in Fig. 13.12a are really equivalent; likewise, the 
8 x 2 and the 2 x 8 are essentially the same. So, there are really only three different configurations, each of 
which contain the exact same number of cells. 

For any of the three configurations, the selection of a single cell still requires a single row and a single 
column to define a unique address. In Fig. 13.12a, a total of 17 address lines must be used.;.......16 rows and 1 
column, or l row and 16 columns. The minimum requirement in either case is really only 16 lines. However, 
either arrangement in Fig. 13.12b requires only 10 address lines-8 rows and 2 columns, or 2 rows and 8 
columns. Clearly the best arrangement is given in Fig. 13.12c, since this configuration only requires 8 address 
lines---4rows and 4 columns! 

In general, the arrangement that requires the fewest address lines is a square array of n rows and n columns 
for a total memory capacity of n x n = n2 cells. It is exactly for this reason that the square configuration is so 
widely used in industry. This arrangement of n rows and n columns is frequently referred to as matrix ad
dressing. In contrast, a single column that hasn rows (such as the 16 x 1 array of cells) is frequently called 
linear addressing, since selection of a cell simply means selection of the corresponding row, and the column 
is always used. 

For instance, a 74S201 is a 256-bit bipolar RAM, arranged in a 256 x I array. The IEEE symbol for the 
74S201 ('S201) is given in Fig. 13.13 on the next page. Eight address lin~ (A

0
, Al' ... , A

7
) are required to 

select one of the 256 cells. There are three chip select lines (S1, s2 and S3), all of which must be low in 
order to activate (select) the chip. When the RIW line is high, the data bit at input Dis stored at the selected 
address. When the RI W line is low, the complement of the bit at the selected address appears at the Q output. 



16 rows 

2 columns 
r--(r 

8x2 

l 
2 
3 

16 

1 column 

7 

16 
X 

l 

Principles and Applications 

16 columns 

1 2 3 16 

I I I········ I 
1 row { 1---1 1 x 16 I 

(a) 

8 columns 

1 2 3 8 

ro~s{:~ 4 
rows 

2 

3 

4 

4 columns 

2 3 4 

4x4 

(b) (c) 

The small triangle (V) at the Q output means that the output is three-state (tri-state). We'll use this chip in 
Sec. 13.5. 

Address Decoding 

Take another look at the 4 x 4 memory in Fig. 13.12c. To select a 
single cell, we must activate one and only one row, and one and only 
one column. This suggests the use of two l of 4 binary to decimal 
decoders as shown in Fig. 13.14. Consider the selection of the cell at 
address 43 (row 4 and column 3). If A

4 
= 1 and A

3 
= 1, the decoder 

will hold the row 4 line high while all other row lines will be low. 
Similarly, if A

2 
= 1 and A

1 
= 0, the decoder will hold column 3 high 

and all other column lines low. Thus an input A
4
A

3
A

2
A

1 
= 1110 will 

sekct cell 43. We can consider A
4
A

3 
as a row address of 2 bits and 

A
2
A

1 
as a column address of 2 bits. Taken together, any cell in the 

array can be uniquely specified by the 4-bit address A4A3A2A 1• As 
another example, the address A

4
A

3
A

2
A 

1 
= 0110 selects the cell at row 

2 and column 3 (address 23). 

The address decoders shown in Fig. 13.14 further reduce the 
number of address lines needed to uniquely locate a memory cell, 
and they are almost always included on the memory chip. Recall that 

74S201 

RAM 256xl 
Ao--~o 
Ai----' 

Az----' 
A3--~ 
A4--~ 
A5----' 
A6--~ 

1.1 
S1 
Sz---,__J 
s3-



Memory 

a binary-to-decimal decoder having n binary inputs will select 
one of211 output lines. For instance, a decoder that has 3 binary 
inputs will have 23 = 8 outputs, or a decoder having 4 inputs will 
have 16 outputs, and so on. 

In general, an address of B bits can be used to define a square 
memory of28 cells, where there are B/2 bits for the rows and B/2 
bits for the columns, as shown in Fig. 13 .15. Notice that the total 
number of address bits B must be an even integer (2,4,6,8, ... ). 
Since the input to each decoder is B/2 bits, the output of each 
decoder must be 2812 lines. So the capacity of the memory must 
be 2812 x 2812 = 28 • For instance, an address of12 bits can be used 
in this way for a memory that has 212 = 4096 bits. There will be 
6 address bits providing 26 = 64 rows and likewise 6 address bits 
providing 64 columns. The memory will then be arranged as a 
square array of 64 x 64 = 4096 memory cells. 

You may have noticed that most 
commercially available memories have 
capacities like 1024, 2048, 4096, 16,384, and 
so on. The reason for this is now clear-all of 
these numbers are clearly integer powers of 
2 ! Incidentally, a memory having 1024 bits 
is usually referred to as a 1 K memory ( 1000 
bits) simply for convenience. Similarly, a 
memory advertised as 16K really has 16,384 
bits. 4K is really 4096, and so on. 

What would· be the 
structure of the binary 
address for a memory 
system having a 
capacity of 1024 bits? 

Solution Since 210 = 1024, there.would have 
to be 10 bits in the address word. The FirstSbits 
could be used to designate one of the required 
32 rows, and the second 5 bits could be used to 
designate one of the required 32 columns. Notice 
that 32 X 32 = 1024. 

Row 
ADDRESS 

= 

= 

t 
B/2 
row 
lines 
t 

- 1 of4 

- decoder 

Decoder t 
Binary zB12 

to lines 
decimal 

+ 

I I 
1 of 4 

decoder 

l 2 3 4 

1 
2 
3 4x4 

4 

I sn -+-column_.. 
lines 

Decoder 
Binary to 
decimal 

i--2 812 lines+ 

28 Cells 

For the memory system described in the previous example, what is the decimal address for the 

binary address 10110 01101? What is the address in hexadecimal? 

Solution The first 5 bit,; are the row address. Thus row= 10110= 22. The second 5 bits are the colll111n address. So, 

column= 13. The decimal address is thus 22 13. In hexaclecimal, thissaJ11e addre..<;:sis 16 OD. 



Digital Principles and Applications 

Expandable Memory 

So far, we have only discussed memories that provide access to a single cell or bit at a time. It is often 
advantageous to access groups of bits-particularly groups of 4 bits ( a nibble) and groups of 8 bits ( a byte). 
It is not difficult to extend our discussion here to accommodate such requirements. There are at least two 
popular methods. The first simply accesses groups of cells on the same memory chip, and we discuss this idea 
next. The second connects memory chips in parallel, and we consider this technique in a following section. 

The logic diagram for a 64-bit (16 x 4) bipolar memory is given in Fig. 13.16. There are 16 rows of cells 
with four cells in each row; thus the description (16 x 4). Each cell is a bipolar junction transistor flip-flop. 
The address decoder has 4 address bits and thus 16 select lines--0ne for each row. In this case, each select 
line is connected to all four of the cells in a row. So, each select line will now select four cells at a tin1e. 
Therefore, each select line will select a 4-bit word (a nibble), rather than a single cell. 

You might think of this arrangement as a "stack" ofsixteen4-bit registers. This is really a form oflinear 
addressing, since the 4 address bits, when decoded, select one of the sixteen 4-bit registers. In any case, 
when data is read from this memory it appears at the four data output lines I5I' Jj2, Jj

3
, and Jj4 as a 4-bit data 

word. Similarly, data is presented to the memory for storage as a 4-bit data word at input lines /
1
,1

2
, /

3
, and /

4
• 

The 74S89 and the 74LSI89 both are 64-bit (16 x 4) bipolar scratch pad memories arranged in exactly this 
configuration (look ahead in Fig. 13.22). The idea is easily extended to memories that access a word of 8 bits 
(a byte) at a time-for instance, the TBP18S030 ROM discussed in the next section. 

l t--1----41>---+---l----!----+----+---+-.....J 

{

Ao 
Four A 
ADDRESS Al 
bits 2 

A3 
Chip- -
enable CE 

ADDRESS 
decoding 

! 
I Read-

! \Vrite 

Data in 11

1

.!
4 
----~---,..----' 

_ Bit 1 

Write-_ 

Bit 2 Bit 3 Bit4 

enable WE------__.. ______ _,_ _____ _._ _____ _, 

64-bit (16 x4) memory 

---Wordl 

---Word2 

----- Word 16 



Memory 

10. What l:>inary address will select cell 145 (decimal) in the 74S201 in Fig. 13.13? 

l L The ad~ress applied in Fig. J3. l 4isA 4A3A2A1 = 1010. What cell is being accessed? 

13.S ROMs, PROMs, AND EPROJ\is 

Having gained an understanding of memory addressing, let's tum our attention to the operation of a ROM. 
The tem1 ROM is generally reserved for memory chips that are programmed by the manufacturer. Such a 
chip is said to be mask-programmable, in contrast to a PROM, which is said to be.field-programmable-that 
is, it can be programmed by the user. EPROMs can be programmed, erased, and programmed again; they are 
clearly .much more versatile chips than PRO Ms. Refer to Section 4.9 of Chapter 4 for a detailed discussion 
on its internal circuitry. 

Programming 

What exactly does programming a ROM, PROM or 
EPROM involve? It simply involves writing, or storing, a 
desired pattern ofOs and ls (data). Each cell in the memory 
chip can store either a 1 or a 0. As supplied from the manu
facturer, most chips have a O stored in each cell. The chip 
is then programmed by entering ls in the appropriate cells. 
For instance, the content of every 4-bit word in a 64 x 4 
chip is initially 0000. If the desired content of a word is to 
be 0110, then the two inner bit positions will be altered to 
ls during programming. 

In the case of a ROM, you must supply the manufac
turer with the exact memory contents to be stored in the 
ROM. The Texas Instruments TMS4732 is a ROM having 
4096 eight-bit words (a 4096 x 8 ROM). The logic diagram 
is given in Fig. 13.17. The 8-bit word length makes this 
NMOS (n-channel MOS) chip ideal for microprocessor 
applications. Texas Instruments will store user-specified 
data during manufacturing. The user must supply data stor
age requirements in accordance with detailed instructions 
given on t.he TMS4732 data sheet. 

(8) 

(7) 

(6) 

(5) 

(4) 

(3) 

(2) 

(I) 

(23) 

(22) 

(19) 

(18) 

(20) 

(21) 

TMS4732 
~ ROM 

4096 X 8 

Av' 
(9) 

(10) 
A v' 

(11) 
Av' 

(13) 
>A 0 Av' 

(14) 
4095 Av' 

Av' 
(15) 

(16) 
Av' 

(17) 
Av' 
Av 

- Av' 
,...._ 

& EN 

The Texas Instruments TBP l 8S030 is a bipolar memory chip arranged as thirty-two 8-bit words (256 bits). 
The logic diagram for this user-programmable PROM chip is given in Fig. 13 .18. Basically, the programming 
is done by applying a current pulse to each output terminal where a logic 1 must appear (be stored). The 
current pulse will destroy an existing fuse link. When the fuse linkis present, the transistor circuit in that cell 
stores a 0. After the fuse link is destroyed, the circuit stores a 1. A typical programming sequence might be: 

I. Apply the proper de power supply voltage(s) to the chip; in the case of the TBP18S030, +5 Vdc. 
Disable the chip (the enable input is high). 



Digital Principles and Applications 

2. Apply the. address of the word to be programmed 
(A

0
, Al' A2, A3 , A4). For instance, to prograrm the 

word at address 14H (hex 14). apply 

AOAIA2A3A4 = 10100 

3. To store the word Q0Q
1
Q

2
Q

3
Q

4
Q

5
Q6Q

1 

00101000: 

a. Ground output Q2 and connect all other outputs 
to +5 Vdc through a 3.9-k.Q resistor. Raise the 
+5-Vdc supply to +9.25 Vdc and momentarily 
enable the chip. This will program a 1 in bit 
position Q

2
• 

b. Repeat (a) for bit position Q
4

• This will pro
gram a 1 in bit position Q

4
• 

4. Repeat steps 2 and 3 for each word to be 
programmed. 

ROMs 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) ~ 

TBP18S030 

PROM 32x8 

A"v 
(1) 

A"v 
(2) 

},~ A"v 
(3) 

(4) 
A"v 

(5) 
A"v 

(6) 
A"v 

(7) 
A"v 

(9) 
EN A"v 

(a) 

(a) Logic symbol 

The logic diagram for the Texas Instruments TMS4732, a 4096 x 8 ROM, is given in Fig. 13.17. Twelve 
address bits are required, A0, A1, ... , All (212 + 4096). There are two chip-enable inputs, S1 and S2• Both S1 

and S2 must be high in order to enable the chip. Each of the eight data output lines is a three-state line (the 
small V symbol). As mentioned previously, this chip is ideal for microprocessor applications because of the 
8-bit word length. This ROM is mask-programmable, and data must be specified for the manufacturer before 
purchase. 

Texas Instruments offers a number of other ROMs with larger memory capacity, all of which are LSI 
NMOS devices. 

TMS4664: 8192 x 8-bit 

TMS4764: 8192 x 8 bit 

TMS47128: 16,384 x 8-bit 

TMS47256: 32,768 x 8-bit 

PROMs 

The TBPl 8S030 is a 256-bit (32 x 8) PROM arranged as a stack of thirty-two 8-bit words. The 74S288 is an 
equivalent designation. As shown in Fig. 13.18, the 5 row address bits are labeled A

0
, AI' A

2
, A

3
, A

4 
and the 8 

output bits in a word are labeled Q
0

, QI' Q
2

, Q3, Q4, Q
5

, Q
6

, Qr 

Input G is used to enable or disable the entire set of 32 input decoding gates. When G is high, all the 
address decoding gates are inhibited and the memory chip is disabled, causing the eight output data bit lines 
to be high. When G is low, the data at the outputs will correspond to the 8-bit word in memory selected by 
the input address. On most memory chips there is a chip-enable or chip-select input line that performs the 
same function as G. 

Using the TBPl 8S030 PROM is relatively simple. First, since the logic circuits are TTL, a supply voltage 
and ground connections must be made. The data sheet calls for a nominal supply voltage of +Vee= 5.0 Vdc 



Memory 

Functional block diagram and word selection 

0 -
10) ~ 

~ ~ 
_]) 
4' -
5 -
~ 

7 

A ( 
1 

11) 

le ~ 

Binary ( 
select A2 

A ( 
3 

A ( 
4 

12) 

13) 

14) 

15) 

~ 

~ 

Le 

The line matnx shown above 1s an extreme s1mphficatton of the 256 program 
options. A more precise representation of the possible connections bet\veen 
a gate and the output sense lines is also shown. 

10' 

11 -
12 

-

13 -
14' 
= .::....0 
~ 

~ 
~ 

19 

20' -
21 -
22' 
=-
~ 
~ 

25 -
26' -

~ 
28' = 
~ 

30' -
31 

(b) 

\Vord select table 

\ :Vord 
Inputs 

A4 A:, A2 A1 Ao 
0 L L L L L 
! L L L L fl 
2 L l L fl L 
3 L L L fl I{ 

4 L L lf L L 
5 L L lf L H 
6 L L H If L 
7 L L HH/1 
8 L II L L L 
9 L If L L II 

10 L H L li L 
]] L fl L If H 
12 L Ii H L L 
l3 L Ii if L if 
14 L ifHIIL 
15 L fl H H H 
16 I{ L L L L 
17 I{ L L L I{ 

18 II L L H L 
19 if L L H H 
20 fl L fl L L 
21 H L H L }[ 

22 fl L H H L 
23 H L HHH 
24 H fl L L L 
25 JJ Ii L L fl 
26 JJ H L Fl L 
27 II H L H fl 
28 H H if L L 
29 1/HHL H 
30 HH/111 L 
31 11 H Ii fl 11 

} 

l 
, ,.,., high level 

~..:. ]ow level 

(9) (7) (6) (5) (4) (3) (2) ( 1) 
Q7 Q6 Q5 Q4 Q3 Q2 QI Qo 

Outputs 

(b) TBP18S030 PROM (74S288) 



Digital Principles and Applications 

on pin 16, with ground connected to pin 
8. The inputs and outputs are all TTL
compatible. The eight data outputs are 
three-state (note the symbol v' at each 
output). 

Now, all that is required is to ap
ply the correct input address to read a 
desired 8-bit word and then take the 
G input line (select line) low. The 
TBP 18S030 data sheet states an ac
cess time t of 12 ns (typical) and 25 

JJ 
ns (maximum). So, an 8-bit data word 
will be available at the outputs Q

0 
••• Q

7 

within 25 ns after the falling edge of G 
, as shown in Fig. 13 .l 9a, The address 
lines should, of course, be stable dur
ing the time data is being read out of the 
memory. There are two output lines in 
Fig. 13. l 9a showing that a data line may 
transition low to high, or high to low. To 
save time and space, this idea is usually 

ADDRESS 
lines 

Select 
line G 

Output 

...__ Changing • J • Stable 
I 

011111111111*~--
1------

I 0--------------~----------
I ' 

J--lp--l 
• I 

---------~ I I 
I 

(high to low) 
0 

Output 1 

(low to high) o ---------.-/ 
(a) 

Output 0---------.../ 
(b) 

Access time to for a TPB18S030 PROM 

conveyed in a single waveform as seen in Fig. 13. l 9b--this single waveform is the equivalent of the two 
output waveforms above it in Fig. 13.19a. 

The TTL LSI TBP24S 10 is 
advertised as a l 024-bit PROM. 
Since 210 = 1024, it would seem 
to require l O address bits, but the 
data sheet shows only 8 bits of 
address. Can you explain how 
the memory on this chip must be 
organized by looking at the logic 

diagram in Fig. 13.20? 

Solution There are 4 bits appearing at the output ofthe 
chip, so it must be organized as 256 words of 4 bits each 
(256 x 4 = l 024 ). The l 024 memory. cells are arranged in 
a square consisting of 32 rows and 32 columns. Five of the 
address bits (DEFGH) are used to select one of the 32 rows 
(25 = 32). The 32 .columns are divided into eight groups 
of 4 bits each. So, it is only necessary to select one of the 

(5) 

(6) 

(7) 

(4) 

(3) 

(2) 

(1) 

(15) 

(14) 

(13) -

TBP24SI0 

- PROM256x4 

A"v 
(12) 

(11) 
0 A"v 

(10) A 255 A"v 
(9) 

A"v 

~EN 

Texas Instruments TPB24S10 
PROM 

eight groups, and this can be done with three address lines (ABC), since 23 = 8.As an example, the address HGFED
CBA = 10110 110 will select row 10110=22 and the4 bits (four columns) in group 110=6. 



Memory 

EPROMs 

One disadvantage of a PROM is that once it is programmed, the contents are stored in that memory chip 
permanently-it can't be changed; a mistake in programming the chip can't be corrected. The EPROM 
overcomes this difficulty. 

The EPROM has a structure and addressing scheme similar to those of the previously discussed PROM, but 
it is constructed using MOS devices rather than bipolar devices. Many MOS EPROMs are TTL-compatible, 
and even the technique used to program the chip is similar to that used with a bipolar memory. The only 
difference is really the mechanism for permanently storing 
a 1 or a O in an MOS memory cell. 

The current pulse used to store a 1 when programming a 
bipolar PROM is used to destroy ("bum out") a connection 
on the chip. The same technique is used to program an 
MOS-type EPROM, but the current pulse is now applied 
for a period of time (usually a few milliseconds) in order 
to store a fixed charge in that particular memory cell. This 
stored charge will cause the cell to store a logic 1. 

The interesting thing about this phenomenon is that the 
charge can be removed ( or erased), and the cell will now 
contain a logic O! Furthermore, the process can be repeated. 
The memory cells are "erased" by shining an ultraviolet 
light through a quartz window onto the top of the chip. The 
light bleeds off the charge and all cells will now contain Os. 
The requirements for progranuning and erasing an EPROM 
vary widely from chip to chip, and data sheet information 
must be consulted in each individual case. 

(8) 

(7) 

(6) 

(5) 

(4) 

(3) 

(2) 

(1) 

(23) 

(22) 

(20) 

(18) -

TMS2716 

- EPROM 2048 x 8 

Av' 
(9) 

(10) 
Av' 

(11) 
A v' 

0 
A v' 

(13) 
> A 2047 (14) 

Av' 
(15) 

Av' 
(16) 

Av' 
(17) 

Av' 

-
EN 

2716 EPROM 

The logic diagram for a 2716, a 16K (2K x 8) EPROM, is given in Fig. 13.21. There are actually 2048 
words, 8 bits each, for a total storage capacity of 16,384 bits. The chip is completely TTL-compatible and 
has an access time of less.than 450 ns. The 11 address bits will uniquely select one of 2048, 8-bit words (2 11 

= 2048), and the selected word will appear at the data output lines if chip-select is low. The 2732 is a 32K 
(4K x 8) EPROM that is pin-compatible with the 2716-it simply has twice the memory storage. Likewise, 
the 2764 is a 64K (SK x 8) EPROM. 

As a matter of fact, the logic diagram in Fig. 13.21a is virtually the same for any ROM, PROM, or EPROM. 
Essentially the only variation is the total number of address inputs to accommodate the number of bits in the 
cell matrix. As an example, a CMOS EPROM with essentially the same logic diagram is the 27C5 l 2. But this 
chip has 16 address input lines and a 534,288-bit cell matrix, organized as 65,536 words, each 8 bits in length. 
This is most impressive when you consider that there are over a half-million bits of information stored in a 
28-pin package that measures less than 1.5 in. in length and about 0.5 in. in width! 

EEPROM, Flash Memory 

Electrically Erasable Programmable Read Only Memory (EEPROM) is similar to EPROM as far as writing 
into memory is considered, i.e. effecting a current pulse to store charge. The erasing, however, is different and 
is done by removing the charge and sending a pulse of opposite polarity. There are two types of EEPROM
parallel and serial. Parallel EEPROM is faster, costlier and comes in 28xx family. Their pinout and functioning 



Digital Principles and Applications 

is similar to 27xx EPROM family. Serial EEPROM is slower, cheaper, uses lower number of pins and comes 
in 24xx family. 

Flash memo,y is a further advancement on EEPROM. This, too, writes and erases data electrically-can 
be both parallel and serial type. The number of write/erase cycle is finite and often, there is a separate 
management scheme to take note of this. There is an internal voltage generation block that takes single 
voltage supply and generates different voltages required for writing and erasing. Different manufacturers 
have created different standards for flash memory chip which differ in pinout, memory organization, etc. Intel 
family chips are 28Fxxx while AMD chips are numbered as 29Fxxx. 

12. What does it mean to say that a chip is mask-programmable? 
13. v\lhat is the meaning of the small triangle on each output line of the TMS4732 in Figs 

13.17? 
14. The 74S288 in fig. 13.18 is programmed with 10110001 in word 20.Thedesired content at 

this word address is 10 I I l 001. Can this be corrected? 

13.6 RAMs 

The basic difference between a RAM and a ROM is that data can be written into (stored in) a RAM at any 
address as otten as desired. Naturally data can be read from any address in either a RAM or a ROM, and the 
addressing and read cycles for both devices are similar. The characteristics of both bipolar and MOS "static" 
RAMs are discussed in this section. 

A static RAM (SRAM) uses a flip-flop as the basic memory cell ( either bipolar or MOS) and once a bit is 
stored in a flip-flop, it will remain there as long as power is available to the chip-essentially forever-thus 
the term "static." On the other hand, the basic memory cell in a "dynamic" RAM (DRAM) utilizes stored 
charge in conjunction with an MOS device to store a bit of information. Since this stored charge will not 
remain for long periods of time, it must periodically be recharged (refreshed), and thus the term "dynamic" 
RAM. Both static and dynamic RAMs are "volatile" memory storage devices, since a loss of power supply 
voltages means a loss of stored data. In this section we discuss SRAMs in detail that explains how a RAM 
unit works and how several RAM chips can be combined together to expand the memory capacity, For this 
purpose we'll use mostly the TTL devices however a brief discussion of MOS based SRAM and DRAM will 
also be presented. 

The 7489 

The 7489 shown in Fig. 13.22 is a TTL LSI 64-bit RAM, arranged as 16 words of 4 bits each. Holding the 
memory-enable (ME) input low will enable the chip for either a read or a write operation, and the four data 
address lines will select which one of the sixteen 4-bit word positions to read from or write into. Then, if the 
write-enable (WE) is held low, the 4 bits present at the data inputs (D

1
, D2, D3, D

4
) will be stored in the selected 

address. Conversely, if WE is high, the data currently stored in the memory address will be presented to the 
four data output lines (Q

1
, Q

2
, Q

3
, QJ Incidentally, the outputs are open-collector transistors, and a pull-up 

resistor from each output up to + Vee is normally required. The operations for this chip are summarized in the 
trnth table in Fig. 13.22. 



SELECT 
inputs 

Memory 

(a) 

7 489, 64-bit RAM 

Sense line 
bias network 

The read operation is no different from that for a ROM. For this chip, simply hold ME low and WE high, 
and select the desired address. The 4-bit data word then appears at the "sense" outputs. The timing for a read 
operation is shown by the wavefonns in Fig. 13.22d. The propagation delay time tPHL is that period of time 
from the fall of ME until stable data appears at the outputs-the data sheet gives a maximum value of 50 ns, 
with 33 ns typical. Naturally the address input lines must be stable during the entire read operation, beginning· 



Ao 

A, 
A, 
A, 

ME 

WE 

D, 

D, 

o, 

D, 

ME WE 

L L 
L If 
H L 
JJ If 

Digital Principles and Applications 

(l) RAM 16x4 
(15) l (14) 0 

A 15 

1C2/G3 

G 1 

>] 
(5) {?i 

A 1 S'DA 1 !3 0 
(6) {7) Q, 
(10) (9) Q, 
(12) (11) 

Q, 

(b) 

Operation Condition of outputs 

Write Complement of data inputs 
Read Complement of selected word 
Inhibit storage Complement of data inputs 
Do nothing High 

(c) 

ADDRESS 

Output 

ADDRESS 

Data 
input 

Output 

~----+3V 

' ' ' ,-----------ov 
l I 
l I 

------;,( x----------+3 V 

--~: '---------J: OV 

-I /1'/IL I-'-- -I fplfl 1----i \ 1~---Vou 

-------Vol 

Read Cycle 

~---f----------ov 

OV 
I I 

•'-~-----------:--~ 
--l 1, I- --l 15 I-r- 111 --y +3V 

I 1 --------- 0V 

--~ f- 12 -J 13 i-
+3 V 

~---1--. I~-;----- OV 

_,, 1sR ~ 
--------------------, :,----Vo11 

\_;I 
Write cycle 

(d) 

(Continued) 

with the fall of ME. Notice carefully that the data appearing at the four outputs will be the complement of 
the stored data word! 

You will notice from the truth table that when the chip is deselected, that is, when ME is high, the outputs 
all go to a high level, provided we are in a read mode (WE is high). So, in the read operation waveforms, the 
time tPLH is the delay time from the rise of ME until the outputs assume the high state. The data sheet gives 
50 ns maximum and 26 ns typical for this delay time. 

During a write operation the 4 bits present at the data inputs will be stored in the selected memory address 
by holding the ME input low ( selecting the chip) and holding the WE low. At the same time, the complement 
of the data present at the four input lines will appear at the four output liries. Timing waveforms for the write 
operation are also shown in Fig. 13.22d. 

Let's look carefully at the timing requirements for the write cycle. First, the WE must be held low for a 
minimum period of time in order to store information in the memory cells-this is given as time tw on the 
waveforms, and the data sheet calls for 40 ns minimum. Memory-enable selects.the chip when low, and is 
allowed to go low coincident with or before a write operation is called for by WE going low. 

Next, the data to be written into memory must be stable at the data inputs for a minimum period of time 
before WE and, also for a minimum period of time after WE. The time period prior to WE is called the 
data-setup time t2• This time is measured from the end of the write-enable signal back to the point where the 



Memory 

data must be stable. The data sheet calls for 40 ns, and in this case it is the same as t,r Also, the data inputs 
must be held stable for a period of time after WE rises-this is called the data-hold time t

3
, and the data sheet 

calls for 5 ns minimum. 

The address lines must also be stable for a period of time before as well as after the WE signal. The time 
period before WE is called the address-setup or select-setup time t

4
• This time is measured from the fall of 

WE back to the point where the input address lines must be stable; the data sheet calls for 0.0 ns minimum. 
In other words, the address lines are allowed to become stable coincident with or before WE goes low. The 
address lines must also be stable for a period of time after the rise of WE; this is called the address-hold or 
select-hold time t

5
, and the data sheet calls for 5 ns minimum. 

Finally, after a write operation, if the chip is deselected (ME goes high), the outputs will return to a high 
state. The maximum time for this to occur is the sense-recovery time tsR' given as 70 ns maximum on the 
data sheet. 

The operation of a 7489 ns straightforward and easy to understand; therefore it is a good chip to study in 
elementary discussions of RAMs. It can be used to construct memories having larger capacities by connecting 
chips in parallel, but it's not too practical when we wish to consider memories of 16K, 32K, ... , 256K, 
512K, and so on. Nevertheless, the time spent studying this chip is well invested since the fundamentals 
of addressing and the read and write operations are essentially the same for all static RAMs. So, with these 
fundamentals in mind, let's take a look at some chips that have more memory capacity. 

The 74S201 

The block diagram in Fig. 13 .23 can be used to describe the operation of most SRAMs. Most of these are 
constructed with n address lines that will uniquely select only one of the 2" cells in the memory array-that 
is, selection is 1 bit at a time. There will be a 
chip-enable control (CE), a write-enable (WE), 
and a provision for a single input data bit (D) 
and a single output data bit (DJ 

For instance, the 74S201 in Fig. 13.24 is a 
256-bit RAM, organized as 256 words, each 
1 bit in length. The 256 cells are arranged in 
a square array of 16 rows and 16 columns. 
The 8 address bits (28 = 256) are divided into 
4 bits that are decoded to select one of the 16 
rows and 4 bits that are decoded to select one 
of the 16 columns. There is a single input data 
bit (D), a single output data bit ( Q ), and a read
write line (R/W ). There are three memory
enable inputs (Sp S2, S

3
), and all three of them 

must be low to select or enable the chip. 

n ADDRESS lines l : bl) 
::: 

:.a 8 Cells 2" x 1 
'l) 

Cl 

Control 

CE WE 

-+Vee 
-GND 

Generalized block diagram for a 
static RAM 

The truth table shows that if the chip is enabled, a write cycle is initiated by holding R/W low, or a read 
cycle can be initiated by holding R/W high. If any or all of the read-write inputs are high, the chip is inhibited 
and the output goes to a high-impedance state. Naturally the proper timing must be observed as defined by 
the timing waveforms; you will see that the timing requirements are very similar to the previously described 
7489. 



Ao 
(I) 

A1 
(2) 

A2 
(15) 

A3 
(7) 

A4 
(9) 

As 
(10) 

A6 
,i7 
~I 
S2 

S3 
R/W 

S2 

Digital Principles and Applications 

74S201 

0 
A 255 

Write-enable pulse width (minimum) 65 ns 
ADDRESS before write 65 ns 

Setup time Data before end of write 65 ns 
Chip-select before end of write 65 ns 
ADDRESS after write 0 ns 

Hold time Data after write 0 ns 
Q Chip-select after write 0 ns 

(a) Logic symbol (b) Recommended timing 

Using the information in Fig. 13.24, detennine how long the address lines for the 74S201 
must be held before R/W goes low and after R/W goes high. 

Solution The setup time, acldress to write~enable, is 0.0 ns. The h9Id time, address from write-enable, is 0.0 ns. 
Therefore, the address lines must be stable from the.fall ofRiW until the rise ofR/W .. 

Formation of Memory Banks 

Mem01y bank is the concept of increasing memory's capacity by connecting more than one memory block in. 
series, parallel or both. 

Now that we understand the operation of the 74S201 (abbreviated as '201), it is a simple matter to use 
multiple '20 l chips to construct larger memories. For instance, we can connect four '201 chips in parallel as 
shown in Fig. 13.25 to construct a RAM organized as 256 words, each 4 bits in length. Connecting eight '201 
chips in parallel will fonn a memory having 8-bit words, and so on. The nice thing about connecting chips 
in parallel like this is that the control and timing are exactly the same as if there were only a single chip. The 
only difference is that there are 4 data bits in and 4 data bits out ( or 8 in and 8 out), all of which are in parallel 
with one another. 

As a matter of fact, even larger memories can be constructed by connecting basic chips such as the '201 
in both series and parallel. For instance, thirty-two '201 chips are connected in a 4 x 8 matrix in Fig. 13.26 to 
fonn a memory having one thousand, twenty-four 8-bit words. This configuration requires a IO-bit address: 2 
bits can be used to select one of the four rows of eight '20 Is, and the remaining 8 bits will be wired in parallel 
to all the chips; they will work exactly as for the two-hundred fifty-six 4-bit word memory in Fig. 13 .25. This 
concept can be continued, of course, but it becomes somewhat impractical with larger memory requirements, 
especially since there are MOS chips readily available with greater memory capacity. 



Memory 

l 
'201 '201 '201 '201 

-

R/W 

Four 74S201's arranged as a 1024-bit memory having 256 

SRAMs 

A very popular and widely used MOS memory chip is the 2114. This is an SRAM having 4096 bits arranged 
as 1024 words of 4-bits each. The organization of this chip is quite similar to that of the 7489 shown in 
Fig.13.22, but notice that the 2114 is sixteen times larger! Nearly all SRAMs larger than 1024 bits are MOS 
types. 

The basic memory is arranged as 64 rows and 64 columns for a total of 64 x 64 = 4096 bits. Six address 
bits (A

3 
through A

8
) are used to select one of the 64 rows (26 = 64 ). The 64 columns are divided into 16 groups 

of 4-bit words, and four address bits (A
0

, A
1
, A

2 
and A) are used to select one of these 16 groups. A 10-bit 

address will then select a single 4-bit word from 64 rows and 16 columns, to provide a memory of 64 x 16 = 
1024 four-bit words. 

A basic SRAM cell or latch is shown in Fig. 13 .27 a. It consists of a back-to-back inverter that latches on 
to a particular state of logic O or 1. The two pass transistors enable writing and reading from two bit lines. 
Both the transistors are 'on' for both reading and writing when this cell is selected after decoding the address. 
The bit lines during writing operations write its value into the latch while during reading sense the latch state. 
A typical SRAM requires six transistors per bit of memory-two pass transistors and two transistors each of 
the inverter. However, some implementations use only a single transistor per inverter with a total requirement 
of four transistors per bit. 

ORAMs 

A typical DRAM is essentially the same as the previously discussed SRAM chip, with the exception of the 
required refresh cycle. The 4116 is a widely used 16K (16,384 x 1) DRAM available from a number of 



Principles and Applications 

R/W ------To all '201s 
. 

Ao ---
A1 ---
A2 ---

A3 
A4 
--- - '201 - I>-- '201 - .. ,__ '201 c--

To all '201s ---

ADDRESS 
A5 

A0-A9 
A6 
A7 

--- ENABLE! l I 
---
--- - '201 - o-- '201 - . ,,___ '201 -

Ag - - ENABLE! 1 I lx4 
decoder -

A9 - - - '201 - I>-- '201 - I>-- '201 I--, 

ENABLE! I l 

- '201 - - '201 - - '201 c-< 

ENABLE] I l 

Data out 

different sources, such as Mostek (MK4116), Motorola (MCM4116), and Texas Instruments (TMS4116). 
Note that, 4116 must be refreshed at least once in every 2 ms. There is another widely used DRAM, the 
4164, organized as a 64,536 x 1 chip. The operation of this chip is quite similar to 4116. The 64K DRAM 
is available under following part numbers: Texas Instruments TMS4164, MotorolaMCM6665, Intel 2164, 
etc. 

A basic DRAM cell is shown in Fig. 13.27b. A capacitor is used as a storage element, as it can store 
electrical charge but for a limited amount of time. This requires periodic re.fresh to replenish the charge and 
thus the RAM is always dynamic. The cell is selected by turning on the pass transistor. The bit line is used 
both for writing and reading (sensing). A faster writing ability requires the capacitor to be charged faster 
which in turn discharges the capacitor quickly requiring quicker refresh cycle. Compared to SRAM, DRAM 
uses less number of components that require less space, increasing the packing density. Also it is much less 
expensive. But SRAM scores over DRAM on a very important area. DRAM has a very high access time due 



_____ Memory ____ ~ 

bit 

Inverter 

(a) 

bit 

! Capacitor 

(b) 

(a) A basic SRAM cell, and (b) A basic DRAM cell 

to high latency. This is why even if DRAM is used as a computer's main memory to make it cheap, SRAM 
is used as a cache memory for faster access instruction and data. Cache memory uses locality feature where a 
set of sequential instructions and data are found in contiguous locations in memory. A cache controller brings 
this memory block from main memory to cache (which is SRAM) for speedier operation of the computer. 

13.7 SEQUENTIAL PROGRAMMABLE LOGIC DEVICES 

We have discussed programmable devices (like PLA, PAL) for combinatorial circuits. In this section, we 
discuss similar devices available for sequential logic circuits. Architecture-wise, they additionally have 
memory elements like flip-flops. The simplest of the three widely used variety is called Simple Programmable 
Logic Devices (SPLD or simply PLD). Similar technology but using larger number of logic gates, suitable to 
address more complex sequential logic problems is called Complex Programmable Logic Devices (CPLD). 
The third type uses slightly different technology but of much higher capacity is known as Field Programmable 
Gate Array (FPGA). The tenn; High Capacity Programmable Logic Devices (HCPLD) is also used to refer 
to CPLD and FPGA together. Note that, Hardware Descriptions Languages (HDL), like Verilog, can be used 
to program these devices. 

PLD 

Refer to discussions of Section 4.10 and 4.11 on PAL and PLA and corresponding figures (Fig. 4.44, Fig. 4.47). 
Note that, output is taken from OR gates following AND plane generating combinatorial logic functions 
in SOP form. Each OR gate with added circuitry 
(as shown in Fig. 13.28) that includes a flip-flop, 
multiplexer and tri-state output forms a macrocell 
of PLD. The flip-flop can store the OR gate output 
indefinitely and is triggered by a Clock. Multiplexer 
selects either OR gate or flip-flop output which is also 
fed back to AND plane for internal use. The output 
buffer when enabled by Enable makes multiplexer 
output available to external world through output 
pin, else output pin is held at high impedance state. 

Each PLD typically has 8-10 macrocells. Ad
vanced Micro Devices (AMD) manufactured SPLDs 
16R8 and 22V10 are PAL based. The name "l6R8" 
means that the PAL has a maximum of 16 inputs 

To AND 
Plane 

From 
AND 
Plane 

Clock---<> 

Flip-flop 

2 to 1 
MUX 

Select 

Buffer 

Enable 

A macrocell of PLD 



Digital Principles and Applications 

(there are 8 dedicated inputs and 8 iqput/outputs which can be configured either as input or output), and a 
maximum of 8 outputs. The "R" stands for PAL outputs registered as D flip-flop. Similarly, the "22V 1 O" has 
a maximum of 22 inputs and 10 outputs and "V" stands for versatility of the output. The other manufacturers 
of popular SPLDs are Altera, Lattice, Cypress and Philips-Signetics. 

CPlD 

Simple PLDs can handle I 0-20 logic equations. 
Thus, for more complex circuit design one 
needs to physically connect few such units. 
This problem is solved by the advent of CPLD, 
which consists of a number of PLD like blocks 
(Fig. 13.29). The blocks are interconnected 
among themselves through programmable 
switches present in interconnection block. This 
means it needs two levels of programming: 
one for programming PLD block the other for 
programming the switches. Input and output pins 
of a CPLD chip are routed through l/0 blocks. 
Here, the macrocell has a two input Ex-OR gate 
after the OR gate. Depending on the value present 
in the other (Control) input, Ex-OR gate sends 
complemented or uncomplemented OR output 
to flip-flop and multiplexer. Commercial CPLDs 
can have up to 50 PLD blocks. Higher density is 
not supported by CPLD architecture and FPGAs 

..:.: 
<.) 

PLD 

oi------......i 
ci5 Q-------- PLD 

PLD 

PLD 

PLD 

PLD 

PLD 

PLD 

A typical block diagram 
representation of CPLD 

are used for that. Transistors are used as programmable switches for CPLDs (and also for many SPLDs) by 
placing it between two wires in a way that facilitates implementation of wired-AND functions. EPROM used 
as switches does not support in-circuit programming but EEPROM does that. The advantage with them is that 
both are non-volatile in nature. Re-programmability feature of CPLD is a very useful advantage. 

The applications of CPLDs can be found in reasonably complex designs, like graphics controller, UARTs, 
cache control and many others. Circuits that can exploit wide AND/OR gates, and do not need too many flip
flops are suited for CPLD implementation. 

AMD offered CPLD family, Mach 1 to Mach 5 comprises multiple PAL-like blocks: Mach 1 and 2 consist 
ofoptimized 22Vl6 PALs, Mach 3 and 4 comprise several optimized 34Vl6 PALs and Mach 5 is similar but 
offers enhanced speed performance. Mach chips are based on EEPROM technology, Xilinx offers XC7000 
and XC9500 where each chip consists of a collection of SPLD-like blocks with 9 macrocells in each. Altera 
has developed three families of chips that fit within the CPLD category: MAX 5000, MAX 7000, and MAX 
9000. The other manufacturers of CPLD are Lattice, Cypress, etc. 

FPGA 

FPGA consists of an array of circuit elements called logic blocks, which unlike AND-OR combination 
of CPLD has programmable look up table (LUT). The look up table can generate any logic combination 
for the variables involved. A multiplexer based 2-variable look up table is shown in Fig. 13.30a. Based 
on what value (0 or I) is stored at input this can generate any of the 24 = 16 possible functions of A, B as 



B 

0 
0 
I 
I 

Memory 

Interconnection switch Logic block 

y 

(a) BA 

A 
0 0 
I 0 
0 0 
I 0 

y 

0 1 
0 I 
0 1 
I 1 

(b) 

(a) A two variable programmable look up unit, (b) Generation of any two 
variable logic Y = f (A, B) by placing appropriate combination as input to 4 to 
1 Multiplexer, (c) A typical structure of FPGA 

Y = f (A, B). Few examples are shown in the table of Fig. 13.30b. A typical FPGA structure is shown in 
Fig. 13.30c which is a two dimensional array of logic blocks interconnected by horizontal and vertical 
wires. The interconnection switches in interconnection blocks are either SRAM or antifuse type. Antifuses 
are modified CMOS based, normally open circuit but provides low resistance when programmed. 
Antifuses are not reprogrammable and nonvolatile. SRAM switches are reprogrammable but volatile. 

FPGAs have gained rapid acceptance and growth because they can be applied to a very wide range of 
applications like device controllers, communication encoding and filtering, small to medium sized systems 
with SRAM blocks and many more. The other important applications of FPGAs are prototyping of designs 
(later to be implemented in custom made integrated circuits) and also for emulation of large hardware 
systems. 

In Xilinx XC4000 SRAM based FPGA, each configurable logic block (also called CLB) can generate 
logic functions of up to nine inputs and has two flip-flops. Each of the interconnecting horizontal or vertical 
channel contains some short wire segments that span a single CLB, longer segments that span two CLBs, 
and very long segments that span the entire length or width of the chip. In this series, XC4003E has 100 
CLBs while XC40250XV has as high as 8464 CLBs. Xilinx also offers XC2000, XC3000, XC5000 and 
XC8IOO(antifuse). The other manufacturers providing commercial FPGAs are Altera: FLEX8000 and 
FLEXIOOOO, Actel: Actl, Act2 and Act3, Quicklogic: pASIC, pAS1C2, etc. The SRAM based FPGAs, 
normally comes with EPROMs that stores bit-streams. This gets loaded every time power is switched on and 
programs the FPGA. 



Digital Principles and Applications 

13.8 CONTENT ADDRESSABLE MEMORY 

Content addressable mem01y (CAM) uses a completely different kind of addressing scheme from what has 
been discussed so far. It is designed to be faster to serve specific applications where speed is an issue. Take 
for example functioning of a network like the Internet. There, a message such as an e-mail or a web page 
is transferred by first breaking up the message into small data packets of a few hundred bytes, and then, 
sending each data packet individually through the network. These packets are routed from the source, through 
the intennediate nodes of the network ( called routers), and reassembled at the destination to reproduce the 
original message. The function of a router is to compare the destination address of a packet to all possible 
routes and choose the appropriate one. A CAM is a good choice for implementing this lookup operation due 
to its fast search capability. 

CAM compares input search data against a table of stored data, and returns the address of the matching 
data. Thus, it makes use of the content or data itself to find specific address by implementing a lookup table 
function using dedicated comparison circuitry. This is to reduce address decoding delays of conventional 
RAM by making the address meaningful and not an arbitrary one like RAM. A basic CAM cell serves two 
basic functions-bit storage, like RAM and in addition, bit comparison. 

Let us try to understand how a CAM works from a packet forwarding example of a router. Figure 13.3 la 
shows a simple routing table where output port assignment is shown for a range of destination addresses 
available from the relevant portion of input data stream. This table is a part of the CAM as shown in 
Fig. 13.31 b. When an input data arrives with destination address 101101, the matching of the content occurs 
for 211

d and 3,J row, i.e. output port 2 and 3 both are eligible to transmit this data. A priority encoder following 
this lookup table decides which one is to be selected when a match occurs at more than one place. It follows 
a specific priority scheme. In this example, higher priority is given for the match that has lower number of · 
don't care (X) states. The logic behind this is to keep a port free or available-to the extent possible--that can·· 
handle more number of destination addresses. Thus, match location 10 is the output of the priority encoder. 
The decoder to RAM takes this 10 as the address and selects port 3 as the selected output port. 

Destination Output port 
address 

l lOIXX 1 
!Ol!XX 2 
lOllOX 3 
010001 4 

(a) 

Match Match 
lines location 

~---~+ t 
I I 

~-1_0~1_1_0~1 ~ : CAM 
Search .__;:______ :--- , 

: RAM 

lines , , ' 
: l lOlXX : a; : 
I -g I 

' 1011XX g 
: C} 

I !OllOX C 
I ·t:: I 

: 0 IO O O l .g : 
: t:l.. I 

------------------ ____ I 

I ,-----------------------1 
I I I 
I I I 

: : 00 Port 1 : 

I 
I 
I 
I 
I 

01 Port 2 

10 Port 3 

11 Port4 

-----------

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-·---' 

Higher priority for fewer don't care (X) 

(b) 

Port 3 

(a) Routing table, (b) CAM implementing address lookup 



Memory 

Extending the above example, generally speaking, an input word or tag from the incoming data is first 
stored in a Search Data Register. Its content, i.e. the tag, is then broadcasted as search word over search 
lines. In a typical CAM, there could be 36 to 144 bits in search lines while the table size could be as high as 
32K entries (up to 15 bits of address space). Each stored word has a match line and whenever a match with a 
word occurs, the corresponding match line is activated. A priority encoder selects a match location based on 
some priority rule when there are more than one match line in activated state. This effectively reduces a larger 
space of input search wo'rd to a smaller space of output match location. The matching logic corresponding 
to CAM tags could be binary or ternary. The binary CAM requires exact match of all the binary locations 
and returns corresponding match lines while ternary CAM in addition, allows matching with don't care (X) 
bits. As we have seen in the network routing example, ternary CAM is more useful but also more complex to 
manage. Often, a CAM comes with a hit flag to indicate if there is no matching location in CAM. 

15. What is the organization of the 7489, 64-bit RAM? 
16. What is the organization of the 2114 SRAM? 
17. WhatisaDRAM? 
18. What is the organization of a 4116 DRAM? 
19. How is combinatorial logic generated in FPGA? 

This entire chapter has been devoted to the study of memories. The use of magnetic and optica}memory 
is discussed first. Next we considered the various rectangular arrays of memory cells on .a chip and .found 
that a square array containing. the same number of rows and columns requires the fewest number of 
address lines. 

Programmable, erasable-programmable, .and plain r<=ad-only memories (PROMs,EPRQMs, ani:l ROMs) 
are used to store data in appiications where the data changes not at all, or only infrequently. These.memory 
chips are available as either bipolar or MOS, but the MOS devices offer much greater capacity per chip. 

Random-access memories (RAMs) are also available as either bipolar or MOS devices and are.1.1sed to 
store data that must be readily available and may be changed frequently. The dynamic random-access 
memory (DRAM) offers the greater advantage of more storage capacity on a chip but has the disadvantage 
of requiring refreshing. Careful attention to timing requirements is absolutely essential with the use of any 
memory chip. 

The basic memory cell on a bipolar chip is a simple latch using cross-coupled bipolar junction transistors. 
The same is true for a static MOS or CMOS memory chip, except that the trnns.istors used are MOS or CMOS, 
respectively. A dynamic memory, on the other hand, uses a capacitor and one or more MOS transistors to 
store charge and, therefore, a single bit. 

We have not undertaken an exhaustive study of all the memory chips available, butthe chips discussed 
in detail are representative of the most popular ones in present use. 



Digital Principles and Applications 

" access time In general, the delay time 
measured fron chip-enable (or address) until 
valid data appears at the output. 

'" address Selection of a cell in a memory array 
for a read or a write operation. 

• cache Small, fast SRAM, a faster memory as 
an adjunct to slower main memory. 

• CAM Content Addressable Memory. 
• capacity The total number of bits that can be 

stored in a memory. 
• chip A semiconductor circuit on a single 

silicon die. 
• CD-ROM Compact Disk Read Only Memory, 

a kind of movable optical storage media that 
has higher capacity compared to magnetic 
counterpart. 

• CD-R Compact Disk Recordable, a kind of 
optical memory on which data can be written 
but once. 

• CD-RW Compact Disk Rewritable, a kind of 
optical memory on which data can be written 
and erased many times. 

