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PREFACE 

This computational fluid dynamics (CFO) book is truly for beginners. If you have 
never studied CFO before, if you have never worked in the area, and if you have no 
real idea as to what the discipline is all about, then this book is for you. Absolutely 
no prior knowledge of CFO is assumed on your part-only your desire to learn 
something about the subject is taken for granted. 

The author's single-minded purpose in writing this book is to provide a simple, 
satisfying, and motivational approach toward presenting the subject to the reader 
who is learning about CFO for the first time. In the workplace, CFO is today a 
mathematically sophisticated discipline. In turn, in the universities it is generally 
considered to be a graduate-level subject; the existing textbooks and most of the 
professional development short courses are pitched at the graduate level. The 
present book is a precursor to these activities. It is intended to "break the ice" for 
the reader. This book is unique in that it is intended to be read and mastered before 
you go on to any of the other existing textbooks in the field, before you take any 
regular short courses in the discipline, and before you endeavor to read the existing 
literature. The hallmarks of the present book are simplicity and motivation. It is 
intended to prepare you for the more sophisticated presentations elsewhere-to give 
you an overall appreciation for the basic philosophy and ideas which will then make 
the more sophisticated presentations more meaningful to you later on. The 
mathematical level and the prior background in fluid dynamics assumed in this 
book are equivalent to those of a college senior in engineering or physical science. 
Indeed, this book is targeted primarily for use as a one-semester, senior-level course 
in CFO; it may also be useful in a preliminary, first-level graduate course. 

There are no role models for a book on CFO at the undergraduate level; when 
you ask ten different people about what form such a book should take, you get ten 
different answers. This book is the author's answer, as imperfect as it may be, 
formulated after many years of thought and teaching experience. Of course, to 
achieve the goals stated above, the author has made some hard choices in picking 
and arranging the material in this book. It is not a state-of-the-art treatment of the 
modem, sophisticated CFO of today. Such a treatment would blow the uninitiated 
reader completely out of the water. This author knows; he has seen it happen over 

xix 
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and over again, where a student who wants to learn about CFD is totally turned off 
by the advanced treatments and becomes unmotivated toward continuing further. 
Indeed, the purpose of this book is to prepare the reader to benefit from such 
advanced treatments at a later date. The present book provides a general 
perspective on CFD; its purpose is to turn you, the reader, on to the subject, not to 
intimidate you. Therefore, the material in this book is predominately an intuitive, 
physically oriented approach to CFD. A CFD expert, when examining this book, 
may at first think that some of it is "old-fashioned," because some of the material 
covered here was the state of the art in 1980. But this is the point: the older, tried
and-proven ideas form a wonderfully intuitive and meaningful learning experience 
for the uninitiated reader. With the background provided by this book, the reader 
can then progress to the more sophisticated aspects of CFD in graduate school and 
in the workplace. However, to increase the slope of the reader's learning curve, 
state-of-the-art CFD techniques are discussed in Chap. 11, and some very recent 
and powerful examples of CFD calculations are reviewed in Chap. 12. In this 
fashion, when you finish the last page of this book, you are already well on your 
way to the next level of sophistication in the discipline. 

This book is in part the product of the author's experience in teaching a one
week short course titled "Introduction to Computational Fluid Dynamics," for the 
past ten years at the von Karman Institute for Fluid Dynamics (VKI) in Belgium, 
and in recent years also for Rolls-Royce in England. With this experience, this 
author has discovered much of what it takes to present the elementary concepts of 
CFD in a manner which is acceptable, productive, and motivational to the first-time 
student. The present book directly reflects the author's experience in this regard. 
The author gives special thanks to Dr. John Wendt, Director of the VKI, who first 
realized the need for such an introductory treatment of CFD, and who a decade ago 
galvanized the present author into preparing such a course at VKI. Over the ensuing 
years, the demand for this "Introduction to Computational Fluid Dynamics" course 
has been way beyond our wildest dreams. Recently, a book containing the VKI 
course notes has been published; it is Computational Fluid Dynamics: An 
Introduction, edited by John F. Wendt, Springer-Verlag, 1992. The present book is a 
greatly expanded sequel to this VKI book, aimed at a much more extensive 
presentation of CFD pertinent to a one-semester classroom course, but keeping 
within the basic spirit of simplicity and motivation. 

This book is organized into four major parts. Part I introduces the basic 
thoughts and philosophy associated with CFD, along with an extensive discussion 
of the governing equations of fluid dynamics. It is vitally important for a student of 
CFD to fully understand, and feel comfortable with, the basic physical equations; 
they are the lifeblood of CFD. The author feels so strongly about this need to fully 
understand and appreciate the governing equations that every effort has been made 
to thoroughly derive and discuss these equations in Chap. 2. In a sense, Chap. 2 
stands independently as a "mini course" in the governing equations. Experience has 
shown that students of CFD come from quite varied backgrounds; in turn, their 
understanding of the governing equations of fluid dynamics ranges across the 
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spectrum from virtually none to adequate. Students from the whole range of this 
spectrum have continually thanked the author for presenting the material in Chap. 2; 
those from the "virtually none" extreme are very appreciative of the opportunity to 
become comfortable with these equations, and those from the "adequate" extreme 
are very happy to have an integrated presentation and comprehensive review that 
strips away any mystery about the myriad of different forms of the governing 
equations. Chapter 2 emphasizes the philosophy that, to be a good computational 
fluid dynamicist, you must first be a good fluid dynamicist. 

In Part II, the fundamental aspects of numerical discretization of the governing 
equations are developed; the discretization of the partial differential equations 
(finite-difference approach) is covered in detail. Here is where the basic numerics 
are introduced and where several popular numerical techniques for solving flow 
problems are presented. The finite-volume discretization of the integral form of the 
equations is covered via several homework problems. 

Part III contains applications of CFD to four classic fluid dynamic problems 
with well-known, exact analytical solutions, which are used as a basis for 
comparison with the numerical CFD results. Clearly, the real-world applications of 
CFD are to problems that do not have known analytical solutions; indeed, CFD is 
our mechanism for solving flow problems that cannot be solved in any other way. 
However, in the present book, which is intended to introduce the reader to the basic 
aspects of CFD, nothing is gained by choosing applications where it is difficult to 
check the validity of the results; rather everything is gained by choosing simple 
flows with analytical solutions so that the reader can fundamentally see the 
strengths and weaknesses of a given computational technique against the 
background of a known, exact analytical solution. Each application is worked in 
great detail so that the reader can see the direct use of much of the CFD 
fundamentals which are presented in Parts I and II. The reader is also encouraged to 
write his or her own computer programs to solve these same problems, and to check 
the results given in Chaps. 7 to 10. In a real sense, although the subject of this book 
is computational fluid dynamics, it is also a vehicle for the reader to become more 
thoroughly acquainted with fluid dynamics per se. This author has intentionally 
emphasized the physical aspects of various flow problems in order to enhance the 
reader's overall understanding. In some respect, this is an example of the adage that 
a student really learns the material of course N when he or she takes course N + 1. 
In terms of some aspects of basic fluid dynamics, the present book represents 
course N + 1. 

Part IV deals with some topics which are more advanced than those discussed 
earlier in the book but which constitute the essence of modem state-of-the-art 
algorithms and applications in CFD. It is well beyond the scope of this book to 
present the details of such advanced topics-they await your attention in your 
future studies. Instead, such aspects are simply discussed in Chap. 11 just to give 
you a preview of coming attractions in your future studies. The purpose of Chap. 11 
is just to acquaint you with some of the ideas and vocabulary of the most modem 
CFD techniques being developed today. Also, Chap. 12 examines the future of 
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CFO, giving some very recent examples of pioneering applications; Chap. 12 
somewhat closes the loop of this book by extending some of the motivational ideas 
first discussed in Chap. 1. 

The matter of computer programing per se was another hard choice faced by 
the author. Should detailed computer listings be included in this book as an aid to 
the reader's computer programing and as a recognition of the importance of efficient 
and modular programing for CFO? The decision was no, with the exception of a 
computer listing for Thomas' algorithm contained in the solution for Couette flow 
and listed in App. A. There are good and bad programming techniques, and it 
behooves the reader to become familiar and adept with efficient programming. 
However, this is not the role of the present book. Rather, you are encouraged to 
tackle the applications in Part III by writing your own programs as you see fit, and 
not following any prescribed listing provided by the author. This is assumed to be 
part of your learning process. The author wants you to get your own hands "dirty" 
with CFO by writing your own programs; it is a vital part of the learning process at 
this stage of your CFO education. On the other hand, detailed computer listings for 
all the applications discussed in Part III are listed in the Solutions Manual for this 
book. This is done as a service to classroom instructors. In turn, the instructors are 
free to release to their students any or all of these listings as deemed appropriate. 

Something needs to be said about computer graphics. It was suggested by one 
reviewer that some aspects of computer graphics be mentioned in the present book. 
It is a good suggestion. Therefore, in Chap. 6 an entire section is devoted to 
explaining and illustrating the different computer graphic techniques commonly 
used in CFO. Also, examples of results presented in standard computer graphic 
format are sprinkled throughout the book. 

Something also needs to be said about the role of homework problems in an 
introductory, senior-level CFO course, and therefore about homework problems in 
the present book. This is a serious consideration, and one over which the author has 
mulled for a considerable time. The actual applications of CFO-even the simplest 
techniques as addressed in this book-require a substantial learning period before 
the reader can actually do a reasonable calculation. Therefore, in the early chapters 
of this book, there is not much opportunity for the reader to practice making 
calculations via homework exercises. This is a departure from the more typical 
undergraduate engineering course, where the student is usually immersed in the 
"learning by doing" process through the immediate assignment of homework 
problems. Insead, the reader of this book is immersed in first learning the basic 
vocabulary, philosophy, ideas, and concepts of CFO before he or she finally 
encounters applications-the subject of Part III. Indeed, in these applications the 
reader is finally encouraged to set up calculations and to get the experience of doing 
some CFO work himself or herself. Even here, these applications are more on the 
scale of small computer projects rather than homework problems per se. Even the 
reviewers of this book are divided as to whether or not homework problems should 
be included; exactly half the reviewers said yes, but the others implied that such 
problems are not necessary. This author has taken some middle ground. There are 
homework problems in this book, but not very many. They are included in several 
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chapters to help the reader think about the details of some of the concepts being 
discussed in the text. Because there are no established role models for a book in 
CFO at the undergraduate level for which the present book is aimed, the author 
prefers to leave the generation of large numbers of appropriate homework problems 
to the ingenuity of the readers and instructors-you will want to exercise your own 
creativity in this regard. 

This book is in keeping with the author's earlier books in that every effort has 
been made to discuss the material in an easy-to-understand writing style. This book 
will talk to you in a conversational style in order to expedite your understanding of 
material that sometimes is not all that easy to understand. 

As stated earlier, a unique aspect of this book is its intended use in 
undergraduate programs in engineering and physical science. Since the seventeenth 
century, science and engineering have developed along two parallel tracks: one 
dealing with pure experiment and the other dealing with pure theory. Indeed, today's 
undergraduate engineering and science curricula reflect this tradition; they give the 
student a solid background in both experimental and theoretical techniques. 
However, in the technical world of today, computational mechanics has emerged as 
a new third approach, along with those of experiment and theory. Every graduate 
will in some form or another be touched by computational mechanics in the future. 
Therefore, in terms of fluid dynamics, it is essential that CFO be added to the 
curriculum at the undergraduate level in order to round out the three-approach 
world of today. This book is intended to expedite the teaching of CFO at the 
undergraduate level and, it is hoped, to make it as pleasant and painless as possible 
to both student and teacher. 

A word about the flavor of this book. The author is an aerodynamicist, and 
there is some natural tendency to discuss aeronautically related problems. However, 
CFO is interdisciplinary, cutting across the fields of aerospace, mechanical, civil, 
chemical, and even electrical engineering, as well as physics and chemistry. While 
writing this book, the author had readers from all these areas in mind. Indeed, in the 
CFO short courses taught by this author, students from all the above disciplines 
have attended and enjoyed the experience. Therefore, this book contains material 
related to other disciplines well beyond that of aerospace engineering. In particular, 
mechanical and civil engineers will find numerous familiar applications discussed 
in Chap. 1 and will find the ADI and pressure correction techniques discussed in 
Chap. 6 to be of particular interest. Indeed, the application of the pressure 
correction technique for the solution of a viscous incompressible flow in Chap. 9 is 
aimed squarely at mechanical and civil engineers. However, no matter what the 
application may be, please keep in mind that the material in this book is generic and 
that readers from many fields are welcome. 

What about the sequence of material presented in this book? Can the reader 
hop around and cut out some material he or she may not have time to cover, say in a 
given one-semester course? The answer is essentially yes. Although the author has 
composed this book such that consecutive reading of all the material in sequence 
will result in the broadest understanding of CFO at the introductory level, he 
recognizes that many times the reader and/or instructor does not have that luxury. 
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Therefore, at strategic locations throughout the book, specifically highlighted 
GUIDEPOSTS appear which instruct the reader where to go in the book and what 
to do in order to specifically tailor the material as he or she so desires. The location 
of these GUIDEPOSTS is also shown in the table of contents, for ready reference. 

The author wishes to give special thanks to Col. Wayne Halgren, professor of 
aeronautics at the U.S. Air Force Academy. Colonel Halgren took the time to study 
the manuscript of this book, to organize it for a one-semester senior course at the 
Academy, and to field-test it in the classroom during the spring of 1993. Then he 
graciously donated his time to visit with the author at College Park in order to share 
his experiences during this field test. Such information coming from an 
independent source was invaluable, and a number of features contained in this 
book came out of this interaction. The fact that Wayne was one of this author's 
doctoral students several years ago served to strengthen this interaction. This author 
is proud to have been blessed with such quality students. 

The author also wishes to thank all his colleagues in the CFD community for 
many invigorating discussions on what constitutes an elementary presentation of 
CFD, and especially the following reviewers of this manuscript: Ahmed Busnaina, 
Clarkson University; Chien-Pin Chen, University of Alabama-Huntsville; George 
S. Dulikravich, Pennsylania State University; Ira Jacobson, University of Virginia; 
Osama A. Kandil, Old Dominion University; James McDonough, University of 
Kentucky; Thomas J. Mueller, University of Notre Dame; Richard Pletcher, Iowa 
State University; Paavo Repri, Florida Institute of Technology; P. L. Roe, University 
of Michigan-Ann Arbor; Christopher Rutland, University of Wisconsin; Joe F. 
Thompson, Mississippi State University; and Susan Ying, Florida State University. 
This book is, in part, a product of those discussions. Also, special thanks go to 
Ms. Susan Cunningham, who was the author's personal word processor for the 
detailed preparation of this manuscript. Sue loves to type equations-she should 
have had a lot of fun with this book. Of course, special appreciation goes to two 
important institutions in the author's life-the University of Maryland for providing 
the necessary intellectual atmosphere for producing such a book, and my wife, 
Sarah-Allen, for providing the necessary atmosphere of understanding and support 
during the untold amount of hours at home required for writing this book. To all of 
you, I say a most heartfelt thank you. 

So, let's get on with it! I wish you a productive trail of happy reading and happy 
computing. Have fun (and I really mean that). 

John D. Anderson, Jr. 

COMPUTATIONAL FLUID DYNAMICS 
The Basics with Applications 



PART 

I 
BASIC 

THOUGHTS 
AND 

EQUATIONS 

I n Part I, we introduce some of the basic philosophy and ideas of computational 
fluid dynamics to serve as a springboard for the rest of the book. We also derive 

and discuss the basic governing equations of fluid dynamics under the premise that 
these equations are the physical foundation stones upon which all computational 
fluid dynamics is based. Before we can understand and apply any aspect of 
computational fluid dynamics, we must fully appreciate the governing equations
the mathematical form and what physics they are describing. All this is the essence 
of Part I. 
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CHAPTER 

1 
PHILOSOPHY 

OF 
COMPUTATIONAL 

FLUID 
DYNAMICS 

All the mathematical sciences are founded on 
relations between physical laws and laws of 

numbers, so that the aim of exact science is to 
reduce the problems of nature to the determination 

of quantities by operations with numbers. 

James Clerk Maxwell, 1856 

In the late 1970's, this approach (the use of 
supercomputers to solve aerodynamic problems) 

began to pay off. One early success was the 
experimental NASA aircraft called HiMAT (Highly 
Maneuverable Aircraft Technology), designed to 

test concepts of high maneuverability for the 
next generation of fighter planes. Wind tunnel 

tests of a preliminary design for HiMAT 
showed that it would have unacceptable drag 

at speeds near the speed of sound; if built that 
way the plane would be unable to provide any 

usefal data. The cost of redesigning it in farther 
wind tunnel tests would have been around 

$150,000 and would have unacceptably delayed 
the project. Instead, the wing was redesigned by a 

computer at a cost of $6,000. 

Paul E. Ceruzzi, Curator, National Air and Space 
Museum, in Beyond the Limits, The MIT Press, 1989 
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1.1 COMPUTATIONAL FLUID DYNAMICS: 
WHY? 

The time: early in the twenty-first century. The place: a major airport anywhere in 
the world. The event: a sleek and beautiful aircraft roles down the runway, takes off, 
and rapidly climbs out of sight. Within minutes, this same aircraft has _accelerate~ to 
hypersonic speed; still within the atmosphere, its powerful supersomc combustion 
ramjet engines* continue to propel the aircraft to a velocity near 26,000 ft/s
orbital velocity-and the vehicle simply coasts into low earth orbit. Is this the stuff 
of dreams? Not really; indeed, this is the concept of a transatmospheric vehicle, 
which has been the subject of study in several countries during the 1980s and 1990s. 
In particular, one design for such a vehicle is shown in Fig. 1.1, which is an artist's 
concept for the National Aerospace Plane (NASP), the subject of an intensive study 
project in the United States since the mid- l 980s. Anyone steeped in t~e history of 
aeronautics, where the major thrust has always been to fly faster and higher, knows 
that such vehicles will someday be a reality. But they will be made a reality only 
when computational fluid dynamics has developed to the point where the complete 
three-dimensional flowfield over the vehicle and through the engines can be 
computed expeditiously with accuracy and reliability. Unfortunately, ground test 
facilities-wind tunnels-do not exist in all the flight regimes covered by such 
hypersonic flight. We have no wind tunnels that can simultaneously simulate the 
higher Mach numbers and high flowfield temperatures to _be encounte~ed by 
transatmospheric vehicles, and the prospects for such wmd tunnels m the 
twenty-first century are not encouraging. Hence, the major player in the design 
of such vehicles is computational fluid dynamics. It is for this reason, as well as 
many others, why computational fluid dynamics-the subject of this book-is so 
important in the modem practice of fluid dynamics. t 

Computational fluid dynamics constitutes a new "third approach" in the 
philosophical study and development of the whole discipline_ of fluid ~ynamics. ~ 
the seventeenth century, the foundations for experimental flmd dynamtcs were laid 
in France and England. The eighteenth and nineteenth centuries saw the gradual 
development of theoretical fluid dynamics, again primarily ~ Europe. (See Refs: 3 -
5 for presentations of the historical evolution of fluid dynamics and aerodynamtcs.) 
As a result, throughout most of the twentieth century the study and practice of fluid 
dynamics (indeed, all of physical science and engineering) involved the use of p~e 
theory on the one hand and pure experiment on the other hand. If you were learmng 

• A supersonic combustion ramjet engine, SCRAMJET for short, is an air-breathing ramjet engine 
where the flow through the engine remains above Mach 1 in all sections of the engine, including the 
combustor. Fuel is injected into the supersonic airstream in the combustor, and combustion takes place 
in the supersonic flow. This is in contrast to a conventional ramjet or gas turbine engine, where the flow 
in the combustor is at a low subsonic Mach number. 

t For a basic introduction to the principles of hypersonic flight, see chap. 10 of Ref. l. For an in-depth 
presentation of these principles, see Ref. 2. 
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FIG. 1.1 
Artist's conception of an aerospace plane. (NASA) 

fluid dynamics as recently as, say, 1960, you would have been operating in the 
"two-approach world" of theory and experiment. However, the advent of the high
speed digital computer combined with the development of accurate numerical 
algorithms for solving physical problems on these computers has revolutionized the 
way we study and practice fluid dynamics today. It has introduced a fundamentally 
important new third approach in fluid dynamics-the approach of computational 
fluid dynamics. As sketched in Fig. 1.2, computational fluid dynamics is today an 
equal partner with pure theory and pure experiment in the analysis and solution of 
fluid dynamic problems. And this is no flash in the pan-computational fluid 
dynamics will continue to play this role indefinitely, for as long as our advanced 
human civilization exists. Therefore, by studying computational fluid dynamics 
today, you are participating in an awesome and historic revolution, truly a measure 
of the importance of the subject matter of this book. 

However, to keep things in perspective, computational fluid dynamics 
provides a new third approach-but nothing more than that. It nicely and 
synergistically complements the other two approaches of pure theory and pure 
experiment, but it will never replace either of these approaches (as sometimes 
suggested). There will always be a need for theory and experiment. The future 
advancement of fluid dynamics will rest upon a proper balance of all three 
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FIG. 1.2 
The "three dimensions" of fluid dynamics. 

approaches, with computational fluid dynamics helping to interpret and understand 
the results of theory and experiment, and vice versa. . 

Finally, we note that computational fluid dynamics is commonplace en?ugh 
today that the acronym CFD is universally accepted for the p~e "comp~tattonal 
fluid dynamics." We will use this acronym throughout the remamder of this book. 

1.2 COMPUTATIONAL FLUID DYNAMICS 
AS A RESEARCH TOOL 

Computational fluid dynamic results are directly analogous to win~ tunnel results 
obtained in a laboratory-they both represent sets of data for given flow con
figurations at different Mach numbers, Reynolds numbers, etc. However, unlike a 
wind tunnel, which is generally a heavy, unwieldy device, a computer program (say 
in the form of floppy disks) is something you can carry around in your hand. Or 
better yet, a source program in the memory of a given computer can be accessed 
remotely by people on terminals that can be thousands of miles away from the 
computer itself. A computer program is, therefore, a readily transportable tool, a 
"transportable wind tunnel." . . . 

Carrying this analogy further, a computer program 1s a tool with which you 
can carry out numerical experiments. For example, assume that you h~ve ~ program 
which calculates the viscous, subsonic, compressible flow over an airfoil, such as 
that shown in Fig. 1.3. Such a computer program was developed by Kothari and 
Anderson (Ref. 6); this program solves the complete two-dimensional Navier
Stokes equations for viscous flow by means of a finite-differe~ce nume~cal 
technique. The Navier-Stokes equations, as well as other governing equa~10ns 
for the physical aspects of fluid flow, are developed in Chap. 2. The computational 
techniques employed in the solution by Kothari and Anderson in Ref. 6 are _standard 
approaches-all of which are covered in subsequent chapters of this book. 
Therefore, by the time you finish this book, you will have all the k_nowledge 
necessary to construct, among many other examples, solutions of the Nav1er-Stokes 
equations for compressible flows over airfoils, just as described in Re~. 6. N~w, 
assuming that you have such a program, you can carry out some mterestmg 
experiments with it-experiments which in every sense of the word are ~alogous to 
those you could carry out (in principle) in a wind tunnel, except the expenments you 
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(a) Laminar flow 

(b) Turbulent flow 

FIG. 1.3 
Example of a CFD numerical experiment. (a) Instantaneous streamlines over a Wortrnann airfoil 
(FX63-137) for laminar flow. Re= 100,000; M00 = 0.5; zero angle of attack. The laminar flow is 
unsteady; this picture corresponds to only one instant in time. (b) Streamlines over the same airfoil for 
the same conditions except that the flow is turbulent. 

perform with the computer program are numerical experiments. To provide a more 
concrete understanding of this philosophy, let us examine one of these numerical 
experiments, gleaned from the work of Ref. 6. 

This is an example of a numerical experiment that can elucidate physical 
aspects of a flow field in a manner not achievable in a real laboratory experiment. 
For example, consider the subsonic compressible flow over the Wortmann airfoil 
shown in Fig. 1.3. Question: What are the differences between laminar and turbulent 
flow over this airfoil for Re = I 00,000? For the computer program, this is a 
straightforward question-it is just a matter of making one run with the turbulence 
model switched off (laminar flow), another run with the turbulence model switched 
on (turbulent flow), and then comparing the two sets of results. In this fashion you 
can dabble with Mother Nature simply by turning a switch in the computer 
program-something you cannot do quite as readily (if at all) in the wind tunnel. 
For example, in Fig. 1.3a the flow is completely laminar. Note that the calculated 
flow is separated over both the top and bottom surfaces of the airfoil, even though 
the angle of attack is zero. Such separated flow is characteristic of the low Reynolds 
number regime considered here (Re= 100,000), as discussed in Refs. 6 and 7. 
Moreover, the CFD calculations show that this laminar, separated flow is unsteady. 
The numerical technique used to calculate these flows is a time-marching method, 
using a time-accurate finite-difference solution of the unsteady Navier-Stokes 
equations. (The philosophy and numerical details associated with time-marching 
solutions will be discussed in subsequent chapters.) The streamlines shown in Fig. 
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1.3a are simply a "snapshot" of this unsteady flow at a given instant in time. In 
contrast, Fig. 1.3b illustrates the calculated streamlines when a turbulence model is 
"turned on" within the computer program. Note that the calculated turbulent flow is 
attached flow; moreover, the resulting flow is steady. Comparing Fig. 1.3a and b, we 
see that the laminar and turbulent flows are quite different; moreover, this CFD 
numerical experiment allows us to study in detail the physical differences between 
the laminar and turbulent flows, all other parameters being equal, in a fashion 
impossible to obtain in an actual laboratory experiment. 

Numerical experiments, carried out in parallel with physical experiments in 
the laboratory, can sometimes be used to help interpret such physical experiments, 
and even to ascertain a basic phenomenological aspect of the experiments which is 
not apparent from the laboratory data. The laminar/turbulent comparison reflected 
in part in Fig. 1.3a and b is such a case. This comparison has even more 
implications, as follows. Consider Fig. 1.4, which is a plot of experimental wind 
tunnel data (the open symbols) for lift coefficient c1 as a function of angle of attack 
for the same Wortman airfoil. The experimental data were obtained by Dr. Thomas 
Mueller and his colleages at Notre Dame University. (See Ref. 7.) The solid 
symbols in Fig. 1.4 pertain to the CFD results at zero angle of attack, as described in 
Ref. 6. Note that there are two distinct sets of CFD results shown here. The solid 
circle represents a mean of the laminar flow results, with the brackets representing 
the amplitude of the unsteady fluctuations in c1 due to the unsteady separated flow, 
as previously illustrated in Fig. 1.3a. Note that the laminar flow value of c1 is not 
even close to the experimental measurements at IX = 0. On the other hand, the solid 
square gives the turbulent flow result, which corresponds to steady flow as 
previously illustrated in Fig. 1.3b. The turbulent value of c1 is in close agreement 

-20 

-0.4 

0 Experimental results 
Present calculations: 

• Turbulent 
~ Laminar 

FIG. 1.4 
Example of a CFD numerical experi
ment. Lift coefficient versus angle of 
attack for a Wortmann airfoil. 
Re= 100,000; M00 = 0.5. 
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28 FIG. 1.5 
Example of a CFD numerical 
experiment. Drag coefficient ver
sus angle of attack for a Wort
mann airfoil. Re = I 00,000; 
M 00 = 0.5. 

with the experimental data. This comparison is reinforced by the results shown in 
Fig. 1.5, which is a plot of the airfoil drag coefficient versus angle of attack. The 
open symbols are Mueller's experimental data, and the solid symbols at IX = O are 
the CFD results. The fluctuating laminar values of the computed cd are given by the 
solid circle and the amplitude bars; the agreement with experiment is poor. On the 
other hand, the solid square represents the steady turbulent result; the agreement 
with experiment is excellent for this case. The importance of this result goes beyond 
just a simple comparison between experiment and computation. During the course 
of the wind tunnel experiments, there was some uncertainty, based on the 
experimental observations themselves, as to whether or not the flow was laminar 
or turbulent. However, examing the comparisons with the CFD data shown in Figs. 
1.4 and 1.5, we have to conclude that the flow over the airfoil in the wind tunnel was 
indeed turbulent, because the turbulent CFD results agreed with experiment 
whereas the laminar CFD results were far off. Here is a beautiful example of 
ho~ CFD c~ work harmoniously with experiment-not just providing a quanti
tative companson, but also in this case providing a means to interpret a basic 
phenomenological aspect of the experimental conditions. Here is a graphic example 
of the value of numerical experiments carried out within the framework of CFD. 

1.3 COMPUTATIONAL FLUID DYNAMICS 
AS A DESIGN TOOL 

In 1950, there was no CFD in the way that we think of it today. In 1970, there was 
CFD, but the type of computers and algorithms that existed at that time limited all 
practical solutions essentially to two-dimensional flows. The real world of fluid 
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dynamic machines-compressors, turbines, flow ducts, airplanes, etc.-is mainly a 
three-dimensional world. In 1970, the storage and speed capacity of digital 
computers were not sufficient to allow CFD to operate in any practical fashion 
in this three-dimensional world. By 1990, however, this story had changed 
substantially. In today's CFD, three-dimensional flow field solutions are abundant; 
they may not be routine in the sense that a great deal of human and computer 
resources are still frequently needed to successfully carry out such three-dimen
sional solutions for applications like the flow over a complete airplane config
uration, but such solutions are becoming more and more prevalent within industry 
and government facilities. Indeed, some computer programs for the calculation of 
three-dimensional flows have become industry standards, resulting in their use as a 
tool in the design process. In this section, we will examine one such example, just to 
emphasize the point. 

Modem high-speed aircraft, such as the Northrop F-20 shown in Fig. 1.6, with 
their complicated transonic aerodynamic flow patterns, are fertile ground for the use 
of CFD as a design tool. Figure 1.6 illustrates the detailed pressure coefficient 
variation over the surface of the F-20 at a nearly sonic freestream Mach number M00 

of 0.95 and an angle of attack !Y. of 8°. These are CFD results obtained by Bush, 
Jager, and Bergman (Ref. 9), using a finite-volume explicit numerical scheme 
developed by Jameson et al. (Ref. 10). In Fig. 1.6a, the contours of pressure 
coefficient are shown over the planform of the F-20; a contour line represents a 
locus of constant pressure, and hence regions where the contour lines cluster 
together are regions of large pressure gradients. In particular, the heavily clustered 
band that appears at the wing trailing edge and wraps around the fuselage just 
downstream of the trailing edge connotes a transonic shock wave at that location. 
Other regions involving local shock waves and expansions are clearly shown in Fig. 
1.6. In addition, the local chordwise variations of the pressure coefficient over the 
top and bottom of the wing section are shown for five different spanwise stations in 
Fig. 1.6b to f Here, the CFD calculations, which involve the solution of the Euler 
equations (see Chap. 2), are given by the solid curves and are compared with 
experimental data denoted by the solid squares and circles. Note that there is 
reasonable agreement between the calculations and experiment. However, the major 
point made by the results in Fig. 1.6 relative to our discussion is this: CFO provides 
a means to calculate the detailed flow field around a complete airplane config
uration, including the pressure distribution over the three-dimensional surface. This 
knowledge of the pressure distribution is necessary for structural engineers, who 
need to know the detailed distribution of aerodynamic loads over the aircraft in 
order to properly design the structure of the airframe. This knowledge is also 
necessary for aerodynamicists, who obtain the lift and pressure drag by integrating 
the pressure distribution over the surface (see Ref. 8 for details of such an 
integration). Moreover, the CFD results provide information about the vortices 
which are formed at the juncture of the fuselage strakes and the wing leading edge, 
such as shown in Fig. 1.7, also obtained from Ref. 9. Here, the values of M00 and !Y. 

are 0.26 and 25°, respectively. Knowing where these vortices go and how they 
interact with other parts of the airplane is essential to the overall aerodynamic 
design of the airplane. 
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(a) 

FIG. 1.6 

An example of the calculation of the aerodynamic flow field for a complete airplane configuration, the 
Northrop F-20 fighter. (a) Contours of pressure coefficient over the entire upper surface of the airplane 
are shown. ~b)-(/) T~e graph~ give the pressure coefficient variation over the top and bottom of the 
wm~ at Vanous sp~w1se locations, denoted by YJ, which is the spanwise location referenced to the 
sem1span of the wmg. (From Ref 9.) 

In short, CFD is playing a strong role as a design tool. Along with its role as a 
research tool as described in Sec. 1.2, CFD has become a powerful influence on the 
way fluid dynamicists and aerodynamicists do business. Of course, one of the 
purposes of this book is to introduce you to means of developing and using this 
power. 
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(a) 

(b) 

(c) 

FIG. 1.7 
The wing vortex for the F-20, 
obtained from CFD calculations. 
(a) Top view; (b) side view; (c) 
isometric view. (From Ref 9.) 

1.4 THE IMPACT OF COMPUTATIONAL FLUID 
DYNAMICS-SOME OTHER EXAMPLES 

Historically, the early development of CFD in the 1960s and 1970s was driven by 
the needs of the aerospace community. Indeed, the examples of CFD applications 
described in Sec. l. l to l .3 are from this community. However, modern CFD cuts 
across all disciplines where the flow of a fluid is important. The purpose of this 
section is to highlight some of these other, nonaerosvace. aoolications of CFO 



14 PHILOSOPHY OF COMPUTATIONAL FLUID DYNAMICS 

1.4.1 Automobile and Engine Applications 

To improve the performance of modem cars and trucks (environmental quality, fuel 
economy, etc.), the automobile industry has accelerated its use of high-technology 
research and design tools. One of these tools is CFD. Whether it is the study of the 
external flow over the body of a vehicle, or the internal flow through the engine, 
CFD is helping automotive engineers to better understand the physical flow 
processes, and in tum to design improved vehicles. Let us examine several such 
examples. 

The calculation of the external airflow over a car is exemplified by the paths of 
air particles shown in Fig. 1.8. The outline of the left half of the car is shown by the 
mesh distributed over its surface, and the white streaks are the calculated paths of 
various air particles moving over the car from left to right. These particle paths were 
calculated by means of a finite-volume CFD algorithm. The calculations were made 
over a discrete three-dimensional mesh distributed in the space around the car; that 
portion of the mesh on the center plane of symmetry of the car is illustrated in Fig. 
1.9. Note that one of the coordinate lines of the mesh is fitted to the body surface, a 
so-called boundary-fitted coordinate system. (Such coordinate systems are dis
cussed in Sec. 5.7.) Figures 1.8 and 1.9 are taken from a study by C. T. Shaw of 
Jaguar Cars Limited (Ref. 58). Another example of the calculation of the external 
flow over a car is the work of Matsunaga et al. (Ref. 59). Figure 1.10 shows contours 
of vorticity in the flow field over a car, obtained from the finite-difference 
calculations described in Ref. 59.* (Aspects of finite-difference methods are 
discussed throughout this book, beginning with Chap. 4.) Here, the calculations 
are made on a three-dimensional rectangular grid, a portion of which is shown in 
Fig. 1.11. The fundamentals of grid generation-an important aspect of CFD-are 
discussed in Chap. 5, and special mention of cartesian, or rectangular, grids 
wrapped around complex three-dimensional bodies is made in Sec. 5.10. 

The calculation of the internal flow inside an internal combustion engine such 
as that used in automobiles is exemplified by the work of Griffin et al. (Ref. 60). 
Here, the unsteady flow field inside the cylinder of a four-stroke Otto-cycle engine 
was calculated by means of a time-marching finite-difference method. (Time
marching methods are discussed in various chapters of this book.) The finite
difference grid for the cylinder is shown in Fig. 1.12. The piston crosshatched at the 
bottom of Fig. 1.12 moves up and down inside the cylinder during the intake, 
compression, power, and exhaust strokes; the intake valves open and close 
appropriately; and an unsteady, recirculating flow field is established inside the 
cylinder. A calculated velocity pattern in the valve plane when the piston is near the 
bottom of its stroke (bottom dead center) during the intake stroke is shown in Fig. 
1.13. These early calculations were the first application of CFD to the study of flow 

* Recall that vorticity is defined in fluid dynamics as the vector quantity V x V, which is equal to twice 
the instantaneous angular velocity of a fluid element. Contours of the x component of vorticity ( in the 
flow direction) are shown in Fig. 1.10. 
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FIG. 1.8 
Computed particle paths in the airflow over an automobile. Flow is moving from left to right. (From C. 
r Shaw, Ref 58. Reprinted with permission.from SAE SP-747, 1988, ,:C 1988, Societv of Automotive 
Engineers, Inc.) · · 

FIG. 1.9 
That portion of the computational mesh on the center plane of symmetry used for the calculation shown 
in Fig. 1.8. (From Ref 58. Reprinted with permission from SAE SP-747, 1988, © 1988 Society of 
Automotive Engineers, Inc.) 

FIG. 1.10 
Computed contours of the x component of vorticity in the airflow over an automobile. Flow is moving from 
left to right. Results are shown in a vertical plane displaced 40% of the width of the car from the center 
plane. (From Matsunaga et al. Ref 59. Reprinted with permission.from SAE SP-908, 1992, (!· 1992 Society 
of Automotive Engineers, Inc.) 
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FIG. 1.11 
A portion ofa rectangular (cartesian) grid wrapped around a car, used for the caculations shown in Fig. 
I.IO. (From Ref 59. Reprinted with permission fr.om SAE SP-908, 1992, © 1992 Society of Automotive 
Engineers, Inc.) 
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FIG. 1.12 
A portion of the grid in the valve plane in cylindrical coordinates for a 
piston-cylinder arrangement studied in Ref. 60. Only about half the 
grid points in the valve plane are shown (for clarity). 
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FIG. 1.13 
Velocity pattern in the valve plane near bottom dead center of the intake stroke for a piston-cylinder 
arrangement in an internal combustion engine. (From Ref 60.) 

fields inside internal combustion engines. Today, the massive power of modern CFO 
is being applied by automotive engineers to study all aspects of the details of 
internal combustion engine flow fields, including combustion, turbulence, and 
coupling with the manifold and exhaust pipes. 

As an example of the sophistication of modem CFO applications to a gas 
turbine engine, Fig. 1.14 illustrates a finite-volume mesh which is wrapped around 
both the external region outside the engine and the internal passages through the 
compressor, the combustor, the turbine, etc. (Grids and meshes are discussed in Sec. 
5.10.) This complex mesh is generated by researchers at the Center for Computa
tional Field Simulation at Mississippi State University and is a precursor to a 
coupled external-internal CFO calculation of the complete flow process associated 
with a gas turbine. In the author's opinion, this is one of the most complex and 
interesting CFO grids generated to date, and it clearly underscores the importance of 
CFO to the automotive and the gas turbine industry. 

1.4.2 Industrial Manufacturing Applications 

Here we will give just two examples of the myriad CFO applications in manu
facturing. 

Figure 1.15 shows a mold being filled with liquid modular cast iron. The 
liquid iron flow field is calculated as a function of time. The liquid iron is 
introduced into the cavity through two side gates at the right, one at the center and 
the other at the bottom of the mold. Shown in Fig. 1.15 are CFO results for the 
velocity field calculated from a finite-volume algorithm; results are illustrated for 
three values of time during the filling process: an early time just after the two gates 
are opened (top figure), a slightly later time as the two streams surge into the cavity 
(center figure). and yet a later time when the two streams are impinging on each 
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FIG. 1.14 
A zonal mesh which simultaneously covers the external region around a jet engine and the internal 
passages through the engine. (Courtesy of the Center for Computational Fluid Simulation, Mississippi 
State University.) 

other (bottom figure). These calculations were made by Mampaey and Xu at the 
WTCM Foundary Research Center in Belgium (Ref. 61 ). Such CFO calculations 
give a more detailed understanding of the real flow behavior of the liquid metal 
during mold filling and contribute to the design of improved casting techniques. 

A second example of CFO in manufacturing processes is that pertaining to the 
manufacture of ceramic composite materials. One method of production involves 
the chemical vapor infiltration technique wherein a gaseous material flows through a 
porous substrate, depositing material on the substrate fibers and eventually forming 
a continuous matrix for the composite. Of particular interest is the rate and manner 
in which the compound silicon carbide, SiC, is deposited within the space around 
the fibers. Recently, Steijsiger et al. (Ref. 62) have use CFO to model SiC deposition 
in a chemical vapor deposition reactor. The computational mesh distribution within 
the reactor is shown in Fig. 1.16. The computed streamline pattern inside the reactor 
is shown in Fig. 1.17. Here, a gaseous mixture of CH3SiCI3 and H2 flows into the 
reactor from a pipe at the bottom. The ensuing chemical reaction produces SiC, 
which then deposits on the walls of the reactor. The calculations shown in Fig. 1.17 
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(a) (b) 

FIG. 1.15 
Computed results at three different times for the velocity field set up by liquid iron flowing into a mold 
from two gates on the right side of the mold. (After Ref 61.) 

are from a finite-volume solution of the governing flow equations, and they 
represent an application of CFO as a research tool, contributing information 
of direct application to manufacturing. 

1.4.3 Civil Engineering Applications 

Problems involving the rheology of rivers, lakes, estuaries, etc., are also the subject 
of investigations using CFO. One such example is the pumping of mud from an 
underwater mud capture reservoir, as sketched in Fig. 1.18. Here, a layer of water 
sits on top of a layer of mud, and a portion of the mud is trapped and is being sucked 
away at the bottom left. This is only half the figure, the other half being a mirror 
image, forming in total a symmetrical mud reservoir. The vertical line of symmetry 
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FIG. 1.16 
Finite-volume mesh for the calculation of the flow in a chemical vapor deposition reactor. 
(After Ref 62.) 

is the vertical line at the left of Fig. 1.18. As the mud is sucked away at the bottom 
left, a crater is formed in the mud layer which fills with water. The only motion of 
the water is caused by the filling of this crater. The computed velocity field in both 
the water and mud at a certain instant in time is shown in Fig. 1.19, where the 
magnitude of the velocity vectors are scaled against the arrow designated as 1 cm/s. 
These results are from the calculations of Toorman and Berlamont as given in Ref. 
63. These results contribute to the design of underwater dredging operations, such 
as the major offshore dredging and beach reclamation project carried out at Ocean 
City, Maryland, in the early 1990s. 

1.4.4 Environmental Engineering Applications 

The discipline of heating, air conditioning, and general air circulation through 
buildings have all come under the spell of CFD. For example, consider the propane-
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FIG. 1.17 
Computed streamline pattern for the flow ofCH3SiCl3 and H2 into a chemical vapor deposition reactor. 
(After Ref 62.) 

burning furnace sketched in Fig. 1.20, taken from Ref. 64. The calculated velocity 
field through this furnace is shown in Fig. 1.21; the velocity vectors emanating from 
grid points in a perpendicular vertical plane through the furnace are shown. These 
results are from the finite-difference calculations made by Bai and Fuchs (Ref. 64). 
Such CFD applications provide information for the design of furnaces with in
creased thermal efficiency and reduced emissions of pollutants. 

A calculation of the flow from an air conditioner is illustrated in Fig. 1.22 and 
1.23. A schematic of a room module with the air supply forced through a supply slot 
in the middle of the ceiling and return exhaust ducts at both comers of the ceiling is 
given in Fig. 1.22. A finite-volume CFD calculation of the velocity field showing 
the air circulation pattern in the room is given in Fig. 1.23. These calculations were 
made by McGuirk and Whittle (Ref. 65). 

An interesting application of CFD for the calculation of air currents 
throughout a building was made by Alamdari et al. (Ref. 66). Figure 1.24 shows 
the cross section of an office building with two symmetrical halves connected by a 
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FIG. 1.18 
Mud and water layers in a model of a mud trap, with mud being suctioned away at the bottom left. (After 

Ref 63.) 

passageway. Each half has a large, glazed atrium, in keeping with a popular trend in 
architectural design. These atria, in connection with suitable locations for air inlet 
and exhausts, provide a natural ventilation system which is cost- and energy
efficient. A typical wintertime simulation of the velocity field in a cross section 
through the entrance hall, as calculated from a finite-volume CFD algorithm, is 
shown in Fig. 1.25. 

1.4.5 Naval Architecture Applications (Submarine 
Example) 

Computational fluid dynamics is a major tool in solving hydrodynamic problems 
associated with ships, submarines, torpedos, etc. An example of a CFD application 
to submarines is illustrated in Fig. 1.26 and 1.27. These calculations were made by 
the Science Applications International Corporation and were provided to the author 
by Dr. Nils Salveson of SAIC. Figure 1.26 shows the multizonal grid used for the 
flow calculations over a generic submarine hull. (Such zonal grids are discussed in 
Sec. 5.9.) The three-dimensional Navier-Stokes equations for an incompressible 
flow are solved, including a turbulence model, for the flow over this submarine. 
Some results for the local streamline pattern at the stem of the submarine are given 
in Fig. 1.27. Flow is moving from left to right. Here we see an example of a 
numerical experiment, following the philosophy set forth in Sec. 1.2. The upper half 
of the figure shows the streamline with a propeller, and the lower half shows the 
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. • • • • r •.,.,,; .. _fl'_.,.-- .. ·r ,.._ '":. ,,:•iT- FIG. 1.19 
Computed velocity field for the two
layer water and mud model shown in 
Fig. 1.18; results after 240 s of suc
tioning. (After Ref 63.) 

FIG. 1.20 
High-efficiency propane furnace model. 
(From Ref 64.) 

streamlines without a propeller. In the latter case, flow separation is observed at the 
first comer, whereas with the propeller no flow separation takes place. 

1.5 COMPUTATIONAL FLUID DYNAMICS: 
WHAT IS IT? 
Question: What is CFD? To answer this question, we note that the physical aspects 
of any fluid flow are governed by three fundamental principles: ( 1) mass is 
conserved; (2) Newton's second law (force = mass x acceleration); and (3) energy 



24 PHILOSOPHY OF COMPUTATIONAL FLUID DYNAMICS 

FIG. 1.21 
Computed velocity field for the flow through the furnace in Fig. 1.20. Velocity vectors are shown 
emanating from points in a vertical perpendicular plane through the furnace. (From Ref 64.) 

is conserved. These fundamental physical principles can be expressed in terms of 
basic mathematical equations, which in their most general form are either integral 
equations or partial differential equations. These equations and their derivation are 
the subject of Chap. 2. Computational fluid dynamics is the art of replacing the 
integrals or the partial derivatives (as the case may be) in these equations with 
discretized algebraic forms, which in turn are solved to obtain numbers for the flow 

Exhaust 

FIG. 1.22 
Schematic of a room module with air supply and 
exhaust ducts in the ceiling. (After Ref 65.) 
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FIG. 1.23 
Velocity vector pattern for the room sketched in Fig. 1.22. (Reprinted by permission of the Council of 
the Institution of Mechanical Engineers from Ref 65. On behalf of the Institution of Mechanical 
Engineers. United Kingdom.) 

field values at discrete points in time and/or space. The end product of CFD is 
indeed a collection of numbers, in contrast to a closed-form analytical solution. 
However, in the long run, the objective of most engineering analyses, closed form or 
otherwise, is a quantitative description of the problem, i.e., numbers. (It would be 
appropriate at this state to review the quote by Maxwell given at the start of this 
chapter.) 

FIG. 1.24 
Sketch of an office building. (Reprinted by permission of the Council of the Institution of Mechanical 
Engineers from Ref 66. On behalf of the Institution of Mechanical Engineers, United Kingdom.) 
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· FIG. 1.25 
A simulation of the wintertime airflow velocity vector field in the office building sketched in Fig. 1.24. 
(Reprinted by permission of the Council of the Institution of Mechanical Engineers from Ref 66. On 
behalf of the Institution of Mechanical Engineers, United Kingdom.) 

FIG. 1.26 
Multizone grid for the calculation of water flow over a generic submarine hull. (Courtesy of the Science 
Applications International Corporation (SAIC) and Dr. Nils Salvesen.) 

Of course, the instrument which has allowed the practical growth of CFD is 
the high-speed digital computer. CFD solutions generally require the repetitive 
manipulation of many thousands, even millions, of numbers, a task that is humanly 
impossible without the aid of a computer. Therefore, advances in CFD, and its 
applications to problems of more and more detail and sophistication, are intimately 
related to advances in computer hardware, particularly in regard to storage and 
execution speed. This is why the strongest force driving the development of new 
supercomputers is coming from the CFD community. Indeed, the advancement in 
large mainframe computers has been phenomenal over the past three decades. This 
is nicely illustrated by the variation of relative computation cost (for a given 
calculation) with years, as plotted in Fig. 1.28, taken from the definitive survey by 

FIG. 1.27 
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Streamline patterns in the stem region of a submarine. The upper half of the figure illustrates the 
streamline pattern with a propeller; the lower half illustrates the streamline pattern without a propeller. 
(Courtesy of SAIC and Dr. Nils Salvesen.) 
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FIG. 1.28 
Variation of relative cost of a given 
computation with time, reflecting the 
improvements in computer hardware 
over the years. (After Ref 11.) 

Chapman (Ref. 11 ). The data points on this graph correspond to specific computers, 
starting with the venerable IBM 650 in 1953, continuing through the development 
of the pioneering supercomputer, the CRAY I, in 1976, and extrapolating to the 
National Aerodynamic Simulator, a facility which was installed at the NASA Ames 
Research Laboratory in the late 1980s. Today, even more spectacular advances are 
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FIG. 1.29 
An example of a modern super
computer, the CRAY Y-MP. (Cray 
Research, Inc.) 

being made in supercomputer architecture. An example of a supercomputer is the 
CRAY Y-MP, shown in Fig. 1.29; this machine has 32 million words of directly 
addressable central memory with an additional 512 million words available in a 
companion SSD (solid state device). The execution speed is close to one gigaflop 
( I 09 floating-point operations per second); this should be compared to the one
megaflop computers of the 1970s. Moreover, new concepts in computer architecture 
are emerging. The earlier high-speed digital computers were serial machines, 
capable of one computational operation at a time; hence, all computations had to 
"get in line" to be processed. The finite speed of electrons, close to the speed of 
light, poses an inherent limitation on the ultimate execution speed of such serial 
computers. To detour around this limitation, two computer architectures are now 
being used: 

1. Vector processors, a configuration that allows a string of identical operations on 
an array of numbers simultaneously, thus saving both time and memory 

2. Parallel processors, a configuration that is really two or more fully functioning 
central processing units (CPUs), each of which can handle different instruction 
and data streams and which can execute separate parts of a program simulta
neously, working independently or in concert with other CPUs which belong to 
the same machine 

Vector processors are in widespread use today, and parallel processors are rapidly 
coming on the scene. For example, the new Connection Machines, which are 
massively parallel processors, are now in use by many agencies. Should you choose 
to solve any problems in your professional future using CFD, and these problems 
are of any sophistication and complexity, the probability is high that you will be 
using either a vector computer or a parallel processor. 
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Why is CFD so important in the modem study and solution of problems in 
fluid mechanics, and why should you be motivated to learn something about CFD? 
In essence, Sec. 1.1 to 1.4 were devoted to some answers to this question, but we 
explicitly ask the question here in order to give another example of the revolution 
that CFD has wrought in modem fluid dynamics-an example that will serve as a 
focal point for some of our discussion in subsequent chapters. 

Specifically, consider the flow field over a blunt-nosed body moving at 
supersonic or hypersonic speeds, as sketched in Fig. 1.30. The interest in such 
bodies is driven by the fact that aerodynamic heating to the nose is considerably 
reduced for blunt bodies compared to sharp-nosed bodies; this is why the Mercury 
and Apollo space capsules were so blunt and one of the reasons why the space 
shuttle has a blunt nose and wings with blunt leading edges. As shown in Fig. 1.30, 
there is a strong, curved bow shock wave which sits in front of the blunt nose, 
detached from the nose by the distance D, called the shock detachment distance. The 
calculation of this flow field, including the shape and location of the shock wave, 
was one of the most perplexing aerodynamic problems of the 1950s and 1960s. 
Millions of research dollars were spent to solve this supersonic blunt body 
problem-to no avail. 