• DRAM Dynamic RAM. 
" DVD Digital Versatile Disk or Digital Video 

Disk, a very high density optical memory. 
• dynamic memory A memory whose contents 

must be restored periodically. 
• EPROM An erasable-programmable read

only memory. 
• EEPROM Electrically Erasable Programma

ble Read Only Memory. 
• field-programmable Referring to a PROM 

that can be programmed by the user. 
" flash memory A kind of nonvolatile memory 

which can be written and erased electrically. 
• Floppy disk A movable low capacity magnetic 

storage media. 

11 Hard disk A high capacity magnetic storage 
media, integral part of modem computer. 

" mask-programmable Referring to a PROM 
that can be programmed only by the 
manufacturer. 

• matrbc addressing Selection of a single cell 
in a rectangular array of cells by choosing 
the intersection of a single row and a single 
column. 

" memory bank Connects more than one 
memory block to increase the capacity of the 
memory. 

" memory cell The circuit used to store a single 
bit of information in a semiconductor memory 
chip. 

• nonvolatile storage A method whereby a loss 
of power will not result in a loss of stored 
data. 

" packing density Number of memory bits 
packed in per unit space. 

" pass transistor A MOS transistor that passes 
information in either direction when it is 
turned on. 

" PROM Programmable read-only memory. 
" RAM Random-access memory. 
" read operation The act of · detecting the 

contents of a memory. 
11 refresh cycle Periodic refresh of DRAM. 
" ROM read-only memory. 
• static memory A memory capable of storing 

data indefinitely, provided there is no loss of 
power. 

11 SRAM Static RAM. 
• volatile storage A method of storing 

information whereby a loss of power will 
result in a loss of the data stored. 

• write operation The act of storing informa
tion in a memory. 



Memory 

13 .1 State the most appropriate memory type to use 
for each of the following: 

a. The working memory in a small com
puter 

b. The memory used to store pennanent 
programs in a small computer 

c. A memory used to store development 
programs in a small computer 

13.2 Explain the difference between an EPROM 
and a PROM. 

13.3 Explain the tenn volatile memory. 
13.4 Explain why an EPROM is or is not a volatile 

memory. 
13.5 A memory chip has a read and a write input. Is 

the chip ROM or RAM? 
13 .6 What is the difference between a memory cell 

and a memory word? 
13.7 Why is a ROM considered nonvolatile 

memory? 
13.8 What is the difference between an SRAM and 

a DRAM? 

13.9 What is the advantage of using a read-write 
head in magnetic recording systems? 

13 .IO Look atthe code in Fig. 13. 6b and detennine the 
proper recording for each of the following: 

a. The decimal number 4 
b. The letter D 
c. The decimal number 8 
d. The decimal number 7 

13.11 Why is recording on magnetic tape not 
considered random access? 

13.12 A 2400-ft reel of 1/2-in magnetic tape has a 
data storage density of 6250, 7-bit characters 
per inch. Assuming no gaps and no Jost space, 
what is the maximum storage capacity of the 
tape? 

13.13 A 2400-ft reel of 1/2-in magnetic tape has a 
rewind speed of 300 in/s. How much time is 

required to rewind the tape from mid-position 
to its beginning? Neglect start and stop times. 

13 .14 Why data integrity of optical memory is better 
than magnetic memory? 

13.15 What is the data transfer rate of a 52X CD
ROM drive? 

13.16 Briefly explain Read, Write, Erase process of 
CD-RW media. 

13.17 What is the data transfer rate of 8X DVD
ROM drive? 

13 .18 Show the different possible rectangular 
arrangements for a memory that contains 32 
memory cells. How many rows and columns 
for each case? 

13.19 How many address lines are required for each 
case in Prob. 13.14? 

13.20 What is the required address A
4
A

3
A

2
A

1 
to 

select cell 21 in Fig. 13. lOc? 
13 .21 Detennine how many address bits are required 

for a memory that has the following number 
of bits: 

a. 1024 b. 4098 

C. 256 d. 16,384 

13.22 A memory chip available from Advanced 
Micro Devices is the Am9016, advertised as 
a 16K memory. How many bits of storage are 
there? How many address lines are required to 
access one bit at a time? 

13.23 What address must be applied to the 74S89 
in Fig. 13.20 to select the 4-bit word stored in 
row 14? Give the address in both binary and 
hexadecimal. 

13.24 What is the required address in both binary 
and hexadecimal to select the 8-bit word in 
row 27 of the TBP l 8S030 in Fig. 13 .16? 



Digital Principles and Applications 

13 .25 Show a method for scanning the contents of 
a TBP18S030 beginning with word 1, then 
word 2, and so on up to word 32, and then 
repeating. (Hint: Try using a five-flip-flop 
binary counter for the address ABCDE, or 
use a mod-5 counter with decoding gates, or 
maybe a shift counter, or ... ) 

13.26 Write a Boolean expression for address row 
15 in the TBP18S030 in Fig. 13.16. 

13.27 Define the term mask-programmable. 
13.28 Draw a set of timing waveforms for a 

TBP 18S030 similar to Fig. 13 .17, assuming 
an access time of 35 ns. 

13.29 Redraw Fig. 13.30 and show exactly how to 
set the switches to program the 8-bit word at 
address 110 101. Explain exactly what must 
be done to program the word 1010 00 ll at 
this address. Connecting switch P to an output 
will program a 1 at that cell. 

13.30 In a manufacturing process, the pressure (P) 
in a pipe is related to the fluid in the pipe (F) 
according to the relation P = 3F' + 2. Rather 
than compute values in real time, it is decided 
to store precomputed data in a PROM. In this 
case, F has only integer values between O and 
4, so the computed values are found as shown 
in the accompanying table. Here's how the 
data is stored: 

Note: H= open sw 
L=closed sw 

..._. ___ _,GNDl 

GND2 

-5VDC 

Each integer value of F (0, l, 2, 3, and 4) 
represents an address in the PROM. The value 
of P is stored in binary form at the proper 
address. For instance, when F = 2, P = 1000 is 
stored at row address 2. 

a. What is the value of P when F = 4? 
b. Draw a PROM having 4-bit words, and 

show how all data are stored. 

F p P(binmy) 

0 2 0010 
l 5 0101 
2 8 1000 
3 11 1011 
4 14 lllO 

13.31 Repeat part (b) of Prob. 13.30 if the relation is 
changed to P = 2F + 1. 

13.32 Design a ROM to be used as a look-up table 
for the relation L = S2 - 2S + 3, where O ~ S ~ 
6, and S has only integer values. 

13.33 Show how to connect 7489s in series to 
construct a mem01y that has thirty-two 4-bit 
words. 

13.34 Show how to connect 7489s in parallel to 
construct a memory that contains sixteen 8-bit 
words. 

Switch 
p 



Memory 

13.35 Design the logic circuits, to provide a read and 
a write cycle for a 7489. 

13.36 Refer to the 74S201 information in Fig. 13.26 
and determine the following: 

a. Minimum write-enable pulse width 

I. A DRAM must be refreshed periodkally. 
2. EPROM stands for erasable-programmable 

read-only memory. 
3. Cache memory is a small 

S.RAM used insiqe a computer 
operation. 

4. Even 
5. Tape access time is too long! 
6. Binary information is recorded on as 

magnetic film by magnetizing iipo~ J,yith 
two different orientations. 

7. 780mn. 
8. CD-ROM 25% and· more than 70%. CD

RW 15% and 25%. 
9. 85GB. 

10. 145(decimal)=100l0001 =Ar4~5A4A3A2 

AIAO 
n. The cell at address 22-row 2 and colmnn 

2. 

b. Setup time, address to write-enable 
c. Hold time, data from write-enable 

13.37 Draw the logic diagram for a 256-word 8-bit 
memory using '201 s. 

12. It refers to a ROM whose contents are 
established during the manufacturing 
process. 
The triangle is the symbol for a three-state 
output 
It can be corrected by simply programming 
(adding) a 1 at word position Qr Note that 
you can add a 1 by programming (this is 
destroying a fuse link), but you cannot 
remove a programmed 1, since this would 
requirereplacing a fuse link. 
Sixteen 4-bit words. 

16. l 024, 4-bit words. 
17. DRAM stands for dynamic random-access 

memory. 
18 .. 16,384 X 1 bits 
19. Through multiplexer-based look uptable. 



Digital Integrated 
Circuits 

+ Explain how diodes and transistors can be used as electronic switches 
+ Demonstrate an understanding of TTL devices, their parameters, how to drive them, 

and how to use them to drive external loads 
+ Be familiar with CMOS~devices and characteristics 
+ Understand TTL-to-CMOS and CMOS-to-TTL interfacing 

In 1964 Texas Instruments introduced transistor-transistor logic (TTL), a widely used family of digital 
devices. TTL is fast, inexpensive, and easy to use. In this chapter we discuss several types of TTL: standard, 
high-speed, low-power, Schottky, and low-power Schottky. You will learn about open-collector and tri
state devices because these are used to build buses, the backbone of modern computers and digital systems. 
Since TTL uses active-low as well as active-high signals, negative logic may be used as well as positive 
logic. Complementary metal-oxide semiconductor (CMOS) devices are chips that combine p-channel and 
n-channel MOSFETs in a push-pull arrangement. Because the input current of a-MOSFET is much smaller 
than that of a bipolar transistor, cascaded CMOS devices have very low power dissipation compared with 
TTL devices. This low dissipation explains why CMOS circuits are used in battery-powered equipment such 
as pocket calculators, digital wristwatches, and portable computers. 

Since a knowledge of the subjects covered here is not prerequisite to any other chapter in this text, the 
material can be studied in part or in whole, at any time. An understanding of Ohm's law and familiarity with 
basic de circuits are the only background needed. 



Digital Integrated Circuits 

14.1 SWITCHING CIRCUITS 

The semiconductor devices used in digital integrated circuits (I Cs) include diodes, bipolar junction transistors 
(BJTI) and metal-oxide-semiconductor field-effect transistors (MOSFETs). The most popular transistor
transistor logic (TTL) in use includes the 7400 and the 74LSOO families; resistors, diodes, and BJTs are the 
elements used to construct these circuits. The 74COO and the 74HCOO are the most widely used families 
constrncted using MOSFETs. These two families of circuits are referred to as CMOS, since they use two 
different types ofMOSFETs. In Chapter 1, we used the term electronic switch (see Fig. 1.7). Virtually all digital 
ICs in use today are silicon, so let's see how a silicon diode or transistor is used as an electronic switch. 

The Semiconductor Diode 

The symbol for a semiconductor diode (sometimes called a pn junction) is shown in Fig. 14.la. The diode 
behaves like a one-way switch. That is, it will allow an electric current in one direction but not the other. 
We will use conventional current flow rather than electron .flow. Figure 14.1 b shows the direction of current 
through a diode-this is the forward direction. When conducting current, a silicon (Si) diode will have a 
nominal voltage of 0. 7 V across its terminals as shown in Fig. 14.1 b. In this condition, the diode is said to 
be forward-biased. Notice that the triangle in the diode symbol points in the direction of forward current
an easy memory crutch! It is not possible to pass current through the diode in the other direction-the 
reverse direction. When reverse-biased, the diode will act as an open switch as illustrated in Fig. 14.lc. To 
summarize: 

(a) Symbol (b) Forward bias ( c) Reverse bias 

Semiconductor diode 

1. When forward-biased, the diode conducts current, and the voltage across the diode terminals is about 
0.7 Vdc. 

2. When reverse-biased, the diode will not conduct current. The voltage across the diode terminals 
depends on the external circuit. 

Solution 

For each diode in Fig. 14.2, determine whether the 
diode is forward- or reverse-biased. Determine the 

diode current I in each case. 

(a) The cmTent direction is from +5 Vdc to ground, and thus the diode is 

forward-biased; The voltage across the diode terminals is 0. 7 V de, and the 

diode current is found as 

I= (5 - 0. 7)/1 kQ = 4.3/1 kQ = 4.3 mA 

(b) The current direction is from+ 12 V de to ground, thus the diode is reverse

biased. The diode current is then]= 0.0 fuA. There is no voltage across the 

10-kQ resistor, and thus the voltage across thetlfodetenriinals is 12 Vdc. 

+5 Vdc 

(a) 

1 kQ 

+ 
0.7V 

+12 Vdc 

(b) 



Digital Principles and Applications 

LEDs 

The symbol for a light-emitting diode (LED) is shown 
in Fig. 14.3a. The arrows indicate light emission 
capability. The operation of an LED is similar to 
that of an ordinary diode. When forward-biased, it 
emits light in the visible spectrum and is thus used as 
an indicator. However, the voltage across the diode 

(a) Symbol 

Red Yellow Green 

Jj(V) 1.6 2.2 2.4 

(b) Typical forward voltages 

terminals when forward-biased(~) is somewhat greater than 0.7 Vdc. Typical LED forward voltages given 
in Fig. 14.3b show that ~ varies with the color of the emitted light. The color of the emitted light depends on 
the elements added to the semiconductor material during manufacturing. 

The diode in Fig. 14.2a is replaced with a red LED. What is the diode current? 

Solution The.diode is forward-biased, and the voltage across its terminals is about I .6 V de (Fig. 14.3b ). The diode 
currentis then 

I= (5,... l.6)/1 kQ = 3.4/1 kil = 3.4 mA 

BJTs 

The bipolar junction transistor (BJT) is available in two polarities (npn and pnp ), as shown by the symbols 
in Fig. 14.4a. The BJT tenninals are named collector, emitter, and base, as indicated. In Fig. 14.4b the BJT 
behaves as an electronic switch. The switch is activated by applying a voltage between base and emitter. 
Here's how it works: 

1. The voltage between base and emitter is zero. The switch is open, and no current is allowed between 
collector and emitter. The transistor is off. 

2. A voltage is applied between base and emitter. The switch is closed and a current is allowed between 
collector and emitter. The transistor is on. The voltage between emitter and collector (across a closed 
switch) is zero! 

Since the BJT is available in two polarities-npn and pnp-the polarity of the applied base-emitter voltage 
must be as shown in Fig. 14.4c. For the npn, the base must be more positive than the emitter. The opposite is 
true for the pnp. This base-emitter voltage is applied across a forward-biased pn junction (a diode) and is thus 
limited to about 0. 7 V de. Care must be taken not to exceed 0. 7 V de, or the BJT may be destroyed. 

The current through the npn transistor must be from collector to emitter as shown in Fig. 14.4c. For the 
pnp, current must be from emitter to collector. Notice that the current is in the direction of the arrow on the 

Base 

Collector Collector 

Base 

Emitter 
npn 

(a) BJT symbols 

----; 

Emitter 
pnp 

Collector 

Base ! ---r-
Emitter 

(b) Electronic switch 

npn pnp 

(c) 



Digital Integrated Circuits 

emitter-a good memory crutch! These polarities and current directions are important-you should make 
every effort to commit them to memory! 

a. Determine the current I and the voltage V
2 

for the circuit in Fig. 14.Sa if (i) V
1 
= 0 V de, and (ii) V

1 
= +5 V de. 

b. Repeat part (a) for the circuit in Fig. 14.Sb. 

+5Vdc 

+5Vdc 
lkQ 

( ( 
Vz lOkQ 

V1 

v1 V2 

1 kQ 

--
(a) (b) 

Solution 

a. vi =O Vdc. There isno current in thirn:h2 resistor. Thus the voltage bas~emitteris zero. The BIT is off 
(switch is open). The BIT current and the current in the 1-kQ resistoris zero. The voltage +5 Vdc. 

V1 Vdc. is more positive than the emitter,..,-theBJT is on (switch is closed). 

Let's look carefully at the results from Example 14.3. For both circuits, when V
1 
= 0 Vdc, V2 = +5 Vdc. 

Also, when V1 = +5 Vdc, V2 = 0 Vdc. Clearly V2 is always the inverse of V
1
-in other words, each circuit 

in Fig. 14.5 is an inverter! Either of these circuits can be used to implement the basic inverter introduced in 
Chapter 1 (Fig. 1.10). 

MOSFETs 

MOSFETs are available in two polarities (n-channel and p-channel) as shown by the symbols in 
Fig. 14.6a. MOSFETs operate as "depletion" or "enhancement" mode devices; the transistors in Fig. 14.6 are 
enhancement types. The MOSFET terminals are named gate, source, drain, and body as indicated. When the 
body is connected to the source, as is often the case with ICs, the simplified symbols are used. The MOSFET 
also behaves as the electronic switch in Fig. 14.6b. The switch is activated by applying a voltage between 
gate and source. Here's how it works: 

1. The voltage between gate and source is zero. The switch is open, and no current is allowed between 
source and drain. The transistor is off. 



Digital Principles and Applications 

Drain Drain Drain Drain 

G,J ~ Body Go~ ~ G,J ~ Body G,~ ~ 
Source Source Source Source 

Drain 

! 
Gate-e--r-· 

Source 
Complete Simplified Complete Simplified 

n-channel p-channel 

(a) MOSFET symbols (b) Electronic switch 

n-channel p-channel 

(c) 

2. A voltage is appliedbetween gate and source. The switch is closed, and a current is allowed between 
source and drain. The transistor is on. The voltage between source and drain (across a closed switch) 
is zero! 

Since the MOSFET is available in two polarities-n-channel and p-channel-the polarity of the applied 
gate-source voltage must be as shown in Fig. 14.6c. For then-channel transistor, the gate must be more 
positive than the source. The opposite is true for the p-channel transistor. The current through the n-channel 
transistor must be from drain to source as shown in Fig. 14.6c. For the p-channel transistor, current must 
be from source to drain. Notice that the current is in the direction of the small arrow on the drain-a good 
memory crutch! These polarities and current directions are important-you should make every, effort to 
commit them to memory! 

Solution 

An 11-channel MOSFET can be used to construct a simple inverter as shown in Fig. 14,7. 
Determine the current J and the output voltage V

2 
if (a) V

1 
= 0 V de, and (b) V

1 
= + 5 V de. 

{a) V1 = 0 V de. There is np currentjn the 100-kQ resistor, Thus the g1tte-source voltage is zero. The MOSFET is off 
(the switch is open). The MOSFET current and the current in the. l 0-kQ resistor are.zero. The voltage V, is +5 
Vdc. . -

(b) VJ.= +5 Vdc, The gate is_ !llore positiye than, the so~ce---the MQSF~T is on (the S\Vit~~ is closed).• tis zero. 
The MOSFET current is/= .0.5 mA. This circuit could also be used to implement the basic inverter introduced 
in Chapter I (Fig. 1.10). 

The small size ofa MOSFET on an IC is one of the great advantages ofICs constructed using MOSFETs. 
The 10-kQ resistor in Fig. 14.7 requires a large area on an IC compared to a MOSFET. A second MOSFET 



Digital Integrated Circuits 

can be used in place of this resistor, as shown in Fig. 14.8. In this case, transistor Q
1 

has its gate connected 
directly to its drain. When it is connected in this fashion, its behavior is similar to a resistor but shows little 
non-linearity compared to passive load, Q

1 
is called an active load, and this circuit is a simple inverter. 

+5 Vdc 

+5Vdc 

+ 

An inverter with active load 

Complementary Metal-Oxide-Semiconductor (CMOS) FETs 

ICs constructed entirely with n-channel MOSFETs are called NMOS ICs. ICs constructed entirely with 
p-channel MOSFETs are called PMOS ICs. The 74COO and 74HCOO families are constructed using both 
n-channel and p-channel MOSFETs. Since n-channel and p-channel MOSFETs are considered complementary 
devices, these I Cs are referred to as CMOS ICs. 

A CMOS inverter is shown in Fig. 14.9. Ideally, the characteristics of then channel are closely matched 
with the p channel. This circuit is the basis for the 74COO and 74HCOO families. Here's how it works: 

1. V1 = 0 Vdc. Q is off and Q is on. V, = +5 Vdc. 
n p -

2. V1 = +5 Vdc. Qn is on and QP is off. V
2 

= 0 Vdc. 

Note that in the steady state (while not switching), one 
of the transistors is always off As a result, the current I = 
0 mA. When switching between states, both transistors are 
on for a very short time because of the rise or fall time of 
V1• This is the only time the current I is nonzero. This is the 
reason CMOS is used in applications where de power sup
ply current must be held to a minimum-watches, pocket 
calculators, etc. A word of warning: If the input V

1 
is held 

at +5 Vdc/2 = 2.5 Vdc, both transistors will be on. This is 
an almost direct short between +5 Vdc and ground, and 
it won't be long before both transistors expire! So don't 
impose this condition on a CMOS IC. 

., 

+5Vdc 

+ + 

QII 

A CMOS inverter 



Digital Principles and Applications 

l. How does an LEO differ from an ordinary silicon diode? 
2. What are thetwotypes ofBJTs? What is the complement ofan n-channel MOSFET? 
3. An npn BJT is on when its base is more (positive, negative) than its emitter. 
4. What is an active load in an NMOSIC? 

14.2 7 400 TTI. 

Standard TTL 

Figure 14.10 shows a TTL NAND gate. The multiple
emitter input transistor is typical of the gates and other 
devices in the 7400 series. Each emitter acts like a 
diode; therefore, Q

1 
and the 4-kQ resistor act like a 

2-input AND gate. The rest of the circuit inverts the 
signal so that the overall circuit acts like a 2-input 
NAND gate. The output transistors (Q

3 
and Q

4
) form 

a totem-pole connection ( one npn in series with 
another); this kind of output stage is typical of most 
TTL devices. With a totem-pole output stage, either 
the upper or lower transistor is on. When Q

3 
is on, the 

output is high; when Q
4 

is on, the output is low. 

The input voltages A and B are either low (ideally 
grounded) or high (ideally +5 V). If A or B is low, 

A 
B 

4k.Q 1.6 kQ 130Q 

1 kQ 

Two-input TTL NANO gate 

the base of Q1 is pulled down to approximately 0.7 V. This reduces the base voltage of Q
2 

to almost zero. 
Therefore, Q

2 
cuts off. With Q

2 
open, Q

4 
is off, and the Q

3 
base is pulled high. The emitter of Q

3 
is only 0.7 

V below the base, and thus the Y output is pulled up to a high voltage. 

On the other hand, when A and B are both high volt
ages, the emitter diodes of Q

1 
stop conducting, and 

the collector diode goes into forward conduction. This 
forces Q

2 
to turn on. In tum, Q

4 
goes on and Q

3 
turns 

off, producing a low output. Table 14.1 summarizes all 
input and output conditions. 

Without diode D
1 

in the circuit, Q
3 

will conduct 
slightly when the output is low. To prevent this, the di

Two-Input NANO Gate 

B 

0 
1 
0 

C 

l 
l 
1 
0 

ode is inserted; its voltage drop keeps the base-emitter diode of Q
3 

reverse-biased. In this way, only Q
4 

con
ducts when the output is low. 

Totem-Pole Output 

Totem-pole transistors are used because they produce a low output impedance. Either Q
3 

acts as an emitter 
follower (high output), or Q

4 
is on (low output). When Q

3 
is conducting, the output impedance is approximately 

70 ohms (Q); when Q
4 

is on, the output impedance is only 12 Q (this can be calculated from information on 



Digital Integrated Circuits 

the data sheet). Either way, the output impedance is low. This means the output voltage can change quickly 
from one state to the other because any stray output capacitance is rapidly charged or discharged through the 
low output impedance. 

Propagation Delay Time and Power Dissipation 

Two quantities needed for later discussion are power dissipation and propagation delay time. A standard TTL 
gate has a power dissipation of about 10 milliwatts (mW). It may vary from this value because of signal 
levels, tolerances, etc. but on the average it is 10 mW per gate. The propagation delay time is the time it takes 
for the output of a gate to change after the inputs have changed. The propagation delay time of a TTL gate is 
approximately 10 nanoseconds (ns). 

Device Numbers 

By varying the design of Fig. 14.10 manufacturers 
can alter the number of inputs and the logic func
tion. With only few exceptions, the multiple-emit
ter inputs and the totem-pole outputs are used for 
different TTL devices. Table 14.2 lists some of the 
7400 series TTL gates. For instance, the 7400 is a 
chip with four 2-input NAND gates in one package. 
Similarly, the 7402 has four 2-input NOR gates, the 
7404 has six inverters, and so on. 

5400 Series 

Any device in the 7400 series works over a 
temperature range of O to 70°C and over a 
supply range of 4.75 to 5.25 V. This is adequate 
for commercial applications. The 5400 series, 

Device Number 

7400 
7402 
7404 
7408 
7410 
7411 
7420 
7421 
7425 
7427 
7430 
7486 

Standard TTL 

Description 

Quad2-input NAND gates 
Quad 2-input NOR gates 
Hex inverter 
Quad 2-input AND gates 
Triple 3-input NAND gates 
Triple 3-input AND gates 
Dual 4-input NAND gates 
Dual 4-input AND gates 
Dual 4-input NOR gates 
Triple 3-input NOR gates 
8-input NAND gate 
Quad 2-input XOR gates 

developed for the military applications, has the same logic functions as the 7400 series, except that it works 
over a temperature range of -55 to 125°C and over a supply range of 4.5 to 5.5 V. Although 5400 series 
devices can replace 7400 series devices, they are rarely used commercially because of their much higher 
cost. 

High-Speed TTL 

The circuit of Fig. 14.10 is called standard TTL. By decreasing the resistances a manufacturer can lower the 
internal time constants; this decreases the propagation delay time. The smaller resistances, however, increase 
the power dissipation. This design variation is known as high-speed TTL. Devices of this type are numbered 
74HOO, 74H01, 74H02, and so on. A high-speed TTL gate has a power dissipating around 22 mW and a 
propagation delay time of approximately 6 ns. 

low-Power TTL 

By increasing the internal resistances a manufacturer can reduce the power dissipation of TTL gates. Devices 
of this type are called low-power TTL and are numbered 74LOO, 74L01, 74L02, etc. These devices are 



Digital Principles and Applications 

slower than standard TTL because of the larger internal time constants. A low-power TTL gate has a power 
dissipation of 1 mW and a propagation delay time of about 35 ns. 

Schottky TTL 

With standard TTL, high-speed TTL, and low
power TTL, the transistors are switched on with 
excessive current, causing a surplus of carriers to 
be stored in the base. When you switch a transistor 
from on to off, you have to wait for the extra 
carriers to flow out of the base. The delay is known 
as saturation delay time. 

One way to reduce saturation delay time is with 
Schottky TTL. The idea is to fabricate a Schottky 
diode along with each bipolar transistor of a 
TTL circuit, as shown in Fig. 14.11. Because the 

Schottky diode prevents 
transistor saturation 

Schottky diode has a forward voltage of only 0.25 to 0.4 V, it prevents the transistor from saturating fully. 
This virtually eliminates saturation delay time, which means better switching speed. These devices are 
numbered 74SOO, 74S01, 74S02, and so forth. 

Schottky TTL devices are very fast, capable of operating reliably at 100 megahertz (MHz). The 74SOO has 
a power dissipation around 20 mW per gate and a propagation delay time of approximately 3 ns. 

low-Power Schottky TTL 

By increasing internal resistances as well as using Schottky diodes, manufacturers have come up with a com
promise between low power and high speed: low-power Schottky TTL. Devices of this type are numbered 
74LSOO, 74LS01, 74LS02, etc. A low-power Schottky gate has a power dissipation of around 2 mW and a 
propagation delay time of approximately 10 ns, as shown in Table 14.3. 

The Winner 

Low-power Schottky TTL is the best compromise between power dissipation and saturation delay time. In 
other words, of the five TTL types listed in Table 14.3, low-power Schottky TTL has emerged as the favorite 
of digital designers. It is used for almost everything. When you must have more output current, you can fall 
back on standard TTL. Or, if your application requires faster switching speed, then Schottky TTL is useful. 
Low-power and high-speed TTL are rarely used. if at all. 

Draw th~ symbol a Schottky transistor. 
6. Which TTL family offers the lowest power and the fastest ope~tion? 

14.3 TTL PARAMETERS 

7400 series devices are guaranteed to work reliably over a temperature range ofO to 70°C and over a supply 
range of 4.75 to 5.25 V. In the discussion that follows, worst case means that the parameters (input current, 



Digital Integrated Circuits 

output voltage, and so on) are measured under the worst conditions of temperature and voltage. This means 
maximum temperature and minimum voltage for some parameters, minimum temperature and maximum 
voltage for others, or whatever combination produces the worst values. 

Floating Inputs 

When a TTL input is high (ideally+5 V), the emitter current is approximately zero (Fig. 14.12a). When a TTL 
input is floating (unconnected, as shown in Fig. 14.12b), no emitter current is possible because of the open 
circuit. Therefore, a floating TTL input is equivalent to a high output. Because of this, you sometimes see 
unused TTL inputs left unconnected; an open input allows the rest of the gate to function properly. 

There is a disadvantage to :floating inputs. When you leave an input open, it acts as a small antenna. 
Therefore, it will pick up stray electromagnetic noise voltages. In some environments, the noise pickup is 
large enough to cause erratic operation of logic circuits. For this reason, most designers prefer to connect 
unused TTL inputs to the supply voltage. 

+5V~----

+5VJ\._ ____ _ 

(a) 

(a) High input, (b) Open is equivalent to high input, (c) Direct connection 
to supply voltage, (d) High input through a pull-up resistor 

For instance, Fig. 14.12c shows a 3-inputNAND gate. The top input is unused, so it is connected to +5 V. 
A direct connection like this is all right with most Schottky devices (74S and 74LS) because their inputs can 
withstand supply overvoltages caused by switching transients. Since the top input is always high, it has no 
effect on the output. (Note: You don't ground the unused TTL input of Fig. 14.12c because then the output 
would remain stuck high, no matter what the values of A and B.) 

Figure 14.12d shows an indirect connection to the supply through a resistor. This type of connection is 
used with standard, low-power, and high-speed TTL devices (74, 74L, and 74H). These older TTL devices 
have an absolute maximum input rating of +5.5 V. Beyond this level, the ICs may be damaged. The resistor 
is called a pull-up resistor because it serves to pull the input voltage up to a high. Most transients on the 
supply voltage are too short to charge the input capacitance through the pull-up resistor. Therefore, the input 
is protected against temporary overvoltages. 

Worst-Case Input Voltages 

Figure 14.13a shows a TTL inverter with an input voltage of~ and an output voltage of v;,. When ~ is.O V 
(grounded), it is in the low state and is designated ~c With TTL devices, we can increase V1L to 0.8 Vand still 
have a low-state input because the output remains in the high state. In other words, the low-state input voltage 
V1L can have any value from Oto 0.8 V. TTL data sheets list the worst-case low input as 

~£,max= 0.8 V 

If the input voltage is greater than this, the output state is unpredictable. 

However, suppose ~ is 5 Vin Fig. 14.13a. This is a high input and can be designated Vu, This voltage can 
decrease all the way down to 2 V without changing the output state. In other words, the high-stage input V

1
H 



Digital Principles and Applications 

is from 2 to 5 V; any input voltage in this range produces a low output voltage. Data sheets list the worst-case 
high input as 

VJH,min =2 V 

When the input voltage is less than this, the output state is again unpredictable. 

Figure 14.13b summarizes these ideas. As you see, any input voltage less than 0.8 Vis a valid low-state 
input. Any input greater than 2 Vis a valid high-state input.Any input between 0.8 and 2 Vis indeterminate 
because there is no guarantee that it will produce the correct output voltage. 

Worst-Case Output Voltages 

Ideally, the low output state is O V, and the high output state is 5 V. We cannot attain these ideal values because 
of internal voltage drops inside TTL devices. For instance, when the output voltage is low in Fig. 14.13a, Q4 

is saturated and has a small voltage drop across it. With TTL devices, any output voltage from O to 0.4 V is 
considered a low output and is designated V

0
L. This means the low-state output V0L of a TTL device may have 

any value between O and 0.4 V. Data sheets list the worst-case low output as 

VOL,max = 0.4 V 

+5V 

4kQ 1.6k.Q 130Q 

5V 5V 

Valid high input Valid high input 
D1 

VI Va 
2.4 V 

2V ., ... 
Indeterminate Indeterminate 

0.8V 
Valid low input 0.4 V 

Valid low output 
0 0 

(a) ' (b) (c) 

(a) TTL inverter, (b) TTL input profile, (c) TTL output profile 

When the output is high, Q
3 

acts as an emitter follower. Because of the voltage drop across Q
3
,D1, and the 

130-Q resistor, the output voltage will be less than supply voltage. With TTL devices, the high-state output 
voltage is designated V

0
w it has a value between 2.4 and 3.9 V, depending on the supply voltage, temperature, 

and load. TTL data sheets list the worst-case high output as 

VOH,min = 2.4 V 

Figure 14.13c summarizes the output states. As shown, any output voltage less than 0.4 Vis a valid low
state output, any output voltage greater than 2.4 V is a valid high-state output, and any output between 0.4 
and 2.4 V is indeterminate under worst-case conditions. 



Digital Integrated Circuits 

Profiles and Windows 

The input characteristics of Fig. 14.13b are called the TTL input profile. Furthermore, each rectangular area 
in Fig. 14.13b can be thought of as a window. There is a low window (0 to 0.8 V), an indeterminate window 
(0.8 to 2.0 V), and a high window (2.0 to 5 V). 

Similarly, Fig. 14.13c is the TTL output profile. Here you see a low window from Oto 0.4 V, an indeterminate 
window from 0.4 to 2.4 V, and a high window from 2.4 to 5 V. 

Values to Remember 

We have discussed the low and high states for the input and output voltages. Here they are again as a refer
ence for future discussions: 

~l.max = 0.8 V 

Vm.min = 2 V 

VOL,max = 0.4 V 

VOH,min = 2.4 V 

These are the worst-case values shown in Fig. 14.13b and c. On the input side, a voltage has to be less 
than 0.8 V to qualify as a low-state input, and it must be more than 2 V to be considered a high-state input. 
On the output side, the voltage has to be less than 0.4 V to be a low-state output and more than 2.4 V to be a 
high-state output. 

Compatibility 

TTL devices are compatible because the low and high output windows fit inside the low and high input 
windows. Therefore the output of any TTL device is suitable for driving the input of another TTL device. 
For instance, Fig. 14.14a shows one TTL device driving another. The first device is called a driver and 
the second a load. 

Figure 14.14b shows the output stage of the TTL driver connected to the input stage of the TTL load. 
The driver output is shown in the low state. Since any input less than 0.8 V is a low-state input, the 
driver output (0 to 0.4 V) is compatible with the load input requirements. 

Similarly, Fig. 14.14c shows high TTL output. The driver output (2.4 to 3.9 V) is compatible with the 
load input requirements (greater than 2 V). 

Sourcing and Sinking 

When a standard TTL output is low (Fig. 14.14b ), an emitter current of approximately 1.6 milliamperes 
(mA) (worst case) exists in the direction shown. The conventional flow is from the emitter of Q 1 to the 
collector of Q

4
• Because it is saturated, Q

4 
acts as a current sink; conventional current flows through Q4 

to ground like water flowing down a sink. 
However, when the standard TTL output is high (Fig. 14.14c ), a reverse emitter current of 40 

microamperes (µA) (worst-case) exists in the direction shown. Conventional current flows out of Q3 to 
the emitter of Q

1
• In this case, Q

3 
is acting as a source. 

Data sheets list the worst-case input currents: 

//L,max = - l.6mA flli,max = 40 µA 



c,) ______________ D_ig_it_al_P_n_·nc_ip_le_s_a_n_d_A_pp_lt_·ca_tJ_·on_s ____________ _ 

-----+sv 
130 .Q 

Less than 0.8 V is low input 

(a) (b) 

-----+sv 
130 .Q 

2.4 to 3.9 V 

More than 2 V is high input 

(c) 

Sourcing and sinking current 

The minus sign indicates that the conventional. current is out of the device; a plus sign means the 
conventional current is into the device. AH data sheets use this notation, so do not be surprised when you see 
:ninus currents. The previous data tells us the maximum input current is 1.6 mA (outward) when an input is 
low and 40 µA (inward) when an input is high. 

Noise Immunity 

In the worst case, there is a difference of 0.4 V between the driver output voltages and required load input 
voltages. For instance, the worst-case low values are 

VOL,max = 0.4 V 

VIL,max = 0.8 V 

Similarly, the worst-case high values are 

driver output 

load input 

VOH,min = 2.4 V driver output 

VIH,min = 2 V load input 



Digital Integrated Circuits 

In either case, the difference is 0.4 V. This 
difference is called noise immunity. It represents 
built-in protection against noise. Note that the 
concept of noise margin has been introduced in 
section 1.8 of Chapter 1. 

I 7~00 10.4 V 
dnver 

0.4 VI 7400 
load 

Why do we need protection against noise? The 
connecting wire between a TTL driver and load is 
equivalent to a small antenna that picks up stray 
noise signals. In the worst case, the low input to 
the TTL load is 

~L = VOL+ vnoise = 0.4 V + vnoisc 

and the high-stage input is 

V1H = ~)I{ - Vnoise = 2.4 V - Vnoisc 

In most environments, the induced noise volt

7400 10.4 V 
driver 

7400 12.4 V 
driver 

age is less than 0.4 V, and we get no false triggering of the TTL load. 

(a) 

0.4 V 
+<::9- 0.8V I 7400 

load 
Noise 

(b) 

0.4 V 
+<::9- 2vj 7400 

load 
Noise 

(c) 

(a) TTL driver and load, (b) False 
triggering into high state, (c) 

false triggering into low state 

For instance, Fig. 14.15a shows a low output from the TTL driver. Ifno noise voltage is induced on the 
connecting wire, the input voltage to the TTL load is 0.4 V, as shown. In a noisy environment, however, it is 
possible to have 0.4 V of induced noise on the connecting wire for'either the low state (Fig. 14.15b) or the 
high state (Fig. 14.15c). Either way, the TTL load has an input that is on the verge of being unpredictable. The 
slightest additional noise voltage may produce a false change in the output state of the TTL load. 

Standard loading 

A TTL device can source current (high output) or sink current (low output). Data sheets of standard TTL 
devices indicate that any 7400 series device can sink up to 16 mA, designated 

JOL,max = 16 mA 

and can source up to 400 µA, designated 

J Off.max = -400 µA 

(Again, a minus sign means that the conventional current is out of the device, and a plus sign means that it is 
into the device.) As discussed earlier, the worst-case TTL input currents are 

J/l,max = -1.6 mA J//{,max = 40 µA 

Since the maximum output currents are 10 times larger than the input currents, we can connect up to 10 TTL 
emitters to any TTL output. 

As an example, Fig. 14.16a shows a low output voltage (worst case). Notice that a single TTL driver 
is connected to 10 TTL loads (only the input emitters are shown). Here you see the TTL driver sinking 16 
mA, the sum of the 10 TTL load currents. In the low state, the output voltage is guaranteed to be 0.4 V or 
less. If you try connecting more than 10 emitters, the output voltage may rise above 0.4 V under worst-case 
conditions. If this happens, the low-state operation is no longer reliable. Therefore, 10 TTL loads are the 
maximum that a manufacturer allows for guaranteed low-state operation. 

Figure 14.16b shows a high output voltage (worst case) with the driver sourcing 400 µA for lOTTL loads 
of 40 µA each. For this source current, the output voltage is guaranteed to be 2.4 V or greater under worst
case conditions. If you try to connect more than 10 TTL loads, you will exceed I0 H,max and high-state operation 
becomes unreliable. 



Digital Principles and Applications 

0----11----...-----11------<i>----<>+ Vee 
! 1.6 mA 

10 emitters 

(a) (b) 

(a) Low-state fanout, (b) High-state fanout 

loading Rules 

Figure 14.17 shows the output-input profiles for different types of TTL. The output profiles are on the left, 
and the input profiles are on the right. These profiles are a concise summary of the voltages and currents for 
each TTL type. Start with the profiles of Fig. 14.17a; these are for standard TTL. On the left, you see the pro
file of output characteristics. The high output window is from 2.4 to 5 V with up to 400 µA of source current; 
the low output window is from O to 0.4 V with up to 16 mA of sink current. On the right, you see the input 
profile of a standard TTL device. The high window is from 2 to 5 V with an input current of 40 µA, while 
the low window is from O to 0.8 V with an input current of 1.6 mA. 

5V 

2.4 V 

0.4 V 
ov 

5V 

2.4 V 

0.4 V 
ov 

5V 5V 5V 

400µA 40µA 200µA IOµA 

2.4 V 
2.0V 2.0V 

Invalid Invalid Invalid Invalid 
0.8 V 0.8V 

16mA 
1.6mA 0.4 V 

3.6mA 
0.18mA 

ov ov ov 
(a) (b) 

5V 5V 5V 

1 mA 50µA 400µA 20µA 

2.4 V 
2.0V 2.0V 

Invalid Invalid Invalid Invalid 
0.8V ' 0.8 V 

20mA 
2mA 0.4 V 

8mA 
0.36mA 

ov ov ov 
(c) (d) 

TTL output-input profiles: (a) Standard TTL, (b) Low-power TTL, 
(c) Schottky TTL, (d) Low-power Schottky TTL 



Digital Integrated Circuits 

Standard TTL devices are compatible because the low and high output windows fit inside the corresponding 
input window. In other words, 2.4 V is always large enough to be a high input to a TTL load, and 0.4 V is 
always small enough to be a low input. Furthermore, you can see at a glance that the available source current 
is 10 times the required high-state input current, and the available sink current is 10 times the required 
low-state input current. The maximum number of TTL loads that can be reliably driven under worst-case 
conditions is called the fanout. With standard TTL, the fanout is 10 because one TTL driver can drive IO TTL 
loads. 

The remaining figures all have identical voltage windows. The output states are always O to 0.4 and 2.4 
to 5 V, while the input states are O to 0.8 and 2 to 5 V. For this reason, all the TTL types are compatible; this 
means you can use one type of TTL as a driver and another type as a load. 

The only differences in the TTL types are the currents. You can see in Fig. 14.17a to d that the input and 
output currents differ for each TTL type. For instance, a low-power Schottky TTL driver (see Fig. 14.17d) can 
source 400 µA and sink 8 mA; a low-power Schottky load requires input currents of 20 µA (high state) and 
0.36 mA (low state). These numbers are different from standard TTL (Fig. 14.17a) with its output currents of 
400 µA and 16 mA and its input currents of 40 µA and 1.6 mA. 

Incidentally, notice that the profiles of high-speed TTL are omitted in Fig. 14.17 because Schottky 
TTL has replaced high-speed TTL, in virtually all applications. If you need high-speed TTL data, consult 
manufacturers' catalogs. 

By analyzing Fig. 14.17a to d (plus the data sheets for high-speed TTL), we can calculate the fanout for 
all possible combinations. Table 14.4 summarizes these fanouts, which are useful if you ever have to mix 
TTL types. 

Read Table 14.3 as follows. The TTL types have been abbreviated; 74 stands for 7400 series (standard), 
74H for 74HOO series (high speed), and so forth. Drivers are on the left, and loads are on the 1ight. Pick the 
driver, pick the load, and read the fanout at the intersection of the two. For instance, the fanout ofa standard 
device (74) driving low-power Schottky devices (74LS) is 20. As another example, the fanout of a low:power 
device (74L) driving high-speed devices (74H) is only 1. 

Fanouts 

TTL TTL Load 

Driver 74 74H 74L 74S 74LS 

74 10 8 40 8 20 
74H 12 10 50 10 25 
74L 2 1 20 1 10 
74S 12 10 100 10 50 
74LS 5 4 40 4 20 

7. Why should TTLgate inputs never be left floating? 

8. What is a TTL input profile? 

9. What is the delay time for a 74LS04? 



Digital Principles and Applications 

14.4 TTL OVERVIEW 

Let's take a look at the logic functions available in the 7400 series. This overview will give you an idea of 
the variety of gates and circuits found in the TTL family. As a guide, Appendix 3 lists some of the 7400 series 
devices. 

NAND Gates 

The NAND gate is the backbone of the 7400 series. All devices in this series are derived from the 2-input 
NAND gate shown in Fig. 14.10. To produce 3-,4-, and 8-input NAND gates, the manufacturer uses 3-, 4-, 
and 8-emitter transistors. Because they are so basic, NAND gates are the least expensive devices in the 7400 
series. 

NOR Gates 

To get other logic functions the manufacturer modifies 
the basic NAND-gate design. For instance. Fig. 14.18 
shows a 2-input NOR gate. Here Q

5 
and Q6 have been 

added to basic NAND-gate design. Since Q
2 

and Q
6 

are 
in parallel, we get the OR function, which is followed 
by inversion to get the NOR function. 

When A and Bare both low, the bases of Q
1 

and Q
5 

are pulled low; this cuts off Q2 and Qc Then Q3 acts as 
an emitter-follower, and we get a high output. 

If A or B is high, Q
1 

and Q
5 

are cut off, forcing Q
2 

or 
Q

6 
to turn on. When this happens, Q

4 
saturates and pulls 

the output down to a low voltage. 

With more transistors, a manufacturer can produce 
3- and 4-input NOR gates. (Note: A TTL 8-input NOR 
gate is not available.) 

AND and OR Gates 

4kQ 

A 
y 

B---~ 

TTL NOR gate 

To produce the AND function, another inverting stage is inserted in the basic NAND-gate design. The extra 
inversion converts the NAND gate to an AND gate. The available TTL AND gates are the 7408 (quad 
2-input), 7411 (triple 3-input), and 7421 (dual 4-input). 

Similarly, another inverting stage can be inserted in the NOR gate of Fig. 14.18; this converts the NOR 
gate to an OR gate. The only available TTL OR gate is the 7432 (quad 2-input). 

Buffer Drivers 

All IC buffer can source and sink more current than a standard TTL gate. As an example, the 7437 is a quad 
2-input NAND buffer, meaning four 2-input NAND gates optimized to get high output currents. Each gate 
has the following worst-case currents: 

I,L =-1.6 mA Im= 40 µA 

1
0

L = 48 mA /
011 

=-1.2 mA 



Digital Integrated Circuits 

The input currents are the same as those 
of a 7400 (standard TTL NAND gate), but 
the output currents are 3 times as high. This 
means that a 7437 can drive heavier loads. In 
other words, the fanout of a 7437 is 3 times 
that of a 7400. Appendix 3 includes several 
other buffer-drivers. 

Hex schmitt-trigger (discussed in Chapter 
7) inverter IC 7414 is shown in Fig. 14.19a. 

AND-or-INVERT Gates 

Figure 14.20 shows the schematic diagram 
of an AND-OR-INVERT circuit. Here, QI' 
Q

2
, Q

3 
und Q

4 
form the basic 2-input NAND 

gate of the 7400 series. By adding Q
5 

and Q
6

, 

we convert the basic NAND gate to an AND
OR-INVERT gate. Both Q

1 
and Q5 act as 2-

(b) 

(a) 

(c) 

(a) Hex Schmitt-trigger inverters, 
(b) 4-input NANO Schmitt trigger, 
(c) 2-input NANO Schmitt trigger 

input AND gates; Q
2 

and Q
6 

produce ORing and inversion. Because of this, the circuit is logically equivalent 
to Fig. 14.20b. This circuit represents 2-input, 2-wideAND-OR-INVERT gate. It is 2-input as each AND gate 
has 2 inputs and it is 2-wide because there are 2 AND gates at input stage. Figure 14.21a shows the schematic 
diagram of an expandable AND-OR-INVERT gate. As the name suggests, many such gates put together can 
expand the width at the input side. The difference between this and preceding AND-OR-INVERT gate (Fig. 
14.20) is the collector and emitter pin brought outside the package. 

Since Q
2 

and Q
6 

are the key to the ORing operation, we are being given access to the internal ORing 
function. By connecting other gates to these new inputs, we can expand the width of the AND-OR-INVERT 
gate. 

A 

B 

4k.Q 

c----~ 
D-----' 

4 k.Q 1.6 k.Q 130 Q 

A 

Q2 
D1 B 

y 
C 

y 

Q6 
Q4 D 

(b) 

lkQ 

- -

(a) 

(a) AND-OR-INVERT schematic diagram, (b) Circuit 



4kQ 

A 

B 

c----~ 
D------' 

Digital Principles and Applications 

Bubble 
( collector) 

4kQ 1.6 kQ 

A 

Q2 
Di B 

y 
y 

C 

Q6 D 
Q4 Bubble 

Arrow 

lkQ (b) 

Arrow -
( emitter) 

(a) 

(a) Expandable AND-OR-INVERT gate, (b) Logic symbol 

Figure 14.21b shows the logic symbol for an expandable AND-OR-INVERT gate. The arrow input 
represents the emitter and the bubble stands for the collector. Table 14.4 lists the expandable AND-OR
INVERTgates in the 7400 series. 

Expandable AND-OR-INVERT Gates 

7450 
7453 
7455 

10. What is the value of a buffer-driver? 
1 L What is an application for a Sehmitt trigger? 

Description 

Dual 2-input 2-wide 
2-input 4-wide 
4,input 2-wide 

12. What is the "width" of an AND-OR-INVERT gate? 

14.5 OPEN-COLLECTOR GATES 

Instead of a totem-pole output, some TTL devices have an open-collector output. This means they use only 
the lower transistor of a totem-pole pair. Figure 14.22a shows a 2-input NAND gate with an open-collector 
output. Because the collector of Q

4 
is open, a gate like this will not work properly until you connect an 

external pull-up resistor, shown in Fig. 14.22b. 



A 

B 

(a) 

Digital Integrated Circuits 

+5V 

Pull-up 
resistor 

(b) 

+5V 

Pull-up resistor 

,-----oY 

(c) 

Open-collector TTL: (a) Circuit, (b) Pull-up resistor, (c) Open-collector 
outputs connected to a pull-up resistor 

The outputs of open-collector gates can be wired together and connected to a common pull-up resistor. 
For instance, Fig. 14.22c shows three TTL devices connected to the pull-up resistor. This is known as wire
OR (some called it wire-AND). A connection like this has the advantage of combining the output of three 
devices without using a final OR gate ( or AND gate). The combining is done by a direct connection of the 
three outputs to the lower end of the common pull-up resistor. This is very useful when many devices are 
wire-ORed together. For instance, in some systems the outputs of 16 open-collector devices are connected 
to a pull-up resistor. 

The big disadvantage of open-collector gates is their slow switching speed. Why is it slow? Because the 
pull-up resistance is a few kilolnns, which results in a relatively long time constant when it is multiplied 
by the stray output capacitance. The slow switching speed of open-collector TTL devices is worst when 
the output goes from low to high. Imagine all three transistors going into cutoff in Fig.14.22c. Then any 
capacitance across the output has to charge through the pull-up resistor. This charging produces a relatively 
slow exponential rise between the low and high state. 

13. What must be connected to the output of an open-collector TTL gate? 
14. Open-collector gates have (slower, faster) switching times. 



Digital Principles and Applications 

14.6 THREE-ST A TE TTL DEVICES 

Using a common pull-up resistor with open-collector devices is called passive pull-up because the supply 
voltage pulls the output voltage up to a high level when all the transistors of Fig. 14.22c are cut off. There 
is another approach known as active pull-up. It uses a modified totem-pole output to speed up the charging 
of stray output capacitance. The effect is to dramatically lower the charging time constant, which means the 
output voltage can rapidly change from its low to its high stage. 

Why Standard TTL Will Not Work 

If you try to wire-OR standard TTL gates, you will destroy one or more of the devices. Why? Look at 
Fig. 14.23 for an example of bad design. Notice that the output pins of two standard TTL devices are 
connected. If the output of the second device is 
low, Q

4 
is on and appears approximately like a 

short circuit. If, at the same time, the output of 
the first device is in the high state, then Q

1 
acts 

as an emitter follower that tJ.ies to pull the output 
voltage to a high level. Since Q

1 
and Q

4 
are both 

conducting heavily, only 130 Q remains between 
the supply voltage and ground. The final result 
is an excessive current that destJ.·oys one of the 
TTL devices. 

low DISABLE Input 

As you have seen, wire-ORing standard TTL 
devices will not work because of destructive 
currents in the output stages. This inability to 
wire-OR ordinary totem-pole devices is what 

Low 

130Q 

--------i---<>Y 

Excessive 
current 

---e-----------~GND 
First device . Second device 

Direct connection of TTL outputs 
produces excessive current 

led to three-state (tri-state) TTL, a new breed of totem-pole devices introduced in the early 1970s. With 
three-state gates, we can connect totem-pole outputs directly without destroying any devices. The reason for 
wanting to use totem-pole outputs is to avoid the loss of speed that occurs with open~collector devices. 

Figure 14.24 shows a simplified drawing for a three
state inverter. When DISABLE is low, the base and collec
tor of Q

6 
are pulled low. This cuts off Q

7 
and Q

8
• Therefore, 

the second emitter of Q
1 
and the cathode of D

1 
.are floating. 

For this condition, the rest of the circuit acts as an inverter: 
a low A input forces Q

2 
and Q

5 
to cut off, while Q

3 
and Q

4 

tum on, producing a high output. On the other hand, a high 
A input forces Q

2 
to turn on, which drives Q

5 
on and pro

duces a low output. Table 14.5 summarizes the operation for low DISABLE. 

High DISABLE Input 

0 

X 

When DISABLE is high, the base and collector of Q
6 

go high, which turns on Q
7 

and Q
8

. Ideally, the collector 
of Q8 is pulled down to ground. This causes the base and collector of Q

1 
to go low, cutting off Q

2 
and Q5• 



Digital Integrated Circuits 

Also Q
3 

is off because of the clamping action of D 
1
• 

In other words, the base of Q
3 

is only 0.7 V above 
ground, which is insufficient to tum on Q

3 
and Q

4
• 

r----.--------VC< 

With both Q4 and Q
5 

off, the Y output is floating. 
Ideally, this means that the Thevenin impedance look
ing back into the Y output approaches infinity. Table 
14.5 summarizes the action for this high-impedance 
state. As shown, when DISABLE is high, input A is 
a don't care because it has no effect on the Y output. 
Furthermore, because of the high output impedance, 
the output line appears to be disconnected from the 
rest of the gate. In effect, the output line is floating. 

In conclusion, the output of Fig. 14.24 can be in 
one of three states: low, high, or floating. 

Logic Symbol 

Figure 14.25a is an equivalent circuit for the three-

A 

y 

DISABLE 

Three-state inverter 

state inverter. When DISABLE is low, the switch is closed and the circuit acts as an ordinary inverter. When 
DISABLE is high, the switch is open and the Y output is floating or disconnected. 

Figure 14.25b shows the logic symbol for a three-state inverter. When you see this symbol, remember that 
a low DISABLE results in normal inverter action, but a high DISABLE floats the Y output. 

Three-State Buffer 

By modifying the design, we can produce a three-state buffer, whose logic symbol is shown in Fig. 14.25c. 
When DISABLE is low, the circuit acts as a noninverting buffer, so that Y = A. But when DISABLE is high, 
the output floats. The three-state buffer is equivalent to an ordinary switch. When DISABLE is low, the 
switch is closed. When DISABLE is high, the switch is open. 

(a) 

A---f'>o-Y 
DISABL;~ 

(b) 

A--f>-Y 
DISABL;~ 

(c) 

Three-state logic diagrams: (a) Equivalent circuit of inverter, (b) logic 
symbol of inverter, (c} logic symbol of buffer 

The 74365 is an example of a commercially available three-state hex noninverting buffer. This IC contains 
six buffers with three-state outputs. It is ideal for organizing digital components around a bus, a group of 
wires that transmits binary numbers between registers. 

Bus Organization 

Figure 14.26 shows some registers connected to a common bus. The three-state buffers control the flow of 
binary data between the registers. For instance, ifwe want the contents of register A to appear on the bus, all 
we have to do is make DISABLE low for register A but high for registers B and C. Then all the three-state 



Digital Principles and Applications 

Bus 

Register A 

Register B 

Register C 

Three-state bus control 

switches on register A are closed, while all other three-state switches are open. As a result, only the contents 
of register A appear on the bus. 

The idea in any bus-organized system is to make DISABLE high for all registers except the 
register whose contents are to appear on the bus. In this way, dozens of registers can time-share the 
same transmission path. Not only does this reduce the amount of wiring, but also it has simplified 
the architecture and design of computers and other digital systems. Refer to simple computer design 
discussed in Chapter 16. 

15. Why are three-state gates used in conjunction with computer buses? 

14.7 EXTERNAL DRIVE FOR TTL LOADS 

To drive a TTL load with an external source, you need to satisfy the TTL input requirements for voltage and 
cun-ent. For standard TTL in the low state, this means an input voltage between O and 0.8 V with a cun-ent of 
approximately 1.6 mA. In the high state, the voltage has to be from 2 to 5 V with a cun-ent of approximately 
40 µA. Let us take a brief look at some of the ways to drive a TTL load. 

Switch Drive 

Figure 14.27 shows the prefen-ed method for driving a TTL input from a switch. With the switch open, 
the input is pulled up to +5 V. In the worst case, only 40 µA of input cun-ent exists. Therefore, the voltage 



Digital Integrated Circuits 

appearing at the input pin is slightly less than the supply voltage because of the small voltage drop across the 
pull-up resistor: 

v;= 5 V-(40 µA)(l kQ) = 4.96 V 

This is well above the minimum requirement of2 V, which is fine because it means that the noise immunity 
is excellent. 

When the switch is closed, the input is pulled down to ground. In the worst case, the input current is 1.6 
mA. This sink current creates no problem because it flows through the closed switch to ground. The noise 
immunity is fine because the input voltage is O V, well below the maximum allowable value of 0.8 V. 

Size of Pull-Up Resistance 

A pull-up resistance of 1 kQ is nominal. You can use 
other values. Here are some of the factors to consider 
when you are selecting a pull-up resistor. In Fig. 14.27, 
the current drain with a closed switch is 

5V 
I=-- =5mA 

lkQ 

The smaller the pull-up resistance, the larger the 
current drain. At some point, too much current drain 
becomes a problem for the power supply, so you have 
to use a resistance that is large enough to keep the 
cmTent drain to tolerable levels. 

+5V 

lkQ 

y 

Switch drive for TTL input 

On the other hand, too large a pull-up resistance causes speed problems. The worst case occurs when the 
switch is opened. For instance, if the input capacitance is 10 picofarads (pF) in Fig. 14.27, the time constant 
IS 

RC=(l kQ)(lOpF)= lOns 

The larger the pull-up resistance, the larger the time constant. A larger time constant means a slower 
switching speed because the input capacitance has to charge through the pull-up resistance. 

Pull-up resistances between 1 and 10 kQ are typical. They result in current drains and time constants that 
are acceptable in most applications. 

Transistor Drive 

Figure 14.28a shows another way to drive a TTL laid. This time, we are using a transistor switch to control 
the state of the TTL input. When v; is low, the transistor is off and is equivalent to an open switch. Then 
the TTL input is pulled up to +5 V through a resistance of I kQ. When v; is high, the transistor is on and is 
equivalent to a closed switch. In this case, it easily sinks the 1.6 mA of input current. 

The transistor inverts the control signal v;. If this is objectionable, you can insert an inverter as shown in 
Fig. 14.28b. Now, the double inversion produces an in-phase control signal at the TTL input. 

Operational Amplifier Drive 

Sometimes, you want to use the output of an operational amplifier (OA) to control a TTL input. Because OAs 
typically~use split-supply voltages of+ 15 and 15 V, you have to be careful how you connect to the TTL 



+5V 

I k.Q 

A 
B 

(a) 

y 

Principles and Applications 

+5V 

y 

(b) 

(a) Transistor drive for TTL input, (b) Inverter eliminates transistor inversion 

load. Figure 14.29 shows one way to use the output 
of a 741 to control a TTL input. The output of the OA 
ideally swings from+ 15 to-15V. The positive swing 
closes the transistor switch, producing a TTL input 
of approximately O V. The negative swing drives the 
transistor into cutoff, producing a TTL input of +5V. 

Notice the diode in the base circuit. It protects 
the base against excessive reverse voltage. The data 
sheet of a 2N3904 indicates an absolute maximum 
base-emitter voltage rating of 

VBE.max = -6 V 

+15 V 

-15 V 

+5V 

y 

Op amp and transistor drive 
for TTL input 

Since the negative output of the OA approaches -15 V, we need to use a protective diode as shown between 
the base and ground. This diode clamps the base voltage at approximately-0.7 Von the negative swing. 

Comparator Drive 

Figure 14.30a shows the schematic diagram for a typical comparator, an IC that detects when the input voltage 
is positive or negative. Notice two things. First, a supply voltage of+ 15 Vis typically used with this kind 
of device. Second, the comparator has an open-collector output transistor, Q

5
• This sink transistor can be 

connected to any supply voltage. 

Figure 14.30b shows how to connect an LM339 (typical comparator) to a TTL load. Because of the 
open-collector output, we can connect the output pin of the comparator to a supply voltage of+ 5 V through a 
pull-up resistance of 1 kQ. When ~ is positive, the sink transistor goes off and the TTL input is pulled high. 
When ~ is negative, the sink transistor goes on and the TTL output is pulled low. 

16. What factors influence the size of the resistor in Fig. 14.29? 
17. What is the purpose of the diode in Fig. 14.31? 



+ 

Digital Integrated Circuits 

~---....,_--o + 15 V 

(a) 

Output 
pin 

+15 V +5 V 

y 

(b) 

(a) Schematic diagram of comparator, (b) Interfacing an LM339 to a TTL input 

14.8 TTl DRIVING EXTERNAL.LOADS 

Because standard TTL can sink up to 16 mA, you can use a TTL driver to control an external load such as a 
relay, an LED, etc. Figure 14.31 a illustrates the idea. When the TTL output is high, there is no load current. 
But when the TTL output is low, the lower end of RL is ideally grounded. This sets up a load current of 
approximately 

5V 
h=

RL 

Since standard TTL can sink a maximum of 16 mA, the load resistance is limited to a minimum value of 
about 

5V 
R =-- =317.Q 

L 16 mA -

Driving an LED 
Figure 14.31 bis another example. Here a TTL circuit drives an LED. When the TTL output is high, the LED 
is dark. When the TTL output is low, the LED lights up. If the LED voltage drop is 2 V, the LED current for 
a low TTL output is approximately 

5V-2V 
h= =11.lmA 

270.Q 

Supply Voltage Different from + 5 V 

If you need to use a supply voltage different from +5 V, you can use an open-collector TTL device. For 
instance, Fig. 14.32a on the next page shows an open-collector gate driving a load resistor that is returned 
to+ 15 V. Since an open-collector device can sink a maximum of 16 mA, the minimum load resistance in 
Fig. 14.32a is slightly less than 1 k.Q. 

If you want more than 16 mA of load current, you can use an external transistor, as shown in Fig. 14.32b. 



(a) 

Digital Principles and Applications 

+5 V +5 V 

~ 

270Q 

(b) 

(a) TTL output drives load 
resistor, (b) TTL output 
drives LED 

(a) 

..----..--o + 15 V 

(b) 

(a) Open-collector device 
allows a higher supply voltage, 
(b) Transistor increases current 
drive 

When the open-collector device has a low output, the external transistor goes off and the load current is zero. 
When the device has a high output, the external transistor goes on and the load current is maximum. 

18. Could the resistor RL in Fig. 14.34 bereplaced with a red LED? 

14.9 7 4COO CMOS 

National Semiconductor Corporation pioneered the 
74COO series, a line of CMOS circuits that are pin-for-pin 
and function-for-function compatible with TTL devices 
of similar numbers. For instance, the 74COO is a quad 
2-input NAND gate, the 74C02 is a quad 2-input NOR 
gate, and so on. This CMOS family contains a variety of 
small-scale integration (SSI) and medium-scale integra
tion (MSI) chips that aHow you to replace many TTL de
signs by the comparable CMOS designs. This is useful if 
you are trying to build battery-powered equipment. The 
74HCOO series is the high-speed CMOS family. 

NANO Gate 

Figure 14.33 shows a CMOS NAND gate. The comple
mentary design of input and output stages is typical of 
CMOS devices. Notice that Q

1 
and Q

2 
form one comple

mentary connection; Q
3 

and Q
4 

form another; Visualize 
these transistors as switches. Then a low A input will 

A ---1----<>--Y 

CMOS NANO gate 

close Q1 and open Q
2

; a high A input will open Q
1 

and close Q
2

• Similarly, a low B input will open Q3, and 
close Q4; a high B input will close Q

3 
and open Q

4
• 



Digital Integrated Circuits 

In Fig. 14.33, the Y output is pulled up to the supply 
voltage when either Q

1 
or Q

4 
is conducting. The output is 

pulled down to ground only when Q
2 

and Q
3 

are conduct
ing. If you keep this in mind, it simplifies the following 
discussion. 

Case 1 Here A is low and B is low. Because A is low, 
Q

1 
is closed. Therefore, Y is pulled high through the small 

resistance of Q
1
• 

Case 2 Now A is low and B is high. Since A is still low, 
Q

1 
remains closed and Y stays in the high state. 

Case 3 The A input is high and the B is low. Because B 
is low, Q

4 
is closed. This pulls Yup to the supply voltage 

through the small resistance of Q
4

• 

Case 4 The A is high, and the B is high. When both 
inputs are high, Q

2 
and Q

3 
are closed, pulling the output 

down to ground. 

Table 14.6 summarizes all input-output possibilities. As 
you can see, this is the truth table of a positive NAND 
gate. The output is low only when all inputs are high. To 
produce the positive AND function, we can connect the 
output of Fig. 14.33 to a CMOS inve1ter. 

NOR Gate 

Figure 14.34 shows a CMOS NOR gate. The output goes 
high only when Q

1 
and Q2 are closed. The output goes low 

if either Q
3 

or Q
4 

is closed. There are four possible cases: 

Case 1 The A is low, and the Bis low. For both inputs low, 
Q1 and Q2 are closed. Therefore, Yis pulled high though the 
small series resistance of Q1 and Q

2
• 

Case 2 The A is low, and the B is high. Because B is high, 
Q

3 
is closed, pulling the output down to ground. 

Case 3 The A is high, and the B is low. With A high, Q
4 

is 
closed. The closed Q

4 
pulls the output low. 

A 

Low 
Low 
High 
High 

CMOS NANO Gate 

B 

Low 
High 
Low 
High 

y 

High 
High 
High 
Low 

,---------<O +VDD 

A -----f---~ 

B ---------or 

CMOS NOR gate 

A B y 

Low Low High 
Low High Low 
High Low Low 
High High Low 

Case 4 The A is high, and the B is high. Since A is still high, Q
4 

is still closed and the output remains 
low. 

Table 14.7 summarizes these possibilities. As you can see, this is the truth table of a positive NOR gate. 
The output is low when any input is high. 

Propagation Delay Time 

A standard CMOS gate has a propagation delay time tP of approximately 25 to 100 ns, with the exact value 

depending on the power supply voltage and other factors. As you recall, t is the time it takes for the output 
p 



Digital Principles and Applications 

of a gate to change after its inputs have changed. When two or more CMOS gates are cascaded, you have to 

add the propagation delay times to get the total. For instance, if you cascade three CMOS gates each with a 
IP of 50 ns, then the total propagation delay time is 150 ns. 

Power Dissipation 

The static power dissipation of a device is its average power dissipation when the output is constant. The 
static power dissipation of a CMOS gate is in nanowatts. For instance, a 74COO has a power dissipation of 
approximately 10 nano watts (n W) per gate. This dissipation equals the product of supply voltage and leakage 
current, both of which are de quantities. 

When a CMOS output changes from 
the low state to the high state ( or vice 
versa), the average power dissipation 
increases. Why? The reason is that 
during a transition between states, there 
is a brief period when both MOSFETs 
are conducting. This produces a spike 
( quick rise and fall) in the supply current. 
Furthermore, during a transition, any 
stray capacitance across the output has 
to be charged before the output voltage 
can change. This capacitive charging 
draws additional current from the power 
supply. Since power equals the product 
of supply voltage and device current, 
the instantaneous power dissipation 
increases, which means the average 
power dissipation is higher. 

~ 
S 1 mW 1------1----+-,f--,<'----+--1------1 

J 
oi 
.9-
Ul 
Ul 

:.a 
~ 0.1 mw,__ ____ ...,._ __ ,......;i----------
0 p.. 

Frequency, Hz 

Active power dissipation of a 7 4COO 

The average power dissipation of a CMOS device whose output is continuously changing is called the 
active power dissipation. How large is the active power dissipation? This depends on the frequency at which 
the output is switching states. When the operating frequency increases, the current spikes occur more often 
and active power dissipation increases. Figure 14.35 shows the active power dissipation of a 74COO versus 
frequency for a load capacitance of 50 pF. As you see, the power dissipation per gate increases with frequency 
and supply voltage. For frequencies in the megahertz region, the gate dissipation approaches or exceeds 10 
111 W (TTL gate dissipation). For CMOS to have an advantage over TTL, you operate CMOS devices at lower 
frequencies. 

Another way to reduce power dissipation is to decrease the supply voltage. But this has adverse effects 
because it increases propagation time and decreases noise immunity. Although CMOS devices can work over 
a range of 3 to 15 V, the best compromise for speed, noise immunity, and overall performance is a supply 
voltage from 9 to 12 V. From now on, we assume a supply voltage of 10 V, unless otherwise specified. 

Incidentally, notice the use of Vee rather than V
00 

for the supply voltage. This is a carryover from TTL 
circuits. You will find Vee on the data sheets for 74COO devices. 



Digital Integrated Circuits 

54COO Series 

Any device in the 74COO series works over a temperature range of-40 to +85°C. This is adequate for most 
commercial applications. The 54COO series (for military applications) works over a temperature range of-55 
to+ 125°C. Although 54COO devices can be substituted for 74COO devices, they are rarely used commercially 
because of their much higher cost. 

7 4HCOO Devices 

The main disadvantage of CMOS devices is their relatively long propagation delay times. This places a limit 
on the maximum operating frequency of system. The 74HCOO series is a CMOS series of devices that are pin
for-pin and function-for-function compatible with TTL devices. These devices have the advantage of higher 
speed (less propagation delay time). 

74HCTOO Devices 

These are also high-speed CMOS circuits designed to be directly compatible with TTL devices. That is, they 
can be connected directly to any TTL circuit. Interfacing TTL and CMOS devices is discussed in Secs. 14.11 
and 14.12. 

CD4000 Series 

RCA was the first to introduce CMOS devices. The original devices were numbered from CD4000 upward. 
This 4000 series was soon replaced by the 4000A series (called conventional) and the 4000B series (called 
the buffered type). The 4000A and B series are widely used; they have many functions not available in the 
74COO series. The main disadvantage of 4000 devices is their lack of pin-for-pin and function-for-function 
compatibility with TTL. 

Whatkindoftransfatorsfare·sri9.vnfaFig.·14.33? 
Why is the NOR gate inflg: 1434a CMOS device? 

14.10 CMOS CHARACTERISTICS 

74COO series devices are guaranteed to work reliably over a temperature range of -40 to +85°C and over a 
supply range of3 to 15 V. ln the discussion that follows, worst case means the parameters are measured under 
the worst conditions of temperature and voltage. 

Floating Inputs 

When a TTL input is floating, it is equivalent to a high input. You can use a floating TTL input to simulate a 
high input; but as already pointed out, it is better to connect unused TTL inputs to the supply voltage. This 
prevents the floating leads from picking up stray noise in the environment. 



Digital Principles and Applications 

If you try to float a CMOS input, however, not only do you set up a possible noise problem, but, much 
worse, you produce excessive power dissipation. Because of the insulated gates, a floating input allows the 
gate voltage to drift into the linear region. When this happens, excessive current can flow through push-pull 
stages. 

The absolute rule with CMOS devices, therefore, is to connect all input pins. Most of or all the inputs are 
normally connected to signal lines. If you happen to have an input that is unused, connect it to ground or the 
supply voltage, whichever prevents a stuck output state. For instance, with a positive NOR gate you should 
ground an unused input. Why? Because returning the unused NOR input to the supply voltage forces the 
output into a stuck low state. On the other hand, grounding an unused NOR input allows the other inputs to 
control the output. 

With a positive NAND gate, you should connect an unused input to the supply voltage. If you try grounding 
an unused NAND input, you disable the gate because its output will stick in the high state. Therefore, the 
best thing to do with an unused NAND input is to tie it to the supply voltage. A direct connection is all right: 
CMOS inputs can withstand the full supply voltage. 

Easily Damaged 
Because of the thin layer of silicon dioxide between the gate and the substrate, CMOS devices have a very 
high input resistance, approximately infinite. The insulating layer is kept as thin as possible to give the gate 
more control over the drain current. Because this layer is so thin, it is easily destroyed by excessive gate 
voltage. 

Aside from directly applying an excessive gate voltage, you can destroy the thin insulating layer in more 
subtle ways. If you remove or insert a CMOS device into circuit while the power is on, transient voltages 
caused by inductive kickback and other effects may exceed the gate voltage rating. Even picking up a CMOS 
IC may deposit enough charge to exceed its gate voltage rating. 

One way to protect against overvoltages is to include zener diodes across the input. By setting the zener 
voltage below the breakdown voltage of the insulating layer, manufacturers can prevent the gate voltage from 
becoming destructively high. Most CMOS I Cs include this form of zener protection. 

Figure 14.36 shows a typical transfer characteristic (input-output graph) of a CMOS inverter. When the 
input voltage is in the low state, the output voltage is in the high state. As the input voltage increases, the 
output remains in the high state until a threshold is reached. Somewhere near an input voltage of Vcc/2, the 
output will switch to the low state. Then any input 
voltage greater than Vcc/2 holds the output in the 
low state. 

This transfer characteristic is an improvement 
over TTL. Why? Because the indeterminate region is 
much smaller. As you can see, the input voltage has 
to be nearly equal to Vc/2 before the CMOS output 
switches states. This implies that the noise immunity 
of CMOS devices ideally approaches Vcc.f2. Typi
cally, noise immunity is 45 percent of Vee 

Also notice how much better defined the low and 
high output states are. When CMOS loads are used, 
the CMOS source and sink transistors have almost 
no voltage drop because there is almost no input 

Vcci-----. 

·. 

Typical transfer characteristic 
of a CMOS gate 



Digital Integrated Circuits 

current to a CMOS load. Therefore, the static currents are extremely small. For this reason, the high output 
voltage is approximately equal to Vee• and the low output voltage is approximately at ground. Stated another 
way, the logic swing between the low and high output states approximately equals the supply voltage, a con
siderable advantage for CMOS over TTL. 

Compatibility 

CMOS devices are compatible with one another because the output of any CMOS device can be used as the 
input to another CMOS device, as shown in Fig. 14.37a. For instance, Fig. 14.37b shows the output stage of 
a CMOS driver connected to the input stage of a CMOS load. The supply voltage is + l O V. Ideally, the input 
switching level is +5 V. Since the CMOS driver has a low output, the CMOS load has a high input. 

Similarly, Fig. 14.37c shows a high CMOS driver output. This is more than enough voltage to drive the 
CMOS load with a high-state input. In fact, the noise immunity typically approaches 4.5 V (from 45 percent 
of Vee.). Any noise picked up on the connecting line between devices would need a peak value of more than 
4.5 V to cause unwanted switching action. 

CMOS CMOS 
device Va Vi device 

(a) 

d 
+lOV 

d 
+lOV 

lµA 

}-
lµA 

}-- -
=OV =+lOV 

~ ~ 
(b) (c) 

(a) Output of CMOS device can drive input of another CMOS device, 
(b) Sink current, (c) Source current 

Sourcing and Sinking 

When a standard CMOS driver output is low (Fig. 14.3 7b ), the input current to the CMOS load is only 1 
microampere (µA) (worst case shown on data sheet). The input current is so low because of the insulated 
gates. This means that the CMOS driver has to sink only 1 µA. Similarly, when the driver output is high 
(Fig.14.37c), the CMOS driver is sourcing l µ.A. 

In symbols, here are the worst-case input currents for CMOS devices: 

JIL.m;,x = - l µA JIH,max = 1 µA 

We use these values to calculate the fanout. 



Digital Principles and Applications 

Fanout 

The fanout of CMOS devices depends on the kind ofload being driven. In Sec. 14.11, we discuss CMOS 
devices driving TTL devices. Now we want to concentrate on CMOS driving CMOS. Data sheets for 74COO 
series devices give the following output currents for CMOS driving CMOS: 

JOL,max = 10 µA JOH,max =-10 µA 

Since the worst-case input current of a CMOS device is only 1 µA, a CMOS device can drive up to IO 
CMOS loads. Therefore, you can use a fanout of IO for CMOS-to-CMOS connections. This value is reliable 
under all operating conditions. 

Why must care be taken whenusing CMOS deyices? 
What is the transfer characteristic of a CMOS inverter? 

14.11 TTL-TO-CMOS INTERFACE 

The word interface refers to the way a driving device is connected to a loading device. In this section, we 
discuss methods for interfacing CMOS devices to TTL devices. Recall that TTL devices need a supply voltage 
of 5 V, while CMOS devices can use any supply voltage from 3 to 15 V. Because the supply requirements 
differ, several interfacing schemes may be used. Here are a few of the more popular methods. 

Supply Voltage at 5 V 

One approach to TTL/CMOS interfacing is to 
use +5 V as the supply voltage for both the TTL 
driver and the CMOS load. In this case, the 
worst-case TTL output voltages (Fig. 14.38a) 
are almost compatible with the worst-case 
CMOS input voltages (Fig. 14.38b). Almost, 
but not quite. There is no problem with the TTL 
low-state window (0 to 0.4 V) because it fits in
side the CMOS low-state window (0 to l.5 V). 
This means the CMOS load always interprets 
the TTL low-state drive as a low. 

The problem is in the TTL high state, which 
can be as low as 2.4 V (see Fig. 14.38a). lfyou 
try using a TTL high-state output as the input to 
a CMOS device, you get indeterminate action, 

5 V .-------, 5 V .-------, 

CMOS high 
TTL high 

3.5 V 1------------i 

2.4 V 1---------i Indeterminate 

Indeterminate 1.5 V 1---------i 

CMOS low 
TTL low 

OV'-----~ OV'-----~ 
(a) (b) 

(a) TTL output profile, (b) CMOS 
input profile 

The CMOS device needs at least 3.5 V for a high-state input (Fig. 14.38b). Because of this, you cannot get 
reliable operation by connecting a TTL output directiy to a CMOS input. You have to do something extra to 
make the two different devices compatible. 

What do you do? The standard solution is to use a pull-up resistor between the TTL driver and the CMOS 
load, as shown in Fig. 14.39. What effect does the pull-up resistor have? It has almost no effect on the low 



Digital Integrated Circuits 

state, but it does raise the high state to approximately +5 V. For instance, when the TTL output is low, the 
lower end of the 3.3 kQ is grounded (approximately). Therefore, the TTL driver sinks a current of roughly 

/=~=1.52mA 
3.3kQ 

When the TTL output is in the high state, however, the output voltage is pulled up to +5 V. Here is how 
it happens. As before, the upper totem-pole transistor actively pulls the output up to +2.4 V (worst case). 
Because of the pull-up resistor, however, the output rises above +2.4 V, which forces the upper totem-pole 
transistor into cutoff. The pull-up action is now passive because the supply voltage is pulling the output 
voltage up to +5 V through the pull-up resistor. 

The gate capacitance of the CMOS load has to be charged through the pull-up resistor. This slows down 
the switching action. If speed is important, you can decrease the pull-up resistance. The minimum resistance 
is determined by the maximum sink current of the TTL device: /

0
L,max = 16 mA. In the worst case the supply 

voltage may be as high as 5.25 V, so the minimum resistance is 

R . = 5.25 V = 328 Q 
mm 16mA 

The nearest standard value is 330 Q, which you 
should consider the absolute minimum value for 
the pull-up resistor. And you would use this only if 
switching speed were critical. In many applications, a 
pull-up resistance of 3.3 kQ is fine. 

Incidentally, the other inputs of the TTL driver and 
CMOS load (Fig. 14.39) are connected to signal lines 
not shown. Also, the use of 3-input gates is arbitrary. 
You can interface gates with any number of inputs. 
If more than one TTL chip is being interfaced to the 

.---------e-- +5 V 

TIL driver and CMOS load 

CMOS load, connect each TTL driver to a separate pull-up resistor and CMOS input. 

Different Supply Voltages 

CMOS performance deteriorates at lower voltages 
because the propagation delay time increases and the 
noise immunity decreases. Therefore, it is better to 
run CMOS devices with a supply voltage between 9 
and 12 V. One way to use a higher supply voltage is 
with an open-collector TTL driver (Fig. 14.40). Re
call that the output stage of an open collector TTL 
device consists only of a sink transistor with a float
ing collector. In Fig. 14.40. this open collector is con
nected to a supply voltage of+ 12 V through a pull-up 
resistance of 6.8 kQ. Likewise, the CMOS device 
now has a supply voltage of+ 12 V. 

+SV 
.-----e-- + 12 V 

6.8kQ 

Open-collector TTL driver 
allows higher CMOS supply 
voltage 

When the TTL output is low, we can visualize a ground on the lower end of the pull-up resistor. Therefore, 
the TTL device has to sink approximately 



Digital Principles and Applications 

12 V 
l,ink = 6 8 kQ = 1.76 mA 

When the TTL output is high, the open-collector output rises passively to+ 12 V. In either case, the TTL 
outputs are compatible with the CMOS input states. 

The passive pull-up in Fig. 14.40 produces slower switching action than before. For instance, with a gate 
input capacitance of IO pF, the pull-up time constant is 

RC= (6.8 kQ)(lO pF) = 68 ns 

If this is a problem, reduce the pull-up resistance to its minimum aHowable value of 
12 V 

R. =--=750Q 
mm I6mA 

Then the pull-up time constant decreases to 

RC= (750 Q)(lO pF) 7.5 ns 

CMOS level Shifter 

Figure 14.41 shows a 40109, called a level 
shifter. The input stage of the chip uses a sup
ply voltage of +5 V, while the output stage uses 
+ 12 V. In other words, the input stage interfaces 
with TTL, and the output stage interfaces with 
CMOS. 

In Fig. 14.41, a standard TTL device drives 
the level shifter. This produces active TTL pull
up to at least +2.4 V. Beyond this level, the pull
up resistor takes over and raises the voltage to 

.--------e-- + 12 V 

level shifter '= 

CMOS level shifter allows the use 
of 5-V and 12-V supplies 

+5 V, which ensures a valid high-state input to the level shifter. The output side of the level shifter connects 
to+ 12V (this can be changed to any voltage from 3 to 15 V). Since the CMOS load runs off of+ 12 V, it has 
better propagation delay time and noise immunity. 

In summary, TTL has to run off of +5 V, but CMOS does better with a supply voltage of+ 12 V. This is the 
reason for using a level shifter between the TTL driver and the CMOS load. 

23. \\'hat is the purpose of the 33-kQ resistor inFig. 14.41? 

24. Where is a CMOS level shifter used? 

14.12 CMQS.,JO-TTl INTERFACE 

In this section, we discuss methods for interfacing CMOS devices to TTL devices, Again, the problem is to 
shift voltage levels until the CMOS output states fall inside the TTL input windows. Specifically, we have to 
make sure thatthe CMOS low-state output is always less than 0.8 V, the maximum allowable TTL low-state 
input voltage. Also, the CMOS high-state output must always be greater than 2 V, the minimum allowable 
TTL high-state input voltage. 



Digital Integrated Circuits 

Supply Voltage at 5 V 

One approach is to use +5 Vas the supply voltage 
for the driver and the load, as shown in Fig. 14.42. 
A direct interface like this forces you to use a low
power Schottky TTL load ( or two low-power TTL 
loads). Why? Because a low-power Schottky device 
has these worst-case input currents: 

[IL,max = -360 µA [/H,max = 20 µA 

Data sheets for 74COO devices list these worst
case output currents for CMOS driving TTL: 

JOL,max = 360 µA /OH,rnax = -360 µA 

This tells us that a CMOS drive can sink 360 µA 

CMOS Low-power 
Schottky 

CMOS driver and low-power 
Schottky TTL load 

in the low state, exactly the input current for a low-power Schottky TTL devices. On the other hand, the 
CMOS driver can source 360 µA, which is more than enough to handle the high-state input current ( only 20 
µA). So the sink current limits the CMOS/74LS fanout to 1. 

CMOS can also drive low-power TTL devices. The limiting factor again is the sink current. Low-power 
TTL has a worst-case low-state input current of 180 µA. Since a CMOS driver can sink 360 µA, it can drive 
two low-power TTL devices. Briefly stated, the CMOS/74L fanout is 2. 

CMOS cannot drive standard TTL directly because the latter requires a low-state input current of -1.6 
mA, for too much cmTent for a CMOS device to sink without entering the TTL indetenninate region. The 
problem is that the sink transistor of a CMOS device is equivalent to a resistance of approximately 1.11 kQ 
(worst case). The CMOS output voltage equals the product of 1.6 mA and 1.11 kQ, which is 1. 78 V. This is 
too large to be low-state TTL input. 

Using a CMOS Buffer 
Figure 14.43 shows how to get around the fanout 
limitation just discussed. The CMOS driver now 
connects directly to a CMOS buffer, a chip with larger 
output currents. For instance, a 7 4C902 is a hex buffer, 
or six CMOS buffers in a single package. Each buffer 
has these worst-case output currents: 

JOL,max = 3.6 mA JOH.max= 800 µA 

Since a standard TTL load has a low-state input 
current of 1.6 mA and a high-state input current of 40 

CMOS buffer can drive 
standard TTL load 

µA, a 74C902 can drive two standard TTL loads. If you use one-sixth of a 74C902 in Fig. 14.43, the CMOS/ 
TTL fanout is 2. Other available buffers are the CD4049A (inverting), CD4050A (noninverting), 74C901 
(inverting), etc. 

Different Supply Voltages 

CMOS buffers like the 74C902 can use a supply voltage of 3 to 15V and an input voltage of-0.3 to 15 V. 
The input voltage can be greater than the supply voltage without damaging the device. For instance, you can 
use a high-state input of+ 12 V even though the supply voltage is only +5 V. 



Digital Principles and Applications 

Figure 14.44 shows how to use the previous idea to our advantage. Here, the supply pin of the CMOS 
driver is connected to+ 12 V. On the other hand, the supply pin of the CMOS buffer is connected to +5 V 
to produce the TTL interface. Therefore, the input to the CMOS buffer will be as much as +12 V, even if its 
supply voltage is only +5 V. The fanout of this interface is still two standard TTL loads. 

Open-Drain Interface 

Recall open-collector TTL devices. The output stage 
consists of a sink transistor with a floating collector. 
Similar devices exist in the CMOS family. Known 
as open-drain devices, these have an output stage 
consisting only of a sink MOSFET. An example is the 
74C906, a hex open-drain buffer. 

Figure 14.45 shows how an open-drain CMOS 
buffer can be used as an interface between a CMOS 
driver and a TTL load. The supply voltage for most 
of the buffer is + 12 V. The open drain, however, is 

+12 V .-------- +5 V 

CMOS driver runs better 
with 12-V supply 

connected to a supply voltage of +5 V through a pull-up resistance of 3.3 kQ. This has the advantage that 
both the CMOS driver and the CMOS buffer run off of+ 12 V, except for the open-drain output which 
provides the TTL interface. 

CMOS Open-drain TTL 
driver CMOS buffer load 

Open-drain CMOS buffer increases sink current 

25. <Jan a CMOS circuit drive a 74LS04 directly? What about a 7404? 
26. <:MOS output V()ltage levels are weU within the profile of TTL input voltage levels. Why 

can't the CMOS drive the 'fTI.. dir~qtly? 

14.13 CURRENT TRACERS 

Figure 14.46a shows a solder bridge shorting a node to ground. When you trigger the logic pulser, the logic 
probe remains dark because the node is stuck in the low state. A logic pulser and logic probe will help you 
locate stuck nodes, but they cannot tell you the exact location of the short. 

Figure 14.46b shows a current tracer, a troubleshooting tool than can detectc.urrent in a wire or circuit
board trace. Although it touches the wire, the current tracer does not make electric contract. Inside its 



Digital Integrated Circuits 

(a) 

I 
I 

~ 
(b) 

I 
I 

~ 
(c) 

(a) Solder bridge shorts node to ground, (b) Current tracer will not 
detect any current, (c) Current tracer will detect current 

blunt insulated tip is a small pick-up coil than can detect the magnetic field around a wire carrying current. 
Therefore, if there is any current through the wire, the current tracer lights up. 

In Fig. 14.46b, each time you trigger the logic pulser, a conventional current flows through its tip to ground 
along the path shown. The current tracer will not detect this current because it is touching another part of the 
wire. 

If you move the current tracer between the ground and the logic pulser as shown in Fig. 14.46c, the current 
tracer will light up. The critical position for the current tracer is directly over the short. Move left, and the 
current tracer goes out. Move right, and it turns on. When this happens, you know the current tracer is directly 
over the trouble. During troubleshooting, a visual check at this critical location usually reveals the nature of 
the trouble (a solder bridge, in this discussion). 

That's the basic idea behind a current tracer. You use the logic pulser and logic probe to find stuck nodes. 
Then you use the current tracer to locate the exact position along a trace where the short is. 



Digital Principles and Applications 

A chipis a small piece of serniconductor material with microminiature circuits on its surface. Small-scale 
integration (SSl) refers to chips with less than 12 gates. Medium-scale integration (MSI) means 12 to 100 
gates per chip. Large-scale integration (LSI) refers to more than IOO gates on a chip. 

The 7400 series is a line of standard TTL chips. This bipolar family contains a variety of compatible SSI 
and MSI devices, One way to recognize TTL design is the multiple-emitter input transistors and the totem
pole output transistors. The standard TTL chip has a power dissipation of about 10 mW per gate and a 
propagation delay time of around IO ns. 

By including a Schottky diode in parallel with the collector-base terminals, manufacturers produce 
Schottky TTL. This eliminates saturation delay time because itprevents the transistors from saturating on. 
Numbered from 74SOO, these devices have a power dissipation of 20 mW per gate and a propagation delay 
time of approximately 3.nS; 

By increasing internal resistances and including Schottky diodes, manufacturers can produce low-power 
Schottky TTL devices (numbered from 74LSOO). A low-power Schottky TTL gate has a power dissipation of 
around 2 mW per gate and a pr9pagation delay time of approximately 10 ns. Low~power Schottky TTL is 
the most widely used of the TTL types. 

A floating TTL input is equivalent to a high input Do not use floating TTL inputs when you are 
operating in an electrically noisy environment. Floating inputs may pick up enough noise voltage to 
produce unwanted changes in the output states. 

A standard TTL gate can sink 16 mA and source 400.mA. Since the maximum input currents are 1.6 mA 
(low state) and 40 µA (high state), standard TTL has a fanout of 10, meaning that one standard TTL gate can 
drive 10 others. Fanout has different valueswhen you mix TTL types. 

Open-collector devices have only the pull-down transistor; the pull-up transistor is omitted. Because 
of this, open~collector devices can be wire-()Red through a common pull-up resistor. This connection is 
inherently slow because the time constant is relarvely long. 

Three-state devic:es have replaced open-collector devices in most applications because they are much 
faster. These newer devices have a control input that can tum off the device. When this happens, the output 
floats and presents a high impedance to whatever it is connected to. Three-state. devices are. widely used 
for connecting to buses. · 

A CM()~jny~tter uses complementary MOSFp';rs in>a.p~l>h.,.pull an~gernent Thel,<~y aclva11t?ge of 
CMOS devices is the}9:w JJOW~tfiissipa.tion.11'le mclin ?isadv~tageis t11e.sipy, swHchingspeed. 

The 74COO series is a line ofCMOS circuits that are pin,-for-pin and function-for-function compatible 
w;itll. ffi. de;\11c:e;,, The s~tic power dissipation of 74C:QO devi.cef .~ apf!rpxiip.ately .io .nanowatts (n Vj} per 
gate .. Active power dissipati()tlis htgher beca1,.1se of tl'te c11rr~nt l>pil<es .litu:ing .transitio11S, J:.ower s11t>p1y 
voHages inc~ease the propagation delay time and n()r,se immunity. Higher supply voltages increase the 
power dissipation. The best comprmnise is a supply voltage from 9 to 12 V. 111e 7 4HC00series is a 1ine of 
high-speed CMOS·<ievices, The CD4000 series is another line of CMOS devices with many functions not 
available in the 74COO series. 

CMOS devices are guaranteed to work reliably over a temperature range of-40.to+85?Cand• a supply 
Jange of 3tol5 V. Unused inputs should be returned.to the supply voltage orto ground, depending on 
whichconnectionpreventsa stuck output. A.floating CMOSinpuHspoorqesign because it produces large 
p9.ver·dissipation .. CMOS.devices have aJanou.t of lO·when driving other CMOS devices. 13yusing·level 
shifting, CMOS devices can be interfaced with TTL devices. 

The? 4HC::TOOseriesis completely TTL-qornpatjble,and· spedal interfacing is not required. 



Digital Integrated Circuits 

• active load A transistor that acts as a load for 
another transistor. 

• active power dissipation The power dissipation 
of a device under switching conditions. It 
differs from static power dissipation because 
of the large current spikes during output 
transitions. 

• bipolar Having two types of charge carriers: 
free electrons and holes. 

• bus A group of wires that transmits binary 
data. The data bus of a · first-generation 
microcomputer has eight wires, each carrying 
1 bit. This means that the data bus can transmit 
1 byte at a time. Typically, the byte represents 
an instruction or data word that is moved from 
one register to another. 

• chip A small piece of semiconductor material. 
Sometimes chip refers to an IC device 
including its pins. 

• CMOS inverter A push-pull connection of p
and n-channel MOSFETs. 

" compatibility Ability of the output of one 
device to drive the input of another device. 

• interface The way a driving device is 
connected to a loading device. All the circuitry 
between the output of a device and the input 
of another device. 

• fanout The maximum number of TTL loads 
that a TTL device can reliably drive. 

" low-power Schottky TTL A modification 
of standard TTL in which larger resistances 
and Schottky diodes are used. The larger 
resistances decrease the power dissipation, 
and the Schottky diodes increase the speed. 

'" noise immunity The amount of noise voltage 
that causes unreliable operation. With TTL it 

is 0.4 V. As long as the noise voltages induced 
on connecting lines are less than 0.4 V, the 
TTL devices will work reliably. 

• saturation delay time The time delay 
encountered when a transistor tries to come 
out of the saturation region. When the base 
drive switches from high to low, a transistor 
cannot instantaneously come out of hard 
saturation; extra carriers must first flow out of 
the base region. 

• Schmitt trigger A digital circuit that produces 
a rectangular output. The input waveform may 
be sinusoidal, triangular, distorted, and so on. 
The output is always rectangular. 

• sink A place where something is absorbed. 
When saturated, the lower transistor in a 
totem-pole output acts as a current sink 
because conventional charges flow through 
the transistor to ground. 

• source The upper transistor of a totem-pole 
output acts as a source because conventional 
flow is out of the emitter into the load. 

• standard TTL The basic TTL design. It has a 
power of dissipation of IO mW per gate and a 
propagation delay time of 10 ns. 

• three-state TTL A modified TTL design that 
allows us to connect outputs directly. Earlier 
computers used open-collector devices with 
their buses, but the passive pull-up severely 
limited the operating speed. By replacing 
open-collector devices with three-state 
devices, we can significantly reduce the 
switching time needed to change from the 
low state and the output state. The result 
is faster data changes on the bus, which is 
equivalent to speeding up the operation of a 
computer. 



Digital Principles and Applications 

14.1 For each assigned circuit in Fig. 14.47, deter
mine the indicated current I and/or voltage V. 

+JO Vdc -10 Vdc +5 Vdc +5 Vdc 

lit:·! kQ /!t:·l ldl +i !1 Red i~ 
V V ".: 5.lkQ /! 5.lkQ 
- -

':= ~ 
-5 Vdc -5 Vdc 

(a) (b) (c) (d) 

~t, 
+5Vdc 

lkQ 

+IOVdc 

-5 Vdc = 
(e) (I) 

14.2 From memory, draw the symbols for: diode, 
LED, npn BJT,pnp BJT. 

14.3 Make a truth table for the circuit in Fig. 14.5a. 
14.4 From memory, draw the simplified symbols 

for an n-channel MOSFET and a p-channel 
MOSFET. 

14.5 For each assigned circuit in Fig. 14.48, deter
mine the indicated current I and/or voltage V. 

(a) 

+5 Vdc 

(b) 

-lOVdc AlkQ 
14.6 Draw the circuit for a CMOS inverter. 
14.7 For each assigned circuit in Fig. 14.49 on the 

next page, determine the indicated current I 
and/or voltage V. 

14.8 Figure 14.10 shows typical resistance values 
at room temperature. Here A is high, and B is 
grounded. Allowing 0. 7 V for the base-emitter 

+IOVdc 

+12 Vdc 

(a) 

+ 

+;;=+~OVdcl 
V =? 0 • 

When ON, Q1 has a resistance of IO kQ 
When ON, Q2 has a resistance of 1 k.Q 

(b) 

+IO Vdc 

When ON, both transistors 
have a resistance of 2.5 kQ 
Case a. V; = 0 Vdc 
Case b. V;=+IO Vdc 

(c) 



Digital Integrated Circuits 

voltage, how much current is there through 
the4kQ? 

14.9 Suppose you need a TTL device with a power 
dissipation of less than 5 mW per gate and a 
delay time of less than 20 ns. What TTL type 
would you choose? 

14.10 Use the values of Table 14.3 to calculate the 
total propagation delay time of three cascaded 
gates for each of the following TTL types: 

a. Low-power b. Low-power 

c. Standard Schottky 
d. High-speed e. Schottky 

14.11 What is the fanout of a 7 4SOO device when it 
drives low-power TTL loads? 

14.12 What is the fanout of a low-power Schottky 
device driving standard TTL devices? 

14.13 What is the fanout of a standard TTL device 
driving a 74LS device? 

14.14 The output of a 74LS04 is connected to the 
inputs of two 7404s, one 7400, and three 
7410s. It seems to malfunction occasionally. 
What might be the problem? 

14.15 What would be a simple "fix" for the circuit in 
Prob. 14.14? 

14.16 A zero-rise-time pulse is applied to the input 
ofa 74LS04. Its output drives a 74LS10. What 
is the delay time from the rising edge of the 
input pulse to the rising edge of the 74LS10 
output? 

14.17 What is the fanout of a 7437 buffer when it 
drives standard TTL loads? 

14.18 The input to a 7414 hex Schmitt trigger is a 
2-V-peak sinewave. Sketch both the input and 
output voltages. 

14.19 What is the output in Fig. 14.20 for these 
inputs? 

a. ABCD=OOOO b. ABCD=OlOl 

c. ABCD= 1100 d. ABCD = 1111 

14.20 Is the output Y of Fig. 14.50 low or high for 

l 

these conditions? 

a. Both switches open, A is low 
b. Both switches closed, A is high 
c. Left switch open, right switch closed, A 

is low 
d. Left switch closed, right switch open, A 

is high 

lOkQ 

y 

A 

14.21 What is the value of Yin Fig. 14.51 for each of 
these? 

a. ABCD = 0000 
c. ABCD = l 000 

b. ABCD = 0101 
d. ABCD = 1111 

y 

14.22 In Fig. 14.22a, IOL,max = 16 mA. If three open

collector gates like these are wire-ORed 

together as shown in Fig. 14.22c, what is the 
minimum value of pull-up resistance needed 
to avoid destroying any device? 