What was causing the difficulty? Why was the flow field over a blunt body 
moving at supersonic and hypersonic speeds so hard to calculate? The answer rests 
basically in the sketch shown in Fig. 1.30. The region of flow behind the nearly 
normal portion of the shock wave, in the vicinity of the centerline, is locally 

M>I 

region , ' 

Hyperbolic region 
X 

FIG. 1.30 
Schematic of the flowfield over a supersonic blunt-nosed body. 
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subsonic, whereas further downstream, behind the weaker, more oblique part of the 
bow shock, the flow is locally supersonic. The dividing line between the subsonic 
and supersonic regions is called the sonic line, as sketched in Fig. 1.30. If the flow is 
assumed to be inviscid, i.e., neglecting the dissipative transport processes of 
viscosity and thermal conduction, the governing flow equations are the Euler 
equations (to be derived in Chap. 2). Although these equations are the same no 
matter whether the flow is locally subsonic or supersonic, their mathematical 
behavior is different in the two regions. In the steady subsonic region, the Euler 
equations exhibit a behavior that is associated with elliptic partial differential 
equations, whereas in the steady supersonic region, the mathematical behavior of 
the Euler equations is totally different, namely, that of hyperbolic partial differential 
equations. Such mathematical behavior, the definition of elliptic and hyperbolic 
equations, and the associated consequences to flow field analysis are discussed in 
Chap. 3. The change in the mathematical behavior of the governing equations from 
elliptic in the subsonic region to hyperbolic in the supersonic region made a 
consistent mathematical analysis which included both regions virtually impossible. 
Numerical techniques that worked for the subsonic region fell apart in the 
supersonic region, and techniques for the supersonic region broke down in the 
subsonic flow. Techniques were developed for just the subsonic portion, and other 
techniques (such as the standard method of characteristics) were developed for the 
supersonic region. Unfortunately, the proper patching of these different techniques 
through the transonic region around the sonic line was extremely difficult. Hence, as 
late as the mid-1960s, no uniformly valid aerodynamic technique existed to treat the 
entire flow field over a supersonic blunt body. 

However, in 1966, a breakthrough occurred in the blunt body problem. Using 
the developing power of CFO at that time, and employing the concept of a time
dependent approach to the steady state, Moretti and Abbett (Ref. 12) at the 
Polytechnic Institute of Brooklyn (now the Polytechnic University) obtained a 
numerical, finite-difference solution to the supersonic blunt body problem which 
constituted the first practical, straightforward, engineering solution for this flow. 
After 1966, the blunt body problem was no longer a real "problem." Industry and 
government laboratories quickly adopted this computational technique for their 
blunt body analyses. Perhaps the most striking aspect of this comparison is that the 
supersonic blunt body problem, which was one of the most serious, most difficult, 
and most researched theoretical aerodynamic problems of the 1950s and 1960s, is 
today assigned as a homework problem in a CFO graduate course at the University 
of Maryland. 

Therein lies an example of the power of CFO combined with an algorithm 
which properly takes into account the mathematical behavior of the governing flow 
equations. Here is an answer to the questions asked earlier, namely, why is CFO so 
important in the modem study of fluid dynamics, and why should you be motivated 
to learn something about CFO? We have just seen an example where CFO and 
proper algorithm development revolutionized the treatment of a given flow problem, 
turning it from a virtual unsolvable problem into a standard, everyday analysis in the 
nature of an extended homework problem. It is this power of CFO which is a 
compelling reason for you to study the subject. 
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Road map for the book. 
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1.6 THE PURPOSE OF THIS BOOK 

The previous discussions have been intended to put you in a proper frame of mind 
regarding the overall nature ofCFD and to provide a certain incentive to forge ahead 
to the remaining chapters. As you read on, you will find sandwiched between the 
covers of this book a very basic, elementary, and tutorial presentation of CFD, 
emphasizing the fundamentals, surveying a number of solution techniques, and 
treating various applications ranging from low-speed incompressible flow to high
speed compressible flow. This book is truly an introduction to CFD; it is aimed at 
the completely uninitiated reader, a reader who has little or no experience in CFD. 
There are presently several very good texts on CFD at the graduate level, such as the 
standard text by Anderson, Tannehill, and Pletcher (Ref. 13) and the more recent 
books by Fletcher (Refs. 14 and 15) and by Hirsch (Refs. 16 and 1 7). A concise and 
readable presentation is given by Hoffinan (Ref. 18). The present book is aimed at a 
level one notch below that of Refs. 13 to 17. Here we assume on the part of the 
reader a physical understanding of general fluid dynamics equivalent to most junior
level courses in mechanical and aerospace engineering and a mathematical under
standing equivalent to basic calculus and elementary differential equations. This is 
intended to be a "first book" in the development of your thought processes in CFD. 
Its purpose is fourfold; it is to provide you with: 

1. Some insight into the power and philosophy of CFD 
2. An understanding of the governing equations of fluid dynamics in forms 

particularly suitable to CFD 
3. A familiarity with some solution techniques 
4. A working vocabulary in the discipline. 

By the time you finish this book, this author hopes that you will be well-prepared to 
launch into more advanced treatises ( such as Refs. 13-1 7), to begin reading the 
literature in CFD, to follow more sophisticated state-of-the-art presentations, and to 
begin the direct application of CFD to your special areas of concern. If one or more 
of the above is what you want, then you and the author share a common purpose
simply move on to Chap. 2 and keep reading. 

A road map for the material covered in this book is given in Fig. 1.31. The 
purpose of this road map is to help chart the course for our thinking and to see how 
the material flows in some logical fashion. It is the author's experience that when a 
student is learning a new subject, there is a tendency to get lost in the details and to 
lose sight of the big picture. Figure 1.31 is the big picture for our discussion on 
CFD; we will frequently be referring to this road map in subsequent chapters simply 
to touch base and to remind ourselves where the details fit into the overall scheme of 
CFD. If at any stage you feel somewhat lost in regard to what we are doing, please 
remember to refer to this central road map in Fig. 1.31. In addition, localized road 
maps will be included in most chapters to provide guidance for the flow of ideas in 
each chapter, in the same spirit as Fig. 1.31 provides guidance for the complete 
book. In particular, referring to Fig. 1.31, note that blocks A through C represent 
some basic thoughts and equations which are common to all of CFD; indeed, the 
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material of the present chapter is represented by block A. After these basic aspects 
are understood and mastered, we will discuss the standard ways of discretizing the 
fundamental equations to make them amenable to numerical solution (blocks J?~F) 
as well as the important aspects of grid transformation (block G). After descnbmg 
some popular techniques for carrying out numerical solutions of the equations 
(block H), we will cover a number of specific ap~lications in ~om~ detail in order to 
clearly illustrate the techniques (blocks 1-M). Fmally, we will discuss the current 
state of the art as well as the future of CFD (block N). Let us now proceed to work 
our way through this road map, moving on to block B, which is the subject of the 

next chapter. . 
Finally, Fig. 1.32a to f contains diagrams that illustrate the flow of vanous 

concepts from parts I and II into the applications discussed in Part 1!1. A~ this ~tage, 
simply note that these figures exist; we will refer to them at appropnate times m our 
discussions. They are located here simply for convenience and to indicate to you 
that there is a logical flow of the basic ideas from Parts I and II into the applications 

in Part III. 
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A fluid is any body whose parts yield to any 
force impressed on it, and by yielding, are 

easily moved among themselves. 

Isaac Newton, from Section V, Book II of the 

Principia, 1687 

We are to admit no more causes of natural 

37 
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2.1 INTRODUCTION 

things than such as are both true and sufficient 
to explain their appearances . . . . To this 

purpose the philosophers say that Nature does 
nothing in vain, and more is in vain when less 

will serve; for Nature is pleased with 
simplicity, and affects not the pomp of 

superfiuous causes." 

Isaac Newton, from Rule I, Book II of the 

Principia, 1687 

All of CFD, in one form or another, is based on the fundamental governing 
equations of fluid dynamics-the continuity, momentum, and energy equations. 
These equations speak physics. They are the mathematical statements of three 
fundamental physical principles upon which all of fluid dynamics is based: 

1. Mass is conserved. 
2. Newton's second law, F = ma. 
3. Energy is conserved. 

The purpose of this chapter is to derive and discuss these equations. 
The reason for taking the time and space to derive the governing equations of 

fluid dynamics in this book is threefold: 

1. Because all of CFD is based on these equations, it is important for each student 
to feel very comfortable with these equations before continuing further with his 
or her studies, and certainly before embarking on any application of CFD to a 
particular problem. 

2. This author assumes that the readers of this book come from varied background 
and experience. Some of you may not be totally familiar with these equations, 
whereas others may use them every day. It is hoped that this chapter will be some 

• enlightenment for the former and be an interesting review for the latter. 
3. The governing equations can be obtained in various different forms. For most 

aerodynamic theory, the particular form of the equations makes little difference. 
However, for a given algorithm in CFD, the use of the equations in one form may 
lead to success, whereas the use of an alternate form may result in oscillations 
(wiggles) in the numerical results, incorrect results, or even instability. There
fore, in the world of CFD, the various forms of the equations are of vital interest. 
In tum, it is important to derive these equations in order to point out their 
differences and similarities, and to reflect on possible implications in their 
application to CFD. 

The reader is warned in advance that this chapter may appear to be "wall-to
wall" equations. However, do not be misled. This chapter is one of the most 
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important in the book. It is driven by the question: If you do not physically 
understand the meaning and significance of each of these equations-indeed, of 
each term in these equations-then how can you even hope to properly interpret the 
CFD results obtained by numerically solving these equations? The purpose of this 
chapter is to squarely address this question. Here, we hope to present the 
development of these equations and to discuss their significance in such detail 
that you will begin to feel very comfortable with all forms of all the governing 
equations of fluid flow. Experience has shown that beginning students find these 
equations sometimes complex and mystifying. This chapter is designed to take the 
mystery out of these equations for the reader and to replace it with solid under
standing. 

The road map for this chapter is given in Fig. 2.1. Notice the flow of ideas as 
portrayed in this map. All of fluid dynamics is based on the three fundamental 
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A. Mass is conserved 

,___B_ . ..., Newton's second law -------------------~-, 
I I 

C. 
Energy is conserved -------------------~-L-
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physical principles itemized at the top left of Fig. 2.1. These physical principles are 
applied to a model of the flow; in tum, this application results in equations which 
are mathematical statements of the particular physical principles involved, namely, 
the continuity, momentum, and energy equations. Each different model of the flow 
(bottom left in Fig. 2.1) directly produces a different mathemati~al statement of~e 
governing equations, some in conservati~n form and others m no~conserva_tion 
form. (The distinction between these two different forms of the govemmg equations 
will be made clear by the end of this chapter.) After the continuity, momentum and 
energy equations are obtained (the large box at the lower right side of Fig. 2.1), 
forms particularly suited for use in formulating CFD solutions will be delineated 
(small box at lower right side of Fig. 2.1). Finally, the physical boundary conditi~ns 
and their appropriate mathematical statements will be developed. The govemmg 
equations must be solved subject to these boundary conditions. The physical aspects 
of the boundary conditions are fundamentally independent of the forms of the 
governing equations, and hence the box representing the boundary conditio~s 
stands by itself at the bottom of Fig. 2.1, unconnected to any of the other boxes m 
the road map. (However, the appropriate numerical form of the physical boundary 
conditions is dependent on the particular mathematical form of the governing 
equations as well as the particular numerical algorithm us~d to solve the~e 
equations.) Such matters will be discussed as they naturally anse throughout this 
book. The road map given in Fig. 2.1 will be helpful in guiding our flow of ideas in 
this chapter. Also, when you finish this chapter, it would be useful to return to Fig. 
2.1 to help consolidate your thoughts before proceeding to the next chapter. 

2.2 MODELS OF THE FLOW 

In obtaining the basic equations of fluid motion, the following philosophy is always 
followed: 

1. Choose the appropriate fundamental physical principles from the law of physics, 
such as: 
a. Mass is conserved. 
b. F = ma (Newton's second law). 
c. Energy is conserved. 

2. Apply these physical principles to a suitable model of the flow. 

3. From this application, extract the mathematical equations which embody such 
physical principles. 

This section deals with item 2 above, namely, the definition of a suitable model of 
the flow. This is not a trivial consideration. A solid body is rather easy to see and 
define· on the other hand, a fluid is a "squishy" substance that is hard to grab hold 
of. If~ solid body is in translational motion, the velocity of each part of the body is 
the same; on the other hand, if a fluid is in motion, the velocity may be different at 
each location in the fluid. How then do we visualize a moving fluid so as to apply to 
it the fundamental physical principles? 
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For a continuum fluid, the answer is to construct one of the four models 
described below. 

2.2.1 Finite Control Volume 

Consider a general flow field as represented by the s~eamlines in Fig. 2.~a. Let us 
imagine a closed volume drawn within a finite region of the flow. This volume 
defines a control volume Y; a control surface Sis defined as the closed surface 
which bounds the volume. The control volume may be fixed in space with the fluid 
moving through it, as shown at the left of Fig. 2.2a. Alt~mativ~ly, the control 
volume may be moving with the fluid such that the same flmd particles are alw_ays 
inside it as shown at the right of Fig. 2.2a. In either case, the control volume 1s a 
reasonably large, finite region of the flow. The fundamental physica~ principles are 
applied to the fluid inside the control volume and to the fl~id crossmg th_e control 
surface (if the control volume is fixed in space). Therefore, mst~a~ of lookmg _at the 
whole flow field at once, with the control volume model we hm1t our attention to 

~olsurfaceS 
/ 

(a) 

(b) 
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fluid moving through it 
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just the fluid in the finite region of the volume itself. The fluid-flow equations that 
we directly obtain by applying the fundamental physical principles to a finite control 
volume are in integral form. These integral forms of the governing equations can be 
manipulated to indirectly obtain partial differential equations. The equations so 
obtained from the finite control volume fixed in space (left side of Fig. 2.2a), in 
either integral or partial differential form, are called the conservation form of the 
governing equations. The equations obtained from the finite control volume moving 
with the fluid (right side of Fig. 2.2a ), in either integral or partial differential form, 
are called the nonconservation form of the governing equations. 

2.2.2 Infinitesimal Fluid Element 

Consider a general flow field as represented by the streamlines in Fig. 2.2b. Let us 
imagine an infinitesimally small fluid element in the flow with a differential volume 
d"Y. The fluid element is infinitesimal in the same sense as differential calculus; 
however, it is large enough to contain a huge number of molecules so that it can be 
viewed as a continuous medium. The fluid element may be fixed in space with the 
fluid moving through it, as shown at the left of Fig. 2.2b. Alternatively, it may be 
moving along a streamline with a velocity vector V equal to the flow velocity at each 
point. Again, instead of looking at the whole flow field at once, the fundamental 
physical principles are applied to just the infinitesimally small fluid element itself. 
This application leads directly to the fundamental equations in partial differential 
equation form. Moreover, the particular partial differential equations obtained 
directly from the fluid element fixed in space (left side of Fig. 2.2b) are again the 
conservation form of the equations. The partial differential equations obtained 
directly from the moving fluid element (right side of Figure 2.2b) are again called 
the nonconservation form of the equations. 

2.2.3 Some Comments 

In the above discussion, we have introduced the idea that the governing equations 
can be expressed in two general forms----<:onservation form and nonconservation 
form-without even defining what this really means. Do not be flustered. At this 
stage in our discussion, we do not have enough insight to understand what these two 
different terms mean. The definition and understanding will come only while we are 
actually deriving the different equation forms. So just hang on; at this stage it is 
sufficient just to be aware of the existence of these two different forms. 

In general aerodynamic theory, whether we deal with the conservation or 
nonconservation forms of the equations is irrelevant. Indeed, through simple 
manipulation, one form can be obtained from the other. However, there are cases 
in CFO where it is important which form we use. In fact, the nomenclature which is 
used to distinguish these two forms (conservation versus nonconservation) has 
arisen primarily in the CFO literature. 

The comments made in this section become clearer after we have actually 
derived the governing equations. Therefore, when you finish this chapter, it would 
be worthwhile to reread this section. 
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As a final comment, in actuality the motion of a fluid is a ramification of the 
mean motion of its atoms and molecules. Therefore, a third model of the flow can be 
a microscopic approach wherein the fundamental laws of nature are applied directly 
to the atoms and molecules, using suitable statistical averaging to define the 
resulting fluid properties. This approach is in the purview of kinetic theory, which is 
a very elegant method with many advantages in the long run. However, it is beyond 
the scope of the present book. 

2.3 THE SUBSTANTIAL DERIVATIVE 
(TIME RATE OF CHANGE FOLLOWING A 
MOVING FLUID ELEMENT) 

Before deriving the governing equations, we need to establish a notation which is 
common in aerodynamics-that of the substantial derivative. In addition, the 
substantial derivative has an important physical meaning which is sometimes not 
fully appreciated by students of aerodynamics. A major purpose of this section is to 
emphasize this physical meaning. The discussion in this section follows that in Ref. 
8, which should be consulted for more details. 

As the model of the flow, we will adopt the picture shown at the right of Fig. 
2.2b, namely, that of an infinitesimally small fluid element moving with the flow. 
The motion of this fluid element is shown in more detail in Fig. 2.3. Here, the fluid 
element is moving through cartesian space. The unit vectors along the x, y, and z 
axes are i, j, and k, respectively. The vector velocity field in this cartesian space is 
given by 

z 

Fluid element 
at time t = t, 

k 

FIG. 2.3 

y 

V = ui+vj +wk 

',-~ 
Same fluid element 
at time t = t2 

Fluid element moving in the fluid flow-illustration for the substantial derivative 
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where the x, y, and z components of velocity are given, respectively, by 

u = u(x, y, z, t) 

v = v(x, y, z, t) 

w = w(x, y, z, t) 

Note that we are considering in general an unsteady flow, where u, v, and ware 
functions of both space and time t. In addition, the scalar density field is given by 

P = p(x, y, z, t) 

At time t1, the fluid element is located at point I in Fig. 2.3. At this point and time, 
the density of the fluid element is 

P1 = p(x1, Y1, z1, t1) 

At a later time t2 , the same fluid element has moved to point 2 in Fig. 2.3. Hence, at 
time t2, the density of this same fluid element is 

P2 = p(x2, Y2, z2, t2) 

Since p = p (x, y, z, t), we can expand this function in a Taylor series about point 1 
as follows: 

P2=P1 + (:}(x2-xi)+ (:}(y2-yi)+ (:}(z2-z1) 

+ (:} (t2 - t1) + (higher-order terms) 

Dividing by t2 - t1 and ignoring higher-order terms, we obtain 

P2 - P1 (ap) x2 - X1 (ap) Y2 - YI (ap) z2 - z1 (ap) (2.1) 
tz - t1 = ax I t2 - t1 + ay I t2 - t1 + az I t2 - t1 + at I 

Examine the left side of the Eq. (2.1 ). This is physically the average time rate of 
change in density of the fluid element as it moves from point I to point 2. In the 
limit, as t2 approaches t1, this term becomes 

lim P2 - P1 = Dp 
12 _, 1, t2 - t1 Dt 

Here, Dp!Dt is a symbol for the instantaneous time rate of change of density of the 
fluid element as it moves through point 1. By definition, this symbol is called the 
substantial derivative D!Dt. Note that Dp!Dt is the time rate of change of density of 
the given fluid element as it moves through space. Here, our eyes are locked on the 
fluid element as it is moving, and we are watching the density of the element change 
as it moves through point 1. This is different from (ap!at) 1, which is physically the 
time rate of change of density at the fixed point 1. For (ap!at) 1, we fix our eyes on 
the stationary point I and watch the density change due to transient fluctuations in 
the flow field. Thus, Dp!Dt and aplat are physically and numerically different 
quantities. 
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Returning to Eq. (2.1 ), note that 

. Xz -X1 
hm ---=U 

12 ---,1, t2 - t1 

1
. Y2 -y1 
Im ---=V 

12-, t, t2 - t1 

1
. z2 - ZJ 
Im ---=W 

/2---,/1 t2 - t1 

Thus, taking the limit of Eq. (2.1) as t2 -----, t1, we obtain 

Dp ap ap ap ap 
Dt = u ax + Vay + w az + at (2.2) 

Examine Eq. (2.2) closely. From it, we can obtain an expression for the substantial 
derivative in cartesian coordinates: 

D a a a a 
-===-+u-+v-+w
Dt at ax 8y az 

(2.3) 

Furthermore, in cartesian coordinates, the vector operator V is defined as 

n .a .a ka 
V = I ax+ J <Jy + az (2 .4) 

Hence, Eq. (2.3) can be written as 

D a 
Dt = at+ (V . v') (2.5) 

Equation (2.5) represents a definition of the substantial derivative operator in vector 
notation; thus, it is valid for any coordinate system. 

Focusing on Eq. (2.5), we once again emphasize that D!Dt is the substantial 
derivative, which is physically that time rate of change following a moving fluid 
element; a/at is called the local derivative, which is physically the time rate of 
change at a fixed point; V · V is called the convective derivative, which is 
physically the time rate of change due to the movement of the fluid element 
from one location to another in the flow field where the flow properties are spatially 
different. The substantial derivative applies to any flow-field variable, for example, 
Dp/Dt, DT/Dt, Du!Dt, etc., where p and Tare the static pressure and temperature, 
respectively. For example 

DT ar ar ar ar ar -= - +(V · v') =-+u-+v-+w- (2.6) 
Dt at Convective at ax ay az 

Local derivative 
derivative 

Again, Eq. (2.6) states physically that the temperature of the fluid element is 
changing as the element sweeps past a point in the flow because at that point the 
flow-field temperature itself may be fluctuating with time (the local derivative) and 
because the fluid element is simply on its way to another point in the flow field 
where the temperature is different (the convective derivative). 
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Consider an example which will help to reinforce the physical meaning of the 
substantial derivative. Imagine that you are hiking in the mountains, and you are 
about to enter a cave. The temperature inside the cave is cooler than outside. Thus, 
as you walk through the mouth of the cave, you feel a temperature decrease-this is 
analog?us to t~e convective derivative in Eq. (2.6). However, imagine that, at the 
same tim~, a fnend throws a snowball at you such that the snowball hits you just at 
the same mstant you pass through the mouth of the cave. You will feel an additional 
but momentary, temperature drop when the snowball hits you-this is analogous t~ 
the local derivative in Eq. (2.6). The net temperature drop you feel as you walk 
!hrough the mouth of ~he_ cave is therefore a combination of both the act of moving 
mto the cave, where 1t 1s cooler, and being struck by the snowball at the same 
instant-this net temperature drop is analogous to the substantial derivative in Eq. 
(2.6). 

Th_e PUIJ?OS~ of the above derivation is to give you a physical feel for the 
subst~tI_al denvative. We could have circumvented most of the above discussion by 
recogmzmg that the substantial derivative is essentially the same as the total 
differential from calculus. That is, if 

p = p(x, y, z, t) 

then the chain rule from differential calculus gives 

op op op op 
dp = -a dx+ :+., dy+-dz+-dt 

X uy OZ Ot 

From Eq. (2. 7), we have 

dp - op op dx op dy op dz 
dt - ot + ox dt + &y dt + oz dt 

Since dx/dt = u, dyldt = v, and dzldt = w, Eq. (2.8) becomes 

dp _ op op op op 
---+u-+v-+w-
dt 01 ox &y oz 

(2.7) 

(2.8) 

(2.9) 

Comparing Eqs. (2.2) and (2.9), we see that dp!dt and Dp!Dt are one and the same. 
Therefore, the substantial derivative is nothing more than a total derivative with 
respect to time. However, the derivation ofEq. (2.2) highlights more of the physical 
significance of the substantial derivative, whereas the derivation ofEq. (2.9) is more 
formal mathematically.* 

* Dr. Joe Thompson or" Mississippi State University points out, with some justification that the 
terminology '.'substantial deriv~tive". and "total derivative" are unnecessarily confusing, although this 
termmology 1s very pr<::val~nt m ~md ~ymu~ics; indeed, we have followed the standard terminology 
here. Based on the physical d1scuss1on m this section, Thompson suggests that the symbol 
( 8 / 8t)ttuid . element be_ used for the appropriate derivative in lieu of DI Dt. This clearly emphasizes 
the meanmg of time rate of change of "something" following a moving fluid element. 
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2.4 THE DIVERGENCE OF THE 
VELOCITY: ITS PHYSICAL MEANING 

In Sec. 2.3 we examined the definition and physical meaning of the substantial 
derivative; this is because the governing flow equations are frequently expressed in 
terms of the substantial derivative, and it is important to have a physical under
standing of this term. In the same vein, and as one last item before deriving the 
governing equations, let us consider the divergence of the velocity, V · V This term 
appears frequently in the equations of fluid dynamics, and it is well to consider its 
physical meaning. 

Consider a control volume moving with the fluid as sketched on the right of 
Fig. 2.2a. This control volume is always made up of the same fluid particles as it 
moves with the flow; hence, its mass is fixed, invariant with time. However, its 
volume f' and control surface S are changing with time as it moves to different 
regions of the flow where different values of p exist. That is, this moving control 
volume of fixed mass is constantly increasing or decreasing its volume and is 
changing its shape, depending on the characteristics of the flow. This control 
volume is shown in Fig. 2.4 at some instant in time. Consider an infinitesimal 
element of the surface dS moving at the local velocity V, as shown in Fig. 2.4. The 
change in the volume of the control volume, L\ f', due to just the movement of dS 
over a time increment L\t is, from Fig. 2.4, equal to the volume of the long, thin 
cylinder with base area dS and altitude (V L\t) · n, where n is a unit vector 
perpendicular to the surface at dS. That is, 

L\f' = [(V L\t) · n] dS = (V M) · dS (2.10) 

where the vector dS is defined simply as dS = n dS. Over the time increment L\t, 
the total change in volume of the whole control volume is equal to the summation of 
Eq. (2.10) over the total control surface. In the limit as dS-. 0, the sum becomes 
the surface integral 

I I (V L\t) . dS 

s 

If this integral is divided by L\t, the result is physically the time rate of change of the 
control volume, denoted by Df' !Dt; that is, 

~ =~tJJ(V·L\t)·dS= JJv-ds (2.11) 

~··· - - - .:...··~··· 
V 

VM 

s/' 

s 

.... v 

s 

FIG. 2.4 
Moving control volume used for the physical interpretation 
of the divergence of velocity. 
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Note that we have written the left side of Eq. (2.11) as the substantial derivative of 
"f", because we are dealing with the time rate of change of the control volume as the 
volume move! ~ith th~ flow (we ~re using the picture shown at the right of Fig. 
2.2a)'. and this is physically what is meant by the substantial derivative. Applying 
the ~ivergence theorem from vector calculus to the right side of Eq. (2.11) we 
ob tam ' 

(2.12) 

j/' 

Now, let us imagine that t?e moving control volume in Fig. 2.4 is shrunk to a very 
small volume b"f/', essentially becoming an infinitesimal moving fluid element as 
sketched on the right of Fig. 2.2a. Then Eq. (2.12) can be written as 

n~;) = J J Jcv. v) dr (2.13) 

/jj/' 

Assume that b"f/' is small enough such that V · V is essentially the same value 
t~oughout b"f/'. Then the integral in Eq. (2.13), in the limit as J"f/' shrinks to zero, is 
given by (V · V) b"f/'. From Eq. (2.13), we have 

or 

D(J"f/') 
--= (v' · V) J"f/' 

Dt 

v' . V = _l D( J"f/') 
b"f/' Dt (2.14) 

Examine_ Eq. (~.14) closely. ?n the l~ft side we have the divergence of the velocity; 
on the nght side we have its physical meaning. That is, 

V · V (s physically the time rate of change of the volume of a moving fluid element, 
per umt volume. 