Digital Principles and Applications 

14.23 Suppose the total output capacitance is 20 pF 
in Fig. 14.22c. If the pull-up resistance equals 
3.6 kQ, what does the charging time constant 
equal? 

14.24 You want the contents ofregister B to appearon 
the bus of Fig. 14.28. What are the necessary 
disable values? 

14.25 What are the three output conditions of a 
three-state gate? 

14.26 Draw the logic symbol for a three-state 
inverter. 

14.27 In Fig. 14.52, what does output Y equal when 
each switch is open? When either switch is 
closed? 

14.28 What is the current drain through the pull-up 
resistors when both switches are closed in 
Fig. 14.52? What is the time constant for each 
input when the switches are open? 

3.3kQ 3.3 kQ 
1 

A 2 y 

B 

l l 

{ 
---------<o +5 V 

t 
A 

B 2 y 

IOOQ IOOQ 

- -

(a) (b) 

14.31 What is the LED current in Fig. 14.54b if the 
LED voltage drop is 2 V and the TTL output 
is high? If the TTL output is 0.4 V, what is the 
LED current? 

14.32 When switch B of Fig. 14.55 is closed, is the 
LED on or off? For this condition, what is the 
current in the LED? 

'l +5V 

l kQ l kQ 

A CLOSED ! 
270Q 

2 

7400 7404 

Switch A~= 
14.29 In Fig. 14.53, what does the output Y equal -4, 

when either switch is open? When both 
are closed? This is not a preferred method 
of driving TTL loads. Try to figure out t\vo 
reasons why this circuit is not as good as the 

BCLOSED l SwitchB 

circuit shown in Fig. 14.52. 

14.30 In Fig. 14.54a, the TTL output voltage is 0.4 
V, and the LED voltage is 2 V. What is the sink 
current when the LED is lighted? 

14.33 Three CMOS devices are cascaded. If each 
has a propagation delay time of 100 ns, what 
is the total propagation delay time? 

14.34 A 74COO has a load capacitance of 50 pF. If 
the supply voltage is 10 V, what is the active 



-------------,--D_ig_it_al_.l_nt_eg_ra_te_d_C_in_c_ui_ts ______________ (;) 

power dissipation per gate ateach of the 
following frequencies? 

a. kHz b. 10 kHz 

C. 100 kHz 

14.35 Explain the difference between 74COO, 
74HCOO, and 74HCTOO devices. 

14.36 What are CD4000 series ICs? 

14.37 Figure 14.56a shows how to drive a CMOS 
device from a switch. As you see, the input 
does not float in either state. Is the output low 
or high when the switch is open? Is it low or 
high when the switch is closed? 

+12 V 

lOkQ 
1 

(c) 

A~l . 12 
B 

13 

"== j- -74C27 

(b) 

14.38 Pin 13 is an unused input in Fig. 14.56b. As 
you see, it is grounded. Is the output low or 
high for each of these conditions? 

a. A and B both low 
b. A low and B high 
c. A high and B low 

d. A and B both high 

14.39 If pin 13 is returned to the supply voltage 
instead of grounded in Fig. 14.56b, the circuit 
is useless as a NOR gate. Why? 

14.40 Pin 1 is an unused input in Fig. 14.56c. As 
you see, it is returned to the supply voltage 
through a pull-up resistor. Is the output low or 
high for each of these conditions? 

a. A and B both low 

b. A low and B high 
c. A high and B low 

d. A and B both high 

14.41 If pin 1 is grounded instead of returned to the 
supply voltage in Fig. 14.56c, the circuit is 
useless as a NANO gate. Why? 

14.42 If the CMOS input is low in Fig. 14.57, what 
is the sink current in the TTL driver? If the 
CMOS input is high, how much voltage drop 
is there across the 1.5 kQ if the gate current is 
1 µA (worst case)? 

14.43 Ideally, how much current does the open
collector driver of Fig. 14.58 have to sink 
when its output is low? 

14.44 What is the smallest acceptable value for 
the 3.3-kQ resistor in Fig. 14.39 if the TTL 
device is a 7410 (look at maximum sink 
current)? What if the 7410 were replaced with 
a 74LS10? 



Digital Principles and Applications 

14.45 The TTL in Fig. 14.40 is a 74LS10. Could a 
second CMOS circuit be added at the output 
of the 74LS10 without violating any loading 
rules? How many could be added? 

14.46 Ideally, what is the sink currentJ in Fig. 14.59? 
If the TTL load has a high-state input current 
of 40 µA, what is the voltage drop across the 
2.2 kQ? 

14.47 If the input capacitance of the TTL load is 10 
pF, what does the pull-up time constant equal 
in Fig.14.59? 

14.48 What is the maximum sink current for the 
74C906 in Fig. 14.59? 

· . · · . l- 2.2 k.Q +12~-~ J. f_~_ . . +5V 

= = = 
CMOS 
driver 

I 
6 74C906 TTL 

load 

The voltage across a forward~biased LE() 
is !arger. 

2. npn and pnp. A p-charmel }.IIQSFET is the 
complement of an n-channel MOSFET. 

3. PCisitive. 
4. The active load in an NMOS IC is an n

channel MOSFET used in place of. a 
resistor. 

5. See Fig. 14.11. 
6. 74LS0Q-Iow-power Schottky. 
7. They are subject to unwanted noise that 

may switchth~circuit, 
8. It specifies accepti:tJlle higlfand low input 

., voltagelevels, 
···9. FromTable 14.3,itislO!lS. 
10. It can sink or source more current than a 

standard gate. 

14.49 In Fig. 14.57, a logic probe indicates that the 
lower end of the pull-up resistor is stuck in 
the low state. Using a logic pulser and current 
tracer, you detect a current in the wire between 
this resistor and the TTL output. Which of the 
following is a possible trouble? 

a. 1.5 kQ shorted 
b. 1.5 kQ open 
c. Open trace between the TTL output and 

the resistor 
d. TTL sink transistor shorted 

14.50 The lower end of the pull-up resistor (Fig. 
14.57) is stuck in the high state. With a 
logic pulser and current tracer, you detect a 
current in the wire between this resistor and 
the CMOS input. Which of the following is a 
possible source of the trouble? 

a. CMOS input trace shorted to supply volt-
age 

b. CMOS input grounded 
c. TTL output trace open 
d. TTL output shorted to ground 

11. It will produce an output waveform with 
very fast rise and fall times. 

12. The "width" refers to the number of AND 
gates. 

13. A resistor to +5 Vdc 
14. Slower 
15. They are used,toJacilifateconnecting two 

or more gate O_ll:tputsJn parallel, 
16. The. factors are d.c power>supply current 

and switchingtime; 
17. Its purpose is to protect the l:iase~emitter of 

the transistor from.exces~iv~ volta.ge. 
18. No, you must also~~vear~sis.t<>rin series 

with the LED to Hmit~urrent; .otherwise, 
when the transistor is on, the diode and/or 
the transistor \Vill burn out. 



Digital Integrated Circuits 

19. Q1 and Q4 arep-channel MOSFETs. Q2 and 
Q3 ar~ MOSFETs. 

20. The N OS because it uses 
both n"'andp:-ch&linel transistors, 

21. The thin oxide layer connected to the gate 
is easily damaged by static.electricity. 

22. The transfer characteristic of>a! CMOS 
inverter is a plot of input voltage versus 
. output voltage (Fig. 14.38). 

23. 

24. 

Its purpose is to raise the minimum 
TTL high output level above the lowest 
allowable CMOS high input kweL 
Alevel shifter is used between a TTL gate 
driving a CMOS gate; it is used to make 
their high and low levels compatible. 

25. 'Yes,no 
26. The CMOS has current sink and source 

limitations . 



Applications 

+ Understand the multiplexing techniques used with LED displays 
+ List and describe the main sections of a frequency counter 
+ Explain how a time measurement circuit can be designed 
+ Be familiar with the basic features of the ADC0804 A/D converter 
+ Be familiar with the basic features of the ADC3511 microprocessor compatible AID 

converter 
+ Discuss how to construct a digital voltmeter using the National Semi-conductor 

ADD3501 chip 

This chapter is intended to tie together many of the fundamental ideas presented previously by considering 
some of the more common digital circuit design encountered in industry. The multiplexing of digital LED 
displays is considered first since it requires the use of a number of different TTL circuits studied in detail in 
prior chapters. Digital instruments that can be used to measure time and frequency are considered next, and 
the concept of display multiplexing is applied here. 

A number of applications using the popular ADC0804 are presented. An intergrating-type converter, the 
microprocessor-compatible ADC3511, is studied in detail. Then a similar converter, the ADC3501, is used 
to construct a digital voltmeter. In most of the applications considered, specific TTL part numbers have 
been specified, but in the interest of clarity, detailed designs including pin numbers have not been provided. 
However, it is a simple matter to consult the appropriate data sheets for this information. 

In some cases, a specific part number has not been assigned; an example of this is the 1-MHz clock: 
oscillator shown in Fig. 15.14, or a divide-by-IO counter in the same figure. In such cases, it is left to you 



______________ A_p_pl_ica_ti_·on_s ______________ ~ 

to select any one of a number of divide-by- IO circuits, or to choose an oscillator circuit such as discussed in 
a previous chapter, on the basis of availability, cost, ease of use, compatibility with the overall system, and 
other factors. 

15.1 MULTIPLEXING DISPLAYS 

The decimal outputs of digital instruments such as digital voltmeters (DVMs) and frequency counters are 
often displayed using seven-segment indicators. Such indicators are constructed by using a fluorescent bar, 
a liquid crystal bar, or a LED bar for each segment. LED-type indicators are convenient because they are 
directly compatible with TTL circuits, do not require the higher voltages used with fluorescents, and are 
generally brighter than liquid crystals. On the other hand, LEDs do generally require more power than either 
of the other two types, and multiplexing is a technique used to reduce indicator power requirements. 

The circuit in Fig. 15.la is a common-anode LED-type seven-segment indicator used to display a single 
decimal digit The 7447 BCD to seven-segment decoder is used to drive the indicator, and the four inputs to 
the 7447 are the four-flip-flop outputs of the 7490 decade counter. Remember that the 7447 has active low 
outputs, so the equivalent circuit of an illuminated segment appears as in Fig. 15.lb. A 1-Hz square wave 
applied at the clock input of the 7490 will cause the counter to count upward, advancing one count each 
second, and the equivalent decimal number will appear on the display. 

A similar single decimal digit display using a common-cathode-type LED indicator is shown in Fig. 
15.2a. The seven-segment decoder used here is the 7448; its outputs are active high, and they are intended to 
drive buffer amplifiers since their output current capabilities are too small to drive LEDs directly. The seven 
npn transistors simply act as switches to connect +Vee to a segment. When an output of the 7448 is high, a 
transistor is on, and current is supplied to a LED segment. The equivalent circuit for an illuminated segment 
is shown in Fig. 15.2b. When an output of the 7448 is low, the transistor is off, and there is no segment current 
and thus no illumination. 

Let's take a look at the power required for the single-digit display in Fig. 15.la. A segment is illuminated 
whenever an output of the 7447 goes low (essentially to ground). Ifwe assume a 2-Vdc drop across an 
illuminated segment (LED), a current I= (5 - 2)/150 = 20 mA is required to illuminate each segment. The 
largest current is required when the number 8 is displayed, since this requires all segments to be illuminated. 
Under this condition, the indicator will require 7 x 20 = 140 rnA. The 7447 will also require about 64 mA, 
so a maximum of around 200 mA is required for this single digit display. An analysis of the display circuit in 
Fig. 15.2 will yield similar results. 

A digital instrument that has a four-digit decimal display will require four of the circuits in Fig. 15 .1 and 
thus has a current requirement of 4 x 200 = 800 mA. A six-digit instrument would require 1200 mA, or 1.2 A, 
just for the displays! Clearly these current requirements are much too large for small instruments, but they 
can be greatly reduced using multiplexing technique. 

Basically, multiple,dng is accomplished by applying current to each display digit in short, repeated pulses 
rather than continuously. ff the pulse repetition rate is sufficiently high, your eye will perceive a steady 
illumination without any flicker. (For instance, hardly any flicker is noticeable with indicators illuminated 
using 60 Hz.) Thesingle-digit display in Fig. 15.3a has +5 Vdc (and thus current) applied through a pnp 
transistorthat acts as a switch. When DIGIT is high, the transistor (switch) is off, mid the indicator current 
is zero. When DIGIT is low, the transistor is on, and a number is displayed. If the wavefonn in Fig. 15.3b is 
used as DIGIT, the transistor will be on and the segment will display a number for only 1 out of every 4 ms. 
Even though the display is not illuminated for 3 out of 4 ms, the illumination will appear to your eye as if it 



Digital Principles and Applications 

Clock 

abcdefg 
7447 

7-segment decoder 
ABC D 

ABC D 
7490 

Decade counter 

Common 
anode type 

LED display 

R(l50 Q, typical) 

(a) Single decimal-digit display 

+Vee * ~LED segment 1 R= 150.Q 

(b) Equivalent circuit for an illuminated segment 

Clock-
7490 

Decade counter 
ABC D 

ABC D 
7448 

7-segment decoder 
abcdefg 
.......... 

~----1--_..-+Vee 

abcdefg 

(a) 

R (150 Q, typical) 

Common 
anode type 
LED display 

R = (150 Q typical) 

~ 
LED segment 

(b) Equivalent circuit for an illuminated segment 

were continuous. Since the display is illuminated with a pulse that occurs once every 4 ms, the repetition rate 
(RR) is given as RR= 1/0.004 = 250 Hz. As a guideline, any RR greater than around 50 or 60 Hz will provide 
steady illumination without any perceptible flicker. The great advantage here is that this single-digit display 
requires only one-fourth the current of a continuously illuminated display. This then is the great advantage 
of multiplexing! 

Let's see how to multiplex the four-digit display in Fig. 15.4a. Assume that the four BCD inputs to each 
digit are unchanging. If the four waveforms in Fig. 15.4b are used as the four DIGIT inputs, each digit will 
be illuminated for one-fourth of the time and extinguished for three-fourths of the time. Looking at the time 
line, we see that digit 1 is illuminated during time t" digit 2 during time t

2
, and so on. Clearly, !1 = t2 = t3 = 14 



+Vcc=+S Vdc 

a b e d e 
7447 

?-segment decoder 
A B C D 

Applications 

DIGIT 

Common anode 
type LED 

R (150 Q, typical) 

(a) Multiplexed display 

l-4ms--l 

+Vc:=-u--u-

1 ms -I I- 3 ms -l 
(b) DIGIT waveform 

= T/4. The repetition rate is given as RR= 1/T, and if the rate is sufficient, no flicker will appear. For instance, 
if t

1 
= 1 ms, then T= 4 ms, and RR= 1/0.004 = 250 Hz. 

Now, here is an important concept; an illuminated digit requires 200 mA, and since only one digit is 
illuminated at a time, the current required from the +Vee supply is always 200 mA. Therefore, we are 
illuminating four indicators but using the current required of only a single indicator. In fact, in multiplexing 
displays in this way, the power supply current is simply the current required of a single display, no matter how 
many displays are being multiplexed! 

Explain the timing for a six-digit display that has a repetition rate of 125 Hz. 

Solution A'nRR of 125 Hz means that all digits must bg serviced once eyery 
1
~

5 
= 8 ms. Dividing the time equally 

among the six digits means that each digit will be on for 6 = 1.33 ms and off for 6.67 ms. Note that as the pulse width 
is decreased, the display• brightness will also decrease. It may thus become necessary to increase the peak current 
through each segment by reducing the size of the resistors R in Figs. IS.I and 15.2. 

The circuit in Fig. 15.3 show how to multiplex a common-anode-type display. Show how to 
multiplex a common-cathode-type display. 

Solution The npn transistorin l'ig. 15 S is us~d as a switch betw~en the cathode of the display and ground. When 
the. transistor is on, current.is allowed to pa~s throu@a segment for illumination. When the transistor is off, no current 
is allowed, and the segm~nt cannot illuminate. The DIGIT waveform isshmvn in Fig. 15,Sb. Notice that a positive 
pulse.is require<lto tum the .transistor on, and the display will be illumi.natedfor lout of every4 ms. 



~ ______________ D_ig_it_al_P_n_·nc_ip_le_s_a_n_d_A_pp_li_·ca_t1_·0n_s ____________ _ 

DIGIT 

DIGIT I DIGIT2 DIGIT 3 

I I I - I ,-, 
c:, ,=, ,=, 

a b c de abcdefg 

Time 

DIGIT I 

DIGIT 2 

DIGIT 3 

DIGIT4 

abcdefg 

(a) 

(a) A multiplexed 4-digit display 

1-r-1 t I I tz I t3 I t4 

a b C d e 

~ 

(b) Control waveforms 

/ Common cathode 
type LED 

DIGIT 4 

,-, ,=, 

The flip-flop outputs of a 7490 decade counter are used to drive the seven-segment decoder-driver in 
Figs.15.1 and 15.2, and as long as the counter is counting, the displays will be changing states. It is often 
more desirable to peri0dically strobe the contents of the counter into a four-flip-flop latch and use these 
latches to drive the seven-segment decoder-driver. Then the four BCD inputs to the decoder-driver as well 
as the display will be steady all of the time except when new data is being strobed in. The circuit shown 



Applications 

in Fig.15.6 is a complete single-digit display that 
will indicate the decimal equivalent of the binary 
number stored in the 7475 quad D-type latch by the 
positive STROBE pulse. It is also capable of being 
multiplexed by use of the DIGIT input. 

What are some possible 
methods for generating the 
DIGIT control waveforms 
shown in Fig. 15.4b? 

Solution Reflecting back on topics covered in previ
ous chapters, a number of different methods come to 
mind-for instance: 

L A two-flip-flop counter with four decoding gates 
2. A four-flip-flop ring counter 
3. A two-flip-flop shift counterwith four decoding 

gates 
4. A J-of-4 low~output multiplexer 

Can you think of any others? 

The four-digit display in Fig. 15.7a on the 
next page uses four of the decimal digit displays 
in Fig. 15.6, and they are multiplexed to reduce 
power supply requirements. Notice that DIGIT 1 
controls the LED on the left and this is the most
significant digit (MSD). The right display is con
trolled by DIGIT 4, and this is the least-significant 
digit counter (LSD). Ifwe assume that the decimal 
point for this display to be at the right, the LSD is 

STROBE 

Jl 

7-segment decoder 

AB CD 

1Q2Q3Q4Q 
7475 

g 

quad D-type latches 

ID2D3D4D 

BCD inputs from 
decade counter 

DIGIT 

Common anode 
type LED 

R (150 Q, typical) 

the units digit, and the MSD is the thousands digit. This circuit is capable of displaying decimal numbers 
from 0000 up to 9999. The 54/74155 is a dual 2-line to 4-line decoder-demultiplexer, and it is driven by a 
two-flip-flop binary counter called the multiplexing counter. As this multiplexing counter progresses through 
its four states, one and only one of the 54/74155 outputUnes will go low for each counter state. As a result, 
the DIGIT control wavefonns exactly like those shown in Fig. 15.4b will be developed. You might like to 
review the operation of decoder-demultiplexers as discussed in Chapter 4. 

A savings in components as well as power can often be realized if the four inputs (ABCD) to the seven
segment decoder in Fig. 15.6 are multiplexed along with the DIGIT control. The four-digit display in Fig. 15.8 
uses two 54/74153 dual 4- to 1-line multiplexers to apply the four outputs of each 7475 sequentially to a 
single seven-segment decoder. Here's how it works. 

The BCD input data is stored in four 7475 D-type latches labeled 1, 2, 3, and 4. Latch 1 stores the MSD, 
and latch 4 stores the LSD. The 4-bit binary number representing the MSD is labeled 1) 

8
lc1 D. For instance, 

if the MSD = 7, then 1)
8
lclD = 0111. 

Each 74153 contains two multiplexers, and the four multiplexers are labeled A, B, C, and D. The A and B 
SELECT lines of the two multiplexers are connected in parallel and are driven by the multiplexing counter 



I kHz 
Clock 

Digital Principles and Applications 

+Vee Y3 Y2 Y1 Yo +Vee 
IC 54/74155 2C I I I I ,-, 

decoder /~/ /~/ /~/ 
lG SELECT 2G 

- ~ -

+Vee +Vee (7) (7) (7) 

J QA J QB a .. ·g a .• ·g a • • ·g 

1/2 1/2 7447 7447 7447 
K 7476 K 7476 

STROBE 

ABCD 

7475 
G 

ABCD 

7475 
G 

ABCD 

7475 
G 

Jl --<1--M-S_D __ ,__ ___ -<1-----' 

BCD inputs 

(a) Four-decimal-digit multiplexed display 

1 kHz Clock 

Multiplexing {QA 
counter QB 

Y0 (DIGIT I) 

Y1 (DIGIT 2) 

Y2 (DIGIT 3) 

Y3 (DIGIT 4) 

---~ 

(b) Waveforms 

,-, 
/~I 

(7) 

a .. ·g 

7447 

ABCD 

7475 
G 

LSD 

I k 

Common 
anode 

type LEDs 



Applications 

(exactly as in Fig. 15.7). When the SELECT inputs are AB= 00, the number 1 line of each multiplexer will 
be connected to its output. So, the multiplexer outputs connected to the 7447 decoder will be lAl 8 lcl

0
, which 

is the binary number for the MSD. This binary number is decoded by the 7447 and applied to all the LED 
displays in parallel. However, at this same time, DIGIT 1 is selected by the 74155 decoder, so the MSD will 
be displayed in the leftmost LED display. All the other d=splays will be turned off. 

Now, when the multiplexing cou •• ter advances to count AB = 0 I, the number 2 line of each multiplexer 
will be selected, and the binary number applied to the 7447 will be 2A2B2c2D, which is the next MSD (the 
hundreds digit). The decoded output of the 7447 is again applied to all the displays in parallel, but DIGIT 2 
is the only LOW DIGIT line, so the "hundreds" digit is now displayed. (Again, all other displays are turned 
off during this time.) 

In a similar fashion, the tens digit will be displayed when the SELECT inputs are AB = l 0, and the units 
digit will be displayed when the SELECT inputs are AB = 11. Notice that only one digit is displayed at a 
time, and the RR = 250 Hz, so no flicker will be apparent. Again, we are illuminating four digits but the 
power supply current is the same as for a single, continuously illuminated digit. At the same time, there is 
a modest saving of two chips. The savings in components increases as the number of decimal digits in the 
display increases. 

The techniques used to multiplex the four-digit display in Fig. 15.8 on the next page are easily expanded to 
displays that have more than four decimal digits. It is necessary only to increase the size of the multiplexing 
counter and to replace the 74153 multiplexer with one that has a greater number of inputs. It is also a simple 
matter to alter the design to accommodate common-cathode-type LEDs instead of the common-anode types 
used here. (See the problems at the end of this chapter.) 

All the display circuits discussed here are frequently constructed and used, but you should be aware that 
there are LSI chips available that have all the multiplexing accomplished on a single chip; examples of this 
are the National Semiconductor MM74C925, 926, 927, and 928. The MM74C925 shown in Fig. 15.9 is a 
four-digit counter with multiplexed seven-segment output drivers. The only external components needed 
are the seven-segment indicators and seven current-limiting resistors. In fact, a four-digit counter is even in
cluded on the chip! A positive pulse on the RESET input will reset the 4-bit counter, and then the counter will 
advance once with each negative transition of CLOCK. A negative pulse on LATCH ENABLE will then latch 
the contents of the counter into the four 4-bit latches. The four numbers stored are then multiplexed, decoded, 
and displayed on the four external seven-segment indicators. A simplified diagram is given in Fig. 15.9b. 
Notice that this is a common-cathode-type display. 

15.2 FREQUENCY CQUNTERS 

A frequency counter is a digital instrument that can be used to measure the frequency of any periodic 
waveform. The fundamental concepts involved are illustrated in the block diagram in Fig. 15.10. The counter 
and display unit are exactly as described in Sec. 15 .1. A GATE ENABLE signal that has a known period t is 
generated with a clock oscillator and a divider circuit and is applied to one leg of an AND gate. The unknown 
signal is applied to the other leg of the AND gate and acts as the clock for the counter. The counter will 
advance one count for each transition of the unknown signal, and at the end of the known time period, the 
contents of the counter will equal the number of periods of the unknown signal that have occurred during t. In 
other words, the counter contents will be proportional to the frequency of the unknown signal. For instance, 
suppose that the gate signal is exactly 1 s and the unknown input signal is a 750-Hz square wave. At the end 
of I s, the counter will have counted up to 750, which is exactly the frequency of the input signal. 



~ ______________ D_ig_it_al_P_n_·n_cip_l_es_a_n_d_A_pp_l1_·ca_t_io_ns ____________ _ 

Common 
anode 

type LEDs 

STROBE 
Jl 

+Vee 

Yo IC 
Y1 2C 

Y2 lG 
Y3 2G 

74155 -
decoder 
SELECT 
,---A-..., 

BA 

R 
a a a a a ,-, : ,-, : ,-, : ,-1 : . 

- . (?) - . (?) - . (?) - . (?) 7447 
I I : /_/ . /_/ I I : 
- g g g - g 

MSD LSD 

A B C D 
I 
I B : Bi---e------~ 
I I 

A 741~3 B 
I A 

C 74153 D 
I Ai---1--------~ 

IA 2A 3A 4A:IB 2B 3B 4B IC2C3C4C,ID2D3D4D 

IA IB !Cl 
1 

7475 

MSD 

2 
7475 

3A3B3C3D 4A4B4C4 
3 4 

7475 7475 

LSD 
BCD inputs 

QB J 

1/2 
7476 K 

QA J 

1/2 
7476 K 

1 kHz 
~----,,..-----' Clock 

Multiplexing counter 
Note: For clarity, only the connections for the MSD are shown 
(IA, lB, lC, ID), but the other 12 connections must be made 
between the input latches and the 74153s. 

Suppose that the unknown input signal in Fig. 15.10 is a 7.50-kHz square wave. What will the 
display indicate if the GATE ENABLE time is t = 0.1 s? What if t = 1, and then 10 s? 

Solution When t = 0.1 s, · the counter will count up to 7500 (transitions per seco~d)xp.1 {second)'~ 750.>Whell 
t = the counterwill .display 7500 (transitions per second) x ·.·· 1 (second) e= 7500. When t= IO s,the counterwill 
display 7 500 (transitions per second). x l 0. (seconds) = 75,000. For this last case; we would have to have<a five-
decimal~digit display. 



Applications 

+Vee 
MM74C925 

RESET 
Jl 

+ 10 + 10 + 10 + 10 Clock 

4 4 4 4 }~w, Latch BCD to 

ENABLE 4-bit 7-segment 

1f latch decoder/ 
driver f 

g 
A C 

DIGIT A 
DIGIT B · Multiplexer Oscillator 
DIGITC (clock) 
DIGIT D 

'=" GND 
(a) 

Clock 

RESET a 
tr) 

b N ,-, °' C u 
'SI" d t- CJ ~ e 

Latch ~ f 

ENABLE 
g 

DCBA 

(b) 

. COUNT gate 

Unknown input 

JUlJUl 
CLK 

Counter 

-1 t 1-
_J[_ LED 

GATE ENABLE display unit 

Basic frequency counter 



Digital Principles and Applications 

In Example 15.4, the contents of the counter are always a number that is proportional to the unknown input 
frequency. In this case, the proportionality constant is either 10, 1, or 1~. So, it is a simple matter to insert 
a decimal point between the indicators such that the unknown frequency is displayed directly. Figure 15.11 
shows how the decimal point moves in a five-decimal-digit display as the gate width is changed. In the top 
display, the unknown frequency is the display contents multiplied by l 0, so the decimal point is moved one 
place to the right. The middle display provides the actual unknown frequency directly. In the bottom display, 
the contents must be divided by l Oto obtain the unknown frequency, so the decimal point is moved one place 
to the left. 

I O I O I 1 I 5 I O I ~~J -Jr f-0.1 s 
_n_ 

t 
Decimal point 

(a) 

~7 I 5 I O I O I 
t h.osl 

_lL_ 
t 

Decimal point 

(b) 

j1jsjojojoj 
T 

Decimal point 

(c) 

Decimal point movement for Example 15.4 

The logic diagram in Fig. 15.12 on the next page shows one way to construct a four-decimal-digit frequency 
counter. The AMPLIFIER block is intended to condition the unknown input signal such that INPUT is a TTL
compatible signal-a series of positive pulses going from O to +5 V de. When allowed to pass through the 
COUNT gate, INPUT will act as the clock for the COUNTER. The COUNTER can be coQstructed from 
four decade counters such as 54174160s, and it can then be connected to a multiplexed LED DISPLAY such 
as the one shown in Fig. 15.8. Or, COUNTER and DISPLAY can be combined in a single chip such as the 
MM74C925 shown in Fig. 15.9. 

The DIVIDER is composed of six decade counters (such as 54174160s) connected in series. Its input is a 
100-k:Hz square wave from OSC CLOCK, and it provides 10-, 1-, and 0.1-Hz square wave outputs that are 
used to generate the ENABLE-gate signal. 

When the 1-Hz square wave is used to drive the GATE flip-flop, its output, Q, is a 0.5-Hz square wave. 
Output Q will be high for exactly ls and low for ls, and it will thus be used for the ENABLE-gate signal. 
Notice that the 10-Hz signal will generate a 0.1-s gate and the 0.1-Hz signal will generate a 10-s gate. Let's 
use the waveforms in Fig. 15.12 to see exactly how the circuit functions. 

A measurement period begins when the GATE flip-flop is toggled high-labeled START on the time line. 
INPUT now passes through the COUNT gate and advances the COUNTER. (Let's assume that the counter 



Applications 

is initially at 0000.) At the end of the ENABLE-gate time t, the GATE flip-flop toggles low, the COUNTER 
ceases to advance, and this negative transition of Q triggers the 74121 one-shot. Simultaneously, Q goes 
high, and this will strobe the contents of COUNTER into the DISPLAY latches. There is a propagation delay 
time of30 ns minimum through the 74121, and then a negative RESET pulse appears at its output, X. This 
propagation delay assures that the contents of COUNTER are strobed into DISPLAY before COUNTER is 
reset. The RESET pulse from the '121 has an arbitrary width of 1 µs, as set by its R and C timing components. 
The end of the RESET pulse is the end of one measurement period, labeled END on the time line. 

For a 1.0-s gate, the decimal point will be at the right of the units digit, and the counter will be capable of 
counting up to 9999 full scale, with an accuracy of plus or minus one count (i.e. 1 part in 104

). With a 10-s 
gate, the decimal point is between the units and the tens digits, and with a 0.1-s gate, the decimal point is one 
place to the right of the units digit. 

Input 
Unknown 

Counter JU1fUl_ Input 
CLK I AMPL --1) 

+ 10 + 10 + 10 + 10 
- RESET COUNT gate 

t4 t4 t4 t4 lf 
ENABLE gate ,-, ,-, ,-, ,-, l---t-1 

Gate flip-flop - _JI_ +Vee 
c:, ,:::, ,:::, ,:::, X A, LJ Q J >--, 

A2 
T housands Hundreds Tens Units B [+vcc 7476 Display 

74121 r- Q K ,-. 

.._ X 
LJ'c 

I STROBE 

Divider 10 Hz -
lOOkHz JlflfL 1 Hz _ -
osc + 10 + 10 + 10 + 10 + 10 + 10 ::; 

0.1 Hz Gate Clock switch 

START END START END 
Time~--,--~~-~~~~...-~~~~--

Q1 ENABLE gate 

Q,STROBE 

Input 

CLK 

RESET 

__ ..... 

Four-decimal-digit frequency counter 



Digital Principles and Applications 

The CLOCK oscillator is set at 100 kHz, and this provides an accuracy on the ENABLE-gate time of 1 
part in 104 with the 0.1-s gate. Thus the accuracy here is compatible with that of the COUNTER. 

Explain what would happen if the instrument in Fig. 15.12 were set on a 1-s gate time and the 
input signal were 12 kHz. 

Solution Assuming that the counter began at 0000, the display would read 200 at the end of the first measurement 
period. It would then read 400, then 600, and so on at the end of succeeding periods. This is because the counter 
capacity is exceeded each time, and it simply recycles through 0000. 

The design in Fig. 15.12 shows one method for constructing a frequency counter using readily available 
TTL chips, but you should be aware that there are numerous chips available that have all, or nearly all, of this 
design on a single chip, for instance, the lntersil ICM7226A. You will be asked to do a complete design of a 
frequency counter based on Fig. 15.12 in one of the problems at the end of this chapter. 

15.3 TIME MEASUREMENT 

With only slight modifications, the frequency counter in Fig. 15.10 can be converted into an instrument for 
measuring time. The logic block diagram in Fig. 15.13 illustrates the fundamental ideas used to construct an 
instrument that can be used to measure the period of any periodic wavefonn. The unknown voltage is passed 
through a conditioning amplifier to produce a periodic wavefonn that is compatible with TTL circuits and is 
then applied to a JK flip-flop. The output of this flip-flop is used as the ENABLE-gate signal, since it is high 
for a time t that is exactly equal to the time period of the unknown input voltage. The oscillator and divider 
provide a series of pulses that are passed through the count gate and serve as the clock for the counter. The 
contents of the counter and display unit will then be proportional to the time period of the unknown input 
signal. 

For instance, if the unknown input signal is a 5-kHz sine wave and the clock pulses from the divider are 
0.1 µs in width and are spaced every 1.0 µs, the counter and display will read 200. Clearly this means 200 
µs, since 200 of these 0.1-µs pulses will pass through the COUNT gate during the 200 µs that ENABLE-gate 
signal is high. Naturally the counter and the display have an accuracy of plus or minus one count. 

Unknown input J 
AMPL '---'--f'f',,. 

K 

ENABLE gate 
Q 1----------r-----. 

Clock pulses 

JU1f1JlJlJl COUNT gate 

Clock Divider 

Instrument to measure time period 

Counter 

LED 
display unit 



Applications 

Suppose that the counter and the display unit in Fig. 15.13 have five-decimal-digit capacity 
and the divider switch is set to provide a 100-kHz square wave that will be used as clock 
pulses. What will the display read after one ENABLE-gate time t, if the unknown input is a 
200-Hz square wave? 

Solution Assume that the counter and the display are initially at OOOOO,A2QO-Hz.inpt1tsig11alwill produce 
an ENABLE-gate time oft e 2fio<= 5000 µs.The 100-kHz square waveu~ed "'s the dock is essentially a 
series of positive pulses spaced by 10 µs. Therefore, during the gate time t, the counter will ad\'ance by, 

5000 
500 coµnts, .and this is what will be viewed in the displays. Since each clock pulse represents 10.µs, the 

10 
display should be read as.500 x 10 = SOOOµs-this is the time period of the unknown input, 

Explain the meaning of an accuracy of plus or minus one count applied to the measurement in 
Example 15.6. 

Solution An accuracy of plus .or minus one count means that the display could read 499, 500, or 501 after the 
measurement period. This means that the period ~s measured could be 4990, 5000, or 5010 µs-in other words, 
5000 plus or minus IO µs. Since a single count represents.a clock period oflO µs,. this instrument can be used for 
measurement only within this limit. For more precise measurement, say, to within 1 µs, the clock pulses would have 
to be changed from 10- to 1.µs spacing. 

The circuit in Fig. 15.14 is a four-decimal-digit instrument for measuring the time period of a periodic 
waveform. It is essentially the same as the frequency instrument in Fig. 15.12 with only slight modifications. 
First, the CLOCK has been increased to 1 MHz, and DIVIDER is composed of a buffer amplifier and three 
decade counters. This will provide clock pulses for COUNTER with 1-, 10-, and 100-µs as well as 1-ms 
spacing. The unknown input is conditioned by AMPLIFIER and is then applied to the GATE flip-flop to 
generate the ENABLE~gate signal. STROBE and RESET are generated and applied as before. Notice that a 
single instrument for measuring both frequency and period could be easily designed by using a I -MHz clock 
with a divider that has seven decade counters and some simple mechanical switches. 

Explain the DISPLAY ranges for the four-decimal-digit period measurement instrument in 
Fig. 15.14. 

Soluti<;m )Vith CLOCK pulses switchep. to th~ I~µs positio.11$. each count of CQlJNTER~presents 1 Jls. The~f'o~, 
it has afull scale of9999 ± 1 µs. On 10 µs, it has a full scale of9999 x10"." 99,990.±JOµs, Full sc/lleo.nthe()J~gis 
position is 9999 x 0.1= .999.9 ± O.l 111s. Fullscaletln the l-111s position is 9999 ± 1.ms. 

An interesting variation on the instrument in Fig. 15.14 is to use it to measure the time elapsed between 
two events. There will be two input signals, the first of which sets the ENABLE gate high and begins the 
count period. The second signal ( or event) resets the ENABLE gate low and completes the time period. One 
method for handling this problem is to use the first event to set a flip-flop and then use the second event to 
reset it. Of course, both input signals must be first conditioned such that they are TTL-compatible. You are 
given the opportunity to design such an instrument in one of the problems at the end of the chapter. 

15.4 USING THE ADC0804 

Stand-Alone Operation 
The ADC0804 was briefly introduced in Sec. 12.8. Figure 12.29 shows how to connect the ADC0804 for 
stand-alone operation, and it is repeated here for convenience. The recommended supply voltage is Vee= +5 



Counter 

+ 10 + 10 + 10 

4 4 4 ,-, ,-, ,-, ,:::, ,:::, ,:::, 
Thousands 

Display 

+ 10 

4 ,-, ,:::, 
Units 

1MHz 
Clock 
bSC 

Digital Principles and Applications 

COUNT gate 

CLK 

RESET 

1f 

X A 1 

~ 
_JI_ 
ENABLE gate 

+V 
Gate flip-flop cc 

A21------1Q J 
.----___,Unknown 

input 
B +Vee 7476 <D--+--+-1 Al'vfPL 

74121 

x 

Buffer 
AMPL + 10 

1 µs 

Q K 

JSTROBE 

Divider 

+ 10 + 10 

1 ms 

Clock pulses 

Four-decimal-digit period measurement instrument 

Vdc. The external resistor Rand capacitor C establish the frequency of the internal clock according to 

f ~ 1/(1.1 RC) (15.1) 

Pin 9 is an input for an external reference voltage V.,e, If pin 9 is left open, the reference voltage is set 
internally at Vcc/2. The analog input voltage is applied between pins 6 and 7. With pin 7 connected to ground, 
the allowable input voltage range is from 0.0 to +5.0 V. 

This ADC is designed for use with the 8080A CPU ( central processing unit) chip set, composed of the 
8080.A microprocessor, the 8228 system controller, and the 8224 clock. It can also be used directly with the 
8048 MPU (microprocessor unit). The inputs WR, INTR, CS and RD are microprocessor control signals. 
In the stand-alone mode of operation, WR and INTR are connected directly to ground. CS and RD are 
momentarily grounded with a push-button switch to initiate a conversion. The converter will digitize the 
analog voltage present at the input at the instant the push button is depressed. It wiH then continue to convert 
additional analog input voltage levels at approximately 100-µs intervals. 

The digitized value of an input voltage is presented as an 8-bit binary number on pins 11 through 18, with 
pin 11 the most significant bit (MSB). An input voltage of 0.0 V has a digitized output of 0000 0000 (OOH). 
The digital output 1111 1111 (FFH) represents a full-scale input of +5.0 V. The digitized output is accurate to 
±1 LSB. Since the full-scale input of 5.0 Vis represented by 28 = 256 bits, 1 bit (the LSB) is equivalent to an 
analogvoltageof5.0V/256= 19.53 mV. 



Applications 

Refer to the ADC0804 in Fig. 12.29, repeated below for your reference. 

(a) What is the digital output for an analog input of2.5 V? 
(b) The digital output is 0010 0010 (22H). What is the analog input? 

Solution 

(a) 25Vispne,baJf full scale. The digital outputis then 1000 0000 ±1 bit (27 = 128). As a che<;lc, 128 x 
mV=2.5V 

(b) (25 + 21) X !.9.53 mV = (32 + 2) X 19.53 = 0.664 V. 

Span Adjust 

As shown in Fig. 12.29, the ADC0804 functions nicely for analog input voltages between 0.0 and +5.0 V. But 
what if the input voltage range is only from 0.0 to 2.0 V? In this case, we would like the full-scale input to be 
2.0 V rather than 5.0 V. Fortunately, this is quite easy to do with the ADC0804! Simply connect an external 
reference voltage V,er to pin 9 that is one-half the desired full-scale input voltage. Another term for the full
scale input voltage range is span. In this case, set V,er = 2.0 V /2 = 1.0 V de. In general terms, 

V,er = full-scale analog input voltage/2 = span/2 (15.2) 

In Fig. 15.15, a simple resistive divider is used to generate the reference voltage V,cr Here's an expression 
to use with this divider: 

R2 + R/2 
V =V 

ref cc R1 + R2 + R 

As an example, let's apply Eq. (15.3) using the circuit values given in Fig. 15.15. 

1 kQ+0.25 ill 
V,er= +5 Vdc l ill+ 4_7 kQ + O.S ill = 1.01 Vdc 

+Vee 
C 

150pF 

Digital 
output 

Start 

11 20 
12 
13 
14 
15 
16 V;(+) 
17 61------e 
18 

3 
ADC0804 7 i-----

V;(-) -
VcJ2 5 9 

Stand-alone operation (Fig. 12.29 repeated) 

~ 

}A:nalog 
mput 

+Vcc=+5 Vdc 

R 
101& 

11 20 19 CLKR' 12 4 
CLKIN 13 

Digital 14 
output 15 

16 
· 17 6 

V,{+) 

18 

3 
ADC0804 7 

V,H 
5 9 

Start 

-

(15.3) 

C 
150pF 

~ 

+5Vdc 

R1 
(4.71&) 

R 
(5001&) 

R2 
{I I&) 



Digital Principles and Applications 

In this case, V,er = 1.0 V de. The 500-Q potentiometer will allow fine adjustment. So the full-scale analog 
input voltage is then 0.0 to 2.0 V. An input voltage of 2.0 V will convert to a digital output 1111 U 11 (FFH). 
The LSB is equivalent to 2.0 V/256 = 7.8 mV. 

Zero Shift 

The ADC0804 can also accommodate analog input voltages that are offset from zero. For instance, suppose 
we wish to digitize an analog signal that is always between the limits +1.5 V and +4.0 V, as illustrated in 
Fig. 15.16a. The span of this signal is (4.0 - 1.5) V = 2.5 V. So we would use Eq. (15.2) to find 

V = span = 2.5 volts = 1.25 Vdc 
ref 

2 2 
This reference voltage (1.25 Vdc) is applied to pin 9. 

Now we connect pin 7 to the lower limit of the input voltage. This lower limit is called the OFFSET. In 
general terms, 

OFFSET at V;v = analog input lower limit (15.4) 

In Fig. 15.16b, we have used two voltage dividers, one for li'..er = 1.25 Vdc and one for v;_ = 1.5 Vdc. For 
this circuit an analog input voltage of 1.5 V will be digitized as 0000 0000. An input of 4.0 V will convert to 
1111 1111. This LSB is then equivalent to 2.5 V /256 ~ 9. 77 m V. 

+Vcc=+5 Vdc 

R C 
IO k.Q 150pF 

MSB 11 20 19 CLKR ~ 12 4 
CLKIN 13 

Digital 14 
output 15 

16 

17 ADC0804 6 
V;+ 

Analog input 
LSB 18 

WR 7 
V;-

To+ 1.50 Vdc 
3 

INTR 5 vref 
9 To+ l.25Vdc 

Start 2 
1 IO 8 

- --

Positive and Negative Input Voltages 

Up to now, we have only considered positive analog voltage levels. How can we handle both positive and 
negative input signals? For instance, suppose we wish to digitize analog voltages that vary from -5 to +5 
V de. One solution is given in Fig. 15 .17. The technique is to use a resistive voltage divider (R and R) at the 
input pin 6. Pin 7 is connected to ground. 



Applications 

+Vcc=+5 Vdc 

R C 
101& 150pF 

MSB 11 20 19 CLKR ~ 12 4 
CLKIN 13 +5Vdc 

Digital 14 
output 15 R 

16 R 
I7 ADC0804 6 

V;+ 

LSB 18 

WR 
3 

7 
V.-

INTR 5 
V I -

9 ref Vcd2 

Start 2 
1 10 8 

- --

A little thought will reveal the following: 

1. ~ = -5 V. Then ~+ = 0.0 V. The digitized output is 0000 0000 (OOH). 
2. i~ = 0.0 V. Then ~+ = +2.5 V. The digitized output is 1000 0000 (80H). This is mid scale. 
3. ~ = + 5 V. Then ~+ = + 5 .0 V. The digitized output is 1111 1111 (FFH). This is full scale. 

The span at ~+ is clearly 5.0 V. OFFSET is not required, since the voltage at ~+ varies between 0.0 V and 
+5.0 V. Notice that a negative input voltage, ~. always produces a O for the MSB of the digital output (with 
the possible exception of 0.0). A positive input voltage, ~. always produces a l. for the MSB of the digital 
output (again, with the possible exception of 0.0). In this case, the LSB is equivalent to 10 V/256 = 39.01 
mV. 

Testing 

When using an ADC0804, it may become necessary to test it for proper operation, for example, before 
initial installation or perhaps to troubleshoot a suspected malfunction. There are many different testing 
procedures for AID converters, some of which are quite complex and computer-controlled. However, a 
rapid and simple test is to apply a known analog input voltage while monitoring the digital .outputs. The test 
circuit in Fig. 15.18 on the next page can be used for this purpose. Notice that the de supply voltage has been 
adjusted carefully to a value Vee= 5.120 Vdc. Also, V,crhas been set at Vee/2 = 2.560 Vdc. These values have 
been chosen so that the LSB has a weight of 5.120 V/256 = 20 mV. This eliminates any round off error and 
makes the arithmetic easier! 

A checkerboard-type test is used to activate each output. Here's how to do it: 

l. Apply an input voltage to produce the digital output 1010 1010 (AAH). The, required input is 
(128 + 32 + 8 + 2) 20 mV = 3.400 V. 

2. Apply an input voltage to produce the digital output 0101 0101 (55H). The required input is 
(64+ 16+4+ 1)20mV= 1.700V. 



Eight Red 
LEDs 

Eight 1.5 kQ 
resistors 

+5Vdc 

Digital Principles and Applications 

+Vee= +5.120 Vdc 

MSB ll 

1,----112 

l/lr---l l3 

/\~--14 

1,----115 

20 

16 
ADC0804 

17 
LSB 

18 

WR 
3 

R 
lOkQ 

19. CLKR 
4 

CLKIN 

6 
V;+ 

7 
V;-

-

C 
150 pF 

~ 

} A:nalog 
mput 

INTR 5 9 
vref 

Ved2 =+2.560 Vdc 

Start 

Note: Illuminated LED= output= low= 0 
Extinguished LED = output = high = I 

These two tests will activate all eight outputs in both states. This is not a comprehensive test, but it will 
detect any faults in the outputs, and it will thus give a reasonable degree of confidence in the operation of the 
AID converter. Note carefully that a digital output 1 (high) will extinguish the LED. A low ouput (a 0) will 
illuminate an LED. So, 

Illuminated LED = low = 0 

Extinguished LED = high = 1 

For example; the output 1011 0010 is "seen" as 

MSB 

oX{oo 

~}'.areth.e.exterp.alR andCin1i'ig .... 1f.29 t1~~d? 
What is the purpose of the START button in Fig. 12.297 

Th~digital.outputoran.AD00804·is;hlOO•QO.U;.Whatistbisinhexl}decimal?·. 
4. For the ADC0804 what do the tenns $pan and OFFSETmean? 



Applications 

15.5 MICROPROCESSOR-COMPATIBtE·AJo CONVERTERS 

A fundamental requirement in many digital data acquisition systems is an AID converter that is simple, 
reliable, accurate, inexpensive, and readily usable with a minicomputer or microprocessor. The National 
Semiconductor ADC35 l l is a single-chip AID converter constructed with CMOS technology that has 
3 i-digit BCD outputs designed specifically for use with a microprocessor, and it is available for less than $9! 
The 3511 uses an integrating-type conversion technique and is considerably slower than flash-type or SAR
type AID converters. It is quite useful in digitizing quantities such as temperature, pressure, or displacement, 
where fewer than five conversions per second are adequate. The pinout and logic block diagram for an 
ADC3511 are shown in Fig. 15.19. 

Only a single +5-V de power supply is required, and the 3511 is completely TTL-compatible. This AID 
converter is a very high precision analog device, and great care must be taken to ensure good grounding, 
power supply regulation, and decoupling. It is important that a single GROUND point be eatablished at 
pin 13, to eliminate any ground loop currents. Voltage Vee on pin 1 is used to apply +5-Vdc power. A 10-µF 
10-Vdc capacitor is connected between pin 2 and GROUND; this capacitor, and the internal 100-Q resistor 
shown on the logic block diagram are used to decouple the de power used for the analog and digital circuits. 
Voltage Vss on pin 22 should also be connected directly to GROUND. 

The conversion rate of the chip is established by a resistor R connected between pins 17 and 18 and 
a capacitor C connected between pin 17 and GROUND. The clock frequency developed by these two 
components is given by f = 0.6/RC and should be set between 100 and 640 kHz. This is the clock signal used 
to advance the internal counters thal finally store the digitized value of the analog input voltage. 

The analog signal to be digitized is applied between + V: and -V:, pins 11 and 10, respectively. Negative 
signals are handled automatically by the converter through the switching network at the input to the comparator. 
A conversion is initiated with a low-to-high transition of START CONVERSION on pin 7. The waveform, 
CONVERSION COMPLETE, on pin 6 will go low at the beginning of a conversion cycle and then return 
high at the end of a conversion cycle. Connecting pin 7 to + Vee will cause the chip to continuously convert 
the analog input signal. The using edge of the waveform on pin 6 indicates that new digital information has 
been transferred to the digit latches and is available for output. 

The digitized analog signal is contained in the converter as four BCD digits. The LSD, or units digit, is 
D 1C1B1Al' the tens digit is D2C2B2A2, the hundreds digit is D

3
C3B3

A
3

, and the MSD is C
4
B

4
A4• All digits can 

store the BCD equivalent of decimal 0, 1, 2, ... , 9, except the MSD. The MSD can have values of only 

decimal O or decimal l. It is for this reason that the 3511 is called a 3 i digit device-the MSD is referred to 
as a half-digit. The 16 x 4 MUX is used to multiplex one digit (4 bits) at a time to the outputs according to 
the input signals D

0 
andD

1 
as given in Fig. 15.20. For instance, when Dp

0 
= 00, the LSD appears on the four 

output lines 23, 22, 21, and 20. A low-to-high transition on DIGIT LATCH ENABLE (DLE), pin 19, will 
latch the inputs D

1
D

0
, and the selected digit will remain on the four output pins until DLE returns low. The 

polarity of the digitized input analog signal will also appear on pin 8, SIGN. The 3511 has a full-scale count 
of 1999, and if this count is exceeded, an overflow condition occurs and the four digit outputs will indicate 
EEEE. 

The heart of the analog-to-digital conversion consists of the comparator, the D-type flip-flop, and an RC 
network that is periodically switched between a reference voltage v;er and ground. When the output of the 
D-type flip-flop, Q, is high, the transistor designated as SW

1 
is on, and the other transistor designated as SW2 

is off. Under this condition, the capacitor C charges through R toward the reference voltage (usually +2.00 



Start conn,-rsion 

Frequency in 

Frequency out 

GND 
Digirn.l Vee 

Analog Vee 

vfili,:,r 

_A I f-lJo 
s,~ 
c,~ 
D,~ -- ,,,~ 
a,~ 
c,~ 
D,~ 

A3 f---+ 

83 i--
c, f-,,-
D3 f-,,-

Digital Principles and Applications 

(a) Conncc1ion d1agrnm 

On.lerNumbcr ADC351 ICCN 
orADC37!1CCN 

Sec NS Package N24A 

ADC351 I 3 Ji2 digit A:D(''ADC37! I 3 J-"4-dlgit A;!)) 

LSD 

ROM BCD 
16:4 ~rnx dcroder 

A4-- Digital liming and control 
B,i-,., MSD 
c, f-,,- -

31/2(3 3i4}- T J;" 
digit latch I = ID1 1 

w, 1 
1 !:4 lkcodcr 

ID3 I 

ID4 1 
I 
1 - 'L, I -

{ I 
Ov1,.'Tflow -•HI--- ROM -

Comparator timing y .--,...._,.. ~ 

----J\:.) 

100, -
C Q 

,- - -, " ' + ' 
1 1 " , 

~D 
1 1 - Q 1 1 

1 I -
+ - -'-----' 

(b) Dlock diagram 

H> 

H) 

H) 

~ 

- ,......... 
- Latch ,......... 
- '--+-

Overflow 

CoO\'Crsion complete 

Sign 

EfL 
+Vn:r""•----~1 

vrtf.=.. 

~· 

- -

National Semiconductor ADC3511 (3 711) 

Vdc), and the capacitor voltage Vtb, is fed back to the negative input terminal of the comparator. When Vfb 
exceeds the analog input voltage, the comparator output switches low, and the next clock pulse will set Q low. 
When Q is low, SW

1 
is off and SW

2 
is on. The capacitor now discharges through resistor R toward 0.0 Vdc, 

As soon as V tb discharges below the analog input voltage, the comparator output will switch back to a high 
state, and this process will repeat. 



Applications 

These components form a closed-loop system that will 
oscillate-that is, a rectangular waveform as shown in Fig. 
15.21 will be produced at SW1 and SW

2 
(pins 15 and 14). 

The duty cycle of this waveform is given as 

tc 
Duty cycle= --

tc + td 

and its de value is given as 

Vdc = Vrcf X duty cycle 

This de voltage will appear at Vfb and the closed-loop sys
tem will adjust itself such that 

v; = Vdc = V,cf X duty cycle. 

or V; . fc 
- = duty cycle= --
V..er t c + fit 

The maximum allowable value for the analog input voltage 
is V,e, When the input is equal to V,cr the duty cycle must be 
equal to LO (t" = 0) and Q is always high. If the input analog 
signal is 0.0. the duty cycle must be zero (tc = 0), and Q is al
ways low. For an analog input voltage between 0.0 and +V,er 
the duty cycle is some value between 0.0 and 1.0. 

The waveform Q at the output of the D-type flip-flop has 
exactly the same duty cycle as V lb' and it is used to gate a 
counter in the converter. The counter can only advance when 
Q is high, and the gating is arranged such that for a duty cycle 
of 1.0, the counter will count full scale (1999), and for a duty 

DIGIT SELECT 
Inputs 

DLE D1 Do Selected DIGIT 
L L L DIGIT O (LSD) 
L L H DIGIT 1 
L H L DIGIT 2 
L H H DIGIT 3 (MSD) 
H X X No change 

L = Low logic level 
H = High logic level 
X= lrrelevent-logic level 
The value of the selected digit is 
presented at the 23, 22

, 21
, and 

2° outputs in BCD format. 

ADC 3511 (3711) 
control levels 

tc 
Duty cycle = t+t 

C d 

Waveforms at SW1 

and SW 
2 

(pins 15 
and 14 respectively) 
for the ADC3511 

cycle of 0, the counter will count 0000. For any duty cycle between 0.0 and 1.0, the counter will count a pro
portional amount between 0000 and 1999. In fact, the exact COUNT relationship is given as 

V: 
COUNT=Nx-' 

Vref 

where N is the full-scale count of 2000. 

An ADC35I l is connected with a reference voltage of +2.0 Vdc: What will be the count 
held in the counter for an analog input voltage of 1.25 V de? What must be the duty 
cycle? · 

Solutfpn Using the expressiongiven above, we obtain 

Count ~ 2000 x 1.25 = 1250 
2.00 

D l V; 1.25 0 625 utycyce.= .. -· .. -. = -- = , .. 
~ef 2.00 · 



V, " (') S CC 

::1-! ~ 
g ;;i 
0 g· 

0 

t 

lOµF 
10 Vdc 

Vee 

Analog Vee 

23 z2 21 2° n, Do DLE 

2' 

20 

22 

23 

ADC3511CC 
(ADC37! ICC) 

Vss 1----+--t---r--, 

D,1-------1 

Doi----~ '-------l Overflow 

Conversion 
'----------i complete 

'------------1 Start 
conversion 

v,n 

Sign 
100k 

\ vfiltcr 

0.47 µF 
Note 3 

VinH 

Vin(+) 

VF/I 

0.47 µF 
Note 3 

100k 

DLEt-------' 

fout 

hn 
Vn:r 

7.5 k 

SW1 

SW I h ~~ 
Analo; I irio 
ground 

Signal ______________________ J 
GND 

2 V reference 
I -----------
! 
I 
I 
I 
I 
I 
I 

' I 
I 

: 232±1% 
I 
I 
I 
I 

t 
I 
I 

20 

:rooo±Jo/o 
I 
I 
I 

'------

---------, 
t 
t 
I 
t 
t 
t 

t 
t 
t 
I 
I 
t 
I 
t 

!Ok: 
I 
I 
t 
t 
I 
t 
I 
I ____ , 

22M 

--ciiis;;-: 
adjust : 

t 
I 

IOOk : 
I 
I 
I 
I 

50 k I 
I 
I 
I 
I -------

5V 

Note I: All resistors 1/4 watt, and 
±5%, unless otherwise specified 
Note 2: All capacitors± I 0% 
Note 3: Low leakage capacitor 

Note 4· R = RiRz .._, !'I. 
. l R1 + R2 --

~---------------~--GND 

(a) 3 1/2-digit AID; +1999 counts, +2.000 volts full scale (3 3/4 digit AID; +3999 counts, +2.000 volts full scale) 

(From National Semiconductor Data Acquisition Handbook; continued on next page) 

c:, 
(Q. 

et 
~ :::,· 
0 

i:j· 

m 
1 
:g 
fil 
g: 
i;l 



2~8Q S' ~~.g~C/)~ 
~ i a i. s o· 0 o· <: =· j_ = 

lOµF 
IOVdc 

Vee 

Analog Vee 

22 
ADC3511CC 

23 (ADC3711CC) 

Overflow 

· Conversion 
complete 

Start 
conversion 

Sign 

23 22 21 2° D1 Do DLE 

2 
I 

0 
2 

Vss 

D1 

Do 

DLE 
I 7.5 k 

fout 

/;n 

2 V reference r-----------, 
t 
I 
I 
t 
I 
I 
t 
t 
t 

: 232±1% 
I 
I 
t 
I 20 

LM309 C:: 
LM~~0-5 lOOO µF !~: 115 Vdc 

1 µF 15 Vdc 1 !OVdc 

---------1 
I 
t 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

--om.;;-: 
adjust : 

vfiltcr 

:jtij'' Vin(-) m(,-) 

V Vin(+) in(+) 

vrcf 

sw,hx 
SW2 

} 
~-1---1-.--i ----»<"[JR, 

:1000±1%~ • 

10 k: 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Note 1: All resistors 1/4 watt, and 
±5%, unless otherwise specified 
Note 2: All capacitors ±10% 
Note 3: Low leakage capacitor 

Analog O 
VFB ground 

____ , ______ J 

0.47 µF J_ I Note3 1' 100k 

'V 
22M 

R1R, 
Note 4: R3 = R . R. ±25 Q 

. I I- 2 

0.47 µF 
Note 3 

(b) 3 1/2-digit AID; ±1999 counts, ±2.000 volts full scale (3 3/4 digit AID; ±3999 counts, ±2.000 volts full scale) 

(Continued) 

:g 
fil 
f 



Digital Principles and Applications 

The circuit in Fig. 15.22a shows an ADC35I 1 (or an ADC3711) connected to convert 0.0 to +2.00 Vdc 
into an equivalent digital signal in BCD form. The 3511 converts to 1999 counts full scale and thus has a 
1-bit resolution of 1 mV. The 3711 converts to 3999 counts full scale and has a 1-bit resolution of0.5 mV. 
The circuit in Fig. 15.22b utilizes an isolated power supply such that the converter can automatically handle 
input voltages of both polarities-from +2.0 to -2.0 Vdc. 

For both circuits, the reference voltage is derived from a National Semiconductor LM336, indicated by 
dotted lines. This is an active circuit that will provide 2.000 V de with a very low thermal drift of around 20 
ppm/° C. 

A complete circuit used to interface the ADC35 l l with an 8080A microprocessor is shown in 
Fig. 15.23 below. Three-state bus drivers (DM80LS95) are used between the 3511 digital outputs and the 
microprocessor data bus, and the OR-gate-NOR-gate combination is used for control. The analog input is 
balanced with 51-kQ resistors, and the 200-Q resistor connected to SW 

1 
is chosen to equal the source resis

tance of the voltage reference; this will provide equal time constants for charging or discharging the 0.47-µF 
capacitor. 

2.40 V 232 28 lk 

AID ref 
DM80LS95 

adjust 
vref OFL DB7 

Sign DB6 

+ AVcc 23 DB3 
. 1 µF 7.5 k 

Digital .f- I Fout 22 DB2 

ground - 250 pf 
Fin 

. 21 DB l 

Vin(+) 
51 k 

Vin(+) 
ADC3511 

20 DBO 

51 k (ADC3711) DLE OE Vin(-) Vin(-) 

AD 
VFLT START 

SC 
200 

SW2 cc cc 

0.47 µF 
100k 

sw, D, Di 

VFB Do Do 
Analog 

0.47 µF 

ground AGND DGND _ Digital 
-= ground 

(a) Dual polarity AID requires that inputs are isolated from the supply. Input range is± 1.999 V 

(From National Semiconductor Data Acquisition Handbook; continued 
on next page) 



Applications 

AID port 

OE. I/OR 

Vin SC I/OW 

DB7 D7 

DB6 D6 

D5 
ADC3511 D6228 

D4 

DB3 D3 

DB2 D2 

DB 1 Dl 

DBO DO 

DO 
ADO 

Ao 

DI 
AD 1 

Ao 

C8080A 

AD 

AID ref CC>---~ 

'---------------1INT 
8080A lower ,..._ __ ___, 

order address bus 
(b) Single channel AID interface with peripheral mapped I/0 

(Continued) 

In this application, the 3511 is a peripheral mapped device, which means that it is selected by an address 
placed on the address bus by the 8080A. The unified bus comparator is used to decode the proper address bits 
and select the ADC35 I I with a low level at the AD input of the two control gates. 

The CONVERSION COMPLETE output from the 3511 is used as an INTERRUPT signal to the 8080A, 
telling it that a digitized value is available to be read into the microprocessor. The receipt of an INTERRUPT 
signal causes the 8080A to read in the MSD (4 bits), the overflow (OFL), and the SIGN. If an overflow 
condition exists (OFL is high), an error signal is generated and the 8080Areturns to its prior duties: Otherwise, 



Digital Principles and Applications 

the SIGN bit is examined and stored in the MSB of digit 4 (the LSD); a negative value is denoted by a 1 in 
this position. The 4 bits of the LSD, that now contains the sign bit, are shifted into the upper half of the 8080A 
data byte. (Note that the 8080A works with 1 byte, i.e. 8 bits, of data at a time on the data bus.) The 4 bits of 
digit 3 are then shifted into the lower half of this byte. In a similar fashion, digits 2 and 1 are shifted into the 
second byte, and the four digits are now stored in the 8080A memory. 

It is beyond the intent and scope of this text to include the programming required on the 8080A to 
interface with the ADC35 l l, but the fl.ow chart and service routine given in the National Semiconductor Data 
Acquisition Handbook are included in Fig. 15.24 for the convenience of those who might presently utilize the 
circuit. Additional information is available in the National Semiconductor handbook. 

ADSI 

Input MSD with sign and 
OFL clear carry, rotate 

OFL through carry 

Rotate through ,__ __ 
carry 

Carry Y (OFL) 
set 

Carry 
set 

y 

Or 1 into 
MSB ofMSD 

N(PLUS) 

Rotate twice, clear lower 
4 bits save in register B 

Decrement pointer 
load MSD-1 

mask and pack into B 

Rotate 4 times 
input digit 2 

mask and save in C 

Overflow 
condition 

Sealing and 
error flag 

Return 

(a) Flow chart 

Input digit I 
pack into C register 

load printer to memory 

Store C, then B into 
memory space for 
AID restore status 

Return 

(From National Semiconductor Data Acquisition Handbook; continued 
on next page) 



Label Opcode 
ADIS: PUSH 

PUSH 
PUSH 
IN 
IN 
ORA 
RAL 

JC 
RAL 

JC 
ORI 

PLUS: RAL 
RAL 
ANT 
MOV 
IN 
IN 
ANI 
OR 
MOV 
IN 

Applications 

Operand Comment Label Opcode Operand Comment 
PSW :AID. interrupt IN ADD2 :delay 

service RAL :rotate 
H :save RAL :into 
B current status RAL :upper 
ADD4 :input AID digit 4 RAL :4 bits 
ADD4 :delay ANI FO :mask lower bits 

:RESET carry MOV C,A :save in C 
:rotate OFL through IN ADD 1 :in digit 1 
carry IN ADD 1 :delay OFL :overflow condition 
:rotate sign through ANI OF :mask upper bits 
carry OR C :pack 

PLUS :positive input MOV C,A :save in C 
20H :OR 1 into MSB LXI H,ADMS :load printer to AID 

negative input memory space 

:shift MOV M,C :save C in memory 
:into position INX H :point next 

FO :make lower bits MOV M,B :save B in memory 
BA :save in B OUT ADDI :start new 
ADD3 :input digit 3 conversion 
ADD3 :delay POP B :restore 

OF :mask higher bits POP H :previous 

B :pack into B POP PSW :status 

B,A :save in B EI :ENABLE interrupts 

ADD2 :input digit 2 RET :return to main program 

(b) Routine 1, single cham1el interrupt service routine 

(Continued) 

Explain why it is acceptable to place the sign bit of a voltage digitized by the ADC3 511 ( or 
3711) in the MSB of the MSD. 

Solution The fulbscale count forthe 3511 is 1999 and fotthe371l, is 3999. So, the largest value possible for the 
MSD in either case is 3 = 0011. Clearly the MSBis not needed. for the magnitude of the MSD. It is thus co11venient to 
specify a positive number when this bit is a O and a negative number when this bit is a 1. 

DIGIT Al VOLTMETERS 

The ADC3 511 ( or 3 711) discussed in the previous section can be used as a digital voltmeter, but it is 
usually more convenient to have a circuit that will drive seven-segment LED displays directly. The National 
Semiconductor ADD3501 is a 3 }-digit DVM constructed using CMOS technology and availabldn a single 
dual in-line package (DIP). It operates from a single +5-Vdc power supply and will drive seven-segment 
indicators directly. The ADD3501 is widely used as a digital panel meter (DPM) as well as the basis for 
constructing a digital multimeter (DMM) capable of measuring voltage, current, and,resistance, and it is 
available at a nominal price. 

The connection and logic block diagrams for an ADD3501 are shown in Fig. 15.25. The only difference 
between this device and the ADC3511 are the outputs. There are seven segment outputs, S

0
, Sh, ... , Sg, and 

the four digit outputs, DIGIT 1, ... , DIGIT 4. These outputs are fully multiplexed and are designed to drive a 



@) ______________ D_ig_it_al_P_n_·nc_ip_l_es..,..a_n_d_A_pp_lt_·ca_tt_·o_ns ____________ _ 

Block diagram 

Start conversion -

Frequency in -

Frequency out -
GND 

Digital Vee 

Analog l'cc 

vfilter 

__.._ Vs:~ 

I 

I 

I 
I 

I 
I 

+ -· 

-, 
I 

~ 

I 
I 

·-
I 
I -
I 

+ , ____ J 

Dual-in-lmc package 

Vee 
Analog Fee 

s, 
s, 
s, 
s" 

OFLO 

Conversion complete 

St.,n conversion 

Sign !O 

Vfilh'T J\ 

l'mH 12 

Vim:-) 13 

ADDJ50! 

VPB ~·-4----~ 

s, 
s, 
Si 
GND 
Digit I (MSD) 

Digit 2 

Digit3 

Digit 4 (LSD) 

r." 
.1;, 
11rcr 
SW 1 
SW2 
AnalogGND 

Order Number ADD350ICCN See NS Package N28A 

A, f--p 

s, -
c,i-,... LSD 

D,,-.-
A,,--
e,i-,... 
c, 1--+-
D,i-,... 

16:4 MUX A,i-,... 
n,i-,... 
c,i-,... 
D; i--,. 

A.ti-+ 

n,,-.- MSD 

c,-,. 
Digital timing and control 

31/2-digit 

~ latch 
ID1 

1 D2 

ID3 

ID, 
Digit blank 

-
0\'erflow c--- ROM ,___ 

Comparator timing y ,--,......, 

IOO :~ -
C Q 

' + ', 

;,-D - Q -
ADD3501 3 1/2-digit DVN bl..x:k diagram 

f--C 
~ 
H:; 

ROM7 

f--C &egmcnt 
decoder 

f-1) 

~ 
-

:[)-C 
:[)-C 

I 
-

National Semiconductor ADC3501 · 

6= 
~ 

s,, 

Sr 

s, 

DIGIT 1 (MSD) 

DIGIT 2 

DIGIT 3 

DIGIT 4 (LSD) 

Overflow 

Conversion complete 

Sign 

AnalogGND 



Applications 

common-cathode-type LED display directly. All the other inputs and controls are identical to the previously 
discussed ADC35 l l. The 3501 has a full-scale count of 1999 for a full-scale analog input voltage of+ 2.00 
V de. A resolution of 1 bit thus corresponds to 1 m V of input voltage. 

The circuit shown in Fig. 15.26 on next page shows how to use an ADD3501 as a digital voltmeter that has 
a full-scale analog input voltage of+ 2.00 V de. The LM309 is a voltage regulator used to reduce jitter prob
lems caused by switching. The NSB5388 is a 31-digit 0.5-in common-cathode LED display. The LM336 is 
an active circuit which is used to provide the 2.00-V de reference voltage. When using this configuration, it is 
important to keep all ground leads connected to a single, central point as shown in Fig. 15.26, and care must 
be taken to prevent high currents from flowing in the analog Vee and ground wires. National Semiconductor 
has carefully designed the circuit to synchronize the multiplexing and the AID conversion operations in an 
effortto eliminate switching noise due to power supply transients. 

What is the purpose of the 7.5-kQ resistor and the 250-pF capacitor connected to pins 19 
and 20 of the ADD350J in Fig. 15.26? 

Solution These two components establish the internal oscillator frequency used as the clock frequency in the 
converter according to the relationship J; = 0.6/RC. In this case,J; = 320 kHz. 

The DVM in Fig. 15.27 on page 589 is modified slightly in order to accommodate analog input voltages 
of either polarity, and also of different magnitudes. Power for the circuit is obtained from the 115-Vac power 
line through an isolation transformer, and the analog input is now applied at v;/+) and Vii,(-). 

Scaling the analog input voltage for different ranges is accomplished by changing the feedback resistor 
between SW

1 
on pin 17 and VFB on pin 14, or using a simple resistance divider across the analog input. First 

look at the 2.00-Vdc range, since this is the normal full-scale range for the 3501. In this position, the range 
switch connects l 00 kQ as the feedback resistor, and the analog input goes directly to pin 13 [Tt;J. Also notice 
that the decimal point is between the 1 and the 8, giving 1.999 V de as a full-scale reading. 

On the 0.2-V de scale, the range switch still applies the analog input voltage directly to pin 13. but the 
reference voltage at SW

1 
is reduced by a factor of 10 by a resistive voltage divider before being used as a 

feedback voltage. The resistive divider is composed of a 90-kQ resistor RI' and a 10-kQ resistor R
2

• The 
voltage developed at the node connecting these two resistors is 0.1 V,er and so the full-scale voltage is also 
reduced by a factor of 10. The 90-kQ resistor R

3 
is used to keep the charging time constant essentially the 

same on all ranges. The time constant is given as RC= 100 kQ x 0.47 µF. Notice that the decimal-point 
position has moved to pin 7 on the NSB5388 to give a full-scale reading of 199.9 mV. 

On the 200-V de position, the range switch puts back the original feedback resistor, but the analog input 
voltage is reduced by a factor of 100 with a resistive voltage divider composed of 9.9-MQ and a 100-kQ 
resistor. The analog input to the 3501 is thus still 2.00 Vdc full scale even though the actual input signal is 
200 Vdc full scale. The decimal point will be placed on pin 7 of the NSB5388 to give a full-scale reading of 
199.9Vdc. 

On the 20-V de full-scale position, the range switch still uses the input voltage divider to reduce the input 
signal by a factor of 100, but the feedback resistor is also used to effectively increase the full scale by a factor 
of 10. The net result is that the 3501 will count full scale when the analog input voltage is 20 V de. Notice that 
the decimal point is now applied to pin 6 of the NSB5388 to give a full-scale reading of 19.99 Vdc. 

The circuit shown in Fig. 15.28 on page 590 is a complete DMM taken from the National Semiconductor 
Data Acquisition Handbook. It utilizes the ADD350 l and is capable of measuring both de and ac currents and 
voltages as well as resistances. The ranges and accuracies of the instrument are given in Fig. 15.29. 



>7V300mA 

l'owcrGND 

Signal GND 

V;n 

0Vto+l.999V 

LM309 
o, 

LM340-5 

f 0.IJlF 

... --------- "j 
I I I 150 k 50k 
I . I 
I I 
I I 
I I 
I 22 mil< 

I 
I I I 1 _______ 

Offs.ct adjus1 

NS85388 43 
~ 

12 

J c;:u II .... 
10 

I 1-11-11-1 9 

13 
. ,, 

1 r- I I I/ I/ IT 
14 . 
15 

r 2 V reforence : ,~ I 
I 1 14 / 2 16 5 

17 '" 
19 17 20 18 

I . 
820 I 

I I 

' I 
I 

R, {• 

I 

'• IN914 232 I 
.ti% I DS75492 I LM336 I 

:--<;~ 20Q I 

l '"ss !Ok 

R,{. 
GND L I 1f I k : 

I µF +· "IN914 >Jl% I 
IOT I 

Vdc : 

~------: ·-----71 
" 

~ 250pF 

R., ,. L 200.U 7,5 k 

115 IS 19 20 21 ·n 23 24 25 26 27 28 

~ 
u, u, a: ~ ~ 0 0 0 0 Cl " -, ' .~ -"" i:i C: i:i i:i z 

[ :::; 5 :::; :::; 0 

C ~ '" -
z 
0 

IOOk ADD3SOICCN 

lg if > 
'1 

0 :f 
~-:: rt' JI.~ ~~ u, 5 8~ ......__ 

-' .c 'l " 
,- 0 " ', 

~ 0A7µF 114 113 112 II po 9 1 s 17 6 5 4 3 2 1 
T (-') I 

I ,1-
0.47 µF 

(J) 
> IOOk 

; IOµF 
IOVdc 

Note I: All resistors 1/4 W ±5% unles 
otherwise specified 
Note 2: All capacitors ±10% 
Note 3: Low leakage capacitor requin 
Note 4: R1R/R1 + R2 = R3 ± 25 Q. 

31 digit DPM, +1.999 Vdc full scale, (National Semiconductor) 

d 

$ 

0 
<o" 
~ 
~ ::,· 
C> -o· 
(D 
(/) 

~ 
Q.. 

:g 

I 
(/) 



NS85J88 43 

Gu:ud 

I I ·::' ,·~~r==-i== 1--~---~-:n;:'.=l---'!:Hl ___ _ 

r;=-.:--::::-:--- '---·vv y.fJ / / , ,-, ~,10 -t-'NH-== 

:J
:11s· .~:· r··---, ;~.;;;;··-----, -, ' - -.- I , ,-, - ,-, I~ ': l 1 

, 340-5 1 1 r,--' I , , -- 14 v I I ~ I I "' .. -
,-,-+--l-:'~- ~ : T ' " ' I 

-~ I 4 j' 11• 5 I 'f 'f,t--'\f\A,_J __ 

. - : I ' " ' 11917 1,~ I ~ 1 

lrJN914 R{S.232: LMJJ6 1 ±1% I I I I -<\, '"' :;,i ,, I ,m,.., -, -j--< \ 

T 2'00 µI' I F ;, R, { I GND R i 
. ' "''' ool, T. •; f::'--]l,' i D /;,. f )_ 4 'l•, -

I '------() \\:.::_ _____ J - - I - ~ -l 

l ,;:,•pF I I 
~D f I 

!
~-·, --- . 7.5k I 

150k 50k I I ,;' ;" • 17 118 19 '20 ' I -::: :::: ~ 't:: , . .. I 122 2J ,,
4 

Off 5' ., . _'< ii, ,~ 1' .:i2 0 ,... -2 .5 26 27 ,!\ 

l>CI l o, .--~0(1~ -' 

·~ s • ' ' ' ' ' ' ' ·1 
S,. IOllk i3 ~ ;:; ;j ~ o 

,~ "~ _m ·":"· ,ooa,orn 

(

<n.1.L. l 11> 11i', I ""' oc, . , 

- 20: .'.Ok >ll.01%1, _ .~ -"" _ ~ [ ] f > o1!JQL ·v ·•~ .I ;j' 2 ' ~- ,<> 'i. oo Q i, 

---,e------==------t(1 '1-~0.147
~/:·IF!=-j= 14 13 1 ' '§ § 

0

g 5 ·,: 
I (]) 12 Ill 110 9 Is l " ~ 0 "- .:" 

____ _J__,; ~ L - r . , I' , 4 3 , ~I 

:::. "' - , '" L ' -
< 9.9M<l J I _J ! 

' .. ,., -.b -, '"•' ' ... 1 - ""'' "''"= ,,. w - , otherwise specified x5 Yo unless 

- I ~ote 2: All capacitors ±10% 
i otc 3: Low leaka ,cc· . Note 4: R R l(R } apacttor required 

I 2 I · R2) = R3 ± 25 Q 

\\t·) 

V(-) 

:g 
~ 

t 

3i digit DVM, Four decade; ±0.2, +0.2, ±20, and ±200 Vdc (National Semiconductor) 



Technical specifications 
DC volts < ± I% accuracy 

ranges 2 V, 20 V, 200 V, 2 kV 
input impedance 2 V range, > IO Mn 

20 V to 2 kV range, 10 MQ 
AC RMS volts < ± l % accuracy 

ranges 2 V, 20 V, 200 V, 2 kV 
(40 to 5 kHz sinewave) 

DC amps < ± I% accuracy 
ranges 200 µA, 2 mA, 20 mA, 200mA, 2A 

Ohms < ± l % accuracy 
ranges 200 n, 2Hl. 20kQ, 200kQ, 2 MQ 

'Al MU 
tll«i 

1 ~\' ---¥Iv--, 
,v 

20 \-

~ 

'1MU 
OJ"" 

i '"" 
J:\!U 

~ V 

}fl\' 
\',,l!s 

Note I: All V,, connections should use a single Vee 
point and all ground/analog ground connection should 
use a single ground/analog ground point. 
Note 2: All resistors are 1/4 watt unless otherwise 
specified 
Note 3: All capacitors arc ±10% 
Note 4: All op amps have a 0. I /IF capacitor 
connected across the V+ and V- supplier 
Note 5: All diodes arc IN914 

l2lH2 

:,.;s115w, 

J.10tl 

"··'~ L. 111 · I I I l1

1t 
l a, 

~1 

<JV.=.,. 

:J; il ' !~,, 

l'I J.. ~\l.l.1h( ,~? 
IOHl~ ~U 

1)0~0 

~ ,.,.. 
"°'.""~ """" '~ L--+-~____.__....-t-1-4--~ 01~. JrnlV ,,_.!-:-° 

lj\(~ 

JOµl nn 
d~:, 

..... 
X2(l 

!Oll~O 
nc o !':, 

Ohnis 

Cr,nmwn WHl!"-• 

Vuhs 
amp·,°--

Ohu1{ 

I LU l~ l ~lpA 

... '""'• 
!OHU!"·020m,\ 

1~ ~z.1•~]00 mA9 r 
~1,\ 

I ~l l"i, 

rcc-1'-
; 

... 

l){'I .~,, -~~c;-Wv-~ 
lK AC 

M<,U 1~,, 

J'lf>U!I·!, ·1 
~l)f.)U 

2U! 
l'lf,Hl 1"~ 

~ 

;;::. PJ.d 

h'-' 
11\HJ I H"' ,r 

511! 

, ~ ~t= 1'\II./). Ht H)9 r 
~~1U 

1.w,:-.mo !~o 

""'"' l ~;:· 
~'"·:: '"" J.~t.LLLLL.1~ 11' 

*•U71if 

N :;.. 
l5Wt.J 

\1>D-1~Hl /•1" ,,ht dit!it;i! m"1mnd,·r 

::;::1011F 

tru 

tU7 ,,, 

I ' o,:::'fifl"''"' " /1 15 f,l PP 

A low-cost DMM using the ADD 3501 (National Semiconductor Data Acquisition Handbook) 

~~H: 

t:::) 
<cl' 
:::;: 
~ 
-0 
5· 
C') -s· 
cn 
"' 
~ 
Q. 

~ 
£ 
g. 
::i 

"' 



Applications 

The different de and ac voltage ranges are accommodated by a resistive voltage divider at the analog input. 
Alternating-current voltages are measured by using the three operational amplifiers A

3
,A;" and A5 to develop 

a de voltage that is proportional to the root-mean-square (RMS) value of the ac input voltage. 

Measurement Range Frequency 
Accuracy Overrange 

mode 0.2 2.0 20 200 2000 response display 

DC volts - V V V V - :S: 1%FS ±OFLO 
AC volts VRMS VRMS VRMS VRMS 40 Hzto 5 kHz :S: 1%FS +OFLO 
DC amps mA mA mA mA mA - :S: 1%FS ±OFLO 
ACamos mARMS mARMS mARMS mARMS mARMS 40 Hz to 5 kHz :S: 1%FS +OFLO 

Ohms kQ kQ kQ kQ kQ - :S: 1% FS +OFLO 

Performance of the DMM in Fig. 15.28 

A series of current-sensing resistors are used to measure either de or ac current. The current to be measured 
is passed through one of the sensing resistors, and the DMM digitizes the voltage developed across the 
resistor. 

The DMM measures resistance by applying a known current from an internal current source (operational 
amplifiers A

1 
and A) to the unknown resistance and then digitizing the resulting voltage developed. 

For those interested in pursuing this subject, complete details for the construction and calibration of this 
DMM are given in the National Semiconductor Data Acquisition Handbook. 

The pri~ary objective of fhischapter is to demonstrate the use of ~any of the most fundamental prindples 
discussed throughout the text by considering some of the more common digital circuit configurations 
encountered in industry. Multiplexing of LED displays, time and frequency measurement, and use of 
digital voltmeters ofall types are widely used throughout industry.Although our coverage is byno means 
comprehensive, it will ~rve as an excellent introduction to industrial pr<!ctices, 

The problems at the t'!lld of this chapter will also provide a g®d transition into industry. They are in 
general longer than previou$1y assigned problems. All the necessary information required to worka given 
problem may not be given :-this is intentional. since it will require y()u.to seek information from industrial 
data sheets. However, the problems are more ,0£ a design nature, and usually deal with a practical, functional 
circuit that can be 11sedfo accomplish a given task; as such, they are much more interesting and satisfying 
to solve. 

In order to solve some of these problems, you may 
have to consult product data sheets that are not in
cluded in this text. It is intended that you discover a 
source for such information. 

15.1 Pick one of the solutions suggested in Example 
15 .3 and do a detailed design, including part 
numbers and pin numbers. 

15.2 Design a four-decimal-digit multiplexed dis
play like the one in Fig. 15.7, but use com
mon-cathode-type LEDs. Use a basic circuit 
like the one in Fig. 15.2, bu.t you will now 

· need to generate DIGIT waveforms that have 
positive pulses. 



Digital Principles and Applications 

15.3 How often is each digit in Fig. 15.7 serviced, 
and for what period of time is it illuminated? 
Extinguished? 

15.4 Design a multiplexed display like the one in 
Fig. 15.8 having eight decimal digits. Use a 
three-flip-flop multiplexing counter and four 
74151 multiplexers. 

15.5 Specify a ROM that could be used in place of 
the 7447 in Fig. 15.8. Draw a circuit, showing 
exactly how to connect it. 

15.6 Design a four-decimal-digit display using 
54/74141 and common-anode LEDs. 

15.7 Using Fig. 15.12 as a pattern, design a four
digit frequency counter using 54174143s 
and 54174160s. Use a 1.0-MHz clock, and 
provide 0.1-, 1.0-, and 10.0-s gates. Specify 
the frequency range for each gate. 

15.8 Following Fig. 15.12 as a guide, design a 
four-digit frequency counter using National 
Semiconductor MM74C925. 

15.9 Design a circuit to measure "elapsed time" 
between two events in time-for instance, the 
time difference bet\veen a pulse occurring on 
one signal followed by a pulse occurring on 
another signal. Use as much of Fig. 15.14 as 
possible, but consider using a set-reset flip-flop 
in conjunction with the two input signals. 

15.10 Combine the circuits in Figs. 15.12 and 15.14 
into a single instrument. Use a 1.0-MHz clock 
.and seven decade counters, define the scales 
and readouts carefully. 

15.11 What is the internal clock frequency of the 
ADC0804 in Fig. 12.29 if the capacitor C is 
changed to 100 pF? 

15.12 In stand-alone operation, how often does the 
ADC0804 do an AID conversion? 

1. R and C are needed to the internal clock 
frequency. 

2. Depressing the START button begins the AID 
conversion process. 

15.13 Assuming that Vee = +5.0 Vdc, determine 
the digital outputs of an ADC0804 for analog 
inputs of: 

a. 1.25 V, b. 1.0 V 

C. 4.4 V 

15.14 Assuming that Vee= +5.0 Vdc, in Fig. 12.29, 
determine the analog input voltages that will 
produce a digital output of: 

a. 1000 1100 b. 25H 

C. 0001 1000? 
15.15 The ADC0804 in Fig. 12.29 is to be used with 

an analog signal that varies between 0.0 and 
+ 3 .3 V. Determine a new value for V,er 

15.16 The ADC0804 in Fig. 15.16b is to be used 
with an analog signal that varies between +2.2 
and+ 3 .3 V. Determine a new value for V,er and 
V. ,-

15.17 Use the ADC0804 and design a stand-alone 
circuit to digitize an analog voltage that ranges 
between +0.25 and +5.0 V. 

15.18 Use the ADC0804 and design a stand-alone 
circuit to digitize an analog voltage that ranges 
between -2.5 and +2.5 V. 

15.19 Design a resistive voltage divider to use 
with the ADC3511 such that it will digitize 
an analog input voltage of 20 V de as full
scale voltage input. What is the resolution in 
millivolts for this design? 

15.20 Design a voltage divider such that the DVM 
in Fig. 15.27 will measure full-scale voltages 
of2.0, 20.0 and 200.0 Vdc without changing 
the feedback resistor. Leave the feedback 
resistor at 100 kQ. Draw the complete design. 
Is it possible to achieve a full scale of0.2 Vdc 
for this circuit without changing the feedback 
resistor? 

3. C3H 
4. Span is the range ofinputvQltage, OFFSET, 

is the lowest value of analog input voltage. 



A Simple Computer 
Design 

+ Determine hardware requirement in design of a simple computer 
+ Discuss use of Register Transfer Language in computer design 
+ Design control unit of a simple computer 
+ Discuss how to program the simple computer in solving various problems 

In this chapter, we demonstrate how the knowledge that you gathered in this book can take you to the next 
higher level, where you can start designing a digital computer. A digital computer is capable of computation 
and taking decision based on binary coded instructions stored inside it. The central processing unit (CPU), 
also known as the brain of the computer sequentially fetches these instructions, decodes it and then executes 
it by performing some action through available hardware. In this chapter, we'll design a simple computer, 
which has a limited instruction set but is capable enough to solve variety of arithmetic and logic problems. 
The technique you learn in developing this simple machine will be useful when you go for a full-fledged 
computer design in some higher-level courses. 

We begin the chapter by defining a small problem, which our simple computer should be able to solve. 
Next, we spell out different hardware components required as building blocks. We'll also discuss a simple 
hardware operation description language, called Register Transfer Language (RTL) useful for state machine 
design. Through RTL we'll describe all the operations of our simple computer. Then we'll design the control 
unit that will coordinate all these operations. Finally, we will discuss how to program this simple computer to 
solve the problem we started with and many other arithmetic and logic problems. 



Digital Principles and Applications 

16.1 BUILDING BLOCKS 

In Section 1.6 of Chapter 1, we have broadly seen the kind of components required for designing a computer. 
In this chapter, we address how to design central processing unit of a simple computer that interacts with a 
small memory mo~u1e. Before we proceed further let us define a problem that our computer is supposed to 
solve. This is not the only problem it can handle. Depending on how we program it, we will be able to solve 
different arithmetic and logic problems and that is shown towa.rds the end of this chapter through examples. 
The purpose of defining a problem is to choose specific hardware components that will serve as building 
block of our simple computer. 

The Problem 

Add 10 numbers stored in consecutive locations of memory. Subtract from this total a number, stored in 
11 ,1i location of memory. Multiply this result with 2and store it in 12th location of memory. All the numbers 
brought from memory lie between O and 9. 

Memory 

Since, the problem says the numbers or data to be fetched from memory and we also know that programs, 
i.e. binary coded instructions are also stored in memory, let us divide the memory used in our computer in 
two parts. One part stores the program or series of instructions the computer executes sequentially and this is 
known as program memory. The other part houses data that program uses and is also used for storing result. 
This is called data memo!J'· From the given problem we find, we need 12 memory locations for data storage. 
We expect our computer won't need more than 20 instructions to complete the given task hence, a memory 
with 32 locations (integer power of2) can be selected for our computer. 

Now we try to decide how many bits of information we store in each address location. Usually, bits in 
memory locations are stored in multiple of 8 called byte. Let's see if our job can be done with 8 bits. Each 
memory location stores data between O and 9 on which program operates and thus require only 4 bits. The 
final result at most can be IO x 9 x 2 = 180 which requires 8-bit for representation. So the data memory can 
be of 8-bits with which we can represent decimal number up to 28-1 = 255. 

Let's now see the requirement of program memory. There, in each location, certain number of bits are 
allocated that defines the instruction to be executed. This is called operation code or in short, opcode. The 
rest of the bits can be used for referring the memory .location from which data is to be brought or stored, 
if required by the instruction. Since, 32 memory locations require log

2
32 = 5 bits for memory referencing 

we'll have 8 5 = 3 bits for opcode specification giving 23 = 8 different opcodes (Fig. 16.1). We'll see that 
8 instructions are sufficient for the given kind of task in our limited ability computer. Hence, one important 
hardware component of our computer gets decided. The memory to be used is of size 32 x 8. 

The above mode of addressing memory for data is called direct addressing. If the address mentioned 
in the instruction contains address from which actual data is to be brought it is called indirect addressing. 
If after opcode, .in place of address actual data is 7 5 4 o 
made available, it is called immediate addressing. I Opcode j Address I 
Note that, in immediate addressing data cannot be 
more than 5 bits as 3 bits gets used in opcode. Also 
note that the instruction like this is called single 
byte instruction. If an instruction requires 2 bytes 
to be fetched from program memory it is called 2-

Three Most Significant 
Bits (MSB) are opcode 
and five least Significant 
Bits (LSB) are address 



A Simple Computer Design 

byte instruction. Obviously, in 2-byte instruction nwnber of opcodes or memory addressing capability can be 
more than a single byte instruction. 

Register Array 

The computer needs a set of registers to perform its operation. Let us define them and assign task to (':ach one 
of them for our simple computer. Note that, we are using a 32 x 8 memory module. 

Memory Address Register (MAR) is a 5-bit register that stores the address of the memory location referred 
in a particular instruction. The output of this is fed to a 5-to-32 address decoder. Each output of the decoder 
points to a location in the memory. All memory referenced instruction loads memory address in MAR. 

Memory Data Register (MDR) is an 8-bit register that stores the memory output when a memory read 
operation is performed. During memory write operation it stores the value that gets written to the memory. 
Thus it can also be called a memory buffer. In arithmetic or logic operation when more than one operand is 
required by ALU, one operand in our simple machine comes from MDR. 

Program Counter (PC) is a 5-bit counter that stores the address of the memory location from which next 
instruction is fetched. At power on, our machine PC is reset so that its content is all zero. Thus location 
00000 has to be a part of program memory and this is also the starting address from which program execution 
begins. Since, in our simple machine all the instructions are single byte instruction, every time an opcode is 
fetched we'll increment PC by one, and thus PC will point to location of the next opcode. 

Instruction Register (IR) is a 3-bit register, which retains the opcode till it is properly executed in one or 
more clock cycles. Since all memory read and write operations are done through MDR, after an instruction is 
read from memory, 3 MSB that contains the opcode are transferred to JR. 

Accumulator (ACC) is a multi-purpose register that always stores one operand of an arithmetic or logic 
operation. The result of this operation, i.e. ALU output is also stored in ACC. Functions like shifting of bits 
to left or right are also carried on ACC. Thus, in our simple computer ACC is a shift register with parallel 
load facility. 

Timing Counter (TC) is a synchronous parallel load counter that stores and updates the timing information. 
The timing counter output is decoded to generate different timing signal, which in tum triggers different 
events in execution of an instruction. The counter is reset synchronously with clock once an instruction is 
fully executed. If an instruction is conceived as a macro operation then series of sequential steps necessary 
to carry out the instruction in the computer is called micro operations. In our simple computer, we are not 
expecting more than 8 micro operations for any macro-operations and hence a 3-bit counter is sufficient. 
Later ifwe see, we need more than 8 micro operations we'll change it to a 4-bit counter. Note that, a master 
clock ( also called system clock) to which all the state changes of the computer are synchronized, triggers this 
counter. Also note, TC has power on reset facility, i.e. when the computer is switched on it stores 000. 

Start/Stop Flag (S) is a flip-flop which when set, stops execution of the program. This we do in our simple 
computer by inhibiting the master clock. Like program counter, this also has a power-on-reset facility so that 
when the computer is switched on the master clock is not inhibited. 

Other Important Hardware 

Arithmetic Logic Unit (ALU) is a versatile combinatorial circuit that can perform a large range of arithmetic 
and logic operations. Since the data is 8-bit long, we use an 8-bit ALU. The control input value decides the 
function ALU executes at a particular time. ALU can accept up to two operands at a time, one from A CC and 
the other from MDR. The ALU output is stored in ACC. If addition operation generates a carry output from 
ALU, that can be stored in a flip-flop, often called carry flag ( CY). Since, in our problem numbers are small in 



Digital Principles and Applications 

magnitude the 8-bit ALU doesn't generate carry output and we don't need CY flag for our simple computer. 
Note that, ALU cannot perform multiply and division operation for which we use special hardware or some 
indirect technique. 

Instruction Decoder (ID) is a 3-to-8 decoder, which takes input from JR and thereby decodes the opcode. 
In our simple computer there are 8 different opcodes, each one making one of the decoder output (D

0
, Dp···, 

D
7
) high. This in tum initiates specific micro operations necessary to execute that opcode in subsequent clock 

cycles. 

Timing Sequence Decoder (TSD) is again a 3-to-8 decoder that takes input from TC and provides necessary 
timing infonnation in the fonn of decoded output (~J' T

1
, • •• , T

7
) for a micro operation to be executed. 

BUS is a group of wires that serve as a shared common path for data transfer of all the devices connected 
to it. With this, we do not need a separate device to device connection which increases the number of wiring 
specially when large number of devices are used in a system. Since, the largest group of binary data that is 
transferred in our computer is 8-bit, the bus used is an 8-bit bus. 

BUS Selector (BS) is a multiplexer, which decides which one of all the connected devices is in transmission 
mode, i.e. has placed data in the BUS. Note that, if more than one device try to send data simultaneously, 
there will be a conflict producing erroneous result. However, in our computer we may allow more than one 
device connected to BUS to receive data from BUS. We'll see shortly that only PC, ACC, MDR and ALU 
want to transmit or place data on the BUS. MAR and IR only receive data and other hardware give control 
signal and don't do data transfer. Thus, BS has to select one of the four devices and uses eight (each one for 
one bit) 4-to-l multiplexer type of device. We can also use tri-stated output for bus connection (Section 14.6 
of Chapter 14) that will reduce the current loading on the device when it is not selected. 

From this discussion we can draw the data path of our simple computer as shown in Fig. 16.2. Here, by 
data we mean address, opcode as well as operand and they move from/to memory, register, ALU, etc. Of 
course, we need another set of path to send control signal to various hardware to carry out microoperations. 
This is called control path and we'll design it when we define the instruction set for our computer. 

Generally speaking, address bus is the group of wires that transfer address information, data bus is another 
group that transfers data and control bus transfers control information. Often, address information and data 
are transferred through a common bus and a control logic decides which is to be transferred and when. You 
might have noticed that in our simple computer design, we have used a common address and data bus. More 
about control bus will appear in Section 16.4 where we discuss the design of control unit. 

Find in Fig. 16.2 the direction of arrow that shows the direction of data flow. Note that, IR and 
JvfAR can only receive data from BUS; PC can only send data by BUS; ACC and MDR can do both; 

Memory data transfer takes place only via MDR and operands of ALU come from ACC and MDR and 
result is sent via BUS. 

Solution 

In a particular configuration each memory location contains 16-bit data. In program memory, 
if 4 MSB contains opcode and rest contains address of memory locations give (a) Number of 
opcodes (b) Size of memory (c) Size of PC, JR, ACC, MAR and MDR. 

(ll.) Number of opcodes= 24 = 16 (Maximum) 

(b) Number of address bits= 16- 4 = 12. No, ofmemory locations= 212 =22 -21-0 = 4K. So size of memory is 
4Kx 16. 

( c) Size of PC and MAR = No. of address bits= 12. Size ofJR Size ofopcode 4. Size of ACC and MDR= No, 
of data bits = 16 



A Simple Computer Design 

8 5 
3 5 

8 
Memory 

PC IR 
8 

ACC 32 X 8 

8 8 

Data path of the simple computer 

l. What is the highest integer in decimal that we can store in 16-bit data field? 
2. Whatis an opcode? 
3. What is the function of program counter? 
4. What is indirect addressing? 

16.2 REGISTER TRANSFER LANGUAGE 

Before we go for design of control path and the control unit as a whole we have to define macro operations 
and then we need to break up each macro operation in series of micro operations at register level. Register 
Transfer Language (RTL) gives a simple tool through which these micro operations can be expressed and 
then control unit can be designed from that. The basic structure of this language is 

X:Af---B 

This means, if condition Xis TRUE, i.e. X = l then content of register Bis transferred to register A. X can 
be a single logic variable or a logic expression like xy = x&y, x + y = x I y, etc. In RTL we distinguish logic 
operation 'OR' from arithmetic operation 'addition' by assigning symbols ' I 'and '+'respectively.The logic 
AND is expressed by symbol'&'. However, if the'+' sign appears left to':' in an RTL statement it means 
logical OR and '.' refers to logical AND. This is so because to left of ':' only logical operators can reside. 
Often AND, OR, NOT are expressed by 'A', 'v', '-' respectively. Also note, this register transfer destroys 
the previous content of A but not that of B. Both the register A and B now have the same value. If register 
transfer takes via BUS 

A f---B = BUS f--- B, A f--- BUS 

Since, BUS is not a register but a group of wire this means B getting access to BUS through BUS selector 
(BS) and the whole event takes place in one clock cycle. Figure 16.3 pictorially depicts register transfer 
without and with BUS. 