2.4.1 A Comment 

It is useful to kee~ the ~hysical meaning of the divergence of the velocity in mind 
when you are dea!mg with the governing flow equations. Indeed, this is an example 
of a~ overall philosophy which this author urges you to embrace, as follows. 
Imagme that we are d~a!ing with a vector velocity V in cartesian (x, y, z) space. 
W~en a pure mathematician sees the symbol V · V, his or her mind will most likely 
re~ister the ~a~t that V · V = au/ax+ av!fJy + aw/az. On the other hand, when a 
flmd. dynamic~st sees the symbol V · V, his or her mind should register first the 
physical meanmg-he or she should first see in the symbol V . V the words "time 
ra!e of_change o_f the volume of a moving fluid element, per unit volume." Indeed, 
this phtl?sophy i_s extrapolated to all mathematical equations and operations having 
to do with physical problems. Always keep in mind the physical meaning of the 
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terms in the equations you are dealing with. In this vein, note that in the phrase 
"computational fluid dynamics" the word "computational" is simply an adjective to 
"fluid dynamics"; when you are dealing with the discipline of CFO, it is vitally 
important to keep the physical understanding of fluid dynamics uppermost in your 
mind. This, in part, is the purpose of the present chapter. 

2.5 THE CONTINUITY EQUATION 

Let us now apply the philosophy discussed in Sec. 2.2; that is, let us (I) write down 
a fundamental physical principle, (2) apply it to a suitable model of the flow, and (3) 
obtain an equation which represents the fundamental physical principle. In this 
section, we will treat the following case: 

Physical principle: Mass is conserved. 

The governing flow equation which results from the application of this physical 
principle to any one of the four models of the flow shown in Fig. 2.2a and bis called 
the continuity equation. Moreover, in this section we will carry out in detail the 
application of this physical principle using all four of the flow models illustrated in 
Fig. 2.2a and b; in this way we hope to dispel any mystery surrounding the 
derivation of the governing flow equation. That is, we will derive the continuity 
equation four different ways, obtaining in a direct fashion four different forms of the 
equation. Then, by indirect manipulation of these four different forms, we will show 
that they are all really the same equation. In addition, we will invoke the idea of 
conservation versus nonconservation forms, helping to elucidate the meaning of 
those words. Let us proceed. 

2.5.1 Model of the Finite Control Volume Fixed in 
Space 

Consider the flow model shown at the left of Fig. 2.2a, namely, a control volume of 
arbitrary shape and of finite size. The volume is fixed in space. The surface that 
bounds this control volume is called the control surface, as labeled in Fig. 2.2a. The 
fluid moves through the fixed control volume, flowing across the control surface. 
This flow model is shown in more detail in Fig. 2.5. At a point on the control surface 
in Fig. 2.5, the flow velocity is V and the vector elemental surface area (as defined in 
Sec. 2.4) is dS. Also let d"f/' be an elemental volume inside the finite control 
volume. Applied to this control volume, our fundamental physical principle that 
mass is conserved means 

Net mass flow out time rate of 
of control volume = decrease of mass (2.15a) 
through surface S inside control volume 

or B=C (2.15b) 

where B and C are just convenient symbols for the left and right sides, respectively, 
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dS 

V 

s 
L])dV 

FIG. 2.5 
Finite control volume fixed in space. 

of Eq. (2.15a). First, let us obtain an expression for B in terms of the quantities 
shown in Fig. 2.5. The mass flow of a moving fluid across any fixed surface (say, 
in kilograms per second or slugs per second) is equal to the product of ( densi
ty) x (area of surface) x (component of velocity perpendicular to the surface). 
Hence the elemental mass flow across the area dS is 

p Vn dS = p V · dS (2.16) 

Examining Fig. 2.5, note that by convention, dS always points in a direction out of 
the control volume. Hence, when Valso points out of the control volume (as shown 
in Fig. 2.5), the product pV • dS is positive. Moreover, when V points out of the 
control volume, the mass flow is physically leaving the control volume; i.e., it is an 
ouif/ow. Hence, a positive p V · dS denotes an outflow. In turn, when V points into 
the control volume, pV • dS is negative. Moreover, when V points inward, the 
mass flow is physically entering the control volume; i.e., it is an inflow. Hence, a 
negative p V · dS denotes an inflow. The net mass flow out of the entire control 
volume through the control surface Sis the summation over S of the elemental mass 
flow expressed in Eq. (2.16). In the limit, this becomes a surface integral, which is 
physically the left sides of Eqs. (2.15a) and (2.15b ); that is, 

B = J J pV • dS (2.17) 

s 

Now consider the right sides ofEqs. (2.15a) and (2.15b). The mass contained within 
the elemental volume di/" is p di/". The total mass inside the control volume is 
therefore 

"f'" 

The time rate of increase of mass inside f is then 
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In turn, the time rate of decrease of mass inside f is the negative of the above; i.e., 

(2.18) 

Thus, substituting Eqs. (2.17) and (2.18) into (2.15b ), we have 

or :t J J J p di/"+ J J pV · dS = 0 (2.19) 

s 

Equation (2.19) is an integral form of the continuity equation. It was derived on the 
basis of a finite control volume fixed in space. The finite aspect of the control 
volume is why the equation is obtained directly in integral form. The ~act that the 
control volume was fixed in space leads to the specific integral form give~ by Eq. 
(2.19), which is called the conservation form. The form~ o~ the go~ernmg flow 
equations that are directly obtained from a flow model which 1s fixed m space are, 
by definition, called the conservation form. . . . 

Now consider Fig. 2.6, which shows the same four flow mod~ls ~IVen m ~1g. 
2.2a and b. However, in Fig. 2.6 the specific form of the contmmty equation 
obtained directly from each model is displayed underneath the ~ke~ch of the 
particular model. In this subsection, we have just finish~d the denvation of Eq. 
(2.19) using the model of a finite control volume fix~d m spa~e. 1:1ierefore, Eq. 
(2.19) is displayed in box I just below the sketch of this mod~l m F1~. 2.6. In ~e 
following subsections, we will derive the remaining th_ree e~uations which ap~ear ~n 
boxes II to IV in Fig. 2.6. Then, we will show, by mampulat~on, ~hat the e~uations m 
all four boxes are simply different forms of the same equation; 1.e., we will conn_ect 
all four equations by the paths A through D illustrated in ~ig. ~.6. As s~ted ~arher, 
we hope that these derivations, along with the flow of logic diagr_amed m ~1g. 2.6, 
will take the mystery out of the different forms of the governmg equations. 

2.5.2 Model of the Finite Control Volume Moving 
with the Fluid 

Consider the flow model shown at the right of Fig. 2.2a, namely, a co~trol vol~e 
of finite size moving with the fluid. This control volume, as it mov~s with the fl~1d, 
is always composed of the same identifiable elements of mass; 1.e., the movmg 
control volume has a fixed mass. On the other hand, as this fixed m_ass moves 
downstream, the shape and volume of the finite control volume _c~, m ~ener~l, 
change. Consider an infinitesimally small element of volume di/" ms1de this fimte 
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The differe~t forms o~ the continuity equation, their relationship to the different models of the flow, and 
the schematic emphasis that all four equations are essentially the same-they can each be obtained from 
the other. 

control volume; the mass of this ~mall element is p d"f/", where pis the local density. 
Then, the total mass of the fimte control volume is given by 

Mass = J J J p d"f/" (2.20) 

r 

In Eq. (2.20), the v?lu~e integral is taken over the whole moving control volume 
"Y. However, keep m mmd that, here, "f/" is changing as the control volume moves 
dow?stream. ~n the other hand, the physical principle that mass is conserved, when 
apphed to this model of the flow, simply states that the mass in Eq. (2.20) is a 
cons~t as the control_ vol~e _moves with the flow. Now recall the physical 
meanmg of the substantial denvatlve as discussed in Sec. 2.3; it expresses the time 
rat~ of change of any property of a fluid element as it moves with the flow. Since our 
fimte control vol~e is made up of an infinite number of infinitesimally small fluid 
ele~e~ts, all with a fixed, unchanging mass, and hence all with substantial 
denvatlves of these unchanging masses equal to zero, we can write for the finite 
control volume, from Eq. (2.20), 
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(2.21) 

Equation (2.21) is an integral form of the continuity equation, different from that 
expressed in Eq. (2.19). It was derived on the basis of a finite control volume 
moving with the fluid. The.finite aspect of the control volume is why the equation is 
obtained directly in integral form. The fact that the control volume is moving with 
the fluid leads to the specific integral form given by Eq. (2.21), which is called the 
nonconservation form. The forms of the governing flow equations that are directly 
obtained from a flow model which is moving with the flow are, by definition, called 
the nonconservation form. 

Equation (2.21) is displayed in box II in Fig. 2.6. Although the integral forms 
of the equations in boxes I and II are different, they can be shown by indirect 
manipulation (path A) to be the same equation. This will be discussed in Sec. 2.5.5. 

2.5.3 Model of an Infinitesimally Small Element 
Fixed in Space 

Consider the flow model shown at the left of Fig. 2.2b, namely, an infinitesimally 
small element fixed in space, with the fluid moving through it. This flow model is 
shown in more detail in Fig. 2.7. Here, for convenience we adopt a cartesian 
coordinate system, where the velocity and density are functions of (x, y, z) space 
and time t. Fixed in this (x, y, z) space is an infinitesimally small element of sides 
dx, dy, and dz (Fig. 2.7a). There is mass flow through this fixed element, as shown in 
Fig. 2. 7 b. Consider the left and right faces of the element which are perpendicular to 
the x axis. The area of these faces is dy dz. The mass flow through the left face 
is (pu) dy dz. Since the velocity and density are functions of spatial location, 
the values of the mass flux across the right face will be different from that across 
the left face; indeed, the difference in mass flux between the two faces is simply 
[o(pu)lox] dx. Thus, the mass flow across the right face can be expressed as 
{pu + [o(pu)/ox] dy dz. The mass flow across both the left and right faces is shown 
in Fig. 2.7b. In a similar vein, the mass flow through both the bottom and top faces, 
which are perpendicular to they axis, is (pv) dx dz and {pv + [o(pv)/oy] dy} dx dz, 
respectively. The mass flow through both the front and back faces, which are 
perpendicular to the z axis, is (pw) dx dy and {pw + [o(pw)loz] dz} dx dy, respec
tively. Note that u, v, and w are positive, by convention, in the positive x, y, and z 
directions, respectively. Hence, the arrows in Fig. 2. 7 show the contributions to the 
inflow and outflow of mass through the sides of the fixed element. If we denote a net 
outflow of mass as a positive quantity, then from Fig. 2.7, we have 

Net ouiflow in x direction: 

[ 
o(pu) ] o(pu) 

pu + ~ dx dy dz - (pu) dy dz = ~ dx dy dz 
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Mo_del of the infinitesimally small elemen_t fi~ed in space and a diagram of the mass fluxes through the 
vanous faces of the element-for a denvation of the continuity equation. 

Net ouiflow in y direction: 

[ 
a(pv) ] a(pv) 

pv + 7iy dy dx dz - (pv) dx dz= 7iy dx dy dz 

Net ouiflow in z direction: 

[ 
a(pw) ] a( w) 

pw +-a;- dz dx dy- (pw) dx dy = ;z dx dy dz 

Hence, the net mass flow out of the element is given by 

Net mass flow = [a(pu) + a(pv) + a(pw )] dx d d 
ax 8y az yz (2.22) 

~he total mas~ offluid in the infi~it~simally small element is p (dx dy dz); hence the 
tune rate of mcrease of mass ms1de the element is given by 
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Time rate of mass increase = t ( dx dy dz) (2.23) 

The physical principle that mass is conserved, when applied to the fixed element in 
Fig. 2.7, can be expressed in words as follows: the net mass flow out of the element 
must equal the time rate of decrease of mass inside the element. Denoting the mass 
decrease by a negative quantity, this statement can be expressed in terms of Eqs. 
(2.22) and (2.23) as 

[
a(pu) + a(pv) + a(pw)] dx dy dz= - ap (dx dy dz) 

ax ay az at 

or ap + [a(pu) + a(pv) + a(pw)] = 0 
at ax ay az 

(2.24) 

In Eq. (2.24), the term in brackets is simply V · (pV). Thus, Eq. (2.24) becomes 

I WI- + 'v . (p V) = 0 I (2.25) 

Equation (2.25) is a partial differential equation form of the continuity equation. It 
was derived on the basis of an infinitesimally small element fixed in space. The 
infinitestimally small aspect of the element is why the equation is obtained directly 
in partial differential equation form. The fact that the element was fixed in space 
leads to the specific differential form given by Eq. (2.25), which is called the 
conservation form. As stated earlier, the forms of the governing flow equations that 
are directly obtained from a flow model which is fixed in space are, by definition, 
called the conservation form. 

Equation (2.25) is displayed in box III in Fig. 2.6. It is the form that most 
directly stems from the model of an infinitesimally small element fixed in space. On 
the other hand, it can also be obtained by indirect manipulation from either of the 
integral equations displayed in boxes I and II, as will be shown in Sec. 2.2.5. 

2.5.4 Model of an Infinitesimally Small Fluid 
Element Moving with the Flow 

Consider the flow model shown at the right of Fig. 2.2b, namely, an infinitesimally 
small fluid element moving with the flow. This fluid element has a fixed mass, but in 
general its shape and volume will change as it moves downstream. Denote the fixed 
mass and variable volume of this moving fluid element by Jm and J"f/", respectively. 
Then 

Jm = p J"f/" (2.26) 

Since mass is conserved, we can state that the time rate of change of the mass of the 
fluid element is zero as the element moves along with the flow. Invoking the 
physical meaning of the substantial derivative discussed in Sec. 2.3, we have 
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D(bm) = O 
Dt 

Combining Eqs. (2.26) and (2.27), we have 

D(p b'Y) = b'Y'Dp + PD(b'Y) = O 
Dt Dt Dt 

or Dp + [-l_D(b'Y')] = 
Dt p b'Y Dt O 

(2.27) 

(2.28) 

~e recogn_ize the term in brackets in Eq. (2.28) as the physical meaning of V · V, 
discussed m Sec. 2.4 and given in Eq. (2.14). Hence, combining Eqs. (2.14) and 
(2.28), we obtain 

(2.29) 

E_quation (2.29) is a partial differential equation form of the continuity equation, 
different from that expressed by Eq. (2.25). It was derived on the basis of an 
infi_nitesimally small fluid element moving with the flow. Once again, the infini
tesui:ially_ small ~spect of the fluid element is why the equation is obtained directly in 
partza/ differentzal equation form. The fact that the element is moving with the flow 
leads to the specific differential form given by Eq. (2.29), which is called the 
nonconservation form. As stated earlier, the forms of the governing flow equations 
that ~r~ directly obtained from a flow model which is moving with the flow are, by 
defimt10n, called the nonconservation form. 

. Equation (2.29) is displayed in box IV in Fig. 2.6. It is the form that most 
directly stems from the model of an infinitesimally small fluid element moving with 
the flow. On the_ oth~r hand, it can also be obtained by indirect manipulation from 
any of the equations m the other boxes in Fig. 2.6. It is now appropriate to examine 
this indirect manipulation. 

2.5.5 All the Equations Are One: 
Some Manipulations 

Ex~mining Fig. 2.6, we see four different forms of the continuity equation, each one 
a direct product of the flow model used in its derivation. Two of the forms are 
integ~al equati?ns; the other two are partial differential equations. Two of the 
equations are m conservation form; the other two are in nonconservation form. 
However, thes~ four equations are not fundamentally different equations; rather, 
they are four different forms of the same equation, namely, the continuity equation. 
~y of th~se four forms can be derived by manipulation from any of the others. This 
1s symbohze~ by paths~ t~rough D sketched in Fig. 2.6. For a better understanding 
of th~ meanmg ~nd s1gmficance of the governing flow equations, we need to 
examm~ the details of these different paths. This is the purpose of the present 
subsect10n. 
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First, let us examine how the partial differential equation form can be obtained 
from the integral equation form; i.e., let us examine path C in Fig. 2.6. Repeating 
Eq. (2.19), 

:t J J J p dY + J J pV · dS = 0 (2.19) 

s 

Since the control volume used for the derivation of Eq. (2.19) is fixed in space, the 
limits of integration for the integrals in Eq. (2.19) are constant, and hence the time 
derivative 8/ot can be placed inside the integral. 

J J J: d'Y + J J pV · dS = 0 (2.30) 

s 

Applying the divergence theorem from vector calculus, the surface integral in Eq. 
(2.30) can be expressed as a volume integral: 

J J (p V) · dS = J J J v7 · (p V) dY (2.31) 

s 

Substituting Eq. (2.31) into (2.30), we have 

J J J : dY + J J J v7 · (p V) dY = 0 

or J J J[: + v7 · (pV)] d'Y = 0 (2.32) 

~ 

Since the finite control volume is arbitrarily drawn in space, the only way for the 
integral in Eq. (2.32) to equal zero is for the integrand to be zero at every point 
within the control volume. Hence, from Eq. (2.32) 

(2.33) 

Equation (2.33) is precisely the continuity equation in partial differential equation 
form that is displayed in box III in Fig. 2.6. Hence, we have shown how the integral 
form in box I can, after some manipulation, yield the differential form in box III. 
Again, note that both the equations in boxes I and III are in conservation form; the 
above manipulation does not change that situation. 

Next, let us examine a manipulation that does change the conservation form to 
the nonconservation form. Specifically let us take the differential equation in box III 
and convert it to the differential equation in box IV. Consider the vector identity 
involving the divergence of the product of a scalar times a vector, such as 
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\7 · (p V) = (p V · V) + (V · V p) (2.34) 

In words, the divergence of a scalar times a vector is equal to the scalar times the 
divergence of the vector plus the vector dotted into the gradient of the scalar. (See 
any g?od_ text on vector ~nalysis for a presentation of this identity, such as Ref. 19.) 
Substttutmg Eq. (2.34) mto Eq. (2.33), we obtain 

op 
at+ (V · Vp) + (pV · V) = 0 (2.35) 

The first two terms on the left side ofEq. (2.35) are simply the substantial derivative 
of density. Hence, Eq. (2.35) becomes 

Dp 
Dt + pV · V = 0 (2.36) 

Equ~tion (2.3_6) is ~recisely the eq~atio~ displayed in box IV in Fig. 2.6. Hence, by 
a shght mampulat10n of the partial differential equation in box III which is in 
conservation form, we obtained the partial differential equation in bo~ rv, which is 
in nonconservation form. 

Can the sam_e type of change be _made to the integral forms of the equations; 
e.g., can the equat10n m box II be mampulated to obtain the equation in box I? This 
is represented by path A in Fig. 2.6. The answer is yes; let us see how. The equation 
in box II is Eq. (2.21 ), repeated below: 

(2.21) 

"Y' 

Recall in Eq. (2.21) tha_t the volume integral is taken over the whole moving control 
volume "f/'. and that this volume is changing as it flows downstream. Indeed, the 
moving fimte control volume consists of an infinite number of infinitesimally small 
volumes of fixed infinitesimally small mass, each of volume d"f/', where the magni
tude of d"f/' also changes as the control volume moves downstream. Since the 
substantial derivative itself represents a time rate of change associated with a 
moving el~ment, and the limits of ~ntegration on the volume integral in Eq. (2.21) 
are determmed by these same movmg elements, then the substantial derivative can 
be taken inside the integral. Hence, Eq. (2.21) can be written as 

(2.37) 

Noting again that d"f/' physically represents an infinitesimally small volume which 
itself is variable, the substantial derivative inside the integral in Eq. (2.37) is the 
derivative of a product of two variables, namely, p and d"f/'. The derivative must be 
expanded accordingly; Eq. (2.37) becomes 

J J J: d"f/' + J J J p D~;) = 0 
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Dividing and multiplying the second term by d"f/', we have 

J J J: d"f/' + J J J p [d~ D~;)J d"f/' = 0 
(2.38) 

The physical meaning of the term inside the brackets is simply the "time rate of 
change of volume of an infinitesimally small fluid element per unit volume." We 
recall from Sec. 2.4 and Eq. (2.14) that this term is the divergence of velocity. 

Hence, Eq. (2.38) becomes 

J J J: d"f/' + J J J pV · V d"f/' = 0 
(2.39) 

From the definition of the substantial derivative given by Eq. (2.5), the first term in 

Eq. (2.39) can be expanded as 

(2.40) 

Substituting Eq. (2.40) into (2.39), and writing all terms under a single volume 

integral, we have 

J J J [~ + V · V p + pV · V] d"f/' = 0 (2.41) 

"Y' 

From the vector identity given in Eq. (2.34), the last two terms in Eq. (2.41) can be 

written as 
V · V p + pV · V = V · (pV) 

With this, Eq. (2.41) becomes 

J J J ~ d"f/' + J J JV · (p V) d"f/' = 0 (2.42) 

Finally, employing the divergence theorem from vector analysis, which relates a 
surface integral to a volume integral as 

J J JV · (p V) d"f/' = J J p V · dS 

s 

(again, see any good vector analysis text, such as Ref. 19), Eq. (2.42) finally results 

in 

J J J ~ d"f/' + J J p V · dS = 0 
(2.43) 

s 

Equation (2.43) is essentially the form of the equation in box I in Fig. 2.6. 
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We could go on, but we won't-for the sake of not boring you with essentially 
repetitive manipulations. The major point of this subsection has been made. We see 
that the four different equations displayed in the boxes in Fig. 2.6 in reality are not 
different equations at all but rather four different forms of the same equation-the 
continuity equation. However, each different form displayed in Fig. 2.6 comes most 
directly from the particular model of the flow adjacent to each equation, and hence 
the terms in each equation have slightly different physical implications. Also, the 
philosophy associated with these different forms, and how they were derived, is not 
limited to just the continuity equation-the same approach is used for the 
development of the momentum and energy equations, to follow. 

2.5.6 Integral versus Differential Form of the 
Equations: An Important Comment 

There is a subtle difference between the integral and differential forms of the 
governing flow equations which is best noted at this stage. The integral form of the 
equations allows for the presence of discontinuities inside the fixed control volume 
(fixed in space); there is no inherent mathematical reason to assume otherwise. 
However, the differential form of the governing equations assumes the flow 
properties are differentiable, hence continuous. This is particularly evident when 
we use the divergence theorem to derive the differential form from the integral 
form-the divergence theorem assumes mathematical continuity. This is a strong 
argument for the integral form of the equations to be considered more fundamental 
than the differential form. This consideration becomes of particular importance 
when calculating a flow with real discontinuities, such as shock waves. 

2.6 THE MOMENTUM EQUATION 

In this section, we apply another fundamental physical principle to a model of the 
flow, namely: 

Physical principle: F = ma (Newton's second law) 

The resulting equation is called the momentum equation. Unlike the derivation of 
the continuity equation in Sec. 2.5, where great pains were taken to illustrate the use 
of all four models of the fluid and to highlight the different forms of the equations 
obtained therein, in the present section we will restrain ourselves and choose only 
one model of the flow. Specifically, we will utilize the moving fluid element model 
shown at the right of Fig. 2.2b because this model is particularly convenient for the 
derivation of the momentum equation as well as the energy equation (to be 
considered in Sec. 2. 7). The moving fluid element model is sketched in more detail 
in Fig. 2.8. However, please keep in mind that the momentum and energy equations 
can be derived using any of the other three models of the fluid in Fig. 2.2a and b; as 
in the case of the continuity equation developed in Sec. 2.5, each different model of 
the flow leads directly to a different form of the momentum and energy equations, 
analogous to those for the continuity equation displayed in Fig. 2.6. 

V 

w 

Velocity 
components 

u 

dy 
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Txx dy dz 

FIG. 2.8 

I 
I 

/ d I (rxx + oxxx dx) dydz 

Infinitesimally small, moving fluid element. Only the forces in the x direction are shown. Model used 
for the derivation of the x component of the momentum equation. 

Newton's second law, expressed above, when applied to the moving fluid 
element in Fig. 2.8, says that the net force on the fluid element equals its mass times 
the acceleration of the element. This is a vector relation, and hence can be split into 
three scalar relations along the x, y, and z axes. Let us consider only the x 
component of Newton's second law, 

(2.44) 

where Fx and ax are the scalar x components of the force and acceleration, 
respectively. 

First, consider the left side of Eq. (2.44). We say that the moving fluid element 
experiences a force in the x direction. What is the source of this force? There are two 
sources: 

1. Body forces, which act directly on the volumetric mass of the fluid element. 
These forces "act at a distance"; examples are gravitational, electric, and 
magnetic forces. 

2. Surface forces, which act directly on the surface of the fluid element. They are 
due to only two sources: (a) the pressure distribution acting on the surface, 
imposed by the outside fluid surrounding the fluid element, and ( b) the shear ~d 
normal stress distributions acting on the surface, also imposed by the outside 
fluid "tugging" or "pushing" on the surface by means of friction. 
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I 

FIG. 2.9 

I 

(al 

I 

I 

- X 

T_., ... 
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Illustration of {a) shear stress (related to the time rate of charge of the shearing deformation and (b) 
normal stress (related to the time rate of charge of volume). 

Let us denote the body force per unit mass acting on the flu1d element by f, 
with .fx as its x component. The volume of the fluid element is (dx dy dz); hence, 

Body force on 
fluid element acting = pfx(dx dy dz) 
in x direction 

(2.45) 

The shear and normal stresses in a fluid are related to the time rate of change 
of the defonnation of the fluid element, as sketched in Fig. 2.9 for just the xy plane. 
The shear stress, denoted by rxy in Fig. 2.9a, is related to the time rate of change of 
the shearing deformation of the fluid element, whereas the normal stress, denoted by 
rxx in Fig. 2.9b, is related to the time rate of change of volume of the fluid element. 
As a result, both shear and normal stresses depend on velocity gradients in the flow, 
to be designated later. In most viscous flows, normal stresses (such as rx.,) are much 
smaller than shear stresses and many times are neglected. Normal stresses (say rxx in 
the x direction) become important when the normal velocity gradients (say 8u/8x) 
are very large, such as inside a shock wave. 