To write anything to memory, in our simple computer we have to place the address information in MAR 
and the data to be written in MDR. Thus, memory write operation in RTL is expressed as 

X: M[MAR] f---MDR 



Digital Principles and Applications 

B BUS 

x~ 
A 

X Load 

(a) (b) 

Register transfer A ~ B: (a) without BUS, (b) with BUS 

Similarly, memory read operation is also done through MAR and MDR and RTL expression is 

X:MDRrM[MAR] 

If certain bits of a register are to be addressed we use RTL as follows: 

X: IR r MDR[?:5] 

The statement above refers to transfer of three most significant bits of MDR to IR, a 3-bit register when 
X= l. 

The arithmetic and logic operations of ALU that bring operands from ACC and MDR and store the result 
in ACC can be expressed in RTL in the following way 

X:ACCrACC&MDR 

X:ACCrACC I MDR 

X:ACCrACCEBMDR 

X:ACCrACC' 

X:ACCrACC+MDR 

X:ACCrACC-MDR 

X:ACCrACC+ l 

etc. 

[logic AND] 

[logic OR] 

[logic EX-OR] 

[logic NOT] 

[arithmetic addition] 

[ arithmetic subtraction] 

[increment by l] 

And finally if data is to be shifted in a register say by I bit to left we can write 

X: ACC[7:l] rACC[6:0],ACC[O) r 0 

If such left shift occurs through carry the statement will be 

X: ACC[7:l] rACC[6:0),ACC[O) r CY 

Nonnally, we come across these four kinds of micro operations namely (i) Inter-Register transfer 
(ii) Arithmetic operation (iii) Logic operation and (iv) Shift operation. Note that, left shift without carry 
can also be obtained by addition operation as shown in Example 6.14 of Chapter 6. Figure 16,4 shows how 
addition operation A r A + B takes place through ALU and BUS. 

Note that, TC and PC can increment by 1 without taking help of ALU as they are designed to be parallel 
load up counters. For more complex processor unit where 2 byte, 3 byte instructions are possible we can have 
an adder unit accessible by PC. 



BUS 

A 
X Load 

A Simple Computer Design 

ALU 

Control 
input for 
addition 

BS 

B 

The micro operation A -t A + B 

Explain what the following RTL statements perfonn 

T
1

: MDR f- ACC 

T
2

: ACC f- ACC' 

T
3 

: ACC f- ACC & MDR 

Solution The first statement says if T
1 
= I, content of ACC is transferred to MDR. The second statement says if 

content of ACC is complemented .. The third statement says if T
3 
= 1, bit-wise AND operation .is performed on 

ACC and MDR and the result is stored in ACC. Since content of MDR and ACC were complement of one another 
before this statement is executed, by AND operation all the bits of A CC become zero,.Le. ACC is reset by these three 
statements irrespective of its initial content. 

Note that, Tl' Tz and T
3 

can be output of a timing sequencer, which become active one after another in consecutive 
clock cycles. This way, ACC can be cleared in three clock cycles by above RTL statements. 

5. What is RTL? 
6. What is to be changed in Fig. 16,4 to perfonn A ~ A & B? 

16.3 EXECUTION Of INSTRUCTIONS, MACRO 
AND MICRO OPERATIONS 

In a computer, execution of instructions is carried through macro operations which again can be subdivided 
into· micro operations. In this section, we first define the macro operations that we want to be executed 
in the computer we are designing. Next, we'll discuss micro operations necessary to execute each macro 
operation and it will be expressed through RTL. Remember that we have assigned only 3-bits as opcode and 
hence we can define 23 = 8 instmctions or macro operations with them. Table 16.1 lists all the instmctions, 
corresponding mnemonics (easy to remember short forms), opcodes and 3-to-8 decoder (ID) output when JR 
is loaded with this opcode. 



Macro operation pe1:f'onned 

Load data from a specified memory 
location to ACC 

StoreACC data in a specified 
memory location 

Halts execution of the program 

Perform bitwise AND operation of 
ACC with data of a specified 
memory location and store result 
inACC 

Perform bitwise NOT operation of 
ACC 

Perfonn I-bit left shift of A CC 
withACC[0]..--0 

Perform addition operation of ACC 
with data of a specified memory 
location and store result in A CC 

Subtract from ACC, data of a 
specified memory location and store 
result in A CC 

Instruction Cycles 

Digital Principles and Applications 

Instruction Set for the Simple Computer 

Instruction Opcode lnstniction decoder 
mnemonic (ID) output activated 

LDA 000 Do 

STA 001 DI 

HLT 010 D2 

AND on D3 

NOT 100 D4 

SHL 1 0 l Ds 

ADD 1 l 0 D6 

SUB 111 D1 

To carry out each instruction or macro operation the computer has to go through three distinct phases or 
cycles. In fetch cycle it brings the instruction or opcode from the program memory. In decoding phase it 
decodes the opcode and finally the execution is done in execute cycle. These cycles together known as 
instruction cycle are again repeated for next instruction. It is understandable that fetch and decode phase 
will be same for all instructions in our simple computer as we have only single byte directly addressed 
instructions. However, the execution cycle will be different for different instructions depending on the tasks 
the instruction wants to perform. 

Fetch Cycle 

An instruction cycle begins with fetch cycle when TC is reset to 0. Then, only T
0 

output ofTSD will be high 
and rest low. As told before PC contains the address of the location from which next instruction is to be 
fetched, content of PC is loaded into MAR in T

0
• 

At the next trigger of master clock TC is incremented by I so that T1 becomes high and other outputs 
of TSD are low. In this clock cycle, content of memory from location specified by MAR (through 5-to-32 
address decoder attached to memory) is loaded to MDR. PC now can be incremented to point to address of 
next location in program memory, which stores next instruction. 



A Simple Computer Design 

In the next clock cycle TC generates T
2 
= 1 when opcode from 3 MSB of MDR is transferred to IR and 5 

LSB to MAR. Content of JR is used for decoding opcode in decode phase. Content of MAR will be useful in 
execute phase if the opcode makes some memory reference, the address of which remain available at MAR. 
In RTL the above operations can be represented as 

T
0 

:MAR+-PC 

T
1 

: MDR +- M[MAR], PC+- PC+ 1 

T
2

: IR+- MDR[7:5], MAR+- .MDR[4:0] 

Decode Cycle 

In decode cycle we decode the opcode fetched from program memory. Since at T
2

, register IR is loaded with 
opcode and 3-to-8 decoder (ID) that decodes the opcode is a combinatorial circuit, we finish decoding in T

2 

itself. In RTL we express it as 

T
2 

: D
0 

••• D
7 

+- DECODE (JR) 

Often, the 3rd statement of previously mentioned fetch cycle that loads IR with new opcode is considered 
a part of decode cycle or fetch-decode together is called fetch cycle. 

Execute Cycle 

Micro operations for each instruction are different and we list them first and then give the explanation. 

LDA 

STA 

HLT 

AND 

NOT 

SHL 

ADD 

SUB 

D
0
T

3
: MDR +- M[MAR] 

D
0
T

4
: ACC +-MDR, TC+- 0 

DJ
3 

: MDR +-ACC 

D
1 
T

4 
: M[MAR] +- lv!DR, TC+- 0 

D2 T
3

: S +- 1, TC+- 0 

D
3
T

3
: .MDR +- M[MAR] 

D
3
T

4
: ACC +-ACC & MDR TC+- 0 

D4T
3

: ACC +-ACC', TC+- 0 

D
5
T

3
: ACC[7:l] +-ACC[6:0], ACC[O] +- 0, TC+- 0 

D
6
T

3 
: MDR +- M[MAR] 

D
6
T

4
:ACC+-ACC+.MDR, TC+-0 

D
7
T

3
: MDR +- M[MAR] 

D
7
T

4 
: ACC +-ACC - MDR, TC+- 0 

A quick overview of the above list shows, at the completion of each instruction cycle (fetch-decode
execute) TC is reset by which the computer goes to T

0 
state and fetch cycle for next instruction begins. Note 

that, a detailed discussion on execution of the program at register level for every clock trigger appears in 
Section 16.5. 

In operations like LDA, AND, ADD, SUB data is brought from memory, address of which is available in 
MAR. In executing STA the MAR content denotes the location where data is to be stored in memory. 



Digital Principles and Applications 

Macro operations AND, NOT, ADD, SUB use ALU. When HLT is executed S flag is set which stops 
execution of the program. This flag is cleared through power-on-reset. 

Now let's pick up one macro operation (say, LDA) and see how it gets executed through its constituent 
micro operations. From Table 16.1 we find instruction LDA transfers content of a specified memory location 
to A CC. If the opcode fetched in fetch cycle is 000 it refers to LDA operation. In decode phase, opcode 000 
makes D

0 
= 1 and the other outputs of ID are all zero. This is so till JR is refreshed or receives another opcode 

in the next fetch cycle, state T2' Till then D
O 

gives output 1. 

The computer enters execution phase at state T, (T
1 
= 1). Now as D

0 
= 1, condition D

0
T

3 
= 1 and data is 

read from memory and loaded in MDR. Note that, the address of memory location from which data is to be 
brought was made available to !MAR in state T

2
• Also note that, memory content cannot directly be loaded 

into A CC (refer to data path shown in Fig. 16.8) and is to be done through MDR. In next clock cycle, i.e. when 
D

0
T

4 
1 the content of MDR is transferred to ACC via BUS and the macro operation is complete. We reset 

TC and let the computer begin a new instruction cycle. This analysis can be extended to explain execution 
of other instructions. 

At this point we make an important observation that all the instruction executions are completed within 
5 clock cycles (T

0 
to T

4
) and hence a 3-bit counter, which can count up to 8 is sufficient as TC in our simple 

computer. 

7. What is a fetch cycle? 
8. Why TC is reset every time an instruction is executed? 

16.4 DESIGN OF CONTROL UNIT 

The control unit is primarily a combinatorial circuit that supplies necessary controls inputs to all the important 
hardware elements of the computer. This takes timing information from computer master clock and is thus 
responsible for providing necessary timing and contml information. The path through which these signals 
travel to reach different parts of a computer is called control path. Often we assign a group of wires, called 
control bus as shared path for this. The control logic is arrived at from (i) basic computer architecture we 
have adopted in the beginning, (ii) conditions appearing at left hand side of symbol ':' in RTL statements 
for our simple computer, given in previous section, and (iii) certain other issues, e.g. power-on-reset, control 
variables need to be activated for intended operation of a particular hardware, etc. 

Loading Registers 

Let us first see when parallel load control of JR is to be activated. We find from discussion of previous section, 
only during T2 it is loaded. So TSD (Timing counter decoder) output T

2 
can be directly connected as parallel 

load control input of JR. Every time T
2 

is active this loads three MSBs of BUS (data path is such, refer to 
Fig. 16.2), which at that time holds MDR value, into IR. Obviously, at that time BUS selector (BS) should 
place content of lvfDR into BUS. This we'll discuss while designing control for BS. 

What happens if we allow loading of IR say, in every clock cycle instead of above? Whenever there is 
some data made available in BUS by any hardware 3 MSB of that will be loaded into JR; ID (decoder) will 
immediately change and execution corresponding to a different opcode, not the intended one, may begin. You 



A Simple Computer Design 

can understand it'll be all chaos without any sense. Thus we return sanity to our simple machine by loading 
JR only when opcode is fetched, i.e. i!l T

2 
and we can write logic relation 

LOADIR= T2 

We see, MDR is loaded during T1, D0T
3

, D
1 
T

3
, D3T3

, DJ
3

, D
7
T

3 
and corresponding condition is 

LOADMDR = T1 + (D0 + D1 + D3 + D6 + D1)T3 

Proceeding in same manner we can write, LOAD.1m = T
0 
+ T

2 
and 

Memory Read/Write 
Memory read signal is invoked by: READM = T

1 
+ (D

0 
+ D

3 
+ D6 + D

7
)T

3 

Memory write signal is invoked by: WRITEM = D
1
T

4 

ALU Control 
Control variables of ALU activated for addition: 

Control variables of ALU activated for subtraction: 

Control variables of ALU activated for logic AND: 

Control variables of ALU activated for logic NOT: 

BUS Controller 

BUS controller gives access 

and 

toACCby 

toPCby 

toMDRby 

to ALU by 

ALU ADD= D6T4 

ALU SUB= D1T4 

ALU AND= D3T4 

ALUNOT = D4T3 

BUSACC = DI T3, 

BUSPc= T0, 

BUSMDR = Tl+ DOT4 

BUS ALU= D4 T3 + (D3 + D6 + D7) T4 

Thus, selection inputs of eight 4-to-l multiplexers that places data from one of these four devices ACC, 
PC, MDR and ALU on BUS should become active when corresponding conditions mentioned by above logic 
equations are met. 

Other Control Signal 

The condition for setting START/STOP flag Sis: 

The condition for shift left operation of A CC is: 

The signal that triggers increment of PC: 

Timing counter TC is synchronously reset by: 

SETs = D
2
T

3 
[Sis power on reset] 

SHIFT_ LEFT ACC = D 5T3 
INCREMENT PC= Tl 

RESET re= (D2 + D4 + D5) T3 + (D0 + D
1 
+ D3 

+ D6+ D1) T4 

Finally, the master clock remains enabled if flag Sis not set. Thus ENABLEcwcK = S' 

Based on these equations the control unit of our simple computer can be made. We show the control circuit 
of ACC, TC and TSD, BS in following three examples. Refer to problems of Section 4 of this chapter for 
more circuits. Together they make the control unit of our simple computer. 



Digital Principles and Applications 

Show using circuit diagrams the control inputs to ACC. 

Solution The parallel load shift register ACC in the simple computer designed shifts data to left while serial data 
inis O (GND). It also loads Jlfil'<!lleldatafrom.BUS. The conditions for these two operations are shown above in the 
form oflogic equations. The corresponding diagram is shown in Fig. 16.5. 

From Bus 

Parallel 
data in 

Shift left 
ACC D5 __ ,---..._ Serial data in .-----'----, 

---GND 
T3 

-----i 
ACC • >---Clock 

Load'----....----' 
ACC 

D;: input from ID 
T; : input from TSD 

>---+-... To ALU 
Parallel data 

out 

To BUS 

Control for ACC 

Show using diagrams control inputs to TC and its connection to TSD. 

Sg}utia.n . TheJimit}g cm1nter TC is a. mod~8. qp (?<Junter with pa,rallel load facility. When .RESET re is. ac:tivated 
ai;~rdjngto contrpl lo~<:: disc11ss~ in this St:Ction, 000. is SYflchronouslyloaded ~nd up coUllt resumes. The requµ-ed 
circuit diagram is shown in.Fig. 16.6. 

Show using diagram how bus controller works. 

Solution The controller develop.:d from c;pntrol equan,ons discussed in.· this section. is. shoW,tt in flg. 16.7. Thi~ 
is developed on multiplexer logic like Fig. 4.5 of Chapter 5. A tri~state buscontrol can also be designed similar to 
diagram shown in Fig. 14.26 of Chapter! 4. There theDISABLE control input will be fed by complement of respective 
BUS activate signal, complementofBUSAcc, BU~PCetc. 

Note that, PC does notaccess bit 5 to 7 ofBUS as it has only 5 bit binary information that is transferred to MAR 
via bit O to4 of the BUS, Hence, for 3MSBthere is oneAND gate less and the OR gate is of3 input. 



D2----t 
T3 --.---1 
D4--+--t 

Do----1 
T4--.---1 

D1--+--t 

A Simple Computer Design 

////. / 

2 

Load TC 
RESET re 

2 1 

Parallel 
data in 

0 

0 
Parallel 

out 

Clock 

0 

A TSD l 

B 2 
3-to-8 3 

C Decoder 
4 
5 
6 
7 

Control of Timing Counter, TC and its connection with Timing 
Sequence Detector, TSO 

9. How long instruction decoder outputs D
7 

••• D
0 

remain constant? 
I 0. What are the instructions of this simple computer in which ALU places data on BUS? 
n. Which U1Struction sets flag F? 

16.5 PROGRAMMING COMPUTER'. 

Now that our simple computer is ready with hardware and instruction sets let us see what computer program 
can solve the problem with which we started designing our simple machine. In Table 16.2 we present the 
program in mnemonics along with comments on job done by each instruction. Program in binary code as 
exists in 32 x 8 memory module will be shown after that. 

Thus we need 14 instructions (Table 16.2), all single byte to solve the problem in our simple computer. 
We need 12 memorylocations for storing numbers. So 14 + 12 = 26 bytes of our 32 byte memory are used for 
this problem. For bigger sized problems we need bigger memory and for more complex problem additional 
instruction sets and, of course, more complex computer architecture. 

Now let us see how program and data remain stored in memory in binary numbers. We know that due 
to power-on-reset PC is always initialized with 00000, the first location of the memory (Refer Table 16.3) 
where first instruction of the program is to be stored. We use first 14 locations (address 00000 to 01101) 
of memory to store instructions. If we store data used in the program, i.e. 11 numbers in next consecutive 
locations then addresses O 1110 to 11000 get filled. The location 11001, i.e. 26th location of memory can be 
used to store the result. Note that, multiplication is achieved by left shifting A CC and thus we don't need to 
store any multiplicand for that. If the 10 numbers to be added are say, 5, 2, 1, 3, 8, 6, 5, 2, 7, 4 and the number 



ALU[7] ACC[7] 
MDR[7] . 

MDR[I] ACC[I] 
ALU[!] I PC[l] . 

MDR[O] ACC[O] 
ALU[O] I PC[O] . 

. ~~=tl~Hltl-D1~~L 
To ---t-

12 
DoT4~ 

D3-+1----i 

D6-++-! 

D7-++--! 

D4--+---! 

BUSALU 

71 ---------------------------------- I 0 

BUS 
7 
6-------'----------------1----------1----
5--------------------------------
4--------------------t-----------t----
3--------------------t-----------t----
2--------------------t-----------t----
1------------------------------t---
o----~------------------------11----

Control over bus by different devices using multiplexer logic 

c:, 
CQ' 

~ 
~ :::,· 
.g. 
(D' 

"' 2. 
:g 
[ 
g. 
~ 



Instruction 
Number 

l 
2 
3 
4 
5 
6 
7 
8 

10 
n 

12 
13 
14 

Instruction 
pnemonic 

LDAaddrl 
ADDaddr2 
ADDaddr3 
ADDaddr4 
ADDaddr5 
ADDaddr6 
ADDaddr? 
ADDaddr8 
ADDaddr9 
ADDaddrlO 
SUB addrll 

SHL 
STAaddr12 
HTL 

A Simple Computer Design 

Program to Solve Given Problem with Comments 

Comment 

loads 1st number toACC, the address of which follows opcode 
fetches 2nd number from memory and adds to 1st, stores the S1ll1l in ACC 
similarly adds 3rd number 
adds 4th number 
adds 5th number 
adds 6th number 
adds 7th number 
adds 8th number 
adds 9th number 
adds 10th number, ll()W sum oflO numbers remain available in ACC 
fetches 11th 110. from memory, subtracts it from sum of 10 nos., stores result in 
ACC 
shifts ACC to left by 1 bit, equivalent to mul~pµcation by 2 
stores content ofACC in memory in the address available afteropcode 
halts the computer 

subtracted is say, 9 then we can fill up first 25 locations of memory as shown in Fig. 16.14. The 26th location, 
before the program is run, may contain anything but after the program is run will contain the end result, i.e. 
68 expressed in binary. Memory content is often shown in hexadecimal instead of binary. Refer to Problems 
16.19 and 16.20 for this. 

Program Execution 

Now let us see how the program gets executed in first few instruction cycles. We note the change in the 
value of the registers along with ID and TSD in each clock cycle since the program begins. Table 16.4 shows 
sequential progress of our simple computer with every trigger of system clock. As told before PC, TC and S 
are power on reset. They all contain zero in the beginning when the computer is switched on. 

In first clock cycle, the machine is in T
0 

state given by TSD that decodes TC. At T
0

, content of PC that 
contains the starting address of the program is copied to MAR. Corresponding micro operation is shown in 
rightmost column of Table 16.4. TC is incremented by 1. 

In next clock cycle, TC and PC are incremented by 1, data from memory is loaded to MDR that contains 
the first instruction. 

In 3ro clock cycle TC is incremented, IR gets the opcode and MAR gets address for first data. Note that 
decoding of JR is also done in same clock cycle that makes D

0 
high, as opcode is 000 (LDA). This completes 

the fetch cycle, which is common for all instructions. 

In executing LDA instruction the first state is T
3 

state. Here, data from 15th location of Memory (MAR= 
01110) which contains 00000101, decimal equivalentof5 is loaded to MDR. In T

4 
state this data is transferred 

to ACC and macro operation LDA is fully executed. This completes the first instruction cycle. Note that 
timing counter (TC) is to be reset after execution of data transfer from MDR to ACC and that begins the next 
instruction fetch. 



Digital Principles and Applications 

Program and Data Section of the Memory 

Memo1J1 Memory Memory 
location address content Comment 
number in binary 

1 00000 OOOOHlO Program section begins. Loads 1st no. from location OlllOtoACC. 
3MSB 000: Load 

2 00001 11001111 3MSB110: ADD, 5LSB 01111: Address of 2nd operand 

3 00010 11010000 

4 00011 11010001 

5 00100 11010010 

6 00101 11010011 First 14 locations, i.e. memoiy address 00000 to 01101 contain instructions. 

7 00110 11010100 Here, three MSBs always refer to opcode. Five LSBs refer to memoiy 

8 OOlll 110101.01 address for instructions LDA, ADD, SUB, STA. For instructions 

9 01000 11010110 SHL and HLT, five LSBs can be anything as they are not referred 

10 01001 11010111 anywhere. 

l1 01010 11111000 

12 01011 10100000 

13 01100 00111001 

14 01101 01000000 Halts computer. Program section ends. 

15 01110 00000101 The data section starts. Stores l" number, 5 expressed in binaiy 

16 01111 00000010 2nd no. 2 in binaiy 

17 10000 00000001 

18 10001 00000011 

19 10010 00001000 

20 lOOll 00000110 

21 10100 00000101 

22 10101 00000010 

23 10110 00000111 

24 10111 00000100 

25 11000 00001001 Stores 11th number, 9 that is subtracted from the sum of 10 nos. 

26 11001 xxxxxxxx After the program is run it becomes O I 000100, i.e. 68 in decimal. 

27 ll010 xxxxxxxx UNUSED 

28 llOll UNUSED 

29 lllOO xxxxxxxx UNUSED 

30 11101 xxxxxxxx UNUSED 

31 11110 xxxxxxxx UNUSED 

32 11111 xxxxxxxx UNUSED 

The fetch cycle is repeated in clock cycle 6 to 8. Since the instruction fetched is ADD (opcode 110) 
corresponding micro operations are performed in clock cycles 9 and 10 followed by next instruction fetch, 
starting again at 11th clock cycle. This continues till we reach 14th instruction HLT which when executed, 
sets S flag. This inhibits the system clock output in our design; thus content of all registers and memory will 
remain unchanged after that till the computer is switched off. 



A Simple Computer Design 

Execution of the Program at Register Level 

Clock TC$ TSD PC$ MAR MDR IR ID ACC s lvficro operation pe1formed 
Cycle after clock trigger 

l 000 To 00000 00000 xxxxxxxx XXX X xxxxxxxx 0 MAR+-PC 

2 001 T, 00000 00000 00001110 XXX X xxxxxxxx 0 MDR .+- M[MAR], PCt-PC+l 

3 010 T2 00001 01110 OOOOlllO 000 Do xxxxxxxx 0 IRt-MDR[7:5}, MAR+-MDR[4:0] 

4 011 T3 00001 OlllO 00000101 000 Do xxxxxxxx 0 MDR +- M[MAR] 

5. 100 T4 00001 01110 00000101 000 Do 00000]01 0 ACC +- MDR, TC+- 0 
6 000 Tn 00001 00001 00000101 000 Do 00000101 0 MAR+-PC 

7 001 T, 00001 00001 11001111 000 Do 00000101 0 MDR +- M[MAR], PC.,-PC+ 1 
8 010 T2 00010 01111 11001111 llO D6 00000101 0 JR f- MDR[7:5], MAR .,-J1DR[4:0] 

9 011 T, 00010 01111 00000010 110 D6 00000101 0 MDR +- M[MAR] 

10 100 T4 00010 01111 00000010 llO D6 00000111 0 ACC+-ACC+MDR, TC+-0 
11 000 To 00010 00010 00000010 llO D6 00000111 0 .MAR+-PC 

12 001 T, 00010 00010 11010000 HO D6 00000111 0 MDR .,- M[MAR], PC.,-PC+l 

-j:PC, TC ( also TSD) values shown are the ones before clock trigger while for other registers this is what appears 
after clock trigger (taking care from TC and PC). 

Concluding Remark 

Before we conclude our computer design exercise let us see what we have achieved and what more is needed 
to make this computer fully functional. We have designed a simple processor comprising register arrays, 
flag, small memory, BUS and control unit. In short, we have designed a central processing unit (CPU) that 
connects to a small memory module and is able to execute programs built on a small instruction set. 

What we have not discussed is how data is entered into computer from an external device say, keypad and 
also how it displays data in some output device say, a monitor. We also have not discussed interesting and 
important issues like 

(i) handling of jump instructions (CPU jumps to an address to fetch an instruction), 
(ii) use of subroutines (program under program that is used and called many times), 

(iii) memory management (slow-fast, addressing mode details), 
(iv) interrupt handling ( devices of different priorities asking attention and service of CPU), 
(v) pipelined CPU (doing jobs in parallel if there is no conflict to enhance computer speed, e.g. execution 

phase of present instruction in parallel with fetch of next instruction), so on and so forth. These are 
covered in detail in titles related to modem computer design courses and an interested reader can refer 

to the same. 

We shall conclude this chapter by revisiting computer architecture introdeced in Section 1.6, carrying 
forward the discussions of this chapter. Figure 16.8 represents a basic 8-bit computer. The 8-bit data bus is 
bidirectional in nature i.e. CPU is capable of both reading and writing from/to a location defined by 16-bit 
address which is a total of216 = 64K locations. Individual RAM and ROM are of size 16Kand this requires 14 
bits for addressing. The two MSBs are sent to a 2 to 4 address decoder which generates four Chip Select (CS) 



Digital Principles and Applications 

Clock 
CPU 

Reset 
Circuit 

.--- - Circuit 

INTR WRRD 

t 
Address 

I D[7:0] 
-------+--

decoder A[l5:14] I 
3 2 1 0 I 

I A[13:0]I 
I I 
I I 

..------- --- ---
__ ,... ______ 

---- - ---,-- ------- ------11 
I l. - I -
I r i r I I r I I 

+ i • + 
lNTR CS WRRD AD CS WROE A D CS WROE A D CSOE A D 

Serial Port Control 

Address range 
DFFF-FFFF 

RAM 16Kx8 

Address range 
8FFF-CFFFF 

RAM 16Kx8 

Address range 
4FFF-7FFFF 

ROM 16Kx8 

Address range 
OFFF-3FFFF 

Basic architecture of an 8-bit computer 

signals, connected to each of the memory and output module generating unique address ranges as specified 
in the bottom of the figure. The calculation is as follows. For the ROM, A[15:I4] is always 00 and thus all 
possible values of A[I3:0] generate address ranges 0000 0000 0000 0000 to 0011 1111 1111 1111, i.e. 0000 
to 3FFF in hex. Similarly, for the first RAM block, A[15:I4] is always 01 and thus all possible values of 
A[13:0] generate address ranges 0100 0000 0000 0000 to 0111 1111 1111 1111, i.e. 4000 to 7FFF etc. CPU 
read is enabled by activating the control signal, RD (Read). This, in tum, requests outputs of the devices from 
which data is to be read to be enabled through OE (Output Enable) or through RD, if it is a serial input-output 
port, following which CPU takes the value from data bus. The control signal WR (Write) is activated to 
enable CPU writing to devices. Note that WR and RD should not be activated simultaneously. The timing of 
these control signals are also important so that data, chip select and add,ess are properly stabilized to avoid 
false reading and writing operations. The ROM is not writable and usually contains sequence of instructions 
required for booting. This is usually used during power on of the compmer and also in between, if the 
computer is asked to stop all operations and start afresh. The other time a computer may be asked to stop 
its usual fetch-decode-execute operations, but only temporarily, is when an interrupt is invoked. Then the 
computer's present state is stored in a designated memory space called stack. The computer comes back to 
its usual operating state once the interrupt is served usually through a interrupt service routine (ISR). There 
could be both software and hardware interrupts. The serial port control block shows how a hardware interrupt 
can ask service from CPU by activating INTR. Note that the maskable interrupts can be masked ( disabled) 
by writing into a control register while non-maskable interrupts cannot be disabled. Reset is a non-maskable 
interrupt and care should be taken in the design of a computer so that corresponding ISR is in place before 
an interrupt is invoked. 



A Simple Computer Design 

How many clock cycles are needed to execute the program shown in Table 16.2? 

Solution The calculation of clock cycles is as follows. 

OneLDA 

NineADD 

One SUB 

One STA 

One SHL 

One HLT 

TOTAL= 

5 

9x5=45 

5 

5 
4 

4 

68 clock cycles 

Write a program for this computer that adds two positive integers, available in memory 
locations addrI and addr2, multiplies the sum by 5 and stores final result in location addr3. 
Consider, the numbers are small enough not to cause any overflow, i.e. data at every stage 
require less than 8-bits for its representation. 

Solution Addition of two numbers is straightforward and can be done usingLDAand ADD instructions as done 
before. For multiplication with 5 we haveto use.an indirect technique. Two left shift give multiplication by4and one 
more addition will make it multiplication by 5. Alternatively, 5 ADDoperations will also give multiplication by 5. 
The program can be written as follows. 

LDAaddr1 

ADDaddr2 

Note that, we have used addr3 as intermediate storage of addition result. Since in the. computer.designed there 
is no instruction to place data on a register from ACC (and also retrieve the same) we had to use memory. Storing 
intermediate results in registers speeds up the process but here we are limited by the architecture and instruction set 
available. Also note, we could have used any other available memory location for intermediate storage. 

Write a program for this computer that performs bit-wise Ex-OR operation on two numbers 
available in memory locations addrl and addr2. The result is to be stored in location addr3. 

So/ution . 91.lrdesigned COillpllter canperfo~ only two kindsof. l~gic Opllrations AND and NOT. Therefore, we 
break Ex-OR logfo of two nulllbers, say A and B in. such a way that there is only AND and NOT operator. 

B~AB'+A'B==((ABT.(A'B)')f .. [FromDeMorgan'sTheorem] 

Thus the program can be written as shown next. The logic operation performed by each instruction is shown as 
commentafter semicolon. 



Digital Principles and Applications 

LDA 
NOT 
AND 

NOT 
STA 
LDA 
NOT 
AND 
NOT 
AND 
NOT 
STA 
HLT 

addrl 

addr2 

addr3 
addr2 

addrl 

addr3 

addr3 

.;A 

;A' 

;AB' 
; (Alf)' 

; (AB')'.(A'B)' 
; ((AB')'.(A'B)')' 

12. What happens to the program shown in Table l(i2 or 'Fable 16.3,if HLT instruction is not 
provided? 

A computer stores program or binary coded instructions inits program memory. The centrai processing 
unit comprising set of registers and a control unit seque11ttany fetches this program, decodes it and 
executes the same. To accomplish this, an instruction, also called macro operation is brokenjnto series 
of micro operations. Register Transfer Language is a very convenient tool to express each of these micro 
operations. A simple computer is designed in this chapter that has eight instructions and can perform logic 
operations like AND, NOT andarithmetic operatio~ like addition and subtraction. It ca11 also load data 
from memory and store data in memory, The data path and control unit ofthe computeris designed using 
hardware discussed in earlier chapters of the book. The programming technique for this computer for 
various arithmetic and logic problems is also demonstrated, 

• accumulator A multipurpose register that 
stores one operand of all arithmetic and logic 
operations and also for memory referenced 
data transfers. 

• address bus Group of wires that transfer 
address information. 

• arithmetic logic unit A combinatorial circuit 
that can perform various types of arithmetic 

and logic functions decided by a set of 
selection inputs. 

• bus A group of wire providing shared common 
path between number of devices. 

• central processing unit The brain of computer 
that controls the operations of a computer. 

• computer architecture Organization of a 
digital computer. 



A Simple Computer Design 

• control bus Group of wires that transfer 
control information. 

• control path The path through which control 
signals travel to different devices and make 
them perform their assigned tasks. 

• data bus Group of wires that transfer data. 
• data memory The part of memory that contains 

data. 
• data path The path through which data moves 

from one device to another in a computer. 
• flag A single flip-flop that stores binary 

outcome of a certain operation. 
• instruction register A register that contains 

the opcode or binary code of an instruction. 
• interrupt An event that asks computer's 

immediate attention. 
• interrupt service routine A set of computer 

instructions that serves an interrupt. 
• macro operation An instruction that a 

computer executes in a complete instruction 
cycle, consists of series of micro operations. 

• maskable interrupt Interrupt that can be 
disabled. 

• memory address register A register that 
contains address of memory location for all 

16.l For memory configured as in Fig. 16.2, if 
immediate addressing is allowed what is the 
maximum value of number (in decimal) that 
can be loaded through instruction fetch? 

16.2 What is the minimum size required for MAR if 
memory addressed has size lK x 16? 

16.3 For a more complex computer design, 75 
different instructions are required. What size 
of IR would you likely cho.ose? 

16.4 Draw data path of the computer described next. 
The computer in addition to what is described 
in Section 16.2 has two more registers P and 
Q, which can transfer data to/from ACC via 
BUS. It also has a CY flag that stores ALU 

memory referenced instructions. 
• memory data register A register that acts as 

buffer between memory and rest of the circuit, 
storing data that moves to and from memory. 

• micro operation The basic operation, a 
computer performs at register level. 

• non-maskable interrupt Interrupt that cannot 
be disabled. 

• opcode The binary code of an instruction. 
• program Series of instructions that 

accomplishes a task in a computer. 
" program counter A register that stores address 

of next instruction. 
• program memory The part of memory that 

contains instruction. 
• register transfer language A language, which 

expresses register transfer and condition for 
that. 

• stack A memory block usually used for storing 
a computer's present state when interrupt is 
invoked. 

• system clock The clock providing basic 
unit of clock cycle from which trigger of all 
sequential operations are derived. 

overflow and a Z flag that is set when all the 
bits of ACC are zero. 

16.5 What does the following statement mean (X + 
Y):ArB 

16.6 Explain the meaning ofXY: Ar B 
16. 7 Give the final content of A CC when following 

statements are executed 

T
1

: ACCrACC©MDR 

T
2

: ACC rACC' 

16.8 State what the following statement performs 
for the computer described in problem 16.8 

T
1

: ACCrACC+MDR 



Digital Principles and Applications 

CY & 1'
2 

: P ~ ACC 

CY' & T
2

: Q~ACC 

16.9 Show how shift left operation with carry is 
executed. 

16.10 Show how shift right operation with carry can 
be executed. 

16.11 Consider the first instruction of the simple 
computer is replaced by MVI that moves 
immediate data (immediate addressing) 
to ACC. Write micro operations for this 
instruction. What change in hardware is 
required for this? 

16.12 Consider the first instruction of the simple 
computer is replaced by LDI that moves 
indirect data (indirect addressing) to ACC. 
Write micro operations for this instruction. 
Does it require any change in hardware? 

16.13 What does LOAD,1v1R = T0 + T2 mean? 
16.14 Explain if there will be any problem if by 

mistake the control unit is developed on logic 
equation LOAD,H4R = T0 + T2 + T4• 

16.15 Show using diagrams control inputs to ALU. 
Consider IC 74181 (Section 6.10, Chapter 6) 
is used as ALU. 

l. 216-1 = 65535 
2. A computer operation coded in a group of 

binary digits. 
3. To store address from which nextinstruction 

is fetched. 
4. The instniftionfetches a{l&-ess of location in 

which address for operand exists. 
5. RegisterTransferLanguage. 
6. Controlinp:uttoALU. 
7, A part of instruction cycle that fetches 

16.16 Show using diagrams control inputs to 
Memory. 

16.17 How many clock cycles are required to execute 
program given for Example 16.7? 

16.18 How many clock cycles are required to execute 
program given for Example 16.8? 

16.19 If the two numbers used in Example 16.7 are 
5 and 8, and data section immediately follows 
program section .show the memory values in 
binary after the program is executed? How 
will it be represented in hexadecimal? 

16.20 If the two numbers used in Example 16.8 are 
F2 16 and D616 and data section immediately 
follows program section show the memory 
values in binary after the program is 
executed? · 

16.21 Write a program that compares two binary 
data located in addr I and addr2 of memory 
by making all the bits of addr3 one if two 
numbers are exactly equal. 

16.22 Write a program that executes following 
where Dataaddr refers to data corresponding to 
address addr. 

Dataaddr1 = (Dataadd,1 + Dataadd,2 + Dataadd,3 + 
Dataadd,J X 3 -(Dataaddr5 + DataaddrJ X 2 

instruction from memory that after decoding 
gets executed in execute cycle. 

8. Resetting TC a new .instruction cycle can begin. 
9. 1)U it is loaded in next f~tch cyde. 

l 0. ADD, SUB, AND, NOT. 
11. HLT. 
12. It 15oes 9n exe~?tlllg by loading next content 

of m~mory which houses first number. and .. 
since three MSB are 000 opcode decodes it 
as an LDA instn1ction. 



Binary 

00000000 
0000·0001 
00000010 
00000011 
0000.0100 
00000101 
0000 0110 
0000 0111 
0000.1000 
00001001 
00001010 

0000 1011 
0000 noo 
00001101 
00001110 
oooo.n11 
0001.0000 
0001 OOOI 
0001 0010 
00010011 
0001 0100 

0001 0101 
00010110 
00010111 
00011000 
00011001 
00011010 
00011011 
0001 1100 
0001 llOl 
00011110 

Appendix 1: 
Binary-Hexadecimal-Decimal 

Equivalents 

Hexadecimal Upper Byte 

00 0 
01 256 
02 512 
03 768 
04 1,024 
05 1,280 
06 1,536 
07 1,792 
08 2,048 
09 2,304 
OA 2560 

OB 2,816 
oc 3,072 
OD 3,328 
OE 3,584 
OF 3,840 
10 4,096 
11 4,352 
12 4,608 
13 4,864 
14 5,120 

15 5,376 
16 5,632 
17 5,888 
18 6,144 
19 6,400 
lA 6,656 
1B 6,912 
lC 7,168 
ID 7,424 
lE 7,680 

Lower Byte 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 



Digital Principles and Applications 

Hexadecimal Lower Byte 

IF 31 
20 32 

0010 0001 21 33 
00100010 22 8,704 34 
00100011 23 .&,9p0 35 
00100100 24 . 9,216 36 
0010 0101 25 9,472 37 
00100110 26 9,728 38 
0010011.l 27 9,984 39 
0010!000 28 10,240 40 

00101001 29 10,496 41 
00101010 2A 10,752 42 
00101011 2B 11,008 43 
OOlOHOO 2C U,264 44 
00101101 2D 11,520 45 
00101110 2E ll,776 46 
00101111 2F 12,032 47 
00110000 30 12;288 48 
00110001 31 12,544 49 
00110010 32 12;800 50 

00110011 33 13,056 51 
00110100 34 B,312 52 
00110101 35 t3,568 53 
OOllOHO 36 1'.3,824 54 
00110111 37 14,080 55 
00111000 38 14,336 56 
00111001 39 14;592 57 
OOH 1010 3A 14,848 58 
0011.1011 3B 1$,104 59 
oonnoo 3C 15,360 60 

OOII 1101 3D 15,616 61 
00Il 1110 3E 15;872 62 
OOUllll 3F 16,128 63 
01000000 40 1§,384 64 
01000001 41 16,640 65 
01000010 42 16,896 66 
010000H 43 l'Z,152 67 
01000100 44 17;408 68 
01000101 45 17,664 69 
010oono 46 l7,920 70 

OlOOOHl 47 tB,176 71 
0100'1000 48 1'8}432 72 
01001001 49 f8}688 73 
01001010 4A 18,944 74 
0100'1011 4B l9,200 75 



Appendix 1: Binary-Hexadecimal-Decimal Equivalents 

Binary Hexadecimal UpperByte Lower Byte 

01001100 4C 19,456 76 
01001101 4D 19,712 77 
01001110 4E 19;968 78 
01001111 4F 20;224 79 
01010000 50 20,480 80 

01010001 51 20,736 81 
01010010 52 20,992 82 
0101 OOll 53 21,248 83 
0101 0100 54 21,504 84 
01010101 55 21,760 85 
01010110 56 22,016 86 
01010111 57 22,272 87 
01011000 58 22,528 88 
01011001 59 22,784 89 
01011010 5A 23,040 90 

OlOUOll 5B 23,296 91 
OHH HOO SC 23,552 92 
01011101 5D 23,808 93 
0101 lllO 5E 24,064 94 
0101 llll 5F 24,320 95 
01100000 60 24,576 96 
01100001 61 24,832 97 
01100010 62 25,088 98 
OHO OOH 63 25,344 99 
01100100 64 25,600 100 

Oll00101 65 25,856 101 
0110 0110 66 26,112 102 
01IO 0111 67 26,368 103 
01101000 68 26,624 104 
01101001 69 26,880 105 
01101010 6A 27,136 106 
01101011 6B 27;392 107 
OHOTlOO 6C 27,648 108 
1}110.1101 6D 27,904 109 
01101110 6E 28,160 110 

01101111 6F 28,416 lll 
01110000 70 28,672 112 
01110001 71 28,928 113 

01u9910 72 29,184 114 
0111 0011 73 29,440 115 
01110100 74 29,696 116 
01110101 75 29;952 117 
OlllOUO 76 30,208 118 
OIUOHl 77 30,464 119 
01111000 78 30,.720 120 



Digital Principles and Applications 

Binary Hexadecimal Upper Byte Lower Byte 

01111001 79 30,976 121 
OlU 1010 7A 31,232 122 
01111011 7B 31,488 123 
01111100 7C 31,744 124 
Olll 1101 7D 32,000 125 
Olll. lllO 7E 32,256 126 
OlllJlll 7F 32,512 127 
10000000 80 32,768 128 
10000001 81 33,024 129 
1000 0010 82 33,280 130 

1000 0011 83 33,536 131 
10000100 84 33,792 132 
1000 0101 85 34,048 133 
IOOO OllO 86 34,304 134 
10000111 87 34,560 135 
10001000 88 34,816 136 
1000 1001 89. 35,072 137 
10001010 8A 35,328 138 
1000 1011 SB 35,584 139 
1000 1100 8C 35,840 140 

10001101 8D 36,096 141 
10001110 8E 36,352 142 
10001111 8F 36,608 143 
1001 0000 90 36,864 144 
10010001 91 37,120 145 
10010010 92 37,376 146 
10010011 93 37,632 147 
10010100 94 37,888 148 
10010101 95 38,144 149 
1001 0110 96 38,400 150 

10010111 97 38,656 151 
10011000 98 38,912 152 
10011001 99 39,168 153 
10011010 9A 39,424 154 
10011011 9B 39,680 155 
10011100 9C 39,936 156 
10011101 9D 40,192 157 
10011110 9E 40,448 158 
10011111 9F 40,704 159 
10100000 AO 40,960 160 

10100001 Al 41,216 161 
10100010 A2 41,472 162 
10100011 A3 41,728 163 
10100100 A4 41,984 164 
1010 0101 AS 42,240 165 



Appendix 1: Binary-Hexadecimal-Decimal Equivalents 

Hexadecimal Upper Byte Lower Byte 

10100110 A6 42,496 166 
1010'0111 A7 42,752 167 
1010,JOOO AS 43,008 168 
10101001 A9 43,264 169 
10101010 AA 43,520 170 

10101011 AB 43,776 171 
10101100 AC 44,032 172 
1010H01 AD 44;288 173 
lOlOlUO AE 44,544 174 
10101111 AF 44,800 175 
10110000 BO 45,056 176 
10110001 Bl 45,312 177 
lOHo<no B2 45,568 178 
10110011 B3 45,824 179 
10110100 B4 46,080 180 

10110101 B5 46,336 181 
10110110 B6 46,592 182 
10110111 B7 46,848 183 
10111000 BS 47,104 184 
10111001 B9 47,360 185 
1011.1010 BA 47;616 186 
1011>1011 BB 47,872 187 
lOHHOO BC 48,128 188 
10111101 BD 48,384 189 
lOHlllO BE 48,640 190 

10ll)l11 BF 48,896 191 
HOOOOOO co 49,152 192 
1100.0001 Cl 4'>;408 193 
1100.0010 C2 49,664 194 
llOOOOU C3 49,920 195 
11000100 C4 50,176 196 
11000101 cs 50,432 197 
11000110 C6 50,688 198 
1100'0111 C7 50;944 199 
11001000 cs 51,200 200 

HOO 1001 C9 51;456 201 
l]OOJ()lO CA 51,712 202 

11091.Qll CB 51,968 203 

llOfl.1}.00 cc 52;224 204 
11001101 CD 52,480 205 
11001UO CE 52,736 206 

1109.1111 CF 52,992 207 

1101.Qooo DO 53,248 208 
11010001 D1 53,504 209 
11010010· D2 ··s3,760 210 



Digital Principles and Applications 

Binary Hexadecimal Upper Byte Lower Byte 

1101 0011 D3 54,016 211 
11010100 D4 54,272 212 
110101.Ql D5. 54,528 213 
llOlOl lO D6 54,784 214 
1101 Olll D7 55,040 215 
1101 1000 D8 55,296 216 
1101 1001 D9 55,552 217 
1101 I010 DA 55,808 218 
1101 1011 DB 56,064 219 
11011100 DC 56,320 220 

11011101 DD 56,576 221 
1101 1110 DE 56,832 222 
lIOUlll DF 57,088 223 
1110 0000 EO 57,344 224 
11100001 El 57,600 225 
lllO 0010 E2 57,856 226 
lllOOOll E3 58;112 227 
11100100 E4 58,368 228 
1110 010.1 ES 58;624 229 
11100110 E6 58,880 230 

11100111 E7 59,1:36 231 
1110 1000 E8 59,392 232 
1110 1001 E9 59,648 233 
1110 1010 EA 59,904 234 
11101011 EB 60,160 235 
1110 1100 EC 60,416 236 
1110.UOI ED 60,672 237 
11101110 EE 60,928 238 
1110 nu EF 61,184 239 
lllFOOOO FO 61,440 240 

1111 0001 Fl 61,696 241 
Il11 0010 F2 61,952 242 
llUOOll F3 62,208 243 
1111 0100 F4 62,464 244 
11110101 F5 62,720 245 
Ull OllO F6 62,976 246 
11110111 F7 63,232 247 
llll 1000 F8 63,488 248 
11111001 F9 63;744 249 
11111010 FA 64;000 250 
l Ill 1011 FB 64,256 251 
11111100 FC 64,512 252 
111I 1101 FD 64,768 253 
llll 1110 FE 65,024 254 
11Ullll FF 65,280 255 



Appendix 2: 
2's Complement Representation 

Positive Negative 

Decimal Hexadecimal Binary Binary Hexadecimal Decimal 

0 OOH 00000000 0000 0000 OOH -0 
1 OlH 00000001 1111 1111 FFH -1 
2 02H 00000010 1111 lllO FEH -2 
3 03H 00()00011 11111101 FDH -3 
4 04H 00000100 l lll llOO FCH -4 
5 05H 00000101 llll 1011 FBH -5 
6 06H OOOOOllO llll 1010 FAH -6 
7 07H 00000111 llll 1001 F9H -7 
8 08H 0000·1000 1111 1000 F8H -8 
9 09H 00001001 1111 0111 F7H -9 

10 OAH 00001010 llllOllO F6H -10 
11 OBH 00001011 1111 0101 F5H -11 
12 OCH 00001.100 1111 0100 F4H -12 
13 ODH 00001101 llll 0011 F3H -13 
14 OEH 00001110 1111 0010 F2H -14 
15 OFH 00001111 1111 0001 FlH -15 
16 lOH 00010000 1111 0000 FOH -16 
11: llH 00010001 lllO 1111 EFH -17 
18 12H 00010010 1110 1110 EEH -18 
l9 13H 0001•oon 1110 1101 EDH -19 
20 14H 00010100 mo 1100 ECH -20 

15H 00010101 lllO 1011 EBH -21 
16H 00010110 lllO 1010 EAH -22 
17H 00010111 1110 1001 B9H -23 
18H 00011000 1110 1000 ESH -24 
19H 00011001 mo om >E7H -25 
lAH 00011010 lllO 0110 E6H -26 

lBH ... OQOllQll 1110 0101 -27 



Digital Principles and Applications 

. 
Negative 

. ..... 
· .... / Positive 

Decimal Hexadecimal Binary Bina!)' Hexadecimal Decimal 

28 lCH 0001 llOO 1110 0100 E4H -28 
29 !DH 00011101 1110 0011 E3H -29 
30 !EH 00011110 lllO 0010 E2H -30 
31 lFH 00011111 1110 0001 ElH -31 
32 20H 00100000 1110 0000 EOR -32 
33 21H 0010 0001 11011111 DFH -33 
34 22H 0010 0010 1101 1110 DEH -34 
35 23H 0010 0011 1101 1101 DDH -35 
36 24H 00100100 1101 1100 DCH -36 
37 25H 0010 0101 1101 1011 DBH -37 
38 26H 0010 0110 1101 1010 DAH -38 
39 27H 0010 0111 1101 1001 D9H -39 
40 28H 0010 ]000 1101 1000 D8H -40 
41 29H 00101001 11010111 D7H -41 
42 2AH 00101010 1101 OllO D6H -42 
43 2BH 00101011 1101 0101 D5H -43 
44 2CH 0010 1100 1101 0100 D4H -44 
45 2DH 0010 1101 1101 0011 D3H -45 
46 2EH 00101110 1101 0010 D2H -46 
47 2FH 00101111 1101 0001 DlH -47 
48 30H 00110000 1101 0000 DOH -48 
49 31H 0011 0001 1100 l lll CFH -49 
50 32H 00110010 1100 1110 CEH -50 
51 33H 001100ll 1100 1101 CDH -51 
52 34H OOll 0100 llOO 1100 CCH -52 
53 35H OOUOIOl llOO lOll .CBH -53 
54 36H 0011 OHO llOO 1010 CAH -54 
55 37H 00110111 1100 1001 C9H -55 
56 38H 00111000 1100 1000 C8H -56 

39H OOll 1001 1100 0111 C7H -57 
58 3AH 00111010 1100 0110 C6H -58 
59 3BH 0011 1011 llOO 0101 C5H -59 
60 3CH oou 1100 1100 0100 C4H -60 
61 3DH OOll llOl 1100 0011 C3H -61 
62 3EH OOH 1110 1100 0010 C2H -62 
63 3FH 0011 Illl 1100 0001 cm -63 
64 40H 01000000 1100 0000 COH -64 
65 41H 01000001 1011 llll BFH -65 
66 42H 01000010 lOll lllO BEH -66 
67 43H 01000011 1011 1101 BDH -67 
68 44H OIOO 0100 1011 1100 BCH -68 
69 45H moo 0101 10111011 BBH -69 



___________ A_pp_e_nd_ix_2_:_2'_s _co_m_p_le_m_en_t_Re_p_re_se_n_ta_tio_n __________ ~ 
I 

Positive Negative 

Decimal Hexadecimal Bina1y Binary Hexadecimal Decimal 

70 46H 01000110 1011 1010 BAH -70 
71 47H OlOOOHl 1011 1001 B9H -71 
72 48H 0100 1000 1011 1000 B8H -72 
73 49H 01001001 1011 0111 B7H -73 
74 4AH 0100 1010 1011 OllO B6H -74 
75 4BH 0100 1011 1011 0101 B5H -75 
76 4CH 0100 HOO 1011 0100 B4H -76 
77 4DH 0100.1101 1011 OOll B3H -77 
78 4EH 0100 1110 1011 0010 B2H -78 

79 4FH 0100 1111 1011 0001 BlH -79 
80 50H 0101 0000 lOll 0000 BOH -80 

81 51H 01010001 1010 1111 AFH -81 
82 52H 0101 0010 1010 1110 AEH -82 
83 53H 0101 0011 1010 1101 ADH -83 
84 54H 01010100 1010 1100 ACH -84 
85 55H 01010101 1010 1011 ABH -85 
86 56H 0101 OHO 1010 1010 AAH -86 
87 57H 0101 om 1010 1001 A9H -87 
88 58H 0101 1000 1010 1000 ASH -88 
89 59H 01011001 1010 0111 A7H -89 
90 5AH 0101 1010 1010 0110 A6H -90 
91 5BH Otol 10Il 1010 0101 ASH -91 

92 SCH 0101 1100 1010 0100 A4H -92 
93 5DH 0101 1101 1010 0011 A3H -93 
94 5EH 0101 lllO 1010 0010 A2H -94 
95 5FH 0101 1111 1010 0001 AlH --95 

96 60H 0110 0000 1010 0000 AOH -96 
97 61H 0110 0001 1001 1111 9FH -97 
98 62H 01100010 1001 lllO 9EH -98 

99 63H OllO 0011 10011101 9DH -99 

100 64H 0110 0100 1001 1100 9CH -100 

IOI 65H 0110 0101 1001 1011 9BH 101 

102 66H OllO 0110 1001 1010 9AH -102 

103 67H 0110 0111 1001 1001 99H 103 
104 68H 0110 1000 1001 1000 98H -104 

105 69H 0110 1001 1001 0111 97H 105 
106 6AH OHO 1010 1001 0110 96H -106 
107 6BH 0110 1011 1001 0101 95H -107 

108 6CH 0110 llOO 1001 0100 94H -108 
109 6DH 0110 1101 1001 0011 93H -109 
110 6EH 0110 1110 1001 0010 92H -110 

ll1 6FH OllO ll 11 1001 0001 91H -111 



Digital Principles and Applications 

Positive Negative 

Decimal Hexadecimal Bina1y Binary Hexadecimal Decimal 

112 70H 01110000 1001 0000 90H -112 
.· 113 7IH 01110001 1000 1111 8FH -113 

114 72H 0111001() 1000 1110 8EH -114 
Il5 73H Olll 0011 1000 1101 8DH -115 
116 74H om 0100 1000 1100 8CH -116 
117 75H 0111 0101 1000 1011 8BH -117 
118 76H 0111 0110 1000 1010 8AH -118 
119 77H Olll Olll 1000 1001 89H -119 
120 78H Olli 1000 1000 1000 88H -120 
121 79H 01111001 1000 0111 87H -121 
122 7AH Olll 1010 1000 0110 86H -122 
123 7BH 0111 lOll 1000 0101 85H -123 
124 7CH 0111 1100 1000 0100 84H -124 

I 125 7DH Olll 1101 1000 0011 83H -125 
I 

126 7EH 0111 1110 1000 0010 82H -126 
127 7FH Olllllll 1000 0001 81H -127 
128 - - 1000 0000 80H -128 . 