The surface forces in the x-direction exerted on the fluid element are sketched 
in Fig. 2.8. The convention will be used here that 1:11 denotes a stress in the 
j direction exerted on a plane perpendicular to the i axis. On face abed, the only 
force in the x direction is that due to shear stress, ryz dx dz. Face efgh is a distance 
dy above face abed; hence the shear force in the x direction on face efgh is 
[ryx + (8ry)8y) dyJ dx dz. Note the directions of the shear force on faces abed and 
efgh; on the bottom face, ryx is to the left (the negative x direction), whereas on the 
top face, ryz + (ory)oy) dy is to the right (the positive x direction). These directions 
are consistent with the convention that positive increases in aU three components of 
velocity, u, v, and w, occur in the positive directions of the axes. For example, in Fig. 
2.8, u increases in the positive y direction. Therefore, concentrating on face efgh, u 
is higher just above the face than on the face; this causes a "tugging" action which 
tries to pull the fluid element in the positive x direction (to the right) as shown in 
Fig. 2.8. In tum, concentrating on face abed, u is lower just beneath the face than on 
the face; this causes a retarding or dragging action on the fluid element, which acts 
in the negative x direction (to the left) as shown in Fig. 2.8. The directions of all the 
other viscous stresses shown in Fig. 2.8, including rxx, can be justified in a like 
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face abfe, <zx + (8rz_/8z) dz acts in the positive x direction. On face adhe, which is 
perpendicular to the x axis, t~e only _forc~s in_ the x direc_tion are the pressure force 
p dy dz, which always act~ m !he dtte~hon into the flutd element, and txx dY_ dz, 
which is jn the negative x direction. In Fig. 2.8, the reason why 'xx on face adhe 1s to 
the left hinges on the convention mentioned earlier for the directi~n of incr~~sing 
velocity. Here, by convention, a positive increase in u take~ place m the pos1t1ve x 
direction. Hence, the value of u just to the left face of adhe 1s smaller than the value 
of u on the face itself. As a result, the viscous action of the normal stress acts as a 
"suction" on face adhe; i.e., there is a dragging action toward the left that wants to 
retard the motion of the fluid element. In contrast, on face bcgf, the pressure force 
[p + op/Bx) dx) dy dz presses inward on the fluid element (in the ne~ative x 
direction), and because the value of u just to the right of the_ face beg{ is larger 
than the value of u on the face, there is a "suction" due to the viscous normal stress 
which tries to pull the element to the right (in the positive x direction) with a force 
equal to [rxx + (lh,)ox) dx] dy dz. . 

With the above in mind, for the moving fluid element we can wnte 

~et s~rfac~ force = [p _ (p + op dx)} dy dz 
m x direction ox 

+ [ ( tou + 0;;" dx) - r,,]dy dz+ [ ( ryx + 
0;;x dy) - ryx] dx dz 

+ [ ( 1:zx + 0;; dz) - 1:zx] dx dy (2.46) 

The total force in the x direction f',0 is given by the sum of Eqs. (2.45) and (2.46). 
Adding, and cancelling terms, we obtain 

F = --+-+-+- y z+p1x X y z [ 
op OTx.x oryx 01:zx] dx d d: ,I" d d d 

X ox ox Dy oz 
(2.47) 

Equation (2.47) represents the left-hand side of Eq. (2.44). . 
To summarize and reinforce the physical significance of the force on a movmg 

fluid element, let us display Newton's second law in diagramatic form as follows: 

Bod.v forces 

,-'--, 

Weight (due 
to gravity) I Electro: 

magnetic 

F=ma 

Surface force..\ -----Viscous 

Normal Shear 
(t,.. .. ) (t,,,, .) 

Considering the right-hand side of Eq. (2. 44 ), recall that the mass of the fluid 
element is fixed and is equal to 

m=pdxdydz (2.48) 

Also recall that the acceleration of the fluid element is the time rate of change of its 
4 

'. W"Y • ,-. 'f • r ,J 1' •' 1 < 11 • 
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simply the time rate of change of u; since we are following a moving fluid element, 
this time rate of change is given by the substantial derivative. Thus, 

Du 
llx = - (2.49) 

Dt 

Combining Eqs. (2.44) and (2.47) to (2.49), we obtain 

Du 8p 8rxx Oryx O!zx 
p- = --+-+-+-+pfx 

Dt 8x 8x 8y 8z 
(2.50a) 

which is the x component of the momentum equation for a viscous flow. In a similar 
fashion, the y and z components can be obtained as 

Dv 8p 8rxy 8ryy 8rzy 
p-=--+-+-+-+pf; 

Dt 8y 8x 8y 8z y 
(2.50b) 

and 

Dw Op O!xz O!yz 0!22 p-=--+-+-+-+pfz 
Dt 8z ox 8y oz 

(2.50c) 

Equations (2.50a) to (2.50c) are the x, y, and z components, respectively, of the 
momentum equation. Note that they are partial differential equations obtained 
directly from an application of the fundamental physical principle to an infinitesimal 
fluid element. Moreover, since this fluid element is moving with the flow, Eqs. 
(2.50a) to (2.50c) are in nonconservation form. They are scalar equations and are 
called the Navier-Stokes equations in honor of two men-the Frenchman M. Navier 
and the Englishman G. Stokes-who independently obtained the equations in the 
first half of the nineteenth century. 

The Navier-Stokes equations can be obtained in conservation form as follows. 
Writing the left-hand side ofEq. (2.50a) in terms of the definition of the substantial 
derivative, we have 

Du 8u 
p Dt = p 8t + p V . v' u 

Also, expanding the following derivative, 

and rearranging, we have 

8(pu) au 8p 
~=pot +u ot 

au 8(pu) op 
p-=---u-

8t at at 

(2.51) 

(2.52) 

Recalling the vector identity for the divergence of the product of a scalar times a 
vector, we have 

v' · (puV) = uv' · (pV) + (pV) · 'Vu 
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pV. 'Vu= v' · (puV) - uv' · (pV) (2.53) 
or 
Substitute Eqs. (2.52) and (2.53) into (2.51 ). 

Du= 8(pu) _ u 8p _ uv'. (pV) + v'. (puV) 
p Dt 8t 8t 

= 8(pu) - u[op + v'. (pV)] + v'. (puV) 
8t 8t 

(2.54) 

The term in brackets in Eq. (2.54) is simply the left-hand side of the continuity 
equation as Eq. (2.25); hence the term in brackets is zero. Thus Eq. (2.54) reduces to 

p Du= 8(pu) + v'. (puV) (2.55) 
Dt 8t 

Substitute Eq. (2.55) into (2.50a). 

8(pu) op 8rxx 8ryx 8rzx " 
--+v'· (puV) = --+-+-+-+P1x 

ot ax ax 8y {)z 

Similarly, Eqs. (2.50b) and (2.50c) can be expressed as 

and 

8(pv) 8p 8rxy 8ryy 8rzy .r 
--+v'· (pvV) = --+-+-+-+P1y 

ot 8y ax 8y {)z 

8(pw) 8p O!xz O!yz O!zz ,{' 
--+v'· (pwV) = --+-+-+-+P1z 

8t {)z ax 8y {)z 

(2.56a) 

(2.56b) 

(2.56c) 

Equations (2.56a) to (2.56c) are the Navier-Stokes equations in conservati_onfor"!. 
In the late seventeenth century, Isaac Newton stated that shear stress m _a flmd 

is proportional to the time rate of strain, i.e.,. velocity gradi_ents. Such flmds ~e 
called newtonian fluids. (Fluids in which r is not proportional to t~e velocity 
gradients are nonnewtonian fluids; blood flow is one example.) In . virtually all 
practical aerodynamic problems, the fluid can be assumed to be newtoman. For such 

fluids, Stokes in 1845 obtained 

au 
'xx = Ji.(v' . V) + 2µ ox 

8v 
'YY = Ji.(v' · V) + 2µ 8y 

8w 
'zz = Ji.(v' . V) + 2µ OZ 

[
av au] 

'xy = 'yx = µ ax+ 8y 

(2.57a) 

(2.57b) 

(2.57c) 

(2.57d) 
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Txz = Tzx =µ(OU+ OW) 
oz ox 

•yz = •zy =µ(aw+ 8v) 
8y oz 

(2.57e) 

(2.57/) 

where µ is the molecular viscosity coefficient and A is the second viscosity 
coefficient. Stokes made the hypothesis that 

A= -jµ 
which is frequently used but which has still not been definitely confirmed to the 
present day. 

Substituting Eqs. (2.57) into (2.56), we obtain the complete Navier-Stokes 
equations in conservation form; 

8(pu) 8(pu2) 8(puv) 8(puw) op --+--+--+ = --
8t Bx 8y oz ox 

+ ! ( AV · V + 2µ ;; ) +: [µ (: + : ) ] 

+ ! [µ ( ~: + : ) ] + pfx (2.58a) 

8(pv) 8(puv) 8(pv2) 8(pvw) op --+--+--+ = --
8t ox 8y oz 8y 

+ ! [µ (: +:)] +: ( AV · V + 2µ:) 

+ ! [µ(:+:)]+Ph (2.58b) 

8(pw) 8(puw) 8(pvw) 8(pw2) op 
~ + + + =--ut OX 8y 8z oz 

+ ! [µ ( :: + :) ] +: [µ (: + :: ) ] 

+ ! (AV · V + 2µ 8;;) + pfz (2.58e) 

2.7 THE ENERGY EQUATION 

In t_he _present section, we apply the third physical principle as itemized at the 
begmmng of Sec. 2.1, namely, 

Physical principle: Energy is conserved. 

In keeping with our derivation of the Navier-Stokes equations (i.e., the momentum 
equation) in Sec. 2.6, we will use again the flow model of an infinitesimally small 
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fluid element moving with the flow (as shown at the right of Fig. 2.2b). The physical 
principle stated above is nothing more than the first law of thermodynamics. When 
applied to the flow model of a fluid element moving with the flow, the first law states 
that 

Rate of change Net flux of Rate of work done on 
of energy inside = heat into + element due to 
fluid element element body and surface forces 

or (2.59) 

A B + C 

where A, B, and C denote the respective terms above. 
Let us first evaluate C; that is, let us obtain an expression for the rate of work 

done on the moving fluid element due to body and surface forces. It can be shown 
that the rate of doing work by a force exerted on a moving body is equal to the 
product of the force and the component of velocity in the direction of the force (see 
Refs. 1 and 8 for such a derivation). Hence the rate of work done by the body force 
acting on the fluid element moving at a velocity V is 

pf · V(dx dy dz) 

With regard to the surface forces (pressure plus shear and normal stresses), consider 
just the forces in the x direction, shown in Fig. 2.8. The rate of work done on the 
moving fluid element by the pressure and shear forces in the x direction shown in 
Fig. 2.8 is simply the x component of velocity, u, multiplied by the forces; e.g., on 
face abed the rate of work done by •yx dx dz is uryx dx dz, with similar expressions 
for the other faces. To emphasize these energy considerations, the moving fluid 
element is redrawn in Fig. 2.10, where the rate of work done on each face by surface 
forces in the x direction is shown explicitly. To obtain the net rate of work done on 
the fluid element by the surface forces, note that forces in the positive x direction do 
positive work and that forces in the negative x direction do negative work. Hence, 
comparing the pressure forces on face adhe and beg[ in Fig. 2.10, the net rate of 
work done by pressure in the x direction is 

[ up - ( up + 0t:) dx)) dy dz = -
0t:) dx dy dz 

Similarly, the net rate of work done by the shear stresses in the x direction on faces 
abed and efgh is 

[( 
8(uryx) ) ] 8(uryx) 

UTyx + ~dy - UTyx dx dz=~ dx dy dz 

Considering all the surface forces shown in Fig. 2.10, the net rate of work on the 
moving fluid element due to these forces is simply 

[ 
8(up) 8(urxx) 8(uryx) 8(uru)] dx d d ---+--+--+-- y z 

ox ox 8y oz 

The above expression considers only surface forces in the x direction. When the 
surface forces in the y and z directions are also included, similar expressions are 
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a(uT,) 
[uT,,+ ~a dy]dxdz . y 

._, 
UT,., dxdy 

..ii(up) 
[up~ dx]dydz 

e 
up dydz 

[ uT,, + a(;:,,) dx J dy dz dx 

UT,, dy dz 
/ - - - - - - - - - - - - -,~------~~ 

/ d X 

C/x dy dz ( • aq ) 
qx + a: dx dydz 

~ I 
/ 

a 
UTyx dx dz a(uT,.,) 

[uT,.,+ ~ dz]dxdy 

FIG. 2.10 

Energy_ fluxes ass?ciated with an infinitesimally small, moving fluid element. For simplicity, only the 
fluxes m the x direction are shown. Model used for the derivation of the energy equation. 

obtained. In total, the net rate of work done on the moving fluid element is the sum 
of the surf~ce ~orce co~~butions in the x, y, and z directions, as well as the body 
force contnbut10n. This 1s denoted by C in Eq. (2.59) and is given by 

C = -[(a(up) + a(vp) + a(wp)) + a(urxx) + a(uryx) 
ax ay az ax ay 

+ a(urzx) + a(vrxy) + a(vrw) + a(urzy) + a(wrxz) 
az ax ay az ax 

a(wryz) a(wrzz)] 
+ ay + az dx dy dz+ pf • V dx dy dz (2.60) 

Note in Eq. (2.60) that the first three terms on the right-hand side are simply 
V · (pV). 

Let us _tum our attention to B in Eq. (2.59), i.e., the net flux of heat into the 
ele~e~t. This ~ea~ flux is due to (I) volumetric heating such as absorption or 
em1s_s1on ~f radiation and (2) ?eat transfe~ across the surface due to temperature 
grad1e~ts, 1.e., the~al conduction. Define q as the rate of volumetric heat addition 
per umt mass. NotI~g that the mass of the moving fluid element in Fig. 2.10 is 
p dx dy dz, we obtam 

Volumetric heating of element= pq dx dy dz (2.61) 

In Fig. 2.10, the heat ~sfe~ed by thermal conduction into the moving fluid 
e!eme_nt across _fa~e adhe is _qx dy dz, where iJx is the heat transferred in the x 
dJrechon per umt time per umt area by thermal conduction. (The heat transfer in a 
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given direction, when expressed in dimensions of energy per unit time per unit area 
perpendicular to the direction, is called the heat flux in that direction. Here, iJx is the 
heat flux in the x direction.) The heat transferred out of the element across face beg[ 
is [qx + (aq)ax) dx] dy dz. Thus, the net heat transferred in the x direction into the 
fluid element by thermal conduction is 

[
. (· aqxd )] d aqx d d d qx - qx + ax X dy Z = - ax X y Z 

Taking into account heat transfer in the y and z directions across the other faces in 
Fig. 2.10, we obtain 

Heating of 
fluid element by 
thermal conduction 

(
aqx aqy aqz) d d d 

=- -+-+- X y Z 
ax ay az 

The term B in Eq. (2.59) is the sum of Eqs. (2.61) and (2.62). 

[ 
. (aqx aqy aqz)] B = pq - - + - + - dx dy dz 

ax ay az 

(2.62) 

(2.63) 

The heat flux due to thermal conduction, from Fourier's law of heat conduction, is 
proportional to the local temperature gradient: 

ar 
/Jx = -k

ax 
q = -kaT 

y ay 
. ar 
qz = -k

az 

where k is the thermal conductivity. Hence, Eq. (2.63) can be written 

B = [pq + !!__ (k aT) + !!__ (k aT) + ~ (k aT)] dx dy dz 
ax ax ay ay az az 

(2.64) 

Finally, the term A in Eq. (2.59) denotes the time rate of change of energy of 
the fluid element. Pause for a moment and ask yourself the question: the time rate of 
change of what energy? In classical thermodynamics, we generally deal with a 
system that is stationary; in this case, the energy that appears in the first law of 
thermodynamics is the internal energy. Let us examine more closely the source of 
this internal energy. If the system is a gas, the atoms and molecules are moving 
within the system, translating in a purely random fashion. That is, each atom or 
molecule has translational kinetic energy, and this energy is associated with the 
purely random motion of the particle. In addition, as they translate through space, 
molecules (not atoms) can also rotate and vibrate, adding rotational and vibrational 
energy to the molecule. Finally, the motion of electrons around the nuclei of the 
atoms or molecules adds electronic energy to the particle. The total energy of a 
given molecule is the sum of its translational, rotational, vibrational, and electronic 
energies; the total energy of each atom is the sum of its translational and electronic 
energy (see Ref. 2 for an extensive discussion of molecular and atomic energies). 
The internal energy of the gas system is simply the energy of each molecule or 
atom, summed over all the molecules and atoms in the system. This is the physical 
significance of the internal energy that appears in the first law of thermodynamics. 
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Now, return to Eq. (2.59) and examine the term labeled A. We are now considering a 
gaseous medium that is in motion; i.e., the energy term labeled A concerns the 
energy of a moving fluid element. Hence, the fluid element has two contributions to 
its energy: 

1. The internal energy due to random molecular motion, e (per unit mass). This is 
the energy we have described above. 

2. The kinetic energy due to translational motion of the fluid element. The kinetic 
energy per unit mass is simply V2/2. 

Hence, the moving fluid element has both internal and kinetic energy; the sum 
of these two is the "total" energy. In Eq. (2.59), the energy in the term A is the 
total energy, i.e., the sum of the internal and kinetic energies. The total energy is 
e + V 2/2. Since we are following a moving fluid element, the time rate of change of 
total energy per unit mass is given by the substantial derivative. Since the mass of 
the fluid element is p dx dy dz, we have 

D ( v
2

) A=p- e+- dxdydz 
Dt 2 

(2.65) 

The final form of the energy equation is obtained by substituting Eqs. (2.60), 
(2.64), and (2.65) into (2.59), obtaining 

D ( V
2

) f) ( f)T) f) ( f)T) f) ( oT) p- e+- =pq+- k- +- k- +- k-
Dt 2 ox ox EJy EJy oz oz 

(2.66) 

This is the nonconservation form of the energy equation; also note that it is in terms 
of the total energy e + V2/2. Once again, the nonconservation form results from the 
application of the fundamental physical principle to a moving fluid element. 

The left-hand side ofEq. (2.66) involves the substantial derivative of the total 
energy, D( e + V 2 /2)/Dt. This is just one of the many different forms of the energy 
equation; it is the form that comes directly from the principle of conservation of 
energy applied to a moving fluid element. This equation can be readily modified in 
two respects, as follows: 

1. The left-hand side can be expressed in terms of the internal energy e alone, or the 
static enthalpy h alone, or the total enthalpy ho = h + V2/2 alone. In each case, 
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the right-hand side of the pertinent equation also changes. [For example, in the 
next paragraph we will examine the necessary manipulations to change Eq. 
(2.66) into one involving De!Dt.] 

2. For each of the different forms of the energy equation mentioned above, there are 
both nonconservation as well as conservation forms. The manipulation to 
convert one form into the other is also discussed below. 

Let us start with Eq. (2.66) and first cast it in the form dealing with e only. To 
accomplish this, multiply Eqs. (2.50a), (2.50b), and (2.50c) by u, v, and w, 
respectively. 

D(u2 /2) op 81:xx 01:yx 81:zx ,r 
p = -u-+u-+u-+u-+puJx 

Dt ox ox EJy oz 
(2.67) 

D(v2 /2) op 81:xy myy 01:zy 
p = -v-+v-+v-+v-+pvJ; 

Dt EJy ox EJy oz y (2.68) 

D(w2 /2) op 01:xz 81:yz 07:zz 
p Dt = -w oz + w ox + w EJy + w oz + pwfz (2.69) 

Adding Eqs. (2.67) to (2.69), and noting that u2 + v2 + w2 
= V2

, we obtain 

p DV
2 

= -u op - V op - wop+ u (O•xx + 07:yx + 07:zx) 
Dt ox EJy oz ox EJy oz 

+v -+-+- +w -+-+-(
07: xy 07: yy 07: zy) (07: xz 07: yz 07: zz) 
ox EJy oz ox EJy oz 

+p(ufx + vfy + wfz) (2.70) 

Subtracting Eq. (2.70) from (2.66), and noting that pf· V = p(ufx + vfy + wfz), we 
have 

p-=pq+- k- +- k- +- k-De . f) ( f)T) f) ( f)T) f) ( oT) 
Dt ox ox EJy EJy oz oz 

(2.71) 

Equation (2.71) is a form of the energy equation where the substantial derivative on 
the left-hand side is strictly in terms of the internal energy only. The kinetic energy 
and the body force terms have dropped out; indeed, it is important to emphasize that 
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the energy equation when written in terms of e alone does not explicitly contain the 
body force. Also note that in comparison with Eq. (2.66), where the shear stresses 
and normal stresses multiplied by velocities appear inside the x, y, and z derivatives, 
in Eq. (2.71) the viscous stresses appear by themselves, multiplied by velocity 
gradients. Finally, we note that Eq. (2.71) is in nonconservation form; the 
manipulations which resulted in the derivation of Eq. (2.71) from Eq. (2.66) 
do not change that situation. By similar approaches, the energy equation can be 
couched also in terms of h and h + V 2/2; the derivations are left to you (for your 
leisure time). 

Let us take Eq. (2.71) a few steps further. Recall from Eqs. (2.57d) to (2.57/) 
that 'xy = 'yx, 'xz = 'zx, and 'yz = 'zy· [This symmetry between the shear stresses is 
necessary to keep the angular velocity of a fluid element from going to infinity as 
the volume of the element shrinks to a point-it is associated with the moments 
exerted on the fluid element. See Schlichting (Ref. 20) for the details.] Hence, some 
of the terms in Eq. (2.71) can be factored, yielding 

De a ( ar) a ( ar) a ( ar) 
p Dt = pq + OX k ox + oy k oy + oz k oz 

(
au av ow) OU av ow 

-p OX + oy + oz + 'xx OX+ 'YY oy + Czz oz 

+ 'yx(: + :) + 'zx(!: + 8;;) + 'zy(: + ~;) (2.72) 

Appealing again to Eqs. (2.57a) to (2.57/) in order to express the viscous stresses in 
terms of velocity gradients, Eq. (2.72) can be written as 

p-=pq+- k- +- k- +- k-De a ( ar) a ( ar) a ( ar) 
Dt OX OX oy oy oz oz 

(2.73) 

Equation (2.73) is a form of the energy equation completely in terms of the flow
field variables. A similar substitution of Eqs. (2.57a) to (2.57/) can be made into 
Eq. (2.66); the resulting form of the energy equation in terms of the flow-field 
variables is lengthy, and to save time and space it will not be given here. 

We emphasize again that only the internal energy appears in the left-hand side 
ofEq. (2.73). Our derivation leading to Eq. (2.73) is an example of how the left side 
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of the energy equation can be couched in terms of different energy forms-for 
example, in terms of total energy in Eq. (2.66) and in terms of internal energy in Eq. 
(2. 73). As stated earlier, other forms in terms of static enthalpy h and total enthalpy 
h + V 2 /2 can be obtained by similar manipulations. (For example, see Ref. 2 for 
these other forms.) This is one of the aspects of the energy equation mentioned 
earlier, namely, that the left-hand side can be expressed in terms of different energy 
forms; for each of these different forms, there is also a different form of the right
hand side of the energy equation. Now, let us address another aspect of the energy 
equation-an aspect common to the continuity and momentum equations as well
namely, that the energy equation can be expressed in conservation form. The forms 
of the energy equation given by Eqs. (2.66), (2.71), and (2.73) are expressed in 
terms of a substantial derivative on the left-hand side; hence these are noncon
servation forms. They stem directly from our model of a moving fluid element. 
However, with some manipulation, all these equations can be expressed in 
conservation form. Let us examine this for the case of Eq. (2.73). Consider the 
left-hand side of Eq. (2.73). From the definition of the substantial derivative, 

De oe 
p- = p- + pV · Ve 

Dt ot 
(2.74) 

However, 

or (2.75) 

From the vector identity concerning the divergence of the product of a scalar times a 
vector, 

or 

V · (peV) = eV · (pV) + pV · Ve 

pV ·Ve= V · (peV) - eV · (pV) 

Substitute Eqs. (2.75) and (2.76) into (2.74): 

P De= o(pe) - e [~ + V. (pV)] + V. (peV) 
Dt ot ut 

(2.76) 

(2.77) 

The term in brackets in Eq. (2.77) is zero, from the continuity equation, Eq. (2.33). 
Thus, Eq. (2. 77) becomes 

p De= o(pe) + V. (peV) 
Dt ot 

(2.78) 

Substituting Eq. (2.78) into Eq. (2.73), we have 
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--+ v7 · (peV) = pq + - k- + - k- + - k-a(pe) . 8 ( 8T) 8 ( 8T) 8 ( 8T) 
at ax ax &y &y oz oz 

(
au av aw) (au av aw) 2 

-p -+-+- + 2 -+-+-
ax &y oz ax &y oz 

+µ[2(:)'+2(:)'+2(:)'+(: + :)' 
+ ~+- + -+-(a aw) 2 (av aw) 2] oz ax oz &y 

(2.79) 

Equation (2.79) is the conservation form of the energy equation, written in terms of 
the internal energy. 

Repeating the steps from Eq. (2.74) to Eq. (2.78), except operating on the total 
energy e + V 2/2 instead of just the internal energy e, we obtain 

D(e+ v
2
/2) _ a [ ( v

2
)] " [ ( V

2)v] p -- p e+- + v · p e+-
Dt at 2 2 

(2.80) 

Substituting Eq. (2.80) into the left-hand side of Eq. (2.66), we obtain 

(2.81) 

Equation (2.81) is the conservation form of the energy equation, written in terms of 
total energy e + V 2/2. 

Note that the manipulations required to change the nonconservation form to 
the conservation form change only the left-hand side of the equations; the right
hand sides remain the same. For example, compare Eqs. (2.73) and (2.79). Both are 
in terms of internal energy. Equation (2.73) is in nonconservation form, and Eq. 
(2. 79) is in conservation form. The left-hand sides are different forms, but the right
hand sides are the same. The same comparison can also be made between Eqs. 
(2.66) and (2.81 ). 
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2.8 SUMMARY OF THE GOVERNING 
EQUATIONS FOR FLUID DYNAMICS: 
WITH COMMENTS 

By this point in our discussions, you have seen a large number of equations, and 
they may seem to you to "all look alike." Equations by themselves can be tiring, and 
this chapter would seem to be "wall-to-wall" equations. However, all of theoretical 
and computational fluid dynamics is based on these equations, and therefore it is 
absolutely essential that you are familiar with them and that you understand their 
physical significance. That is why we have spent so much time and effort in deriving 
the governing equations. 

Considering this time and effort, it is important to now summarize the 
important forms of these equations and to sit back and digest them. First of all, now 
is a good time to reflect back to the chapter road map in Fig. 2.1. We have already 
traveled our way through about 80 percent of this map. Starting at the top of Fig. 
2.1, we have taken the three fundamental principles on which all of fluid dynamics 
is based (boxes A-C) and applied these to various models of the flow (boxes D-H). 
We have seen how each model of the flow leads directly to a particular form of the 
governing equation (the routes from left to right at the bottom center of Fig. 2.1, 
from boxes E-H to box /). We have also seen how these particular forms can be 
reexpressed by suitable manipulation into other forms of the equations (as illustrated 
for the continuity equation in Fig. 2.6). All routes lead to box I at the right of Fig. 
2.1, which represents the basic continuity, momentum, and energy equations in all 
their glorious forms. In our present discussion, this is where we are now. For 
emphasis and clarity, in this section, we summarize those equations represented by 
box/. 

2.8.1 Equations for Viscous Flow 
(the Navier-Stokes Equations) 

A viscous flow is one where the transport phenomena of friction, thermal con
duction, and/or mass diffusion are included. These transport phenomena are 
dissipative-they always increase the entropy of the flow. The equations that 
have been derived and discussed up to this point in the present chapter apply to such 
a viscous flow, with the exception that mass diffusion is not included. Mass 
diffusion occurs when there are concentration gradients of different chemical 
species in the flow. An example is a nonhomogeneous mixture of nonreacting gases, 
such as the flow field associated with the injection of helium through a hole or slot 
into a primary stream of air. Another example is a chemically reacting gas, such as 
the dissociation of air that occurs in the high-temperature flow over hypersonic 
vehicles; in such flows, concentration gradients are induced by different rates of 
reaction and/or by the prominence of different types of reactions in different parts of 
the flow at different pressures and temperatures. Chemically reacting flows as well 
as nonhomogenous flows are discussed at length in Ref. 2. These types of flows are 
not treated in the present book, simply for clarity. Our purpose here is to discuss the 
basic aspects of CFD-we choose not to obscure the computational aspects by 
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carrying along the extra compli~atio~s a?d ph~sics asso_ciated with. che~ical~y 
reacting flows. For this reason, d1ffu~1on is_ not mclude~ m the eq~ations m this 
book. See Ref. 2 for an in-depth discussion of chemically reactmg fl~ws ~d 
especially for a discussion of the phy~ical and nume~cal effec_ts of mass d1ffus1on. 

With the above restrictions in mmd, the govemmg equations for an unsteady, 
three-dimensional, compressible, viscous flow are: 

Continuity equation 

Nonconservation form 

Conservation form 

Momentum equations 

Nonconservation form 

Dp 
-+pv'·V=O 
Dt 

op+ v' · (pV) = 0 
8t 

Du op 8rxx 8ryx 8rzx .r 
xcomponent: p- = --

0 
+-0 +~+-0 +P1x 

Dt x x uy z 

y component : 

z component : 

Conservation form 
x component: 

Dv op 8rxy 8ryy 8rzy .r 
p-=-::l.,+-0 +~+~+P1y 

Dt uy X uy uz 

Dw op O!xz O!yz 0Lzz ,{" 
p- = --8 + {) + ::l., + 8 + P1z Df Z X uy Z 

o(pu) op 8rxx 8ryx 8rzx 
--+ v'. (puV) = - - + - + - + - + Pfx 

8t ax ax 8y oz 

y component: 

o(pv) op 8rxy 8ryy 8rzy --+ v' · (pvV) =--+-+-+-+Ph 
8t 8y ox 8y oz 

z component: 

8(pw) op O!xz O!yz OTzz 
--+ v'. (pwV) = - -+-+-+-+ Pfz 

8t oz ox 8y oz 

(2.29) 

(2.30) 

(2.50a) 

(2.50b) 

(2.50c) 

(2.56a) 

(2.56b) 

(2.56c) 
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Energy equation 

Nonconservation form 

Pit ( e + ~
2

) = pq + ! ( k ~:) + : ( k 8;;) + ! ( k ~:) 

8(up) 8(vp) 8(wp) 8(urxx) 
---------+--

ox 8y oz ox 

8(uryx) 8(ur2x) 8(vrxy) 8(vryy) 
+--+--+--+--

8y oz ox 8y 

8(vrzy) 8(wrxz) 8(wryz) 8(wrzz) f 
+ ~ + ox + 8y + oz + P . V (2.66) 

Conservation form 

! k ( e + ~
2

)] + v' · [p ( e + ~
2

) V] = pq + ! ( k ~:) + : ( k 8;;) 
+ ~ (k 8T) _ 8(up) _ 8(vp) _ 8(wp) + 8(urxx) 

oz oz ox 8y oz ox 

8(uryx) 8(urzx) 8(vrxy) 8(vryy) 
+ 8y +~+fj;-"+fiy 

8(vrzy) 8(wrxz) 8(wryz) 8(wrzz) f V 
+~+ ox + 8y + oz +p . (2·81 ) 

2.8.2 Equations for Inviscid Flow 
(the Euler Equations) 

Inviscid flow is, by definition, a flow where the dissipative, transport phenomena of 
viscosity, mass diffusion, and thermal conductivity are neglected. If we take the 
equations listed in Sec. 2.8.1 and simply drop all the terms involving friction and 
thermal conduction, we then have the equations for an inviscid flow. The resulting 
equations for an unsteady, three-dimensional, compressible inviscid flow are 
displayed below. · 

Continuity equation 

Nonconservation form 

Conservation form 

Dp 
-+pv'·V=O 
Dt 

op - + v' · (p V) = 0 at 

(2.82a) 

(2.82b) 
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Momentum equations 

Nonconservation form 

x component : (2.83a) 

y component : (2.83b) 

z component : (2.83c) 

Conservation form 

x component : o(pu) op 
{)( + v'. (puV) = - ox+ pfx (2.84a) 

y component : o(pv) op 
{)( + v' · (pvV) = - 8y + p/y (2.84b) 

z component : o(pw) op 
{)(+ v'. (pwV) = - oz+ pfz (2.84c) 

Energy equation 

Nonconservation form 

P D (e + V
2

) = pq _ 8( up) _ 8( vp) _ 8( wp) + pf . V 
Dt 2 OX 8y oz (2.85) 

Conservation form 

= pq _ o(up) _ o(vp) _ o(wp) +pf. V 
ox 8y oz 

(2.86) 

2.8.3 Comments on the Governing Equations 

Surveying all the equations summarized in Sec. 2.8.1 and 2.8.2, several comments 
and observations can be made, as follows: 

1. They are a coupled system of nonlinear partial differential equations, and hence 
are very difficult to solve analytically. To date, there is no general closed-form 
solution to these equations. (This does not mean that no general solution exists
we just have not been able to find one.) 

2. For the momentum and energy equations, the difference between the non
conservation and conservation forms of the equations is just the left-hand side. 
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The right-hand side of the equations in the two different forms is the same. 

3. Note that the conservation forms of the equations contain terms on the left-hand 
side which include the divergence of some quantity, such as V · (p V) or 
V · (puV). For this reason, the conservation form of the governing equations 
is sometimes called the divergence form. 

4. The normal and shear stress terms in these equations are functions of the velocity 
gradients, as given by Eqs. (2.57a-b). 

5. Examine the equations in Sec. 2.8.1 and 2.8.2 closely. Count the number of 
unknown, dependent variables in each section. In both cases, we have five 
equations in terms of six unknown flow-field variables p, p, u, v, w, e. In 
aerodynamics, it is generally reasonable to assume the gas is a perfect gas (which 
assume'.- that intermolecular forces are negligible--see Refs. 1, 8, and 21 ). For a 
perfect gas, the equation of state is 

p=pRT 

where R is the specific gas constant. This equation is sometimes labeled the 
thermal equation of state. This provides a sixth equation, but it also introduces a 
seventh unknown, namely, temperature T. A seventh equation to close the entire 
system must be a thermodynamic relation between state variables. For example, 

e = e(T,p) 

For a calorically perfect gas (constant specific heats), this relation would be 

e=cvT 

where cv is the specific heat at constant volume. This equation is sometimes 
labeled the caloric equation of state. 

6. In Sec. 2.6, the momentum equations for a viscous flow were identified as the 
Navier-Stokes equations, which is historically accurate. However, in the modem 
CFO literature, this terminology has been expanded to include the entire system 
of flow equations for the solution of a viscous flow-continuity and energy as 
well as momentum. Therefore, when the CFO literature discusses a numerical 
solution to the "complete Navier-Stokes equations," it usually is referring to a 
numerical solution of the complete system of equations, say, for example Eqs. 
(2.33), (2.56a) to (2.56c), and (2.81). In this sense, in the CFO literature, a 
"Navier-Stokes solution" simply means a solution of a viscous flow problem 
using the full governing equations. This is why the entire block of equations 
summarized in Sec. 2.8.1 is labeled as the Navier-Stokes equations. This author 
suspects that the CFO usage of this nomenclature will soon seep through all of 
fluid dynamics. For this reason, and because the subject of this book is CFO, we 
will follow this nomenclature. That is, when we refer to the Navier-Stokes 
equations, we will mean the whole system of equations, such as summarized in 
Sec. 2.8.l. 

7. In a similar vein, the equations for inviscid flow in Sec. 2.8.2 are labeled as the 
Euler equations. Historically, Euler derived the continuity and momentum 
equations in 1753; he did not deal with the energy equation-indeed, he had 
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very little to work with because the science of thermodynamics is a nineteenth 
century product. ~erefore, on a strictly historical basis, only the continuity and 
momentum equations can be labeled as the Euler equations. Indeed, in much of 
the fluid dynamics literature, just the momentum equations for an inviscid flow 
e.g., Eqs. (2.83a) to (2.83c), are labeled as the Euler equations. However, in th~ 
~o?er:11 CFD literature, solutions to the complete system of equations for an 
mv1sc1d flow, e.g., the equations summarized in Sec. 2.8.2, are called Euler 
solutions, and the whole system of equations----continuity, momentum, and 
energy-are called the Euler equations. We will follow this nomenclature in the 
present book. 

2.9 PHYSICAL BOUNDARY CONDITIONS 

The equations give_n above govern the flow of a fluid. They are the same equations 
whether the flow is, for example, over a Boeing 747, through a subsonic wind 
tunnel, or past a windmill. However, the flow fields are quite different for these 
c~ses, although the governing equations are the same. Why? Where does the 
d~fference enter? The answer is through the boundary conditions, which are quite 
different for each of the above examples. The boundary cond~tions, and sometimes 
the initial conditions, dictate the particular solutions to be obtained from the 
gove?1ing e~uations. When the geometric shape of a Boeing 747 is treated, when 
certam physical boundary conditions are applied on that particular geometric 
surface, and when the appropriate boundary conditions associated with the free
stream far ahead of the airplane are invoked, then the resulting solution of the 
go:e?1i_ng partial differential equations will yield the flow field over the Boeing 747. 
This is m contrast to the flow-field solutions that would be obtained for a windmill if 
the geometric shape and freestream conditions pertinent to the windmill were 
treated. Hence, once we have the governing flow equations as described in the 
previ~~s secti~ns, then t~e real ~ri~er for any particular solution is the boundary 
condztwns. This has particular s1gmficance in CFD; any numerical solution of the 
governing ~ow equations must be made to see a strong and compelling numerical 
representat10n of the proper boundary conditions. 

First, let us review the proper physical boundary conditions for a viscous flow. 
Here, the boundary condition on a surface assumes zero relative velocity between 
the ~u_rface and the gas ~mmediately at the surface. This is called the no-slip 
condition. If the surface is stationary, with the flow moving past it, then 

u=v=w=O at the surface ( for a viscous flow) (2.87) 

In addition, there is an analogous "no-slip" condition associated with the tem
perature at the surface. If the material temperature of the surface is denoted by Tw 
(t~e wall tempera~re), then the temperature of the fluid layer immediately in contact 
with the surface IS also Tw. If in a given problem the wall temperature is known 
then the proper boundary condition on the gas temperature T is ' 

( at the wall) (2.88) 
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On the other hand, if the wall temperature is not known, e.g., if it is changing as a 
function of time due to aerodynamic heat transfer to or from the surface, then the 
Fourier law of heat conduction provides the boundary condition at the surface. Ifwe 
let </w denote the instantaneous heat flux to the wall, then from the Fourier law 

</w = -(kar) an w 
(at the wall) (2.89) 

where n denotes the direction normal to the wall. Here, the surface material is 
responding to the heat transfer to the wall, <Jw, hence changing Tw, which in turn 
affects </w· This general, unsteady heat transfer problem must be solved by treating 
the viscous flow and the thermal response of the wall material simultaneously. This 
type of boundary condition, as far as the flow is concerned, is a boundary condition 
on the temperature gradient at the wall, in contrast to the stipulating the wall 
temperature itself as the boundary condition. That is, from Eq. (2.89), 

(aarn) w-- - </kw ( at the wall) (2.90) 

Finally, when the wall temperature becomes such that there is no heat transfer to the 
surface, this wall temperature, by definition, is called the adiabatic wall temperature 
Taw· The proper boundary condition for the adiabatic wall case comes from Eq. 
(2.90) with iJw = 0, by definition. Hence, for an adiabatic wall, the boundary 
condition is 

(ar) = 0 an w 
( at the wall) (2.91) 

Once again, we see that the wall boundary condition is the stipulation of the 
temperature gradient at the wall; the actual adiabatic wall temperature Taw then falls 
out as part of the flow-field solution. 

Of all the temperature boundary conditions stated above, that of a fixed wall 
temperature [Eq. (2.88)] is the easiest to apply, with that of an adiabatic wall [Eq. 
(2. 91)] being the next easiest. These two different cases represent two extreme ends 
of the general problem, which is that associated with the boundary condition given 
by Eq. (2.90). However, the general problem, which involves the coupled solution of 
the flow field with the thermal response of the surface material, is by far the most 
difficult to set up. For these reasons, the vast majority of viscous flow solutions 
assume either a constant wall temperature or an adiabatic wall. In summary, if Eq. 
(2.88) is used as the boundary condition, then the temperature gradient at the wall, 
(aT/8w)n, and hence iJw fall out as part of the solution. IfEq. (2.91) is used as the 
boundary condition, then Taw falls out as part of the solution. IfEq. (2.90) is used as 
the boundary condition, along with a coupled solution with the thermal response of 
the material, then Tw and (aT!f)n)w fall out as part of the solution. 

Finally, we note that the only physical boundary conditions along a wall for a 
continuum viscous flow are the no-slip conditions discussed above; these boundary 
conditions are associated with velocity and temperature at the wall. Other flow 
properties, such as pressure and density at the wall, fall out as part of the solution. 
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For an inviscid flow, there is no friction to promote its "sticking" to the 
surface. Hence, the flow velocity at the wall is a finite, nonzero value. Moreover, for 
a nonporous wall, there can be no mass flow into or out of the wall; this means that 
the flow velocity vector immediately adjacent to the wall must be tangent to the 
wall. If n is a unit normal vector at a point on the surface, the wall boundary 
condition can be given as 

V·n=O ( at the surface) (2.92) 

Equation (2.92) is simply a statement that the component of velocity perpendicular 
to the wall is zero; i.e., the flow at the surface is tangent to the wall. This is the only 
surface boundary condition for an inviscid flow. The magnitude of the velocity, as 
well as values of the fluid temperature, pressure, and density at the wall, falls out as 
part of the solution. 

Depending on the problem at hand, whether it be viscous or inviscid, there are 
various types of boundary conditions elsewhere in the flow, away from the surface 
boundary. For example, for flow through a duct of fixed shape, there are boundary 
conditions which pertain to the inflow and outflow boundaries, such as at the inlet 
and exit of the duct. If the problem involves an aerodynamic body immersed in a 
known freestream, then the boundary conditions applied at a distance infinitely far 
upstream, above, below, and downstream of the body are simply that of the given 
freestream conditions. 

The boundary conditions discussed above are physical boundary conditions 
imposed by nature. In CFD we have an additional concern, namely, the proper 
numerical implementation of these physical boundary conditions. In the same sense 
as the real flow field is dictated by the physical boundary conditions, the computed 
flow field is driven by the numerical formulation designed to simulate these 
boundary conditions. The subject of proper and accurate boundary conditions in 
CFD is very important and is the subject of much current CFD research. We will 
return to this matter at appropriate stages in this book. 

2.10 FORMS OF THE GOVERNING 
EQUATIONS PARTICULARLY SUITED FOR 
CFD: COMMENTS ON THE CONSERVATION 
FORM, SHOCK FITTING, AND SHOCK 
CAPTURING 

In this section, we finally address the significance of the conservation versus the 
nonconservation forms of the governing flow equations vis-a-vis applications of 
CFD. In the historical development of these equations, there was no reason for a 
preference of one form over the other; indeed, theoretical fluid dynamics evolved 
quite well over the last few centuries without paying any attention to this matter. 
This is reflected in all the general fluid dynamics and aerodynamics textbooks up to 
the early 1980s, where this author defies you to find any mention of, or reference to, 
conservation versus nonconservation forms-the equations are there, but they are 
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simply not identified in these terms. The labeling of the governing equations as 
either conservation or nonconservation form grew out of modem CFD, as well as 
concern for when one form or the other should be used for a given CFD application. 
Let us address this matter from two perspectives. 

Toe first perspective is simply that the conservation form of the governing 
equations provides a numerical and compu!er p~ograming co_nvenience in that the 
continuity, momentum, and energy equations m conse~atio? form can _all be 
expressed by the same generic equation. This can help ~o simpl~fy and organize the 
logic in a given computer program. To prepare us fo~ this genenc form, note that all 
the previous equations in conservation form have a divergence te~ on the l~ft-hand 
side. These terms involve the divergence of the flux of some physical quantity, such 

as 

From Eq. (2.33): pV 

From Eq. (2.56a): puV 

From Eq. (2.56b) : pvV 

From Eq. (2.56c) : pwV 

From Eq. (2.79) : peV 

From Eq. (2.81): p(e + :
2)v 

mass flux 

flux of x component of momentum 

flux of y component of momentum 

flux of z component of momentum 

flux of internal energy 

flux of total energy 

Recall that the conservation form of the equations was obtained directly from a 
control volume which was fixed in space rather than moving with the fluid. When 
the volume is fixed in space, we are concerned with the flux of mass, momentum, 
and energy into and out of the volume. In this case, the fluxes ~emselves ~ec?~e 
important dependent variables in the equations, rather than Just the pnmitive 

variables such as p, p, V. 

Let us pursue this idea further. Examine the conservation form of all the 
governing equations-continuity, momentum, and energy. This is perhaps m~st 
conveniently done by returning to Secs. 2.8.1 and 2.8.2, where the gove1:1mg 
equations for viscous and inviscid flows, respectively, are compactly s~anzed. 
Looking at the conservation forms, we note that they all have the same genenc form, 

given by 

(2.93) 

Equation (2.93) can represent the entire system of governing equations in ~on
servation f<?rm if U, F, G, H, and J are interpreted as column vectors, given 

by 
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U= 

F= 

G= 

H= 

J= 

p 

pu 

pv 

pw 

p(e+~2) 

pu 

pu2 + P - !xx 

pvu - rxy 

pwu - 'rxz 

( v2
) ar 

p e + 2 U + pu - k ax - U!xx - V!xy - W!xz 

pv 

puv- ryx 

pv2 + p - rY.Y 

pwv- ryz 

( v2
) ar 

P e + 2 W + pv - k 8y - U!yx - vrY.Y - wryz 

pw 

puw - Tzx 

pvw - rzy 

pw2 + P - 'rzz 

( v2
) ar P e+-

2 
w+pw-k--urzx-vr -wr az zy zz 

0 

pfx 

p/y 

pfz 

p(ufx + v/y + wfz) + pq 

(2.94) 

(2.95) 

(2.96) 

(2.97) 

(2.98) 

In Eq. (2.93), the column vectors F, G, and Hare called the flux terms (or flux 
vect~rs), and J re~r~sents a source term (which is zero if body forces and volumetric 
heatmg are neghg1ble.) The column vector U is called the solution vector for 
re~sons. to be stated shortly. To help yourself get used to this generic equ;tion 
wntten m terms of column vectors, note that the first elements of the u. F. G H d 
J vectors, when added together via Eq. (2.93), reproduce the contin~i~ e~u;t:. 
The second elements of the U, F, G, H, and J vectors, when added together via Eq. 
(2.93), reproduce the x-momentum equation, and so forth. Indeed, Eq. (2.93) is 
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simply one large column vector equation which represents the whole system of 
governing equations. 

Let us explore the ramifications ofEq. (2.93) further. It is written with a time 
derivative aU!at; hence it applies to an unsteady flow. In a given problem, the actual 
transients in an unsteady flow may be of primary interest. In other problems, a 
steady-state solution may be desired but wherein the best manner to solve for this 
steady state is to solve the unsteady equations and let the steady state be approached 
asymptotically at large times. (This approach is sometimes called the time-depen
dent solution of steady flows; the solution of the supersonic blunt body problem as 
discussed at the end of Sec. 1.5 is one such example.) We will be exploring such 
matters in depth in Part III of this book dealing with applications of CFO; we 
mention them here only in passing. For either an inherent transient solution, or a 
time-dependent solution leading to a steady state, the solution ofEq. (2.93) takes the 
form of a time-marching solution, i.e., where the dependent flow-field variables are 
solved progressively in steps of time. For such a time-marching solution, we isolate 
aU!at by rearranging Eq. (2.93) as 

au aF ac aH 
-=J------ (2.99) 
at ax ay az 

In Eq. (2.99), U is called the solution vector because the elements in U (p, pu, p 
v, etc.) are the dependent variables which are usually obtained numerically in steps 
of time; the spatial derivatives on the right side ofEq. (2.99) are considered in some 
fashion as known, say from the previous time step. Please note that, in this 
formalism, it is the elements of U which are obtained computationally; i.e., numbers 
are directly obtained for the density p and the products pu, pv, pw, and p( e + V 2 /2 ). 
These are called the.flux variables. This is in contrast to u, v, w, and e by themselves, 
which are examples of primitive variables. Hence, in a com-putational solution of 
an unsteady flow problem using Eq. (2.99), the de-
pendent variables are the elements of the U vector as displayed in Eq. (2.94 ), that is, 
p, pu, pv, pw, and p(e + V2/2). Of course, once numbers are known for these 
dependent variables (which includes p by itself), obtaining the primitive variables 
is simple: 

p=p 

pu 
U=-

p 

pv 
V=-

p 

pw 
W=-

p 

p(e + V2 /2) u2 + v2 + w2 
e= ------

p 2 

(2.100) 

(2.101) 

(2.102) 

(2.103) 

(2.104) 

For example, the first element of the U vector is p itself; a number for p is obtained 
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?Y sol~ing Eq. (2.9?). The second element of U is pu; a number for the product pu 
1s ~btame~ by solvmg Eq. (2.99). In tum, a number for the primitive variable u is 
~astly obtamed from Eq. (2.101) by taking the number obtained for pu and dividing 
It _by_ !he n~ber obtained for p. The same approach can be used to obtain the 
pnm1tlve vanables v, w, and e from the numbers for the flux variables, as shown by 
Eqs. (2.102) to (2.104). 

For an inviscid flow, Eqs. (2.93) and (2.99) remain the same, except that the 
ele~en!s ~fthe co~umn vectors are simplified. Examining the conservation form of 
the mv1sc1d equations summarized in Sec. 2.8.2, we find that 

p 

pu 

U= 
pv 

(2.105) 
pw 

p(e + ~2) 
pu 

pu2 +p 

F= 
puv 

(2.106) 
puw 

pu(e + ~
2
) + pu 

pv 

puv 

G= 
pv2 +p 

(2.107) 
pwv 

pv(e + ~
2
) + pv 

pw 

puw 

H= 
pvw 

pw2+p 
(2.108) 

pw(e+ ~
2
) +pw 
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0 

pfx 

J= Ph 
pfz 

p(ufx + vfy + wfz) + pq 

(2.109) 

For the numerical solution of an unsteady inviscid flow, once again the solution 
vector is U, and the dependent variables for which numbers are directly obtained are 
p, pu, pv, pw, and p(e + V2!2). 