Appendix 3: 
TTL Devices 

Number Function Number Function 

7400 Quad 2-input NAND gates 7441 BCD-to-decimal decoder-Nixie driver 
7401 Quad 2-input NAND gates (open collector) 7442 BCD-to-decimal decoder 
7402 Quad 2-input NOR gates 7443 Excess 3-to-decimal decoder 
7403 Quad 2-input NOR gates ( open collector) 7444 Excess Gray-to-decimal 

•7404 Hex inverters 7445 BCD-to-decimal decoder-driver 
•7405 Hex inverters (open collector) 7446 BCD-to-seven segment decoder-drivers 
7406 Hex inverter buffer-driver (30-V output) 
7407 Hex buffer-drivers 7447 BCD-to-seven segment decoder-drivers 
7408 Quad 2-input AND gates (15-V output) 
7409 Quad 2-inputAND gates (open collector) 7448 BCD-to-seven segment decoder-drivers 
7410 Triple 3-input NAND gates 7450 Expandable dual 2-input 2-wide AND-
7411 Triple 3-input AND gates OR-INVERT gates 

,7412 Triple 3-input NAND gates (open collector) 7451 Dual 2-input 2-wide AND-OR-INVERT gates 
7413 Dual Schmitt triggers 7452 Expandable 2-input 4-wide AND-OR gates 
7414 Hex Schmitt triggers 7453 Expandable 2-input 4-wide AND-OR-INVERT 
7416 Hex inverter buffer-drivers gates 
7417 Hex buffer-drivers 7454 2-input 4-wide AND-OR-INVERT gates 
7420 Dual 4-input NAND gates 7455 Expandable 4-input 2-wide AND-OR-INVERT 
7421 Dual 4-input AND gates gates 

r1fZ2 Dual 4-input NAND gates (open collector) 7459. Dual 2-3 input 2-wide AND-OR-INVERT 
7423. Expandable dual 4-input NOR gates gates 

j742~ Dual 4-input NOR gates 7460 Dual 4-input expanders 
'7426 Quad 2-input TTL-MOS interface NAND gates 7461 Triple 3-input expanders 
7427 Triple 3-input NOR gates 7462 2-2-3-3 input 4-wide expanders 
7428 Quad 2-input NOR buffer 7464 2-2-3-4 input 4-wide AND-OR-INVERT gates 
7430 8-input NAND gate 7465 4-wide AND-OR-INVERT gates (open collector) 
7432 Quad 2-input OR gates 7470 Edge-triggered JK flip-flop 
7437 Quad 2-input NAND buffers 7472 JK master-slave flip-flop 
7438 Quad 2-input NAND buffers ( open collector) 7473 Dual JK master-slave flip-flop 
7439 Quad 2-input NAND buffers ( open collector) 7474 Dual D flip-flop 
7440 Dual 4-input NAND buffers 7475 Quad latch 



Digital Principles and Applications 

Number Function Number Function 

7476 Dual JK master-slave flip-flop 74162 Synchronous 4-bit counter 
7480 Gates full adder 74163 Synchronous 4-bit counter 
7482 2-bit binary full adder 74164 8-bit serial shift register 
7483 4-bit binary full adder 74165 Parallel-load 8-bit serial shift register 
7485 4-bit magnitude comparator 74166 8-bit shift register 
7486 Quad EXCLUSIVE-OR gate 74173 4-bit three-state register 
7489 64-bit random-access read-write memory 74174 Hex F flip-flop with clear 
7490 Decade counter 74175 Quad D flip-flop with clear 

17491 8-bi c shift register 74176 35-MHz presettable decade counter 
7492 Divide-by-12 counter 74177 35-MHz presettable binary counter 
7493 4-bit binary counter 74179 4-bit parallel-access shift register 
7494 4-bit shift register 74180 8-bit odd-even parity generator-checker 
7495 4-bit right-shift-left-shift register 74181 Arithmetic-logic unit 
7496 5-bit parallel-in-parallel-out shift register 74182 Look-ahead carry generator 
74100 4-bit bistable latch 74184 BCD-to-binary converter 
74104 JK master-slave flip-flop 74185 Binary-to-BCD converter 
74105 JK master-slave flip-flop 74189 Three-state 64-bit random-access memory 
74107 Dual JK master-slave flip-flop 74190 Up-down decade counter 
74109 Dual JK positive-edge-triggered flip-flop 74191 Synchronous binary up-down counter 
74116 Dual 4-bit latches with clear 74192 Binary up-down counter 
74121 Monostable multivibrator 74193 Binary up-down counter 
74122 Monostable multivibrator with clear 74194 4-bit directional shift register 
74123 Monostable multivibrator 74195 4-bit parallel-access shift register 
74125 Three-state quad bus buffer 74196 Presettable decade counter 
74126 Three-state quad bus buffer 74197 Presettable binary counter 
74132 Quad Schmitt trigger 74198 8-bit shift register 
74136 Quad 2-input EXCLUSIVE-OR gate 74199 8-bit shift register 
74141 BCD-to-decimal decoder-driver 74221 Dual one-shot Schmitt trigger 
74142 BCD counter-latch-driver 74251 Three-state 8-channel multiplexer 
74145 BCD-to-decimal decoder-driver 74259 8-bit addressable latch 
74147 10/4 priority encoder 74276 Quad JK flip-flop 
74148 Priority encoder 74279 Quad debouncer 
74150 16-line-to-l-line multiplexer 74283 4-bit binary full adder with fast carry 
74151 8-Channel digital multiplexer 74284 Three-state 4-bit multiplexer 
74152 8-Channel data selector-multiplexer 74285 Three-state 4-bit multiplexer 
74153 Dual 4/1 multiplexer 74365 Three-state hex buffers 
74154 4-line-to-16-line decoder-demultiplexer 74366 Three-state hex buffers 
74155 Dual 2/4 demultiplexer 74367 Three-state hex buffers 
74156 Dual 2/4 demultiplexer 74368 Three-state hex buffers 
74157 Quad 2/ 1 data selector 74390 Individual clocks with flip-flops 
74160 Decade counter with asynchronous clear 74393 Dual 4-bit binary counter 
74161 Synchronoi.;s 4-bit counter 



3: TTLDevices 

TTL CIRCUITS 

74LS00 74LS04 7407/7417 74LS08 74LS10 

14 14 14 14 14 

2 13 2 13 2 13 2 13 2 13 

3 12 3 12 3 12 3 12 3 12 

4 ll 4 ll 4 11 4 ll 4 ll 

5 10 5 lO 5 10 5 10 5 10 

6 9 6 9 6 9 6 9 6 9 

7 8 7 8 7 8 8 7 8 

74LS1 I 74LSl2 74LSl3 74LS14 74LS20 

14 14 14 14 14 

2 13 2 13 2 13 2 13 2 13 

3 12 3 12 3 12 3 12 3 12 

4 II 4 ll 4 II 4 ll 4 II 

5 10 5 10 5 lO 5 lO 5 10 

6 9 6 9 6 9 6 9 6 9 

7 8 7 8 7 8 7 8 7 8 

74LS21 74LS27 74LS30 74LS32 74LS37 

14 14 14 14 14 

2 13 2 13 2 13 2 13 2 13 

3 12 3 12 3 12 3 12 3 12 

4 ll 4 ll 4 II 4 II 4 ll 

5 IO 5 lO 5 10 5 10 5 10 

6 9 6 9 6 9 6 9 6 9 

7 8 7 8 7 8 7 8 7 8 

74LS38 74LS86 74LS125 74LSl26 74LS266 

14 14 14 14 14 

2 13 2 13 2 13 2 13 2 13 

3 12 3 12 3 12 3 12 3 12 

4 II 4 II 4 ll 4 II 4 II 

5 IO 5 10 5 IO 5 IO 5 IO 

6 9 6 9 6 9 6 9 6 9 

7 8 7 8 7 8 7 8 7 8 



Appendix 4: 
CMOS Devices 

74HCOO Series 

Part No. Pins Function 

74HCOO 14 Quad 2-input NAND gate 
74HC02 14 Quad 2-input NOR gate 
74HC04 14 Hex inverter (buffered) 
74HC08 14 Quad 2-input AND gate 
74HC14 14 Hex·inverting Schmitt trigger 
74HC20 14 Dual 4-input NAND gate 
74HC30 14 8-input NAND gate 
74HC32 14 Quad 2-input ORgate 
74HC42 16 BCD-to-decimal decoder 
74HC74 14 Dual D flip-flopwith preset and clear 
74HC85 16 4-bit magnitude comparator 

74HC123 16 Dual monostable multivibrator 
74HCl32 14 Quad 2-i.nput NAND Schmitt trigger 
74HC138 16 3- to 8-line decoder 
74HC139 16 Expandable dual 2- to 4-line decoder 
74HC154 S-24 4~ to 16-line decoder (use 24SLP socket) 
74HC161 16 Synchronous binary counter 
74HC163 16 Synchronous binary counter 
74HC164 14 8-bitserial in-parallel out shift register 
74HC165 16 s~bitparallel in'-'serial out shift register 
74HC174 16 Hex D Flip-Flop with dear 
74HC175 16 Quad Dtype flip-flop with clear 
74HCI91 16 Up-downbinary counter 
74HC192 16 Synchronous decade up-down counter 
74HC193 16 Synchronous binary up-down counter 
74HC22I 16 Dual monostable multivibrator 
74HC240 20 Inverting octal tri-state buffer 
74HC244 20 Octa.I tri-state buffer 



______________ A_p_p_e_nd_ix_4_:_C_M_O_S_D_e_vic_e_s _____________ ~ 

PartNo. 

74HC245 

74HC373 
74HC374 
74HC390 
74HC393 
74HC541 
74HC573 
74HC574 
74HC595 
74HC688 
74HC942 
74HC943 

74HC40l7 
74HC4020 
74HC4040 
74HC4046 
74:EI<;:4060 
74HC4066 
74HC4514 
74HC453.8 

Pins 

20 
16 
20 
16 
20 
20 
16 
14 
20 
20 
20 
16 
20 
20 
20 
16 
16 
16 
16 
16 
14 

S-24 
16 

7 4HCOO Series 

Function 

Octal tri-state transceiver 
Quad.2-channel tri-state multiplexer 
OctalD flip-flop 
Tri-state hex buffer 
Tri-state octal D-type latch 
Tri-state octaLD-type flip-flop 
D,uaL4-bit deca~e ~°-u~ter 
Dual 4-bit.binary counter 
Octal buffer-line.driver (tri-state) 
Tri-state octalp-type latch 
Tfr::state octal Dstype flip-flop 
8-bit serial to-parallel shift register latch 
8-bit magnitude comparator (equality detector) 
Full duplex low-speed 300-baud modem chip 
Full duplex 300-baud modem chip 
Decade counter-divider with l O decoded outputs 
14-stage binary counter 
12-stage binary counter 
CMOS phas~ .. fockfoop 
14~stage binary counter 
Quad analog switch 
4- to 16-line decoder with latch (use 24SLP socket) 
Dual retriggerable monostable multivibrator 



Appendix 5: 
Codes 

Decimal BCD Binary 

0 0000 0000 
1 0001 0001 
2 0010 0010 
' 0011 0011 J 

4 0100 0100 
5 0101 0101 
6 0110 0110 
7 0111 0111 
8 1000 1000 
9 1001 1001 

10 0001 0000 1010 
11 0001 0001 1011 
12 0001 0010 1100 
13 0001 0011 1101 

98 1001 1000 1100010 
99 1001 1001 1100011 

100 0001 0000 0000 1100100 
101 0001 0000 0001 1100101 
102 0001 0000 0010 1100110 

......... 
578 0101 0111 1000 1001000010 

......... 



Appendix 5: Codes 

4-Bit BCD Codes 

Decimal 7421 6311 5421 5311 5211 
.. 

0 0000 0000 0000 0000 0000 
1 0001 0001 0001 0001 0001 
2 0010 0011 0010 0011 0011 
3 0011 0100 0011 0100 0101 
4 0100 0101 0100 0101 0111 
5 0101 Olll 1000 1000 1000 
6 OllO 1000 1001 1001 1001 
7 1000 1001 1010 1011 lOll 
8 1001 1011 1011 1100 1101 

9 1010 llOO 1100 1101 1111 

More 4-Bit BCD Codes 

Decimal 4221 3321 2421 8421 742 1 

0 0000 0000 0000 0000 0000 

l 0001 0001 0001 Olll 0111 

2 0010 0010 0010 0110 0110 
3 0011 OOll 0011 0101 0101 

4 1000 0101 0100 0100 0100 
5 0111 1010 1011 1011 1010 
6 1100 1100 l!OO 1010 1001 

1101 ll01 1101 1001 1000 
lllO 1110 1110 1000 llll 

1111 1111 1111 llll 1110 

5-Bit BCD Codes 

Decimal 2-out-of-5 63210 Shift-Counter 86421 51111 
.• 

0 00011 00110 00000 00000 00000 . 

l 00101 00011 00001 00001 00001 

2 00110 00101 00011 00010 00011 

3 01001 01001 00111 00011 0011! 
4 01010 01010 01111 00100 01111 

5 01100 01100 llll l 00101 10000 
6 10001 10001 11110 01000 I 1000 

7 10010 10010 lllOO 01001 llJOO 

8 10100 10100 11000 10000 11110 

9 11000 11000 10000 10001 llll l 



Decimal 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

Decimal 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Decimal 

0 
1 
2 
3 
4 
5 
6 
7 
8 

9 
10 . 

11 
12 
13 
14 
15 

Digital Principles and Applications 

50 43210 

01 00001 
01 00010 
01 00100 
01 01000 
01 10000 
10 00001 
10 00010 
10 00100 
10 01000 
10 10000 

More than 5-Bit BCD Codes 

543210 

000001 
000010 
000100 
001000 
010000 
100001 
100010 
100100 
101000 
Il0000 

Excess-3 Code 

BCD 

0000 
0001 
0010 
0011 
0100 
0101 
OllO 
0111 
1000 
0001 

Gray Code 

Gray Code 

0000 
0001 
OOll 
0010 
0110 
Olll 
0101 
0100 
1100 
1101 
llll 
1110 
1010 
1011 
1001 
1000 

9876543210 

0000000001 
0000000010 
0000000100 
0000001000 
0000010000 
0000100000 
0001000000 
0010000000 
0100000000 
1000000000 

Excesss3 

0011 
0100 
0101 
0110 
om 
1000 
1001 
1010 
101! 
HOO 

Binary 

0000 
0001 
0010 
OOll 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
lllO 
1111 



Appendix 6: 
BCD Codes 

Hollerith Code 

Punched cards are rarely, if ever, used today, but the Hollerith code is included here for historical and refer
ence purposes. In this code the numbers O through 9 are represented by a single punch in a vertical column. 
For example, a hole punched in the fifth row of column 12 represents a 5 in that column. The letters of the 
alphabet are represented by two punches in any one column. The letters A and I are represented by a zone 
punch in row 12 and a punch in rows 1 through 9. The letters J through Rare represented by a zone punch 
in row 11 and a punch in rows 1 through 9. The letters S through Z are represented by a zone punch in row 0 
and a punch in rows 2 through 9. Thus, any of the 10 decimal digits and any of the 26 letters of the alphabet 
can be represented in a binary fashion by punching the proper holes· in the card. In addition, a number of 
special characters can be represented by punching combinations of holes in a column which are not used for 
the numbers or letters of the alphabet. 

????????????????????????????????? 

IHHHU 
HUHIH 

I I I 
I I 

00001000000000000000000000000000000001111111100000100010010000000000000000000000 

l l l l l I 1111 Ill l l l l l l Ill l l l Ill Ill l l l l l l Ill l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l 

222222122222222222221222222221222222)1222222222222222222222222222222222222222222 

3333333l3333333333333l33333333l3333333l33333333333333llll33333333333333333333333 

44444444l4444444444444l44444444l4444444l444444444llll444444444444444444444444444 

555555555l5555555555555l55555555l5555555l555555555555555555555555555555555555555 

6666666666l6666666666666l66666666l6666666l66666666666666666666666666666666666666 

77777777777177777777777771777777771777777717777777777777777777777777777777777777 

888888888888l8888888888888l88888888l8888888l8888Sllllllll88888888888888888888888 

9999999999999B9999999999999l99999999l9999999l99999999999999999999999999999999999 

Standard punched card using Hollerith code 



Digital Principles and Applications 

An easy device for remembering the alphabetic characters is the phrase "JR is 11." Notice that the letters J 
through R have an 11 punch, those before have a 12 punch, and those after have a O punch. It is also necessary 
to remember that S begins on a 2 and not a 1. 

Eight-Hole Code 

Again, this information is for historical and reference purposes. There are a number of codes for punching 
data in paper tape, but one of the most widely used is the eight-hole code. Holes, representing data, are 
punched in eight parallel channels which run the length of the tape. (The channels are labeled 1, 2, 4, 8, 
parity, 0, X. and end of line.) Each character-numeric, alphabetic, or special-occupies one column of eight 
positions across the width of the tape. 

Numbers are represented by punches in one or more channels labeled 0, 1, 2, 4, and 8, and each number 
is the sum of the punch positions. For example, 0 is represented by a single punch in the O channel; 1 is 
represented by a single punch in the J channel; 2 is a single punch in channel 2; 3 is a punch in channel 1 
and a punch in channel 2, etc. Alphabetic characters are represented by a combination of punches in channels 
X, 0, L 2, 4, and 8. Channels X and Oare used much as the zone punches in punched cards. For example, 
the letter A is designated by punches in channels X, 0, and 1. The special characters are represented by 
combinations of punches in all channels which are not used to designate either numbers or letters. A punch in 
the end-of-line channel signifies the end of a block of infonnation, or the end of record. This is the only time 
a punch appears in this channel. 

Tape feed Space 

Ed fl
. 'x ABCDEFGHIJKLMl',TOP RSTUVWXYZ0123456789t-/&$, .@'/o*D# 

n o me 

CHEC[ 
8 
4 
2 
1 

................... .......... .. ...... . . . .. ... . .. . . .. . .. .. .. .. .. ...... ••••••••••••••••••••••••••••••••••••••••••••••••• . .... .... .... .... . ... . .. .. .. .. .. .. .. .. ... . .. . . . .. . ... . . . . . . . ... . . ... . 
As a means of checking the validity of the information punched on the tape, the parity channel is used to 

ensure that each character is represented by an odd number of holes. For example, the letter C is represented 
by punches in channels X, 0, 1, and 2. Since an odd number of holes is required for each character, the code 
for the letter C also has a punch in the parity channel, and thus a total of five punches is used for this letter. 

Universal Product Code (UPC) 

The Universal Product Code (UPC) symbol in Fig. A6.3 is an example of a machine-readable label that 
appears on virtually every kind of retail grocery product. It is the result of an industrywide attempt to improve 
productivity through the use of automatic checkstand equipment. The standard symbol consists of a number 
of parallel light and dark bars of variable widths. 

The symbol is designed arow1d a 10-digit numbering system, 5 digits being assigned as au identification 
number for each manufacturer and the remaining 5 digits being used to identify a specific product, e.g. 
creamed corn, pea soup, or catsup. Each symbol can be read by a fixed-position scanner, as on a conveyor 
belt, or by a hand-held wand. The code numbers are printed on each symbol under the bars as a convenience 
in the event of equipment failure. 



Appendix 6: BCD Codes 

0000 NULL CD DCO 0 @ p 

0001 SOM DC1 A Q 

0010 EOA DC
2 

2 B R 

0011 EOM DC
3 

# 3 C s 
0100 EOT DC'4 $ 4 D T 

(SIOp) 

0101 WRU ERR % 5 E u 
0110 RU SYNC & 6 F V 

0111 BELL LEM 7 G w 
1000 FEO so 8 H X Unassigned 

1001 HT SI ) 9 I y 

SK 

1010 LF S2 * J z 
1011 VTAB S3 + K 

1100 FF S4 < L ACK 

1101 CR Ss M ® 

1110 so S6 * > N i ESC 

1111 Sf S1 I ? 0 .- DEL 

Example 100 0001 A 

b 1----------b I 

The abbreviations used in the figure mean: 

NULL Null idle CR CaITiage return 
SOM Start of message so Shift out 
EOA End of address Sf Shift in 
EOM End of message DCO Device control 1 

Reserved for data 
Link escape 

EOT End of transmission DCI-DC2 Device control 
WRU "Who are you?" ERR Error 
RU "Are you ... ?" SYNC Synchronous idle 
BELL Audible signal LEM Logical end of media 
FE Format effector SOO-S01 Separator (information) 
HT Horizontal tabulation Word separator (blank, normally nonprinting) 
SK Skip (punched caid) ACK Acknowledge 
LF Line feed 2 Unassigned control 
VITAE Vertical tabulation ESC Escape 

FF Fonn feed DEL Delete idle 

*Reprinted from Digital Computer Fundamentals by Thomas C. Bartee. Copyright 1960, 1966 by McGraw-Hill, Inc. Used with 
permission of McGraw-Hill Book Company. 

American Standard Code for Information Exchange 



Digital Principles and Applications 

Specifications 

Each 10-digit symbol is rectangular in shape and 
consists of exactly 30 dark and 29 light vertical 
bars, as seen in Fig. A6.4. Each digit is represented 
by two dark bars and two light spaces. To account 
for the variable widths of the bars, each digit or 
character is broken down into seven modules. A 
module can be either dark or light, and each dark 
bar is made up of 1, 2, 3, or 4 dark modules. An 
example is shown in Fig. A6.5. Notice that each 
digit or character has exactly seven modules, and 
each digit has two dark bars and two light spaces. 
Dark modules are ls while light modules are Os. 

heck or 
or: 
Iecnex® 
Is from 
s. 

Ieencx<lY 
Dclscy® 

... ote . 
.,tl only in 

Allow4 to 6 
_,y. Offer void where 

,ed, restricted or license re
_,rcd. Offer expires June 30, 1975. 

0 

Characters are encoded differently at the left 
and at the right of center. A left-side character be
gins with a light space and ends with a dark bar 
and always consists of either three or five dark 
modules ( odd parity). A right-side character begins 
with a dark bar and ends with a light space and 
always has either two or four dark modules ( even 
parity). The encoding for each character is sum
marized in Fig. A6.6. 

H, WIS 54956 MADE IN U.S.A. All RIGHTS RESERVED. 

UPC symbol from box of 
Kleenex tissues. Registered 
trademark of Kimberly-Clark 
Corp., Neenah, Wis 

Number Tall center Module 
system bar pattern check 

Left-hand lcharrrter (10Irr0) . ch1arrter Right-hand 
guard bars pattern ( l O l) Left Right f guard bar pattern ( 101) 

5 characters 5 characters 
of code of code 

Number system 
character 

12345 67890 

UPC standard symbol 

Right light margin, 
minimum 7 

modules wide 



Appendix 6: BCD Codes 

L.gh· d 1 icharacter 1 tmo u e 

Dark module 

7 Modules 
2 bars-2 spaces 

Left-hand 6 
encoded 
010111 

7 Modules 
2 bars-2 spaces 

Left-hand 0 
encoded 
0001101 

7 Modules 
2 bars-2 spaces 

Left-hand 7 
encoded 
0111011 

UPC character construction 

1 
r 

Decimal 
number 

0 
l 
2 
3 
4 
5 
6 
7 
8 
9 

X 

r0.182 

Left Right 
characters characters 

(odd parity) ( even parity) 

0001101 1110010 
0011001 1100110 
0010011 1101100 
OllllOl 1000010 
0100011 OOlllOO 
0110001 0001110 
0101111 1010000 
0111011 1000100 
0110111 1001000 
0001011 1110100 

UPC character encoding 

y 

1 r0.0650 1 ~ 0.130 

q;_ q;, q;_ 

! 11234;~~,90_ 
~0.039 0.039-1 yt_j 

14---,-----1.469 

UPC symbol dimensions 



Appendix 7: 
Overview of IEEE Std. 91-1984, 
Explanation of Logic Symbols* 

INTRODUCTION 

The International Electrotechnical Commission (IEC) has been developing a very powerful symbolic lan
guage that can show the relationship of each input of a digital logic circuit to each output without showing 
explicitly the internal logic. At the heart of the system is dependency notation. 

The system was introduced in the United States in a rudimentary form in IEEE/ ANSI Standard Y32.14-
1973. Lacking at that time a complete development of dependency notation, it offered little more than a 
substitution of rectangular shapes for the familiar distinctive shapes for representing the basic functions of 
AND, OR, negation, etc. This is no longer the case. 

Internationally, Working Group 2 of IEC Technical Committee TC-3 has prepared a new document 
(Publication 617-12) that consolidates the original work started in the mid-1960s and published in 1972 
(Publication 117-15) and the amendments and supplements that have followed. Similarly, for the USA, IEEE 
Committee SCC 11.9 has revised the publication IEEE Std 91/ ANSI Y32.14. Now numbered simply IEEE 
Std 91-1984, the IEEE standard contains all of the IEC work that has been approved, and also a small amount 
of material still under international consideration. Texas Instruments is participating in the work of both 
organizations and this document introduces new logic symbols in accordance with the new standards. When 
changes are made as the standards develop, future editions will take those changes into account. 

The following explanation of the new symbolic language is necessarily brief and greatly condensed from 
what the standards publications will contain. This is not intended to be sufficient for those people who will 
be developing symbols for new devices. It is primarily intended to make possible the understanding of the 
symbols used in this data book and is somewhat briefer than the explanation that appears in several of Texas 
Instruments data books on digital logic. However, it includes a new section that explains several symbols for 
actual devices in detail. This has proven to be a powerful learning aid. 

SYMBOL COMPOSITION 

A symbol comprises an outline or a combination of outlines together with one or more qualifying symbols. 
The shape of the symbols is not significant. As shown in Fig. A7.l, general qualifying symbols are used to 

*Courtesy of Texas Instruments Incorporated. 



_______ A_p_pe_n_d,_"x_7._· o_v_e_rv_ie_w_o_f I_E_EE_._St_d_. 9_1_-_19_8_4,_E_xp_la_n_a_tio_n_o_f L_o_g,_·c_S_ym_b_o_ls _______ ®) 
tell exactly what logical operation is performed by the 
elements. Table A 7 .1 shows general qualifying symbols 
defined in the new standards. Input lines are placed on 
the left and output lines are placed on the right. When 
an exception is made to that convention, the direction of 
signal flow is indicated by an arrow. 

Outline\ 

--•. 
Input_/ 
lines l. • 

General qualifying 
symbol 

•·~Output 
lines • • 

QUALIFYING SYMBOLS* 

General Qualifying Symbols *Possible positions for qualifying symbols relating 
to inputs and outputs 

Table A 7 .1 shows general qualifying symbols defined by 
IEEE Standard 91. These characters are placed near the 
top center or the geometric center of a symbol or symbol 

Symbol composition 

element to define the basic function of the device represented by the symbol or of the element. 

. 

I 

I 

Symbol 

& 
::?: 1 

=1 
1 
!> or <1 

_rr 
X/Y 

SRGm 

General Qualifying Symbols 

Description 

AND gate or function. 
OR gate or function. The symbol was chosen to indicate that at least one active input is needed to 
activate the output. 
Exclusive OR. One and only one input must be active to activate the output. 
The one input must be active. 
A buffer or element with more than usual output capability (symbol is oriented in the direction of 
signal flow). 
Schmitt trigger; element with hysteresis. 
Coder, code converter, level converter. 

The following are examples of subsets of this general class of qualifying symbol: 

BCD/7-SEG . BCD to ?-segment display driver. 
TTL/MOS TTL to MOS level converter. 
CMOS/PLASMA DISP Plasma-display driver with CMOS-compatible 

MOS/LED 

CMOS/VACFLUOR DISP 

CMOS/EL DISP 

TTL/GAS DISCH DISPLAY 

Shift register.mis the number of bits 

inputs. 
Light-emitting-diode driver with 
MOS-compatible inputs. 
Vacuum-fluorescent display driver with 
CMOS-compatible inputs. 
Electroluminescent display driver with CMOS
compatible inputs. 
Gas-discharge display driver with TTL-compatible 
inputs. 

* Symbols on pages 639 through 641 can be found in Tex&s Instruments, High-Speed CMOS Logic Data Book, pp. 
6-5 to 6-10. 



Digital Principles and Applications 

XN is the general qualifying symbol for identifying coders, code converters, and level converters. X and 
Y may be used in their own right to stand for some code or either or both may be replaced by some other 
indication of the code or level such as BCD or TTL. As might be expected, interface circuits often make use 
of this set of qualifying symbols. 

Qualifying Symbols for Inputs and Outputs 

Qualifying symbols for inputs and outputs are shown in Table A7.2 and will be familiar to most users with 
the possible exception of the logic polarity and analog signal indicators. The older logic negation indicator 
means that the external O state produces the internal 1 state. The internal I state means the active state. Logic 
negation may be used in pure logic diagrams; in order to tie the external l and O logic states to the levels H 
(high) and L (low), a statement of whether positive logic (1 = H, 0 = L) or negative logic (1 = L, 0 = H) is 
being used is required or must be assumed. Logic polarity indicators eliminate the need for calling out the 
logic convention and are used in the symbology for actual devices. The presence of the triangle polarity 
indicator indicates that the L logic level will produce the internal 1 state (the active state) or that, in the case 
of an output, the internal 1 state will produce the external L level. Note how the active direction of transition 
for a dynamic input is indicated in positive logic, negative logic, and with polarity indication. 

When nonstandardized information is shown inside an outline, it is usually enclosed in square brackets 
[like these]. The square brackets are omitted when associated with a nonlogic input, which is indicated by an 
X superimposed on the connection line outside the symbol. 

--q 

p---
~ 
1::::,..-
·~ 

--..:::i 

--

~ 

~ 
~ 

.. j 

Qualifying Symbols for Inputs and Outputs 

Logic negation at input. External O produces internal I. 

Logic negation at output. Internal I produces external 0. 

Active-low input. Equivalent to --q in positive logic. 

Active-low output. Equivalent to p---- in positive logic. 

Active-low input in the case of right-to-left signal flow. 

Active-low output in the case of right-to-left signal flow. 

Signal flow from right to left. If not otherwise indicated, signal flow is from left to right. 

Bidirectional signal flow. 

Positive Negative 
logic logic 

Polarity 
indication 

Not used }~'mJ 1Lo 1Io inputs H-i_L active 
Not used Not used on 

L_JH indicated ___J1 0

L1 transition 
0 

Nonlogic connection. A label inside the symbol will usually define the nature of this pin. 

Input for analog signals ( on a digital symbol). 

Input for digital signals (on an analog symbol) . 



Appendix 7: Overview of IEEE Std. 91-1984, Explanation of Logic Symbols 

Symbols Inside the Outline 

Table A7.3 shows some symbols used inside the outline. Note particularly that open-collector (open-drain), 
open-emitter (open-source), and three-state outputs have distinctive symbols. Also note that an EN input 
affects all of the outputs of the element and has no effect on inputs. An EN input affects all the external 
outputs of the element in which it is placed, plus the external outputs of any elements shown to be influenced 
by that element. It has no effect on inputs. When an enable input affects only certain outputs, affects outputs 
located outside the indicated influence of the element in which the enable input is placed, and/or affects one 
or more inputs, a fonn of dependency notation will indicate this. The effects of the EN input on the various 
types of outputs are shown. 

O!--

V!--
1>!--

--JEN 

J,K,R, S, T 

--JD 

Symbols Inside the Outline 

Bi-threshold input (input with hysteresis). 

npn open-collector or similar output that can supply a relatively low-impedance 
L level when not turned off. Requires external pull-up. Capable of positive-logic 
wired-AND connection. 

Passive-pull-up output is similar to npn open-collector output but is supplemented 
with a built-in passive pull-up. 

npn open-emitter or similar output that can supply a relatively low-impedance H 
level when not turned off. Requires external pull-down. Capable of positive-logic 
wired-OR connection. 

Passive-pull-down output is similar to npn open-emitter output but is supplemented 
with a built-in passive pull-down. 

3-state output. 

Output with more than usual output capability ( symbol is oriented in the direction of 
signal flow). 

Enable input 

When at its internal I-state, all outputs are enabled. 

When at its internal 0-state, open-collector, open-emitter, and three-state outputs are 
at external high-impedance state, and all other outputs (i.e., totem-poles) are at the 
internal 0-state. 

Usual meanings associated with flip-flops (e.g., R reset, T = toggle). 

Data input to a storage element equivalent to: 1=j ! 
Shift right (left) inputs, m = l, 2, 3, etc. lfm = 1, it is usually not shown. 

Binary grouping, mis highest power of 2. Produces a number equal to the sum of the 
weights of the active inputs. 

Input line grouping ... indicates two or more terminals used to implement a single 
logic input, e.g., differential inputs. 

+ 

I 
+ 

1 



Digital Principles and Applications 

It is particularly important to note that a D input is always the data input of a storage element. At its 
internal 1 state, the D input sets the storage element to its 1 state, and at its internal O state it resets the storage 
element to its O state. 

The binary grouping symbol is explained more fully in a later section. Binary-weighted inputs are arranged 
in order and the binary weights of the least-significant and the most-significant lines are indicated by numbers. 
In this document weights of input and output lines will be represented by powers of 2 usually only when the 
binary grouping symbol is used, otherwise decimal numbers will be used. The grouped inputs generate an 
internal number on which a mathematical function can be performed or that can be an identifying number for 
dependency notation. This number is the sum of the weights (I, 2, 4 ... , 2n) of those inputs standing at their 
1 states. A frequent use is in addresses for memories. · 

Reversed in direction, the binary grouping symbol can be used with outputs. The concept is analogous 
to that for the inputs, and the weighted outputs will indicate the internal number assumed to be developed 
within the circuit. 



Appendix 8: 
Pinout Diagrams 

IA 
(I) 

IA 
(1) 

& IA 
(I) 

>I (I) &JJ (2) IY (2) IA (2) 
18 18 (2) 18 

(4) (13) 1B (13) 
2A IC (4) IC 

(5) 2Y ()) JC (3) 
28 2A (5) 2A 

(9) (4) ID (4) 
3A 28 (9) 28 

(10) 3Y (5) 2A (5) 
38 2C (10) 2C 

(12) (9) 2B (9) 
4A 3A (12) 3A 

(13) (10) 1C (10) 
48 38 (13) 38 

(II) 2D (II) 

Positive logic: Y""' AB JC JC 

00 Positive logic: Y ""' ABC 
Positive logic: Y""' ABCD 

Positive logic: Y= A+B+C 

10 13 27 

IA 
(I) 

& lA 
(I) 

~l 
(2) (12) (2) lY 

1B lY 
JJ 

18 
IA (13) lA (4) 

JC 2A 
2A (3) 2A (5) 

2A 28 
JA (4) (6) JA (9) 

28 2Y 3A 
4A (5) 4A (IO) 

2C 38 
5A (9) SA (12) 

JA 4A 
6A (JO) (8) 6A (13) 

38 JY 4B 
Positive logic: Y ""'A JC 

(11) Positive logic: Y "" A 

04 14 Positive logic: Y""' A+B 

Positive logic: Y "'"ABC 32 
11 

IA 
(I) 

& IA 
(I} 

&> (I) !ll 
lA & (2) IA (2) IY 

(2) JY lB (2) IB 
IB (13) 1B (4) 

(4) JC (4) 2A 
2A (3) JC (5) 

(5) 2Y 2A (5) 28 
28 (4) JD (9) 

(9) 28 (9) 3A 
JA (5) 2A (10) 

(10) 2C (10) JB 
JB (9) 28 (12) 

(12) JA (12) 4A 
4A (10) 2C (13) 

(13) JB (13) 48 
48 (II) 2D 

3C Positive logic: Y ""AB 
Positive logic: Y"' AB 

Positive logic: Y = ABC 
Positive logic: Y"" ABCD 37 08 12 20 



Digital Principles and Applications 

IA 
(I) &1> COMP 

IB 
(2) PO :}p 

(6) 
IQ 

2A 
Pl 

P2 IQ 
2B P3 (7) 
3A P<Q < 

P<Q P<Q 

38 !kQ paQ 
(6) 

P"Q 

4A P>Q > (5) 

48 QO } 
P>Q P>Q 

QI 
Positive logic: Y = AB Q2 

38 Q3 109 

85 
I> 

"' 
(5) 

IQ 

(15) Cl 
A IQ 
B 

(14) 

C 
(13) 

4 

D 
(12) 2Q 

iiEN 2Q 

86 
>9Za 112 

45 RAM I6x4 

:}An (5) 
IQ & 1.n. 

Cl 
(6) 

IQ (I)~ 
!! Q 

2Q 
AT3 QI 

2Q 

74 
Rint Cext ~x/Cext 

89 121 

s 
IJ ., (15) IQ 

Cl EN 
lK 

R 

76 125 
95 

(15) IQ 

CI IJ EN 

Cl IQ 

IK IQ 
R 

2Q 

2Q 

LS76A 107 126 



Appendix 8: Pinout Diagrams 

X!Y MUX 
IA IYO EN 

IB IYI :}o~ IG EN 1Y2 

0 
(5) y 

C3/J+-

(6) w 

OR 

DMUX 
IA 

o} 0 
!YO 151 0-

18 I 3 IYI (13) 011 

IG IY2 

166 

CTRD1Vl6 

Ml[LOAD) 

(7) IY 
M2[COUNT] 

139 M3[UP] 
M4[D0WN] 3,5CT=l5 

05 4.5CT=O 

06 

(9) 2Y 
2,3,5,6+/C7 

2,3,5,6-
HPRI/BCD 

[l] 

2 [2] 

153 [4] 

4 
[8] 

CTRD1Vl6 169 

"13CT=l5 0 5) RCO 
CLR 

9 
CLK 

147 ID 
[l] 

(2] 

[4] 

(81 

HPRI/BlN 163 
0 (10) 

0/ZlO 10 
;,1 174 

l (11) 
0/Zll ll 

2 (12) 
21Zl2 12 

3 (13) 13 0 5l EO 3/Zl3 18 CLR 4 (I) 4/Zl4 14 
CLK 

5 (2) 
51Zl5 15 

QA 
6 (3) 

6/Zl6 16 o., ID 

7 (4) 
71Zl7 17 Oc 

Oo 
2D 

AO QE 
VIS Al o. 
ENu A2 QG 

o,. 
148 164 175 



so 
(6) 

SI 
(5) 

S2 
(4) 

S3 
(3) 

M 
(8) 

en (7) 

180 

}* 
ALU 

(0 

Cl 

[I) 

[2] 

[4] 

[SJ 

181 

CTRD1Vl6 
CT0 0 

2+ 

[I] 

[2] 

[4] 

[8] 

193 

(5) l: 
EVEN 

(6) l: 
ODD 

QA 

QB 

Qc 

Qo 

Digital Principles and Applications 

SRG4 

C4 
1 ..... 12 .... 

194 

251 

9,0D 

10,0R 

9.ID 

JO.TR 

9,2D 

J0,2R 

9,30 

I0.3R 

9.4D 

I0,4R 

9,5D 

I0,5R 

9,6D 

I0,6R 

9,7D 

10.7R 

259 

(5) y 

(6) w 

(4) 
QO 

Qi 

Q2 

Q) 

Q4 

Q5 

Q6 

Q7 

~1 

Positive logic: y,~ A e B ~ AB -:- AB 

266 

273 

It 
SI 

SI 

R 

S2 

R 

S3 

S3 

R 

S4 

279 

Al 

°} 
r 

{ A2 p 
A3 

A4 3 

Bl 

]Q 

82 

Bl 

84 co 
co Cl 

283 

(4) IQ 

(7) 2Q 

(9) 3Q 

(13) 4Q 

(4) 
l:I 

r2 
D 
:E4 

(9) 
C4 



Appendix 9: 
Answers to Selected Odd-Numbered 

Problems 

Chapter 1 
1.1 See Sec. I. I. 
1.3 

{: 
0 1 0 1 0 0 1 

Lamps 0 0 l 1 0 0 1 
0 0 0 0 1 l 1 

No. 0 2 3 4 5 6 7 
1.5 See Fig. 1.4c. 
1.7 fH= 100 µs 

1.9 The nonideal waveform is nearly triangular in shape! 

1.11 vi L H L H L H L H 

v2 L L H H L L H H 
V, L L L L H H H H , 
~ L H H H H H H H 

1.13 G must be high to have a signal at r,:. G =Hand v; = L. 
1.15 Simply connect the output of the first 4-bit register to the input of the second 4-bit register. 
1.17 32 connections. 16 connections. True parallel shifting requires a single operation of 250 ns. Shifting 

16 bits twice requires 500 ns. 
1.19 Nine; seven 
1.21 F = 0100; CARRY OUT= 0 
1.23 Only line 9 is high. 
1.25 Handshaking is a request to transfer data into or out of the computer. It is a request to transfer data, 

followed by an acknowledge, allowmg data transfer to begin. 
1.27 Because data to be operated on is taken from memory into the CPU and results are moved back to 

memory for storage. 
1.29 54LSXX 
1.31 2.5 W 
1.33 See Figs. 1.36, 1.37, and 1.38. 



Digital Principles and Applications 

Chapter 2 

2.1 Low; high 
2.3 The truth table is: 

A B C y 

0 0 0 0 
0 0 
0 1 0 
0 I 1 1 

0 0 1 
0 1 1 
1 0 
1 

This is the truth table of a 3-input OR gate. Therefore, a cascade of two 2-input OR gates is equivalent 
to a 3-input OR gate. 

2.5 The truth table is 

2. 7 The truth table is 

2.9 The truth table is 

A 

0 
0 

.0 
0 

A 

0 
0 
0 
0 
1 
1 
1 

A 

0 
0 
0 
0 

1 
1 
1 

B 

0 
0 
1 
1 
0 
0 
1 

B 

0 
0 
1 
1 
0 
0 
1 
1 

B 

0 
0 

1 
0 
0 
1 
1 

C 

0 
1 
0 
1 
0 
I 
0 

C 

0 
1 
0 
I 
0 
1 
0 

C 

0 
1 
0 
1 
0 
I 
0 
1 

y 

1 
0 
0 
0 
0 
0 
0 
0 

y 

0 
0 
0 
0 
0 
0 
0 

y 

1 
1 
1 
0 



Appendix 9: Answers to Selected Odd-Numbered Problems 

2.11 The Boolean equations are 

2.13 The Boolean equations are 

2.15 The logic circuit. 

A B C 

3 

Y=A+B+C 

Y= (A+ B) 

Y= (A+ B+ C) 

Y=ABC 

Y=AB 
Y=ABC 

y 

2.17 Here is a summary of the truth table. Y equals 1 when ABCD = 0000; Y equals O for all other ABCD 
inputs. There are 16 ABCD inputs, starting with 0000 and ending with 1111. 

2.19 d 
2.21 Y= AoA1A2A3A4AsA6A1 
2.23 a 

2.25 a. Low b. High 
2.27 a. 1 b. 0 

C. High 
c.O 

d.Low 
d.O 

2.29 Active-low: b., c., d., and g.; active-high: a., e. and f. 

Chapter 3 
3.1 Draw an AND-OR circuit with two AND gates and one OR gate. The upper AND gate has inputs of A, 

B, and C. The lower AND gate has inputs of A, B, and C. The simplified logic circuit is an AND gate 
with inputs of A and C. 

3.3 The lower input gate 
3.5 d 
3.7 Y = AC D + ABC + ABC, which means an AND-OR circuit that ORs the foregoing logical 

products. 
3.9 Y= AB+ AB, which implies an AND-OR circuit that ORs the foregoing products. 



3 .11 Figure (a) shows the Karnaugh map. 

cl5 CD CD 

AB 0 

AB 0 0 

AB 0 0 

AB 1 0 

(a) 

3.13 Fig. 3.16a 
3.15 Figure (b) shows the Karnaugh map. 
3 .17 The simplified equation is 

Digital Principles and Applications 

CD cl5 CD CD CD 

~B
1
o ~ \!) 