In CFD, marching solutions are not limited to marching just in time. Under 
certain circumstances, steady-state flows can also be solved by marching in a given 
spatial direction. The circumstances that allow the use of a spatially marching 
solution depend on the mathematical properties of the governing equation, and will 
be developed in later chapters, beginning with Chap. 3. For our purposes at present, 
simply imagine that we are dealing with a steady flow, for which 8U/8t = 0 in Eq. 
(2.93). If a marching solution in the x direction is allowed, then Eq. (2.93) is 
rearranged as 

fJF fJG fJH 
-=J---
fJx 8y oz (2.110) 

Here, F becomes the "solution" vector; we can imagine that the terms on the right 
side of Eq. (2.110) are known, say by evaluation at the previous step, i.e., at the 
previous upstream x location. This leaves the elements of the F vector at the next 
step, i.e., at the next downstream x location, as the unknowns. For simplicity, let us 
assume that we are dealing with an inviscid flow. In such a case, the dependent 
variables are the elements of Fas displayed in Eq. (2.106), namely, pu, pu2 + p, 
puv, puw, and pu(e + V 2/2) + pu. The numerical solution of Eq. (2.110) yields 
numbers for these dependent variables, called the flux variables. From these 
dependent variables, it is possible to obtain the primitive variables, although the 
algebra is more complex than in our previously discussed case for unsteady flow. To 
see this more clearly, let us denote the flux variables which appear as elements of F 
as displayed in Eq. (2.106) by 

pu = CJ 

pu2 + p = C2 

puv = c3 

puw = C4 

( 
u2 + v2 +w2) 

pu e + 
2 

+ pu = cs 

(2.11 la) 

(2.lllb) 

(2.lllc) 

(2.llld) 

(2.llle) 

A numerical solution of Eq. (2.110) for an inviscid flow yields numbers for CJ, c2, 

c3, c4, and c5 at specific points throughout the flow. Consider just one of those 
points. The numerical solution yields numbers for the right-hand sides of Eqs. 
(2.11 la) to (2.1 lle) at that point. In tum, Eqs. (2.11 la) to (2.11 le) can be solved 



88 THE GOVERNING EQUATIONS OF FLUID DYNAMICS 

simultaneously for the primitive variables p, u, v, w, and p, and eat that point. Note 
that we have six unknowns. To Eqs. (2.11 la) to (2.11 le) must be added a thermo
dynamic state relation; for a system in thermodynamic equilibrium, this relation can 
be of the generic form 

e = e(p,p) (2.112a) 

Indeed, if we are dealing with a calorifically perfect gas, i.e., a gas with constant 
specific heats (see, for example, Ref. 21 ), this state relation is e = cvT, with cv = 
Rl(y - 1), where R is the specific gas constant. Also involving the perfect gas 
equation of state, p = pRT, we have 

RT R p 
e=cvT=--=---

y - I y - I pR 

I p 
e=---

(2.112b) 
or 

y- 1 p 

Equations (2.111 a) to (2.111 e) and Eq. (2.112b) constirute all six equations from 
which the six unknown primitive variables can be obtained. The algebra necessary 
to solve these six equations for explicit relations for p, u, v, w, p, and e individually 
in terms of the known c1, c2, c3 , c4 , and c5 is left to you as Prob. 2.1. Finally, we note 
that the algebra is even more complex when we consider a viscous flow, where the 
solution yields numbers for the elements of the F vector as displayed in Eq. (2.95). 
Here, we also have to contend with the viscous stresses, and the decoding for the 
primitive variables becomes yet more involved. 

We have emphasized the distinction between nonconservation and conserva
tion forms of the governing equations. Let us now expand the definition of the 
conservation form into two categories: strong and weak. Notice that the governing 
equations, when written in the form ofEq. (2.93), have no flow variables outside the 
single x, y, z, and t derivatives. Indeed, the terms in Eq. (2.93) have everything 
buried inside these derivatives. The flow equations in the form ofEq. (2.93) are said 
to be in strong conservation form. In contrast, examine the form of Eqs. (2.56a) to 
(2.56c) and (2.81). These equations have a number of x, y, and z derivatives 
explicitly appearing on the right-hand side. These are the weak conservation form of 
the equations. 

At the beginning of this section, we stated that the matter of conservation 
versus nonconservation forms of the governing equations within the framework of 
CFD would be discussed from two perspectives. The ensuing material discussed the 
first perspective-that the conservation form provides a numerical and computer 
convenience due to the generic form of Eq. (2.93). Now, let us consider the second 
perspective--one that is much more compelling than the first. Also, this second 
perspective is intertwined with two distinct and different philosophical approaches 
for the calculation of flows with shock waves, namely, the shock-fitting approach 
and the shock-capturing approach. Let us first define these different approaches to 
handling shock waves. In flow fields involving shock waves, there are sharp, 
discontinuous changes in the primitive flow-field variables p, p, u, T, etc., across the 
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shocks. Many computations of flows with shocks are designed !o have the shock 
waves appear naturally within the computational space as a dtrect. result ~f the 
overall flow-field solution, i.e., as a direct result of the general algonthm, without 
any special treatment to take care ~f !h~ shocks themselves. Such approaches are 
called shock-capturing methods. This 1s m contrast to the alternate a~proach, where 
shock waves are explicitly introduced into the flow-field solution, the exact 
Rankine-Hugoniot relations for changes across a shock are ~sed to relate. the 
flow immediately ahead of and behind the shock, and the governmg flow equations 
are used to calculate the remainder of the flow field between ~he shock ~d some 
other boundary, such as the surface of an aerodynamic body. !his appro_ach _is called 
the shock-fitting method. These two different approaches are illustrated m Fig~. 2.11 
and 2.12. In Fig. 2.11, the computational domain for calculating the supersomc flow 
over the body extends both upstream and downstream of the nose. The shock wave 
is allowed to form within the computational domain as a consequence of the gener~l 
flow-field algorithm, without any special shock relations being introduced. In this 
manner the shock wave is "captured" within the domain by means of the 
compu~tional solution of the governing partial differential equations. Therefore, 

"' § 
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Freestream boundary conditions 
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capturing 
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FIG. 2.11 
Grid for the shock-capturing approach. 

Shock 
fitting 

FIG. 2.12 
Grid for the shock-fitting approach. 
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Fig. 2.11 is an example of the shock-capturing method. In contrast, Fig. 2.12 
illustrates the same flow problem, except that now the computational domain is the 
flow between the shock and the body. The shock wave is introduced directly into the 
solution as an explicit discontinuity, and the standard oblique shock relations (the 
Rankine-Hugoniot relations, see Ref. 21) are used to fit the freestream supersonic 
flow ahead of the shock to the flow computed by the partial differential equations 
downstream of the shock. Therefore, Fig. 2.12 is an example of the shock-fitting 
method. There are advantages and disadvantages of both methods. For example, the 
shock-capturing method is ideal for complex flow problems involving shock waves 
for which we do not know either the location or number of shocks. Here, the shocks 
simply form within the computational domain as nature would have it. Moreover, 
this takes place without requiring any special treatment of the shock within the 
algorithm and hence simplifies the computer programming. However, a disadvan
tage of this approach is that the shocks are generally smeared over a finite number of 
grid points in the computational mesh, and hence the numerically obtained shock 
thickness bears no relation whatsoever to the actual physical shock thickness, and 
the precise location of the shock discontinuity is uncertain within a few mesh sizes. 
In contrast, the advantage of the shock-fitting method is that the shock is always 
treated as a discontinuity, and its location is well-defined numerically. However, for 
a given problem you have to know in advance approximately where to put the shock 
waves, and how many there are. For complex flows, this can be a distinct 
disadvantage. Therefore, there are pros and cons associated with both shock
capturing and shock-fitting methods, and both have been employed extensively in 
CFD. In fact, a combination of these two methods is possible, wherein a shock
capturing approach during the course of the solution is used to predict the formation 
and approximate location of shocks, and then these shocks are fit with explicit 
discontinuities midway through the solution. Another combination is to fit shocks 
explicitly in those parts of a flow field where you know in advance they occur and to 
employ a shock-capturing method for the remainder of the flow field in order to 
generate shocks that you cannot predict in advance. 

Again, what does all of this discussion have to do with the conservation form 
of the governing equations as given by Eq. (2.93)? Simply this, For the shock
capturing method, experience has shown that the conservation form of the 
governing equations should be used. When the conservation form is used, the 
computed flow-field results are generally smooth and stable. However, when the 
nonconservation form is used for a shock-capturing solution, the computed flow
field results usually exhibit unsatisfactory spatial oscillations (wiggles) upstream 
and downstream of the shock wave, the shocks may appear in the wrong location, 
and the solution may even become unstable. In contrast, for the shock-fitting 
method, satisfactory results are usually obtained for either form of the equations, 
conservation or nonconservation. 

Why is the use of the conservation form of the equations so important for the 
shock-capturing method? The answer can be seen by considering the flow across a 
normal shock wave, as illustrated in Fig. 2.13. Consider the density distribution 
across the shock, as sketched in Fig. 2.13a. Clearly, there is a discontinuous increase 
in p across the shock. If the nonconservation form of the governing equations were 

pl i-------

pu 

pl 1----------' 

p+ pu2 
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(a) 

(b) 

(c) 

(d) 
FIG. 2.13 
Variation of flow properties through a 
normal shock wave. 

used to calculate this flow, where the primary dependent variables are the primitive 
variables such as p and p, then the equations would see a large discontinuity in the 
dependent variable p. This in tum would compound the numerical errors associated 
with the calculation of p. On the other hand, recall the continuity equation for a 
normal shock wave (see Ref. 8 and 21): 

(2.113) 

From Eq. (2.113), the mass flux pu is constant across the shock wave, as illustrated 
in Fig. 2.13b. The conservation form of the governing equations uses the product pu 
as a dependent variable, and hence the conservation form of the equations see no 
discontinuity in this dependent variable in the normal direction across the shock 
wave. In turn, the numerical accuracy and stability of the solution should be greatly 
enhanced. To reinforce this discussion, consider the momentum equation across a 
normal shock wave (Refs. 8 and 21): 

(2.114) 

As shown in Fig. 2.13c, the pressure itself is discontinuous across the shock; 
however, from Eq. (2.114) the flux variable p + pu2 is constant across the shock. 
This is illustrated in Fig. 2.13d. Examining the inviscid flow equations in the 
conservation form given by Eq. (2.93) with the flux vectors displayed as Eqs. 
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(2.105) to (2.109), we clearly see from the F vector in Eq. (2.106) that the quantity 
p + pu2 is one of the dependent variables. Therefore, the conservation form of the 
equations would see no discontinuity in this dependent variable in a normal 
direction across the shock. Although this example of the flow across a normal 
shock wave is somewhat simplistic, it serves to explain why the use of the 
conservation form of the governing equations is so important for calculations 
using the shock-capturing method. Because the conservation form uses flux 
variables as the dependent variables and because the changes in these flux variables 
are either zero or small across a shock wave, the numerical quality of a shock
capturing method will be enhanced by the use of the conservation form in contrast 
to the nonconservation form, which uses the primitive variables as dependent 
variables. 

In summary, the previous discussion is one of the primary reasons why CFO 
makes a distinction between the two forms of the governing equations, conservation 
and nonconservation. And this is why we have gone to great lengths in this chapter 
to derive these different forms, to explain what basic physical models lead to the 
different forms, and why we should be aware of the differences between the two 
forms. Again, we emphasize that the distinction CFO places between conservation 
and nonconservation forms of the equation is an outgrowth of the realities of 
numerical solutions-it is germane to CFO only. In the world of purely theoretical 
fluid dynamics, we could not care less. 

Finally, recall the discussion in Sec. 2.5.6 regarding a fundamental difference 
between the integral form and the differential form of the equations. The integral 
form does not require mathematical continuity, whereas the differential form 
assumes mathematical continuity. This situation imposes extreme conditions on 
a solution with shock waves when the differential equations are used, no matter what 
form they take. In contrast, a formulation that deals directly with the integral form, 
•1ch as the finite-volume method, is fundamentally more appropriate for such flows. 

Fl ,r reasons such as these, the integral form of the governing equations can be 
considered as more fundamental than the differential form. 

2.11 SUMMARY 

This is a book on CFO; however, to this stage in our discussion we have yet to 
address any computational techniques. The reason is straightforward; before we can 
develop any computational solutions to any problem, we have to have the correct 
governing equations, with an in-depth physical understanding of what these 
equations mean. Such has been the purpose of this chapter. At this stage, it 
is well to return to the road map given in Fig. 2.1. Study this road map carefully, 
fixing in your mind the various aspects of our discussions that pertain to each box in 
Fig. 2.1. Focus especially on the governing equations in boxes I and J, which are 
summarized in Sec. 2.8 and 2.10, respectively. These equations are the "bread and 
butter" of CFO-learn them well. 

SUMMARY 93 

Part I of this book has to do with the basic thoughts and equations which are 
the foundation of CFO (indeed, the foundation of all theoretical fluid dynamics). We 
are not quite finished with these basic thoughts. The partial differential equations for 
continuity, momentum, and energy in a fluid flow (like any system of partial 
differential equations) have certain mathematical behavior. This behavior may be 
different from one case to another, depending, for example, on the local Mach 
number of the flow-the same equations may have totally different mathematical 
behavior depending on whether the flow is locally subsonic or supersonic. (The 
supersonic blunt body problem described in Sec. 1.5 was, for a long time, the victim 
of this totally different mathematical behavior in locally subsonic and supersonic 
regions.) The behavior may be different depending on whether we are dealing with 
the Euler equations (for an inviscid flow) or the Navier-Stokes equations (for a fully 
viscous flow). The behavior may also be different depending on whether the flow 
is unsteady or steady. Of course, as you may suspect, any differences in 
mathematical behavior of these equations reflect different physical behavior as 
well. What does all this mean? The answer is contained in the next chapter-simply 
read on. 

PROBLEMS 

2.1. In conjunction with the spatially marching solutions of Eq. (2.110) for an inviscid flow, 
the elements of the solution vector Fare given in Eqs. (2.11 la) to (2.11 le) as pu = ci, 
pu2 + p = c 2, puv = c 3, puw = c 4, and pu[e + (u2 + v2 + w2)/2] + pu = c 5. Derive 
expressions for the primitive variables p, u, v, w, and p in terms of CJ, c2, C3, c4, 

and c5. Assume a calorifically perfect gas (with constant y). 

Answer: 

where 

-B±JB2 -4AC 
p= 

2A 

A = ~ (~ + ~) - C5 
2 CJ CJ 

B = }'CJC2 

y- 1 

C=-(y+l)cf 

2(y - l) 
CJ 

u=-
p 
C3 

v=
CJ 
C4 

w=-
CJ 

p = C2 - pu2 
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2.2. Derive the momentum _and ene~ equations for a viscous flow in integral form. Show 
~hat al! three cons_en:ation equat1ons--continuity momentum, and energy--can be 
m a smgle genenc mtegral form. put 

3.1 INTRODUCTION 

CHAPTER 

3 
MATHEMATICAL 

BEHAVIOR 
OF PARTIAL 

DIFFERENTIAL 
EQUATIONS: 
THE IMPACT 

ON CFD 

No knowledge can be certain, if it is not based 
upon mathematics or upon some other knowledge 

which is itself based upon the mathematical 
sciences. 

Leonardo da Vinci (1425-1519) 

Mathematics is the queen of the sciences. 

Carl Friedrich Gauss, 1856 

A "rose is a rose is a rose ... " as Gertrude Stein wrote. In turn, a partial differential 
equation is a partial differential equation is a partial differential equation--or is it? 
In this chapter, we will emphasize the answer-not really. We will find that, beyond 
just finding a solution to a given partial differential equation, we must be aware that 
such solutions have mathematical behavior which can be quite different from one 
circumstance to another. The same governing flow equations, when solved in one 
region of a flow field, can exhibit completely different solutions in another region, 
even though the equations themselves remain identically the same equations. It is 
just their mathematical behavior that is different. This mysterious aspect of 
differential equations was alluded to strongly in Sec. 2.11. The purpose of the 
present chapter is to remove (we hope) some of the mystery. 

95 
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The governing equations of fluid dynamics derived in Chap. 2 are either 
integral forms [ such as Eq. (2.19) obtained directly from a finite control volume] or 
partial differential equations [such as Eq. (2.25) obtained directly from an 
infinitesimal fluid element]. Before taking up a study of numerical methods for 
the solution of these equations, it is useful to examine some mathematical properties 
of partial differential equations themselves. Any valid numerical solution of the 
equations should exhibit the property of obeying the general mathematical proper
ties of the governing equations. 

Examine the governing partial differential equations of fluid dynamics as 
derived in Chap. 2. Note that in all cases the highest-order derivatives occur 
linearly; i.e., there are no products or exponentials of the highest-order deriva
tives-they appear by themselves, multiplied by coefficients which are functions of 
the dependent variables themselves. Such a system of equations is called a quasi
linear system. For example, for inviscid flows, examining the equations in Sec. 2.8.2 
we find that the highest-order derivatives are first-order, and all of them appear 
linearly. For viscous flows, examining the equations in Sec. 2.8.1 we find the 
highest-order derivatives are second-order, and they always occur linearly. For this 
reason, in the next section, let us examine some mathematical properties of a system 
of quasi-linear partial differential equations. In the process, we will establish a 
classification of three types of partial differential equations-all three of which are 
encountered in fluid dynamics. 

Finally, the road map for this chapter is given in Fig. 3.1. Here, we map out a 
fairly straightforward course. We will discuss two separate techniques for deter
mining the classification of partial differential equations: the method using Cramer's 
rule, described in Sec. 3.2, and the eigenvalue method described in Sec. 3.3. Both 
these methods lead to the same results. We will see that many partial differential 
equations can be classified as either hyperbolic, parabolic, or elliptic; these 
definitions as well as many other details will be given in Sec. 3.2. Other equations 
are of a "mixed" type. We will then contrast the mathematical behavior of solutions 
of these different classes of equations, giving examples from actual fluid dynamic 
flows. 

Technique I: 
Cramer's rule 

Hyperbolic 
equations 

Classification of partial 
differential equations 

Technique 2: 
Eigenvalue method 

Parabolic 
equations 

Elliptic 
equations 

Mixed 
types FIG. 3.1 

Road map for Chap. 3. 
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3.2 CLASSIFICATION OF QUASI-LINEAR 
PARTIAL DIFFERENTIAL EQUATIONS 

For simplicity, let us consider a fairly simple system of quasi-linear equations. The_y 
will not be the flow equations, but they are similar in some respects. Therefore, this 

section serves as a simplified example. 
Consider the system of quasi-linear equations given below. 

au au av av 
a1 ax+ b1 ay + CJ ax+ d1 ay = Ji (3.la) 

au au av av 
a2 ax + b2 ay + C2 ax + d2 ay = fi (3.lb) 

where u and v are the dependent variables, functions of x and y, and the coefficients 
a

1
, a

2
, bi, b

2
, c2, c2, d1, d2,Ji, andh can be function_s of~,y, u, and v. Furthermore, u 

and v are continuous functions of x and y; we can imagme that u and v represent a 
continuous velocity field throughout the xy space. At any given point in_ th~ xy 
space, there is a unique value of u and a unique value of v; ~or~over, t~e denvatlves 
of u and v, au/ax, aulay, av/ax, av!ay, are finite values at this given pomt. We co~ld 
imagine going into this flow field if it were set up ~n the la?oratory and measunng 
both the velocities and their derivatives at any given pomt. 

However, we are now going to make a strange statement. ~onsider ~ny ~oint 
in the xy plane, such as point P in Fig. 3.2. Let us seek the Imes (or d1rect10ns) 
through this point (if any exist) along with the derivatives of u and v are 
indeterminant and across which may be discontinuous. This sounds almost contra
dictory to our earlier statement in the previous paragraph, but ~t is_ not. If you are 
confused, just hang on for the next few paragraphs. These special Imes that we are 
seeking are called characteristic lines. To find s~ch lines, ~e rec~ll that u and v are 
continuous functions of x and y and write the1r total d1fferent1als as 

d 

a 

I 
e 

I 
I 

I 

au au 
du= - dx +- dy (3.2a) 

ax ay 
av av 

dv=-dx+-dy (3.2b) 
ax ay 

Characteristic 

te f b 

I 2 
y 

I o.S ldy 
I, I 

C 

FIG. 3.2 
lllustration of a characteristic curve. 
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Equa~ions (~.la) and (3.lb) and (3.2a) and (3.2b) constitute a system of four li 
equations with four unknowns (au/ax, au!f)y, aviax and 8v!f)y) Th ~ear 
can be written in matrix form as ' ' · ese equations 

[
:~ t~ 
dx dy 

0 0 dx 

d,j [au;axj d2 au/f)y 
0 av/ax 

dy av/f)y 

c, 

[iJ 
Cz 
0 (3.3) 

Let [A] denote the coefficient matrix. 

£ ; ij 
0 dx dy 

(3.4) 

Let us solve E~. (3.3) for the un_known au/ax, using Cramer's rule. To do this we 
define the matn~ [BJ as the matnx [AJ with its first column replaced by the col:UOO 
vector on the nght-hand side of Eq. (3.3), i.e., 

[BJ= [~ t~ ~~ !~J 
du dy O O 
dv O dx dy 

(3.5) 

~enoting the d~terminants of [AJ and [BJ by I A jand I BI res ectiv J c , 
gives the solution for aulax as ' P e Y, ramer s rule 

au_ /B/ 
ax-m (3.6) 

To obtain an actual number for aulax from Eq. (3.6), we have to establish values of 
du, dv, dx, and dy that appear in the matrices [AJ and [BJ. But what does this mean? 
What are dx, dy, du, and dv? To answer this question examine Fig 3 2 I · 
curve b dr thr h · . ' · · . magme a 
. . a_ awn ou~ pomt P m an abritrary direction. Let us move an 
mfimtes1mally small distance away from point P. c II · h 

. . , 10 owmg t e curve ab say 
to pomt 2. This small distance is denoted by ds in Fi·g 3 2 d · th d. ' 
b · . · · an 1s e 1stance 

e~een_ pom~ P and 2. The change 1? x associated with moving from point p to 
pomt 2 1s dx - x2 - xP, and the associated change in y is dy = y _ Th 
the values of dx and dy that appear in matrices [A] and [BJ d. 1

2 dy!-'. ese are 
d . . as tsp aye m Eqs (3 4) 

an (3.5). In addition, the values of u and vat point 2 are different than at ~int ·P· 
they have changed by the amounts du = u2 - u and dv = _ Th p ' 

J f d d d h . P V2 vP. ese are the 
va ues o u an v t at appear m matrix [BJ as displayed in Eq (3 5) I rf 
these numbers for dx, dy, du, and dv in Eqs (3 4) and (3 5) .11 · bta.. · ns

1
e ~ng 

fi a /8 fr . . . . ' we Wl O m a SO ubon 
or u x _om Eq. (3.6) m the limiting case as dx and dy go to zero N d 

another arbitrary curve thorugh pin Fig 3 2 say c rv d nr Id · ow, raw 
. . · · , u e c . vve cou go through the 

same scenano, 1.e., move an infinitesimally small distance d fr · 
J d . s away om pomt p 

a ong curve c ,. and obtam the corresponding values of dx d'" d d d Th 
I ·11 f b d"fli ' "' u, an v. ese va ues w1 , o course, e. 1 erent than those used earl· b · . 1er ecause we are movmg m 
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a different direction away from point P, namely, this time along curve cd rather than 
curve ab. However, when these different values for dx, dy, du, and dv are inserted 
into Eqs. (3.4) and (3.5), in the limiting case as dx and dy go to zero, the same value 
for au/ax is obtained from Eq. (3.6) as obtained earlier. Indeed, this has to be the 
case, since the value of aulax at point Pis a fixed value, a point value if you wish, 
that has nothing inherently to do with "directions through point P." We have only 
used the idea of "directions through point P" to allow us to obtain a solution for au! 
8x from Cramer's rule using Eq. (3.6) The "direction" chosen is purely arbitrary, 
such as curves ab and cd in Fig. 3.2. 

However, there is one major exception to this formalism. What happens if we 
choose to move in a direction away from point P such that I A I in Eq. (3.6) is zero? 
In Fig. 3.2, let ef be such a direction. Then in Eq. (3.6) the denominator is zero, and 
the calculation of au/8x using this particular direction ef through point P is not 
possible. At best, we have to say that 8u/8x is indeterminant when we choose this 
direction. By definition, curve ef is called a characteristic curve ( or a characteristic 
line) through point P. In this sense, we have now explained the statement made 
earlier that might have seemed strange. Namely, if we consider any point P in the xy 
plane, let us seek the lines or directions through this point (if any exist) along which 
the derivatives of u and v are indeterminant and across which may even be 
discontinuous. We now know that if we pick just the right direction through point P 
such that dx and dy are just the right values to make I A I = 0 in Eq. (3.6), then we 
have found the lines we were seeking-we have found the characteristic lines. In 
this case, such characteristic lines indeed do exist, and we can find them by setting 

\Ai =0 (3.7) 

Note that the characteristice lines are independent of whether we are solving Eq. 
(3.3) for au/8x, or 8ulf)y, or 8v/8x, or 8v!f)y; in all four cases, I A I is the same 
demoninator for Cramer's rule, and Eq. (3.7) defines the same characteristic lines. 

When the characteristic lines do exist for a given system of equations, note 
that they are identifiable curves in the xy plane, such as curve ef sketched in Fig. 3.2. 
Therefore, we should be able to calculate the equations of these curves, and 
especially the slopes of the curves at point P. This calculation is readily made from 
Eq. (3.7). Recalling the elements of \A I from Eq. (3.4), we have 

Expanding the determinant, we have 

c, d, 

Cz d2 = O 
0 0 
dx dy 

(a1c2 - a2c1)(dy)2 - (a1d2 - a2d1 + b1c2 - b2ci) dx dy 

+ (b1d2 - b2di)(dx)
2 

= 0 (3.8) 

Divide Eq. (3.8) by (dx)2. 
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(3.9) 

Equa~ion (3.9) is a qu~dr~tic equation in dy!dx. For any point in the xy plane, the 
solution ofEq. (3.9) will give the slopes of the lines along which the derivatives of u 
an~ v are indetermin_ant. Why? Because Eq. (3.9) was obtained by setting I A I = o, 
which from the matnx Eq. (3.3) ensures that the solutions for the derivatives fJul8x 
8u/8y, 8v/8x, and 8v/8y, are, at best, indeterminant. As stated earlier, these lines i~ 
the xy space along which the derivatives of u and v are indeterminant are called the 
characteristic lines for the system of equations given by Eqs. (3.la) and (3.lb). 

In Eq. (3.9), let 

a= (a1c2 - a2ci) 

b = -(a1d2 - a2d1 + b1c2 - b2c1) 

C = (bid2 - b2d1) 

Then Eq. (3.9) can be written as 

(3.10) 

Equa~ion (3.10) can, in principle, be integrated to give y = y(x), which is the 
~quahon o_f a characteristic curve in the xy plane. However, for our purposes, we are 
mterested m only the slopes of the characteristics through point Pin Fig. 3.2. Hence, 
from the quadratic formula: 

dy -b ± vb2 - 4ac 

dx 2a (3.11) 

~quation (3 .11) gives the direction of the characteristic lines through a given point 
m the xy plane, such as point P in Fig. 3.2. These lines have a different nature 
depending on the value of the discriminant in Eq. (3.11). Denote the discriminant b; 
D. 

D = b2 -4ac (3.12) 

The m~thematic~l classification of the system of equations given by Eqs. (3.la) and 
(3. lb) 1s determmed by the value of D. Specifically: 

lfD>O 

If D = 0 
lfD<O 

Two real and distinct characteristics exist through each point in the xy 
plane. The system of equations given by Eqs. (3.la) and (3.lb) is 
called hyperbolic. 

Here the system of Eqs. (3.Ia) and (3.lb) is called parabolic. 

The charac!eristic lines are imaginary. The system of Eqs. (3. la) 
and (3. I b) 1s called elliptic. 