0 AB O O 1 0 

0 AB ce£J O 0 
AB 1 l o 0\ 

(b) 

Y= ARD+ ACD+ABC +ACD+ BCD 

The corresponding AND-OR circuit has five AND gates driving an OR gate. 
3.19 The simplified logic circuit is an AND gate with inputs of A, C, and D. 
3.21 Y =AB+ AC; use an AND-OR circuit to produce this equation. 
3.23 The unsimplified logic circuit. 

A 
B 
C 
D 

A 
B 
C 
D 
A 
B 
C 
75 

A 
B 
c 
75 
A 
B 
C 
D 

A 
B 
c 
D 
A 
B 
c 
75 

y 



3.25 Y= F(A, B, C, D) = I: m(l, 2, 8, 9, 10, 12, 13, 14) 
3.27 The map and the circuit. 

A 
CD CD CD CD D 

AB ) 0 § A 
AB 0 

c 
AB 0 0 

B 
c 

AB CC]) 0 0 A 
B 
C 

3.29 The Y waveform is low between O and 7. Then, it is high between 7 and 16. 
3.31 The simplified NAND-NAND circuits. 

C C 

AB o o 

:; ~J 

AB~ 

c C 

AB 0 CD 
AB CD 0 

AB 0 CD 
AB CD 0 

A--,__ 
B 
c----r-
A-----1-
B c-_,_-
A-~
B 
c--1--
A-_.,__ 

B 
c--r--

Carry 

Sum 



Digital Principles and Applications 

3.33 

Y=(A+ B)(C + D)(A+C+D) 
3.35 Y=AC'+AD'+B'C'D+B'CD' 

AB 
AB 

AB 
AB 

Cl5 CD CD CD 

0 

1 0 

3.37 SOP: Y=A'B'+AC'+B'C'andPOS: Y=(A+B')(A'+C')(B'+C') 

Chapter 4 
4.1 YequalsD

9
• 

4.3 Connect the data inputs as follows: +5 V-D
0

, D4, D5, D
6

, D11 , D
12

, Dw and D
15

; ground-DP Dz, D
3

, 

D
7

, D
8

, D
9

, D
10

, and Dl3" 

4.5 Y
3 

multiplexer: groundD
1
, D

6
, D

7
, and D

14
; all other data inputs high. 

4.7 
4.9 

4.11 
4.13 

Y
2 

multiplexer: ground D3, D8, and D
13

, all other data inputs high. 

Y
1 
multiplexer: ground D 

0
, D l' D w and D 

15
, all other data inputs high. 

Y
0 

multiplexer: ground D 
8

, D 
9

, and D 13 , all other data inputs high. 

None; Y
5 

C 

The chip on the right; Y
6 

A B C 

Yo 
ABC 

Yi 
ABC 

Y2 
ABC 

3 to 8 Y3 
ABC 

Decoder Y4 
ABC 

Ys 
ABC 

y6 ABC 

Y7 ABC 

Fi(A,B,C) F2(A,B,C) FiA,B,C) 

= L m(l,3,7) = L 111(2,3,5) = L m(0,1,5,7) 



Appendix 9: Answers to Selected Odd-Numbered Problems 

4.15 a. 67 b. 813 C. 7259 
4.17 y7 
4.19 C 

4.21 Approximately 3 mA 
4.23 Pin 5; 0111 
4.25 a. 0 b. 1 C. 0 d. J 
4.27 a. 0 b. 1 C. 0 
4.29 (X> Y) = G3 + E3G2 + E3E2Gl + E3E2ElGO 
4.31 Ground pin 4 (after disconnecting from +5 V) and connect pin 3 to +5 V (after disconnecting from 

ground). 
4.33 256 
4.35 1100 
4.37 The PROM. 

A B C D 

~ ~· ~· ~ 



Digital Principles and Applications 

4.39 The PAL circuit. 

A B C D 

4.41 3; 9; 15 (illegal) 

Chapter 5 

5.1 01110000 
5.3 a. 1 b. 2 
5.5 a. 188 b. 255 
5.7 131,072 
5.9 I 00001100 

5.11 1010010100000 
5.13 011010 101.111011110 
5.15 504.771 
5.17 a.257 b. 15.331 

C. 3 

5.19 a. 1110 0101 b. 101101001101 
5.21 12,121 
5.23 a.0000 b. 0100 
5.25 a. 011 0111 b. 101 0111 

d.4 

C. 123.55 
C. 0111 1010 1111 0100 

C. 1010 d. 1111 
C. 110 0110 d. 111 1001 



Appendix 9: Answers to Selected Odd-Numbered Problems 

5.27 Address 

2000 

2001 

2002 

2003 

2004 

2005 

2006 
5.29 3694 
5.31 0001 0001 
5.33 a, b, and d 
5.35 e 
5 .3 7 11100001111 

Alphanumeric 

G 

0 

0 

D 

B 
y 

E 

5.39 Five for both (a) and (b) 

Chapter 6 
6.1 a. 128 b. 1\ C. 1016 

6.3 0000 0101 0000 1000 
6.5 0001 1000 
6.7 a. 0001 0111 
6.9 a. DCH 

6.11 a. 0100 1110 
6.13 a. 0010 1101 

b. 0111 1011 
b.BAH 
b. 1110 1001 

b. 

Hex contents 

C7 

4F 

4F 

C4 

C2 

D9 

45 

c. 1011 1000 
C. 36H 
C. 1010 0110 

0101 1001 C. 

+ 0011 1000 

0110 0101 

+ 1101 1110 

0011 0111 

6.15 02CBH, 0000 0010 1100 lOll 
6.17 Binary 0101 0011, or decimal 83 
6.19 G

0 
= 1.1 = 1, G

1 
= 1.0 = 0, G

2 
= 0.0 = 0, G

3 
= 1.1 = 1. 

d. 1110 1011 
d. 02H 
d. 1000 0111 

0100 0011 
+ 1001 1110 

1110 0001 

po= l + 1 = 1, pl= 1 + 0 = 1, p2 = 0 + 0 = 0, p3 = 1 + 1 = 1 and c_l = 0. 
Substituting these in corresponding equations C

0 
= 1, C

1 
= 1, C

2 
= 0, C

3 
= 1. 

Using Si= GiEB Pi EB ci-1 so= 0, SI= 0, s2 = 1, s3 = 0. 

Final result: C
3
S

3
S

2
S

1
S

0 
= 10100 

6.21 Substitute M = 0 and S
3 

•• S
0 

= 0110, Cm= 0, A= 1101 and B = 0111. 

Chapter 7 
7.1 a. 100 ns 
7.3 13.3 MHz 
7.5 0.45/4.05 

b. 167 ns 

7.7 3.5 MHz plus or minus 28 Hz 
7.9 

C. 1.33 µs 

CLK __fl_flJL_ 15 MHz 
11 11 II 

Q _J_r-:L__jt 7.5 MHz 

-11-td 



Digital Principles and Applications 

7.11 

2.5 
1.7 

A 0.9 
0 

3.4 
B 0 0.2 

+Vee 
C 

0 

7.15 48 kHz. t
1 
= 13 µs, t

2 
= 7.8 µs 

7.17 33.3 percent, 37.5 percent 

7.19 RA+ RB= 15 kQ. RA= 3.75 kQ, RB= 11.25 kQ 

7.21 3.88 ms 

7.23 0.136µF 
7.25 

l-1 ms-l 
Input 

l-1.1 ms-, 

7.27 Connect as in Example 7.8. 21.3 nF. 
7.29 a. 

-1 f- 1000 µs 

~ 
__nrm 
-I f-750 µs 

b. 

7.31 Connect A1 to GND and apply input to B
2

• C = 44.6 nF. 
7.33 Same as Prob. 7.29. 
7.35 

7.37 LetR
1
=R

2
=lkQ. 

-I f-200 µs 
_n_n_n_ru-ui_ 

J u 
!--750µs-l 

a. t1 = 2.5 µs, t
2 

= 7.5 µs, C
1 
= 7500 pF, C

2 
= 22,500 pF. 

b. ti = t2 = 1 µs, cl = c2 = 3000 pF. 



Appendix 9: Answers to Selected Odd-Numbered Problems 

Chapter 8 
8.3 

8.5 a. C b. G 

Q 

Q 

8.7 When the clock is low, the flip-flop is insensitive to levels on either R or S input. (Only first case is 
shown here.) 

S=O S=O 

CLOCK CLOCK 

R=O R=O 

8.9 The Rand S inputs do not need to be held static while the clock is high. 
8.11 Use negative-edge-triggering. 

t
0

: S is low, R is high 

t1: Sis high, R is low 

t2 and after: S is low, R is high. 

After t
2

, both R and Scan be low. 

8.13 Low 

8.15 a. 5 ns 

8.17 

b. 10 ns c. 15 ns 

8.19 Clock period= 1 µs. Period of Q = 2 µs (f = 500 kHz) 



Digital Principles and Applications 

8.21 

+Vee 

2 7 
4 15 9 11 

125 kHz 

500 kHz 
6 

16 12 Pin 5 to +Vee 
Pin 13 to GND 

3 8 

8.23 The pulse symbol shows that the flip-flop is pulse-triggered. 
8.25 

8.27 (a) Q,,+1 = BQ,, + AQ,; 
(b) 

R s 
Q 

+Vee 
R 

R 

l 0 
1 1 

00~01 
01\_.,.~ll 

00 
I 0 

8.29 This is a modulo-3 counter with state sequence 00--+01-+ 10--+00 ... and co1Tesponding output, Y 
changes as 1--+0-+0-+ 1 ... 

8.31 

T 

r-----------------------------------1 
I I 
I I 
I I 
I I 
I I 

: s Q ' Q 

R Q ,___,_.__,~ Q 
I 
I 
I 
I 
I ___________________________________ J 



_________ A_pp_e_n_dix_9_:_An_.s_w_ei_s_to_S_e_le_ct_ed_O_d_d_-N_u_m_be_re_d_P_ro_b_le_m_s ________ ~ 

Chapter 9 
9 .1 a. 6 b. 6 C. 4 
9.3 See Fig. 9.1 
9.5 

9.7 

A=B 

9.9 a. 8 µs b. 1.6 µs 
9.11 16.7 MHz 
9.13 a. R = 1, S = 0, Q = 0 
9.15 

A B C D 
CLOCKnn..rLil_ 

Djl_____JL 

ABC DEF G H 

b. R = 0, S = 1, Q = 1 

Xl-----i 

MSBjirst 

::::0---lS Q "Typical" 

Control 

Clock--------------~ 

9.17 MSB first, shift/load is low, ABCD EFGH= 1011 1110. 

CLOCK ___ ~ 
INHIBIT L_j 

QB 

Q c 

QD 

QE 

QF 

QG 

QH 

' ' :o ------,,----------
------! 

----
------! 

----
--------

t 
Stored number 



Digital Principles and Applications 

MSB first, shift/load is high. 

9.19 Same as 9.15. 
9.21 

CLOCK 

QB ---
Qc~~~-'r---L_J 
QD r---L_J 

QE~~~~~~r--l___j 
QF -------------' 
QG~~~~~~~~~~~ 
QH 

CLOCK 
INHIBIT 

-----------------' 

t 
Stored number 

MODE~ 

CLOCK l =CLOCK2 ~ 
I I I I I 

r+-, I I I I 

D, DATA INPUT _J : I : : : : 
I I I I I 

QD ___s-i_LJ_J_ 
I I I 

Q I • 

C _ _,_: _ _,JI.__~~--
: ! :ri. __ ;....---
1 I I 

Q I --'---

A --'--'----'-' --' 

9.23 For alternate ls and Os, replace feedback with: 

toAB 

(a) 



Appendix 9: Answers to Selected Odd-Numbered Problems 

Include a power-on-CLEAR circuit like: 

+V C 

lOkQ 

to CLEAR 

lµFJ-
(b) 

This will CLEAR all flip-flops to zeros when power is first applied. 
9 .25 Decoder output Y =R'S' 

Clock 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Chapter 10 
10.1 

Clock 

10.3 4MHz 

Serial in = T' 

0 
l 
1 
0 
1 
0 
0 
1 
0 
l 

K A 

A 

Q 

1 
0 
l 
1 
0 
1 
0 
0 
1 
0 

J B 

K 7i 

B 

R s 
0 0 
1 0 
0 1 
1 0 
1 1 
0 1 
1 0 
0 1 
0 0 
1 0 

Clock SLJ1__f1_fl 

A~ 

B __ _, 

T Y= R'S' 

l 1 
0 0 
0 0 
1 0 
0 0 
1 0 
1 0 
0 0 
1 1 
0 0 

repeats 

Clock B A 
0 0 0 

0 
2 0 
3 I 

0 0 0 

10.5 Difficult to get clock and first few flip-flop outputs on the same page with the last few flip-flop 
outputs. 

10. 7 Same as Fig. 10.3 where period of QB is 2 µs. 
10.9 Sixteen4-inputNAND-gates_with inputs, ABC D,AB CD, ABC D,ABC D, A BCD, ABCD, 

ABCD,ABCD, ABCD,ABCD, ABCD,ABCD, ABCD,ABCD, ABCD, andABCD. 

i~"O" i~ "!" ---------- 1§=)-"15' 
D~ D, 



10.11 

Digital Principles and Applications 

CLK 

A 

A 
B 

B ii ,, 
:1 C 

,, ,, 
,1 I 

c ji ii ,, ,, 
II 

ABC II 

JI II 11 

ABC 11: :: 11 
___J i.,.., ___ _,,,ii!----"'1-----':""": --

ABC n__J] :: ---- p'---"'1----',"-,--
ABC r-,: :: ',-1----'+-----,,--
ABC 
ABC 

ABC 

II 
II 
II 
II 

I 

ABC ~~~~~~~~~r-L__ 

10.13 Same as Fig. 10.12c, except transitions occur on low-to-high clock. 
10.15 As in Fig. 10.15. 
10.17a.3 b.4 c.4 d.5 e.5 
10.19 

EP-"O" AP- "O" 

iD-"l" "1" 
~ "2" 

"2" 

~D-"3" ~D-"4" iD-"5" "3" 

"4" 

"5" 

10.21 

0 2 3 4 5 

CLOCK CLOCK I 

mod-3 mod-3 A1 

Bi 

Az 

Bz 

_n__n_ 
_j__n__J_ I 

I _J___n__J__ 
I n I 
I I 
I I 
I I 

_J____fl__J_ I 
I I 

-i____n_ 

6 7 8 0 



__________ A_p_p_en_d_ix_9_:_A_ns_w_e_rs_t_o_s_el_ec_te_d_O_d_d_-N_u_m_b_e,.,_e_d_P_ro_b_le_f1'!_s _________ (gi) 
10.23 

[p-, jp--, 
jp--, jp--, 

Clock 
count 0 2 3 4 5 6 

0 

!P--, :p--, 2 

3 

4 

5 

IP-· AP-B 7 
C 
75 

6 

7 

8 

IP--s fp--, 9 

Decoding gates Decode-counter outputs 

10.25 

10.27 

Known gate time 

_FR_~ Tocounter 

Unkn I 
CLOCK input 

ownpu ses 

JlJUlJL 

QD-------1 

QC 

QB-------;_ _ __, 

QA 

QD 
QC ------r-, 
QB-----;____, 

QA 

to 
CLEAR 

to 
CLEAR 

10.29 Like Prob. 10.27. 
10.31 Draw the circuit from design equations DA =A®B, D

8 
=A'+B 

7 g 9 0 



Digital Principles and Applications 

10.33 Draw the circuit from design equationsJA=B + C', KA= B' + C'; J
8
=A, K

8
=A; Jc=AB, Kc=A'B' 

10.35 Design a modulo-6 counter (Section 10.7) with state sequence for three flip-flops CBA 000 -7 001 
-7 010 -7 011 -7 100 -7 101 -7 000 ... Then draw circuit for output generating sequence as Y = C + 
A'B' 

10.39 Reconnect the J input on flip-flop A to l5. 
10.41 Mod-5 illegal states are 2(010), 5(101), and 7(111). AND gate will detect AB and force counter to 

CBA. Count 7 will progress to count 6(110). Mod-3 illegal state is 3(11), which will progress naturally 
to count 2(10). 

10.43 

Chapter 11 
11.1 

11.3 

11.5 

11.7 

~-r--\~ "!" 
·D~ 

0 

Present State Present Input 

B" A n X n 

0 0 0 
0 0 1 
0 1 0 
0 1 l 
1 1 0 
l l l 

~=0-"3" i=0-"5" 

1/0 

0 

Next State Present Output 

Bn+1 A.+1 y JB KB JA KA n 

0 0 0 0 X 0 X 

0 l 0 0 X 1 X 

0 0 0 0 X X 1 
l l 0 1 X X 0 
0 0 1 X 1 X 1 
1 1 0 X 0 X 0 



_________ A_p_p_e_nd_ix_9_:_An_s_w_ers_to_S_e_le_ct_e_d_O_dd_-N_u_m_b_ere_d_P_ro_bl_em_s _________ (j) 
11.9 

I II 

¥ 00 01 

0 0 0 

1 0 I 1 

I II 

00 01 

0 Ix l 

1 X 0 

11 10 

X X 

xi X 

11 10 

l xi 

0 X 

I II Bt4 
X 

0 

1 

I II 

0 

l 

00 01 11 

Ix X 1 

X X 0 

00 01 11 

0 0 11 

0 0 0 

Y=XB
11 

I II 

10 00 

xi 0 0 

X I I l 

10 

xi 

X 

01 11 

X X 

X X 

J =X A 

10 

X 

xi 

Compared to solution given in Section 11.4, this requires one AND gates less for JA input. 
11.11 Two for Mealy and three for Moore circuit. 
11.13 Two flip-flops (B. and A) are required. Three states assigned as (BA) 00, 01, 11 representing no, 1 si, 2°d 

bit detection respectively. Then, 

D
8
=X'B'A DA =X'B' Output Y=X'BA 

11.15 

3 to 8 decoder Bn+l A11+1 y11 

000 0 0 0 
Bn 

001 0 l 0 

A" 
010 0 0 0 

X __f \_[~ x;, 
011 l 0 0 

8 x3ROM 
100 0 0 I 

101 l 0 0 

110 X X X 

lll X X X 

Bn Bn+l 
' D / 

y 

< . 

An , An+l 
D 

< 
./ 

- CLK 



Digital Principles and Applications 

11.17 
.------Toa 

Fromb and c 

11.19 Three. 
11.21 Current output is same as previous output fed back at the input side. 
11.23 StablestatesAxy=Ol0,100, 101,111. 
11.25 ABC= llO, 101,011. 
11.27 When the circuit moves between two transient states following a particular input transition. 
11.29 10110, 11010, 00010. 
11.31 

11.33 

xy 

00 
01 
11 
10 

0 

00 
11 
11 
00 

0 

Input T 

1 

01 
01 
10 
10 

(a) 

Output T 
xy 

z 0 
0 
1 1 

1 
0 

Input T 

00 01 

0 11 

0 0 

11 

a 

b 

C 

d 

-
1 

1 

0 

@ 
C 

© 
a 

10 

0 

11 

X= Ty+ Tx+xy 

(b) 

1 

b 

@ 
d 

0 
(b) 

T 

Output 
Q 

0 

1 

1 

0 

xy 
00 01 11 10 

0 0 T 11 0 

1 11 1 0 0 

Y=Tx+ Ty+xy 

(c) 



AppendixUnswers to Selected Odd-Numbered Problems 

11.35 

0 

11.37 

Present Input A 
state 

(xy) 0 

a (10) 0 
b (00) -

C (01) -

d (11) a 

Chapter 12 
1 2 4 8 16 32 

12.1 -, -, -, -, -, -
63 63 63 63 63 63 

12.5 51.2 rnA 
12.7 a. 0.641 Vb. 0.923 V 
12.9 1 part in 4096; 2.44 mV 

C. 0.766 V 

12.11 31 
12.13 A

2
A1A0 

= a. 001 

12.15 7 MHz 

b. 010 C. llO 

12.17 12 µs, not counting delay and control times. 

12.19 iR = iC' VIR = VC!t, :. V = ~ x t 
I O O RC 

12.21 0.01 µF 
12.25 They should all be comparable 

Chapter 13 
13.1 a. RAM b.ROM c. EPROM 

0 

Output 

1 z 

b 1 

C 1 

d 0 

0 0 



Digital Principles and Applications 

13.3 Loss of power results in loss of memory. 
13.5 RAM 
13.7 ROM data storage is permanent. 
13.9 For accuracy check. Read immediately after write. 

13 .11 Data is recorded and retrieved sequentially. 
13.13 One-half tape length= 14,400 in; 14,400/300 = 48 s. 
13.15 Maximum 52 x 150 KB/Sec= 7.8 MB/Sec. 
13.17 Maximum 8 x 1:32 MB/Sec= l 0.56 MB/Sec. 
13.19 DCBA = 1101 
13.21 Five flip-flop binary counter. 
13.23 A PROM that can be programmed only by the supplier. 
13 .25 a. Apply address FEDCBA = 110101. 

b. Apply a current pulse, one at a time to outputs YI' Y
2
, Y

6
, and Y

8
• 

13.27 P=2F+l 

F p P(Bina,y) 

0 0 0 0 
1 3 0 0 l 
2 5 0 l 0 
3 7 0 1 I 
4 9 0 0 

13.29 Two identical chips connected together as follows: 

a. Select inputs (A to A, B to B, C to C, D to D) 
b. Data inputs (D

1 
to DI' D

2 
to D

2
, D3 to D

3
, D4 to D4) 

c. Sense outputs (S
1 

to SI' S
2 

to S
2

, S3 to S
3

, S
4 

to S4) 

Now, ME and WE are used to select one chip or the other. 
13.31 You must accomplish the following: 

READ: a. ME goes low for a given time period. 
b. The SELECT inputs (address) must be stable while ME is low. 
Then DATA is valid at the outputs for the time shown in Fig. 13.22d. 

WRITE: a. ME must be low for a given time period. 
b. The select inputs (address) and the data inputs must be stable while ME is low. 
c. WE must go low for a time twas in Fig. 13.22c. 

13.33 Draw two circuits exactly like Fig. 13.25, one below the other. Now, connect: 

a. The ADDRESS lines in parallel 
b. The two ME lines together 
c. The two WE lines together 

The four DATA IN and DATA OUT lines from the upper circuit can be considered the 4 LSBs, and 
those from the lower circuit are the 4 MSBs. 

13.35 150 ns, 100 ns 
13.37 +5 Vdc, -5 Vdc, + 12 Vdc 
13.39 False 
13.41 RAM chips 



Appendix 9: Answers to Selected Odd-Numbered Problems 

Chapter 14 
14.1 a. 1.82 mA, 0.7 V 

d. 1.65 mA 

14.3 

0 
+5 

+5 
0 

b.OmA,-lOV 
e. OmA,OV 

14.5 a. 1.28 mA b. 0 mA c. 1.28 mA d. -10 Vdc 
14.7 a. 1.2 mA b. 0.91 V c. Either case: I= 0 mA 
14.9 Low-power Schottky; see Table 14.3. 

14.11 100 
14.13 20 
14.15 Change 74LS04 to7404. 
14.17 30 
14.19 a. I b. 1 c. 0 d. 0 
14.2la.l b.O c.O d.O 
14.23 Time constant= RC= (3.6 kQ)(20 pF) = 72 ns 
14.25 High, low, high impedance (open) 
14.27 Low; high 
14.29 High; low 
14.31 With high TTL output, I"" 0, ideally with TTL output 0.4 V, 

= 12 V - 2 V - 0.4 V = 4 36 mA 
t 2.2 Jill . 

14.33 300 ns 
14.37 Low; high 

C. 1.82 mA, 9.3 V 
f. 5.35 V 

14.39 Connecting pin 13 to the supply voltage will produce a permanent high input. This will force the 
output to stick in the low state, regardless of what values A and B have. 

14.41 Grounding pin 1 will force the output to remain permanently in the high state, no matter what the 
values of A and B. 

14.43 3.6 mA 
14.45 Yes; 4 maximum 
14.47 Time constant= RC= (2.2 kQ)(IO pF) = 22 ns 
14.49 Choice d, shorted sink transistor 

Chapter 15 

Solutions for the problems at the end of this chapter are not unique-that is, there are many different 
designs that will satisfy each requirement. Nevertheless, typical designs for each problem can be found in 
the literature and are therefore not included here. It is intended that you search application notes and other 
publications supplied by manufacturers in order to satisfy a particular design requirement. This will provide 
the opportunity to see numerous different applications, and at the same time challenge you to improve on 
existing logic configurations. Here are some suggested references: 

Intersil, Inc., Cupertino, Cali£: Data Sheets and Application Notes. 
Motorola Semiconductor Products, Inc., Technical Information Center, Phoenix, 
Ariz.: Linear Integrated Circuits Data Book, 1979. 



Digital Principles and Applications 

National Semiconductor Corporation, Santa Clara, Calif.: Data Acquisition Handbook, 1978; Linear 
Applications Handbook, 1980. 
Texas Instruments, Data Book Marketing, P.O. Box 225558, Dallas, TX 75222-5558: 
Inteiface Circuits Data Boole, Linear Circuits Data Book (3 volumes); Optoelectronics and Image 
Sensing Data Book; TTL Logic Data Book. 

15.11 909 kHz 
15.13 a. 0100 0000 b. OOll OOll c. 1100 0001 
15.15 +1.65 Vdc 
15.17 v;_ = +0.25 Vdc; Vrer = +2.375 Vdc 

Chapter 16 
16.1 Five bits are available for data. Maximum number that can be loaded is 25-1 = 31. 
16.3 6-bit opcode gives 26 = 64 different instructions and 7-bit opcode gives.up to 27 = 128 instructions. 

Thus we have to assign 7-bit for opcode and in turn need a 7-bit register for IR. 
16.5 B is copied to A when any of X and Y is true. 
16.7 The bit positions where ACC and MDR were same will have 1 and rest 0. 
16.9 ACC[7:1] .-ACC[6:0],ACC[O] .- CY 

16.11 D
0
T

3
: ACC[4:0] .- MDR[4:0], ACC[7:5] .- 0, TC.- 0 

Parallel load should allow Oto enter 3 MSB of ACC which otherwise receives all 8 bits from BUS. 
Three 2-to- l multiplexer with D 

0
T

3 
as selection can be used for this so that D 

0
T

3 
= 1 selects O and D 

0
T

3 

= 0 selects BUS. 
16.13 Register MAR will be loaded with data available on BUS when TSD generates T

0 
or T

2
• 

16.15 

D4 _,___, 

T3 -1--i 

D6 -+---< 

16.17 37 clock cycles, 
16.19 

ALU,illD 

M en 

M 

S3 
S2 
S1 

So 

A MDR 

8 8 

ALU 

8 

BUS 



Appendix 9: Answers to Selected Odd-Numbered Problems 

Memory Memo1y 
address content 
in binary in binary 

00000 00001000 
00001 11001001 
00010 00101010 
00011 10100000 
00100 10100000 
00101 11001010 
00110 00101010 
OOlll 01000000 
01000 00000101 
01001 00001000 
01010 01000001 
01011 UNUSED 

lll 11 UNUSED 

16.21 
LDA addrl 

NOT 
AND addr2 

NOT 
STA addr3 

LDA addr2 

NOT 
AND addrl 

NOT 
AND addr3 

STA addr3 

HLT 

Memory 
content in 

hexadecimal 

08 
C9 
2A 
AO 
AO 
CA 
2A 
40 
05 
08 
41 

UNUSED 

UNUSED 



l'S complement 216 

10H8 156 

14L4 156 

16H2 156 

16R8 503 

2'S complement arithmetic 220 

2'S complement representation 216 

22Vl0 503,504 

24Xx family 496 

2716 153 

2732 153 

2732 495 

27XX EPROM 496 

28FXXX 496 

29FXXX 496 

3711 578,579,582,585 

4116 501,502,507 

4164 502 

4-Bit counters 368, 369 

54/74153 563 

54/74155 563 

54/74160 368,369,373,382 

54/74160 and the 54/74162 369,373 

54/74161 and the 54/74163 368 

54/74162, 54/74190, and 54/74192 368 

54/74164 310,314,315,321,325,331,332,337 

54/74165 310,337,338 

Index 

54/74166 316,317,319,320,337 

54/74174 320 

54/74175 283 

54/74176 368 

54/74190 and the 54/74192 369 

54/74191 356,357,368 

54/74191 and the 54/74193 368 

54/74193 352,354,356,368,374,375 

54/74198 310,321 

54/7427 273 

5417492A 362, 363 

5417493A 343 

5417495A 321, 322, 323, 337 

54/74LS91 309,336 

5400 series 519 

54COO series 541 

54LS109 276 

54LS11, 348 

54LS74 276 

555 Timer 253, 256 

7400 513, 518, 519, 520, 525, 527, 528, 529, 530, 550, 
553 

7400TTL 518 

7404 249,251 

74121 569 

74121 Nonretriggerable 258,259 

74123 Retriggerable monostables 258 



74147 139-141, 169 

74150 120,122,123,164 

74154 127-133 

74155 563,565 

74180 145,146 

74181 231,234-237,242 

74187 151 

74194 308,324-326 

74283 231,233 

74284 237 

74285 237 

74299 325 

7445 134, 135 

7446 137, 138 

7447 559,565,592 

7447 Bed to seven-segment decoder 559 

7448 138 

7448 559 

7450 530 

7453 530 

7455 530 

7473, 7476, and 7478 288 

7475 278 

7475 563 

7476 288,306,307 

7483 231,243 

7485 147, 148, 161, 162, 167 

7488 151 

7489 496,497,499,501,507,511 

7490 367,382,390 

7490 Decade counter 559, 562 

Index 

74COO 513,517,538,540,541,544,547,550,554,555 

74COO CMOS 538 

74C02 538 

74C906 548, 556 

74HOO 519,527 

74HCOO 513,517,538,541,550,555 

74HCOO devices 541 

74LOO 519 

74LSOO 513,520,550,556 

74LS189 490 

74LS279 274,275 

74LS73a 288 

74LS76a 288 

74LS78a 288 

74LS91 308, 309,312-314,336 

74SOO 520,550,553 

74Sl88 152 

74S201 487,491,499-501,511 

74S287 152 

74S288 492,493,496 

74S370 151 

74S472 152 

74S89 490,509 

A 

AID accuracy and resolution 471 

AID converter 438, 455-462, 464,465, 467-475 

AID converter-counter method 458 

AID converter-tracking type 462 

Access time 481,494,495,502,508,510,511 

Accumulator 595 

Actl 505 

Act2 505 

Act3 505 

Active load 517,518,551,556 

Active 

low 17 

power dissipation 540, 551, 554 

pull-up 532 

low signals 60, 68 

ADC0804 465-467, 475,558,571, 573-576, 592 

ADC3511 558,577-579,582-585,587,592 

ADC3711 582 

ADD3501 558, 585, 587 

Adder-subtracter 228 

Addition 19 

Address 478, 479, 487-492, 494-501, 503, 506-511 

Address bus 596,612 

Address decoding 488 

Addresses 148, 149, 151, 164 

Address-hold 499 

Address-setup or select-setup time 499 



ALU 595,596,598,602,603,605,613,614 

Analog 1-3, 35, 36 

Analog signals 3, 4 

And and OR gates 528 

AND gate 1, 11-13, 27, 29, 31, 35, 37, 38 

And gates 44, 45 

And-or 40, 46-48, 51, 55-59, 68, 69 

And-or-invert 40, 51, 57, 58, 59 

And-or-invert gates 40, 57, 58, 529 

Arithmetic logic unit 18, 19,235, 595 

ASCII code 190 

Assertion-level logic 40, 60, 61, 68, 72 

Associative laws 75 

Astable multivibrator 253 

Asynchronous 

B 

counters 342 

inputs 282, 299 

operation 245 

sequential circuit 413,414 

sequential logic 392,420; 422,423,434,435 

Base 514, 515, 518, 520, 532, 533, 536, 550, 551, 552, 
556 

BCD-2421 178, 179 

BCD-8421 178,179 

BCD-to-decimal decoder 134 

Behavioral modeling 109 

Bidirectional data bus 15 

Binary 

addition 207 

digit 14, 35 

equivalent weight 439,473 

ladder 438, 442-444, 458,459,472,473 

multiplication and division 237 

number system 3, 171, 179, 199 

subtraction 211 

weights 173 

Binary-coded decimal 133, 163, 169 

Binary-to-decimal conversion 173 

Binary-to-hexadecimal conversion 184 

Binary-to-octal conversion 182 

Bipolar 8, 28, 35, 36 

Index 

Bipolar junction transistors (bjts) 513,514 

Bistable 271,278, 279, 303, 304 

Bit 14, 15, 17, 19-21, 35-38, 172, 173, 176, 178, 179, 184, 
190-192, 194, 196-200,202,203,205 

Boolean algebra 41, 68, 74-76, 80, 93, 98, 100, 110-113 

Bubbled and gate 49, 53 

Bubbled or gate 53 

Buffer 1, 8-12, 35 

amplifier 9 

drivers 528 

Bus 82,83,99,596-598,602-605,609,613 

organization 533 

selector 596 

Byte 172, 173, 186, 187, 189,196,200,594,595,598, 
600,605 

C 

Cache memory 477,479,503 

Canonical 

product form 96 

sum form 82 

Carry 226-231, 243 

flag 213,214,595 

look ahead adder 232 

CD ROM 483-485 

CD-R 484,485, 508 

CD-RW 485,486, 508, 509, 511 

Cell selection 486 

Centering on the LSB 463 

Central processing unit (CPU) 23,593,594,609,612 

Characteristic equations 290 

Checksum code 196 

Chip 26-28, 32, 35, 477 

expansion 132 

enable 478,492,499,508 

select 478, 492, 495, 609 

select or chip-enable 478 

Circuit excitation table 396 

Clear 282-284, 306, 307 

Clock 6, 7, 17, 18,21,24-26,35,38 

Clock 

cycle time 245,247,266 

oscillator 565 



signal 7, 17, 18, 24 

Clocked 

D flip-flops 277 

RS flip-flops 276 

Index 

CMOS 29, 30, 32-35, 39, 512, 513, 517, 538-548, 
550-552, 554-557 

CMOS 

buffer 547 

characteristics 541 

level shifter 546 

load 543-546 

logic levels 33 

CMOS-to-TTL interface 546 

Collector 512,514,518,523, 529-532, 536-538, 545,546, 
548,550,551,553,555 

Combining rules 78 

Commutative laws 75 

Compact disk (CD) 483 

Comparator drive 536 

Comparison 20 

Compatibility 523, 543 

Complementary metal-oxide semiconductor (CMOS) 512 

Computer architecture 602, 605, 609, 612 

Consensus theorem 78, 112 

Contactbounce 270,289,290,305,307 

Content addressable memory (CAM) 506 

Continuous A/D conversion 461 

Continuous-type AID converter 462, 464 

Control 

bus 596,602,613 

path 596,597,602,613 

unit 602 

Controlled inverter 228-231, 241,242 

Controller 25, 26 

Conversion between canonical forms 97 

Conversion of flip-flops 296 

Conversion of models 395 

Count-down 

line 463 

mode 342,345,346,348,351,352,355-357,368,369 
388,389 ' 

Counter 6, 17, 18, 21, 35, 37 

design 376, 378, 384 

modulus 357 

Count-up 

line 463 

mode 341,343,348,350,351,355,356,368,369,389 

Covering rule 78 

CPLD 503, 504 

Critical race 417 

Current 

sink 4, 35 

source 4, 35 

tracer 548, 549, 556 

Cycle redundancy code 196, 205 

D 

DI A accuracy and resolution 454 

DIA converter 438, 447-454, 458,459,467,472,473 

DI A converters 44 7 

DAC0808 452, 455 

Data 2, 14, 15, 16, 18-20, 22-25, 30, 32, 35-39 

bus 15,24,596,609,610,613 

memory 594,613 

path 596, 602, 612, 613 

selector 118, 163 

Dataflow modeling 108 

Data-hold time 499 

Data-setup time 498 

De morgan's first theorem 49 

De morgan's second theorem 54 

De morgan's theorems 77 

Debounce circuit 290 

Decade counter 365, 369 

Decimal-to-BCD encoder 139, 163 

Decimal-to-binary conversion 176 

Decimal-to-hexadecimal conversion 185 

Decimal-to-octal conversion 181 

Decode cycle 60 l 

Decoder 21, 35, 37, 118, 127, 130-135, 137, 138, 149, 
158, 160-163, 165, 169,488-490,506 

Decoding gate 346, 349, 350, 357, 388 

Delay time 497, 498, 508 



Demorgan's theorem 611 

Demultiplexer 20, 21, 35,118, 127-131, 160,163 

Describe characteristic equations of flip-flops and analysis 
techniques of sequential circuit 270 

Describe excitation table of flip-flops and explain conver-
sion of flip-flops as synthesis example 270 

Differential linearity 472 

Digital 1-15, 17-30, 32, 34-38 

Digital 

computer 1, 14, 22-24, 26, 35, 36 

panel meter 585 

signals 3 

versatile disk (DVD) 483 

voltmeters 585 

Diode 513 

Direct 

addressing 594 

memory access (DMA) 24 

Distributive law 76, 79, 80, 110 

Divider circuit 565 

Don't-care condition 93, 95, 112, 117 

Down counter. 345,351,356,386 

Dram cell 502, 503 

Drams 477,501 

Dual-inline package (DIP) 27 

Duality 77, 100 

Duality theorem 77, 78, 100 

Dual-slope AID conversion 467,469 

Duty cycle 7, 35, 36, 38 

DVD 483, 485, 486, 508, 509 

Dynamic 

E 

hazard 107 

input indicator 248, 249, 266, 269 

ram (dram) 477,496 

Ebcdic 191 

Edge-triggered D flip-flops 281 

Edge-triggered flip-flop 279, 285, 304, 305, 307 

Edge-triggered JK flip-flops 283 

Edge-triggered RS flip-flops 279 

Eprom, flash memory 495 

Eight to fourteen modulation (EFM) 483 

Index 

Emitter 514,515,518,519, 521-523, 528-530, 532,536, 
550-552, 556 

Emitter-coupled logic 28, 29 

Encoder 20, 21, 35, 118, 138-141, 163, 169 

Encoding device 438 

Entered variable map 85, 86, 92, 104 

Eproms 478,491,495,505,507 

Erasable PROM (EPROM) 153, 478 

Error detection and correction 171, 196, 198 

Essential prime implicants 102-104, 111 

Even parity 143 

Excess-3 code 171, 192,199,202 

Excitation table 292 

Exclusive-or gate 118, 141-144, 163, 170 

Execute cycle 601 

Execution of instructions 599 

Expandable and-or-invert 530 

Expandable and-or-invert gate 58, 59 

Expandable memory 490 

Expander 58, 59 

F 
Fall time 6, 35, 36, 246, 266 

Falling edge 245,247,248 

Fan-in 233 

Fanout 33, 34,526,527,529,543,544,547,548,550, 
551,553 

Fast adder 232 

Fetch cycle 600 

Field-programmable 157,491,508 

Finite state machine 291, 292 

Flash converter 456, 458 

FLEXlOOOO 505 

FLEX8000 505 

Flip-flop 13, 14, 17, 18, 35, 37, 270-299, 301-307 

Floating inputs 521, 541 

Floppy disk 479, 482, 483 

Forbidden region 32, 38 

Forward-biased 513,514, 556 

FPGA 503-505, 507 

Fractions 174,177,181 

Free-running mode. 465 

Frequency 6, 7,24,38 



Frequency counters 565 

Frequency stability 246, 265, 266 

Full-adder 226, 227 

Fundamental mode 413,416 

Fuse link 491, 511 

Fusible link 152, 153 

G 

Gate 40-61, 63-73 

Gate, source, drain, and body 515 

Glitch 348-350, 388 

Glitches 262, 269 

Gray code 193 

H 
Half-adder 226 

Hamming code 197 

Handshaking 25, 35, 37 

Hard disk 16,479, 481-483 

Hardware description language 62 

Hazard covers 105 

Hazards 74, 105, 107, 112,418 

Index 

HDL 40, 61-63, 108-110, 237,298,333,423,425, 503 

Hexadecimal numbers 183, 199 

Hexadecimal-to-binary conversion 184 

Hexadecimal-to-decimal conversion 185 

High-speed ttl 519 

Hit flag 507 

Hold time 285 

Hysteresis 251,253,265 

I 

IC74181 234-237, 242 

IC 74182 234 

IC 74283 233 

IC families 28 

IEEE 30-32, 38 

IEEE symbol 30, 31 

Immediate addressing 594,613,614 

Implication table method 411 

Indirect addressing 594, 597, 614 

Inhibit mode, 355 

Instruction 

cycles 600 

decoder 596 

register 595 

Integrated circuit (IC) 1, 8 

Intel 2164 502 

Interfacing 30, 34 

Interrupt 609,610,613 

Interrupt service routine (ISR) 610 

Inversion 10, 18 

Inverter 1, 10,27,29-32,35,37,38 

Inverter ( not gate) 41 

Irregular counter 377-379 

J 

Johnson counter 328, 339, 340 

K 

Kamaugh map 74, 84-87, 89, 90, 92-95, 98, 100-105, 
111-114, 116,117,290,291,297 

L 
Ladder, 442,447,454,471 

Large-scale integration (LSI) IC 28 

Laser (light amplification by stimulated emission ofradia
tion) 483 

Latch 271, 274-276, 278, 279, 281, 286, 290, 298, 
303-305, 307 

Least-significant bit (LSB) 209 

Led 514,518,537,538,552,554,556 

Light-emitting 3 

Linear 

addressing 487,490 

operation 2 

LM336 582,587 

Locality 503 

Lock out 286, 287 

Logic 

circuits 40, 41, 50, 51, 60, 68 

clip 80, 112, 113 

probe 158,159,163,165,167 

symbols 30 

Logical operations 3, 24, 29 



Look-up table 148 

Low-power schottky TTL 520 

Low-power TTL 519 

LSB, 439,441,464 

M 

Mach chips 504 

Macro operations 595, 597,599,600,602,607,612,613 

Macrocell 503, 504 

Magnetic 

memory 479 

tape 479,480,483 

Ma1,'llitude comparator 146, 147, 163 

Mask 151, 163, 164 

Maskable intem1pts 610 

Mask-programmable 491,492,496, 508, 510 

Master clock 595, 600, 602, 603 

Master-slave flip-flop 270, 288, 289 

Matrix addressing 487 

Max 5000 504 

Max 7000 504 

Max 9000 504 

MC10319 458 

MC1508/1408 452 

MC6108 465 

MCM6665 502 

Mealy model 392-398, 400-405, 407-409, 416,424,432, 
433 

Medium-scale integration (MSI) ICS 28 

Memory 13, 16, 17, 24-26, 28, 35, 36, 38, 39,270,271, 
291,293,303 

Memory address register 595 

Memory addressing 486 

Memory bank 500 

Memory cells 477, 478, 487, 489, 494, 495, 498, 507, 
509 

Memory data register 595 

Memory-enable 496, 499 

Metal-oxide-semiconductor (MOS) 28 

Metal-oxide-semiconductor field-effect transistors 
(MOSFETs) 513 

Micro operations 595-599, 602, 608, 612-614 

Microprocessor 14, 15, 17, 25, 26, 28, 36-38 

Index 

Millman's theorem 440,441,473 

Mintenns 81, 82, 84, 92, 103 

MM74C925 565,568,592 

Mod-10 counter 365 

Mod-3 counter 360 

Mod-5 counter 363 

Module body 63 

Modulo-6 counter, 376 

Modulus 341,343, 357, 359-363, 365,368,369,376,387, 
388 

Monostable 244, 253, 256-262, 264-268 

Monostable multivibrator 256 

Monotonicity test. 450 

Moore model 392-399, 401-404, 408,409,419,421,432, 
433,436 

MOSFETs 512,513, 515-517, 540,550,551,557 

Most-significant bit (MSB) 209 

MSB 439,441-444,446,447,452,464,473 

MSBs 602,608,609 

Multiplexer 20, 21, 36, 118-127, 129, 154, 159, 160, 163, 
164,169 

Multiplexing displays 559 

N 

Nand gates 53, 55, 528, 538 

Nand-gate latch 274 

Nand-nand network 55 

N-channel transistor 516 

Negation 10,218,222 

Negative logic 3, 4, 36, 40, 41, 59, 60, 61, 68 

Negative transition 245 

Negative-edge-triggered 245, 248, 249, 256 

Negative-edge-triggered 280 

Nibble 172, 173, 200 

multiplexers 124 

NMOs 29 

Noise 

immunity 524, 525, 535, 540, 542, 543, 545, 546, 550, 
551 

margin 2, 34, 36 

voltage 34 

Noisy signals 251 

Nonlinear operation 2 



Non-maskable interrupts 610 

Nonretriggerable 244,258, 259, 261 

Nonvolatile data storage 479 

NOR gates 48, 528 

NOR-gate latch 271 

NOR-nor network 51 

NOT circuit 10 

NPN transistor 514 

NSB5388 587 

0 

Octal number system 179, 180, 183, 199 

Octal-to-binary conversion 181 

Octal-to-decimal conversion 180 

Octet 88-91, 112 

Odd parity 143 

On-chip decoding 149, 150 

Opcode 594-597,599-603,607,608,613,614 

Open circuit 9 

Open-collector gates 530 

Open-collector output 530, 536, 546 

Open-drain devices 548 

Operational amplifier 446, 449, 467 

Operational amplifier drive 535 

Optical memory 16,483 

OR gate 1, 12, 13, 29, 31, 32, 35, 37, 38 

OR gates 42, 43 

OR-and 46, 47, 51, 68, 69 

Oscillation 417 

Overflow 213-215, 222,224,225, 240-243 

p 

Packing density 477, 502, 508 

Parallel register 14 

Parallel adder 232-234, 242 

Parallel in-parallel out 320 

Parallel in-serial out 316 

Parallel shifting 309 

Parity bit 191 

Parity checker 144 

Parity code 196 

Index 

Parity generator 144, 145 

Pasic 505 

pASIC2 505 

Passive pull-up 532,546,551 

P-channel transistor 516 

Period 2, 6, 7, 35 

PLD 503,504 

PMOs 29 

PNP 514,552,556 

Pogrammable rom 478 

Port 16, 17,20,36-38 

Ports 62 

Positive and negative gates 59 

Positive logic 3, 4, 41, 59, 68, 41, 59, 68, 73 

Positive transition 245, 262, 264 

Positive-edge-triggered 245, 247-249, 279-285, 305 

Postponed output 288 

Power dissipation 519, 540 

Preset 282, 284, 306, 307 

Presettable counters 368 

Prime implicants 102-104, 111 

Primitive table 420 

Primitives 63 

Priority encoder 140, 141 

Product-of-sums equations 47 

Product-of-sums method 95 

Program 24, 26, 36 

counter 595 

execution 607 

memory 594-596, 600,601,612, 613 

Programmable array logic (PAL) 154 

logic arrays (PLAS) 156 

rom (PROM) 152 

sequence detector 330 

Programming computer 605 

PROMs 478,491,492,507 

Propagation delay 244,247,285,303,305,519, 539 

Propagation delay time 497,519,539 

Pull-up resistor 521, 530-532, 535, 544-546, 550, 555, 
556 

Pulse mode 413 



Pulse-forming circuits 247,262 

Pulse-triggered 288, 289, 305, 307 

Q 
Quad 31, 32, 80, 88-91, 93, 94, ll2 

Quantization error 471-474 

Quine-McClusky method 102 

R 

Ram 476-479, 481, 483, 486, 487, 496, 497, 499, 500, 
502,506-509,609,610 

Ramp generator 467 

RAMs 481,496,499,507 

Random access 478, 479, 509 

Read operation 478,485,497,498,508 

Read-only memory 148, 163, 164, 170,392,400,432 

Read-write head 480, 482, 483, 509 

Redundant group 91,92, 112 

Refresh cycle 501,502,508 

Register 

array 595 

transfer language 597 

Registers 14 

Relay 8 

Resistive divider 440 

Retriggerable 244, 258-261, 265 

Reverse-biased 513, 5 18 

Ring counter 325, 327-329, 332-334, 336,337 

Ripple carry addition 232, 238 

Ripple counter 341-349, 351, 388-390 

Rise time 6, 35, 36, 246, 266, 269 

Rising edge 245 

ROM 118, 148-153, 163, 164, 167, 170, 476-479, 483-
486, 490-492, 495-497, 508-511, 609,610 

ROMs 491,492,507 

Row elimination method 410 

RS flip-flops 271, 279 

RTL 593, 597-599, 601,602 

s 
Sample and hold circuit 449 

Sampled 3 

Saturation delay time 520,550,551 

Index 

Schmitt trigger 244, 250-253, 261, 265-267 

Schmitt triggers 244, 253, 269 

Schmitt-trigger inverter 251 

Schmitt-trigger NAND gate 251 

Schottky transistor 29, 36 

Schottky TTL 520 

Search 

data register 507 

lines 507 

word 507 

Section counters 466 

Select-hold time 499 

Semitransparent 279 

Sequence 

detector 329 

generator 329 

Sequential circuits 293 

Serial 

adder 330 

addition 232, 241 

Serial in-parallel out 313 

Serial in-serial out 310 

Serial 
register 15-17, 37, 38 

shifting 309 

Settling time 341 

Setup time 285, 286, 303, 305 

Seven-segment decoder-driver 137 

Seven-segment decoders 136 

Shift register 308-316, 319-321, 323-326, 328-331, 333-
340 

Sign-magnitude numbers 214 

Simulation 62, 64-66 

Simultaneous ND converter 456-458, 474 

Single-ramp ND converter 467 

Small-scale integration (SSI) IC 28 

Solder bridge 159 

Sourcing and sinking 523, 543 

Srams 477,496,499,501 

Stable 393,406, 414-418, 420,421,432,434; 437 

Start/stop flag 595 

State 270-274, 276-289, 291,292, 294-297, 301,303,306, 
307 