The classification of quasi-linear partial differential equations as either 
elliptic, parabolic, or hyperbolic is common in the analysis of such equations. 
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It is this classification which has been the major focus of this section. These three 
classes of equations have totally different behavior, as will be discussed shortly. The 
origin of the words "elliptic," "parabolic," or "hyperbolic" used to label these 
equations is simply a direct analogy with the case for conic sections. The general 
equation for a conic section from analytic geometry is 

where, if 

ax2 + bxy + cy2 + dx + ey + f = 0 

b2 
- 4ac > 0 

b2 
- 4ac = 0 

b2 
- 4ac < 0 

the conic is a hyperbola 

the conic is a parabola 

the conic is an ellipse 

We could end this section here, as far as our purposes in this book are 
concerned. However, the temptation to extend the thoughts in this section one more 
step is too overwhelming, since it pertains to one of the classic methods in the 
solution of compressible flow problems-the method of characteristics. Return to 
Eq. (3.6). Note that, if only I A I were zero, then 8u/8x would be infinite. However, 
the definition of a characteristic line states that 8u/8x be indeterminant along the 
characteristic, not infinite. Thus, for 8u/8x to be indeterminant, I BI in Eq. (3.6) 
must also be zero. Then, 8u/8x is of the form 

8u 

8x 
IBI 
IAI 

-

0 

0 
(3.13) 

namely, an indeterminant form which can have a finite value. Hence, from Eq. (3.5) 

Ji b, c, d, 

I I .fz b2 Cz d2 __ Q 
B = du dy O 0 (3.14) 

dv O dx dy 

Expansion of the determinant in Eq. (3 .14) yields an ordinary differential equation 
in terms of du and dv, where dx and dy are restricted to hold along a characteristic 
line (see Prob. 3.1 ). [Since I BI = 0 is a direct consequence of I A I = 0 from Eq. 
(3 .13 ), then whatever relation is derived from setting I BI = 0 must be restricted to 
hold along a characteristic line.] The equation for the dependent variables u and v 
which comes from Eq. (3.14) is called the compatibility equation. It is an equation 
involving the unknown dependent variables which holds only along the character
istic line; the advantage of this compatibility equation is that it is in one less 
dimension than the original partial differential equations. Since the model equations 
treated in this section [Eqs. (3. la) and (3.lb)] are partial differential equations in 
two dimensions, then the compatibility equation is in one dimension-hence it is an 
ordinary differential equation-and the "one dimension" is along the characteristic 
direction. Since ordinary differential equations are in general simpler to solve than 
partial differential equations, then the compatibility equations provide some 
advantage. This leads to a solution technique for the original system of equations 
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[Eqs. (3.la) and (3.lb)] wherein the characteristic lines are constructed in the xy 
space, and the simpler compatibility equations are solved along these character
istics. This technique is called the method of characteristics. In general, the 
successful implementation of the method of characteristics requires at least two 
characteristic directions through any point in the zy plane, with different compat
ibility equations applicable to each different characteristic line; i.e., the method of 
characteristics is useful for the solution of hyperbolic partial differential equations 
only. This method is highly developed for the solution of inviscid supersonic flows, 
for which the system of governing flow equations is hyperbolic. The practical 
implementation of the method of characteristics requires the use of a high-speed 
digital computer and therefore may legitimately be considered a part of CFO. 
However, the method of characteristics is a well-known classical technique for the 
solution of inviscid supersonic flows, and therefore we will not consider it in any 
detail in this book. For more information, see Ref. 21. 

3.3 A GENERAL METHOD OF 
DETERMINING THE CLASSIFICATION 
OF PARTIAL DIFFERENTIAL EQUATIONS: 
THE EIGENVALUE METHOD 

In Sec. 3.2 we developed a method based on Cramer's rule for analyzing a system of 
quasi-linear equations in order to determine the classification of those equations. 
However, there is a more general and slightly more sophisticated method for 
assessing the classification of quasi-linear partial differential equations based on the 
eigenvalues of the system. This approach is developed in the present section. In the 
process, we will be using some basic matrix notation and manipulation, which is 
assumed to be familiar to most junior or senior engineering and science students. 
For a basic review of matrix algebra, see, for example, Ref. 22. 

The eigenvalue method is based on a display of the system of partial 
differential equations written in column vector form. For example, let us assume 
that Ji andh in Eqs. (3. la) and (3. lb) are zero for simplicity, such that the equations 
become 

au au av av 
a1 - + b1 - + CJ - + d1 - = Q 

ax &y ax &y 
(3.15a) 

au au av av 
a2-+b2-+c2-+d2- = 0 

ax ay ax &y 
(3.15b) 

Defining W as the column vector 

W={:} 
the system of equations given by Eqs. (3.15a) and (3.15b) can be written as 

[
al CJ] aw+ [bl d1] aw= Q (3.16) 
a2 c2 ax b2 d2 ay 
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or 
aw aw 

[K]-+[M]-=0 
ax ay 

( 3 .17) 

where [K] and [M] are the appropriate 2 x 2 matrices in Eq. (3.16). Multiplying 

Eq. (3.17) by the inverse of [K], we have 

or 

oW +[Kr'[M]o; =0 (3.18) 
ox uy 

aw l 
1
aw _ 0 -+N -ox &y 

(3.19) 

b d fi ·t· [N] = [K]-'[M] With the system of equations written in the 
where y e m ion . . . f h t 
fi f E (3 19) the eigenvalues of [ N] determine the class1fi cation o t e sys em. 
I~:e :ige~val~es ~re all real, the equations are hyp~rbolic. If t~e eigenval~es ar~ a~ 
complex, the equations are elliptic. This statement 1s made without proof, see e . 

23 for more details. 

Example 3.1. We will illustrate this procedure usin? an ~ctual ~ys~en:1 of equations 
from fluid dynamics. Consider the irrotational, two-d1mens1onal, mv1sc1~ steady flow 

f 'bl If the flow field is only slightly perturbed from its freestream 
0 a compress1 e gas. d ·f h 
conditions, such as the flow over a thin body as small angles of attack, an 1_ t e 
freestream Mach number is either subsonic or supersomc (but not transomc or 
hypersonic), the governing continuity, momentum, and energy equations can be 

reduced to the system 
ou' ov' 

( I -M2 )-+- = 0 
CX) OX oy 

ou' _ ov' = O 
oy ox 

(3 .20) 

(3 .21) 

where u' and v' are small perturbation velocities, measured relative to the freestream 

velocity. For example 

u=V00 =+u' 
I v=v 

Al · E (3 20) M is the freestream Mach number; it can be subsonic or 
so m . q.E . t· , (3 21) is a statement that the flow is irrotational. For the 

supersomc. qua ion · h h · 1 t f 
derivation of Eqs. (3 .20) and (3 .21 ), and a major discussion oft e p ys1ca aspec s o 
these equations, see chap. 9 of Ref. 21 or chap. 11 of Ref. 8. However, for o~r 

oses here we simply use these equations as an example of a syste~ of quas1-
Pl_urp t· ' I deed, Eqs (3 20) and (3 21) are precisely linear equations; these 
mear equa 10ns. n · · · d · 1 ses in 

equations have been the foundation of numerous Iinearlized aero ynam1c ana Y 

the past T h 
Q~estion: How do we classify Eqs. (3.20) and (3.21 )? First, let us utJ 1ze t e 

method developed in Sec. 3.2. Comparing Eqs. (3.20) and (3.21) with the standard 
" · b E (3 la) and (3 lb) we have [in terms of the nomenclature ofEqs. ,orm given y qs. . . , 
(3.la) and (3.lb)] 
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a1 = 1-M;, 
bi =0 
C[ = 0 

d1 = I 

a2 = 0 

b2 = I 

C2 = -I 
d2 = 0 

Restating these values in terms of a, b, and c as given in Eq. (3.10), we have 

a= -(I -M!) 
b=O 
C = -I 

Hence, Eq. (3.1 I) yields 

dy = ±y"-4(1 - M~) = ±J4(M~ - I)_± I 
dx -2(1-M~) 2(M~ - I) - JM~ _ I (3.22) 

Examining Eq. (3:2~) f~r th~ case of supersonic flow, M
00 

> I, we see that there are 
two real charactenstic d1rect10ns through each point, one with slope= (M2 _ I)-112 
and the other with slope = -(M2 - J)-112 Hence for M > I th 00 f 

. . oo · , oc , e system o 
equations given by Eqs. (3:2~) and ~3.21) is hyperbolic. On the other hand, if 
Moo < I, then the charactenst1_cs are imaginary, and the equations are elliptic. 

Now, let us employ the eigenvalue method. Written in the form of Eq (3 16) 
Eqs. (3.20) and (3.21) are · · ' 

[ 1-0M;, OJ aw+ [o I] aw =0 
-1 ax I O 8y 

or 
[K]~~ +[M]: =0 

where 

To find [K]-
1
, we first replace the elements of [K] with their cofactors, yielding 

[
-1 0 ] 

0 I -M;, 
The transpose of the above is also 

r-t I -
0
M;,] 

The determinant of [K] is -(I M2 ) H - 00 • ence, 

[Kr'=_ I [-1 0 ] 
l-M~ 0 1-M;, 

or [Kr'= [I -1

M~ OJ 
0 -I 
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In tum, 

[NJ~ [KJ'[~ ~ [I-~ -~ ][~ ~ l {~ I -:MJc l 
This is the matrix [N] in the form given by Eq. (3.19). Hence, we wish to .:xamine the 
eigenvalues of [N], denoted by A. These are found by setting 

l[NJ-WJI =0 (3.23) 

where [/] is the identity matrix. Hence 

' 1 
-A I - M 2 = 0 

-1 -l 
00 

Expanding the determinant, we have 

2 I 
A +l-M2 =0 

ex: 

or A= ±JM~l- 1 (3.24) 

Equation (3.24) yields precisely the same result as obtained in Eq. (3.22). Indeed, the 
eigenvalues of [ N] are precisely the slopes of the characteristic lines. Moreover, from 
our rule stated above, if M00 > I, then from Eq. (3.24) the eigenvalues are all real, and 
the system of equations given by Eqs. (3.20) and (3.21) is hyperbolic. If M00 < 1, 
then from Eq. (3.24) the eigenvalues are all imaginary, and the system of equations is 
elliptic. This illustrates how the eigenvalue method can be used to classify partial 
differential equations. 

As a final note in this section, things are not always so clear-cut. For some 
systems of equations, the eigenvalues may be a mix of both real and complex 
values. In this case the system is neither hyperbolic nor elliptic. The mathematical 
behavior of such equations then exhibits a mixed hyperbolic-elliptic nature. 
Consequently, please keep in mind that systems of partial differential equations 
cannot always be conveniently placed in just one of the classifications of hyperbolic, 
parabolic, or elliptic; sometimes the equations have mixed behavior, as mentioned 
above. 

3.4 GENERAL BEHAVIOR OF THE 
DIFFERENT CLASSES OF PARTIAL 
DIFFERENTIAL EQUATIONS: IMPACT ON 
PHYSICAL AND COMPUTATIONAL FLUID 
DYNAMICS 

In the previous sections, we discussed the classification of partial differential 
equations, leading to the definition of hyperbolic, parabolic, and elliptic equations. 
Why do we care about making such a distinction? What difference does it make in 
terms of the analysis of a fluid dynamic problem whether the governing equations 
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are hyperbolic, parabolic, elliptic, or of some mixed nature? The answers to these 
questions are the subject of the present section. The answers rest on the fact that 
each type of equation has a different mathematical behavior, and this reflects 
different physical behavior of the flow fields as well. In turn, this implies that 
different computational methods should be used for solving equations associated 
with the different classifications. This is a basic fact of life in CFD, and it is the 
reason why we are discussing such matters before we address any particular 
numerical techniques. 

The mathematical behavior of partial differential equations is a lengthy subject 
whose details can be found in many advanced mathematics textbooks, such as Refs. 
19 and 24. In the present section, we will simply discuss, without proof, some of the 
essential features of the behavior of hyperbolic, parabolic, and elliptic partial 
differential equations and will relate this behavior to the physics of the flow and to 
its impact on CFD. 

3.4.1 Hyperbolic Equations 

To begin with, let us consider a hyperbolic equation in two independent variables x 
and y. The xy plane is sketched in Fig. 3.3. Consider a given point Pin this plane. 
Since we are dealing with a hyperbolic equation, there are two real characteristic 
curves through point P; these are labeled as left- and right-running characteristics, 
respectively. (The nomenclature "left- and right-running" stems from the following 
idea. Imagine that you place Fig. 3.3 on the floor and that you stand on point P, 
facing in the general x direction. You have to turn your head to the left to see one 
characteristic curve running out in front of you-this is the left-running char
acteristic. Similarly, you have to turn your head to the right to see the other 

Initial data 
along they 
axis upon 
whichP 
depends 

FIG. 3.3 

y 

a 

b 

C 

Domain and boundaries for the solution of hyperbolic equations. Two-dimensional steady flow. 
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characteristic running out in front of you-this is the right-running characteristic.) A 
significance of these characteristics is that information at point P influences only the 
region between the two characteristics. For example, if in Fig. 3.3 we jabbed point P 
with a pin, i.e., if we set up a small disturbance at point P, then this disturbance is 
felt at every point within region I in Fig. 3.3, but only in that region. In this sense, 
region I is defined as the region of influence of point P. Now imagine the two 
characteristics through P extended backward to they axis. That portion of they axis 
which is intercepted by the two characteristics is labeled ab. This has a corollary 
effect on boundary conditions for hyperbolic equations. For example, assume that 
boundary conditions are specified on the y axis (x = 0). That is, the dependent 
variables u and v are known along they axis. Then the solution can be obtained by 
"marching forward" in the distance x, starting from the given boundary. However, 
the solution for u and v at point P will depend only on that part of the boundary 
between a and b, as shown in Fig. 3.3. Information at point c, which is outside the 
interval ab, is propagated along characteristics through c and influences only region 
II in Figure 3.3. Point Pis outside region II, and hence does not feel the information 
from point c. Point P depends on only that part of the boundary which is intercepted 
by and included between the two retreating characteristic lines through point P, that 
is, interval ab. For this reason, the region to the left of point P, region III in Fig. 3.3, 
is called the domain of dependence of point P; that is, properties at P depend only 
on what is happening in region III. 

In terms of CFD, the computation of flow fields that are governed by 
hyperbolic equations is set up as "marching" solutions. The algorithm is designed 
to start with the given initial conditions, say they axis in Fig. 3.3, and sequentially 
calculate the flow field, step by step, marching in the x direction. 

In fluid dynamics, the following types of flows are governed by hyperbolic 
partial differential equations and hence exhibit the behavior described above. 

STEADY INVISCID SUPERSONIC FLOW. If the flow is two-dimensional, the 
behavior is like that already discussed in Fig. 3.3. Imagine a supersonic flow over a 
two-dimensional circular-arc airfoil as sketched in Fig. 3.4; the airfoil can be at an 
angle of attack oc, but oc must not be so large as to cause the leading-edge shock wave 
to become detached, or else there will be pockets of locally subsonic flow. (In a 
steady flow field, any pockets of subsonic flow will be governed by elliptic 
equations, and the downstream marching procedure originally established for the 
solution of the hyperbolic equations will be mathematically ill-posed-the com
puter program usually "blows-up" under such conditions.) To be more specific, 
reflect again on the Euler equations given in Sec. 2.8.2, i.e., Eqs. (2.82) to (2.86). 
When written for a steady flow in either conservation or nonconservation form, 
these equations are hyperbolic when the local Mach number is supersonic (see 
Example 3.1). [A case in point is Eq. (3.20), which is derived from the Euler 
equations for the special case of irrotational flow with small perturbations. We 
proved in Sec. 3.3 that this equation is hyperbolic when M 00 > I. A more general 
analysis of the eigenvalues associated with the general Euler equations for a steady 
flow demonstrates that this system of equations is hyperbolic at every point where 
the local Mach number> I.] Hence, in Figs. 3.4, where the flow is assumed to be 
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FIG. 3.4 

Illustration of initial data lines for the method of characteristics. 

locally supersonic everywhere, the entire flow field is governed by hyperbolic 
equations. The general flow direction is in the x direction. Therefore, the flow field 
can be computed starting with given initial data at some location in the flow and 
then solving the governing equations numerically, marching step by step, in the 
general x direction downstream of the initial data. The location of the initial data line 
is influenced somewhat by whether shock capturing or shock fitting is being used in 
the calculation. (Recall the discussion of shock capturing and shock fitting in Sec. 
2.10.) If shock capturing is being used, line ab upstream of the body can be used as 
the initial data line, where the initial data are simply freestream conditions along ab. 
If shock fitting is being used, lines cd and ef just downstream of the nose, and 
reaching across the flow field from the body surface to the shock surface, can be 
used as the initial data lines. In this case, the initial data usually specified along cd 
or ef are that associated with a classical solution of the oblique shock flow over a 
wedge, with a wedge angle equal to the body angle at the nose relative to the 
freestream direction. See Ref. 21 for such classical wedge solutions. The results of 
these classical solutions yield a set of constant properties along cd and another 
different set of constant properties along ef In tum, the remainder of the flow field 
in Fig. 3.4 is calculated by marching downstream from these initial data lines. These 
matters will be made clearer when we discuss actual applications in Part III of this 
book. 

To extend the above discussion to three-dimensional, steady, supersonic, 
inviscid flows, consider the picture shown in Fig. 3.5. In this three-dimensional xyz 
space, the characteristics are surfaces, as sketched in Fig. 3.5. Consider point Pat a 
given (xyz) location. Information at P influences the shaded volume contained 
within the advancing characteristic surface. In addition, if the yz plane is an initial 
data surface, then only that portion of the initial data shown as the crosshatched area 
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FIG. 3.5 
Domain and boundaries for the solution of hyperbolic equations. ThTee-dimensional steady flow. 

in the xy plane, intercepted by the retreating characteristic surface, has any affect on 
P. In Fig. 3.5, the dependent variables are solved by starting with data given in the yz 
plane and "marching" in the x direction. For an inviscid supersonic flow problem, 
the general flow direction would also be in the x direction. 

UNSTEADY, INVISCID FLOW. Examine again the Euler equations summarized in 
Sec. 2.8.2. If the time derivatives in these equations are finite, as would be the case 
of an unsteady flow, then the governing equations are hyperbolic, no matter whether 
the flow is locally subsonic or supersonic. More precisely, we say that such flows are 
hyperbolic with respect to time. (The classification of the unsteady Euler equations 
as hyperbolic with respect to time is derived in Sec. 11.2.1.) This implies that in 
such unsteady flows, no matter whether we have one, two, or three spatial 
dimensions, the marching direction is always the time direction. Let us examine 
this more closely. For one-dimensional unsteady flow, consider point P in the xt 
plane shown in Fig. 3.6. Once again, the region influenced by Pis the shaded area 
between the two advancing characteristics through P. The x axis (t = 0) is the initial 
data line. The interval ab is the only portion of the initial data along the x axis upon 
which the solution at P depends. Extending these thoughts for two-dimensional 
unsteady flow, consider point Pin the xyt space as shown in Fig. 3.7. The region 
influenced by P and the portion of the boundary in the xy plane upon which the 
solution at P depends are shown in this figure. Starting with known initial data in 
the xy plane, the solution "marches" forward in time. Indeed, the extension to thr~e
dimensional unsteady flow is made in the same fashion, although we cannot easily 
draw a sketch of this case since we are dealing with four independent variables. In 
this case, the full three-dimensional Euler equations summarized in Sec. 2.8.2 are 
utilized, and the solution is still marched forward in time. 
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Domain and boundaries for the solution of hyperbolic equations. One-dimensional unsteady flow. 
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FIG. 3.7 
Domain and boundaries for the 
solution of hyperbolic equations. 
Two-dimensional unsteady flow. 
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When do we encounter unsteady, inviscid flow? The classic case of one
dimensional wave motion in a duct is one example; here, we are truly interested in 
the transient variations (see, for example, chap. 7 of Ref. 21). The two-dimentional 
unsteady flow over a flapping or plunging airfoil is another example. However, by 
far the most common use of unsteady time-marching solutions in CFO is to 
ultimately obtain a steady flow result in the limit of large times, as long as the 
boundary conditions are time-invariant. Here, the time marching is simply a means 
to the end-the end being a steady-state flow field. At first glance, this would seem 
inefficient. Why calculate a steady flow by going to the trouble of introducing time 
as another independent variable? The answer is that sometimes this is the only way 
to have a well-posed problem and hence the only way to obtain the steady-state 
solution computationally. The solution of the supersonic blunt body problem 
described in Sec. 1.5 is one such case. We will see many other examples of 
this approach in Part III. 

3.4.2 Parabolic Equations 

Let us consider a parabolic equation in two independent variables x and y. The .xy 
plane is sketched in Fig. 3.8. Consider a given point Pin this plane. Since we are 
dealing with a parabolic equation, there is only one characteristic direction through 
point P. Furthermore, in Fig. 3.8, assume that initial conditions are given along the 
line ac and that boundary conditions are known along curves ab and ed. The 
characteristic direction is given by a vertical line through P. Then, information at P 
influences the entire region on one side of the vertical characteristic and contained 
within the two boundaries; i.e., ifwe jab P with a needle, the effect of this jab is felt 
throughout the shaded region shown in Fig. 3.8. Parabolic equations, like hyperbolic 
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FIG. 3.8 
Domain and boundaries for the solution of parabolic equations in two dimensions. 
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e~uations _a~ ~iscussed _in Sec. 3.4.1, len~ themselves to marching solutions. Starting 
with_ the 1mtial data hne ac, the solut10n between the boundaries cd and ah · 
o?tame? by _marc~ing in the general x direction. The extension to the case of thr:; 
d1mens1o~s 1s stra1ghtforn:'ard, as sketched in Fig. 3.9. Here, the parabolic equation 
has three mdepen~e?! vanabl~~' x, y, and z. Consider point P located in this space. 
Assume that the 1mtial conditions are given over the area abed in the yz plane. 
Furthermore, assu~e bounda~ conditions given along the four surfaces abgh, cdef, 
ahe1, '.1?d bgfc, which extend m the general x direction away from the perimeter of 
t~e m1tial_ data surface. Then, information at P influences the entire three-dimen
s10nal region t_o th~ right of P, contained within the boundary surfaces. This region is 
crosshatc~ed m Fig. 3.9. Starting with the initial data plane abed, the solution is 
marc~ed m the general x direction. Again, please make special note that parabolic 
equat10n~ lend !hemselves to marching-type solutions, analogous to that of 
hyperbolic equat10ns. 

What typ_es of~uid dy~amic flow fields are governed by parabolic equations? 
Before. answenn_g this question, recall that the whole analysis is based upon the 
gov~mmg equations derived in Chap. 2-the most general form of which are the 
Nav1er-Sto~es e~uati?ns. Throughout the evolution of classical fluid dynamic 
theo~, vanous s1mphfied (and usually approximate) forms of the Navier-Stokes 
equat10ns have be~n used, dependi_ng on the particular flow field to be analyzed. 
Altho~gh the Nav,er-Stokes equations themselves exhibit a mixed mathematical 
behavior, many of the approximate forms derived from the Navier-Stokes equations 
are parabolic equations. Therefore, when we ask what types of fluid dynamic flow 
fields ~re governed by parabolic equations, we are really asking what types of 
approximate flow-field models are governed by parabolic equations. (Indeed, we 
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FIG. 3.9 
Domain and boundaries for the solution of parabolic equations in three dimensions. 
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were implicitly following a similar philosophy in Sec. 3.4.1 _ dealing with _hyperbolic 
equations, because the examples given in the two subsections_ all pertamed to_ the 
Euler equations, which are a simplified version of the Nav1er-St~kes equations 
when applied to an inviscid flow.) Ifwe delve into the various approximate forms of 
the Navier-Stokes equations, then the following types of flow-field models are 

governed by parabolic equations. 

STEADY BOUNDARY-LAYER FLOWS. The concept of dividing a general flow 
field into two regions, (1) a thin layer adjacent to any solid surface wherein all the 
viscous effects are contained and (2) an inviscid flow outside this thin viscous layer, 
was one of the most profound developments in fluid dynamics. It was presented by 
Ludwig Prandtl at the Third Congress of Mathematicians at Heidelberg, German~, 
in I 904. The thin viscous layer adjacent to a surface is called a boundary layer. It 1s 
assumed that you have been introduced to the idea of boundary layers; if ~ot, you 
are referred to the introductory discussion in chap. 17 of Ref. 8. A schematic of the 
boundary layer on a generic aerodynamic body is given in Fig. 3.10. Under the 
combined assumptions that his boundary layer is thin and that the Reynolds number, 
Re, based on body length L is large (Re = PcxY ooLI µoo), the Navier-Stokes 
equations reduce to an approximate set of equations called t~e boundary-lay~r 
equations. Suffice it to say here that the boundary-layer equations are parabolic 
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equations. T~ese equatio~s desc~be in an approximate (but usually sufficiently 
accur~te) ~ash1on the flow m the thm shaded region sketched along the surface of the 
body 1~ Fig. 3.10a. Here, all the viscous effects are assumed to be contained within 
~e. th~n b?undary layer, and the rest of the flow outside the boundary layer is 
mv1sc1_d. Smee ~he bound'.11Y-layer _e~uations are parabolic, they can be solved by a 
marchmg t~chmque; startmg from 1~1tial data at the nose of the body, the boundary
l~yer equat10ns are solved by marchmg downstream in the s direction, where s is the 
distance alon? the surface of _the _body me~sm:ed from the nose, as shown in Fig. 
3:IOa. A deta~l of the nose region 1s shown m Fig. 3.10b. Here, initial conditions are 
give~ along Imes _ab and ef across the boundary layer. These initial conditions are 
obtamed from a? 1~depend~nt, specialized solution of the boundary-layer equations, 
such ~s a s~lf-s1milar solution for a flat wedge surface (if the body in Fig. 3 .Io is 
two-d1mens~o~~l) or fo_r _a sharp cone (if the body is axisymmetric ). Then, starting 
from these m1t1al cond1t1ons, the boundary-layer equations are solved by marching 
downstream from lines ab 3:11d ef Curve_s ad and eh represent one boundary, namely, 
that alo~g the surface at which the no-shp boundary conditions described in Sec. 2.9 
are apphed. Curves be and Jg_ represent the other boundary, namely, the outer edge 
of the boundary layer at which the (usually) known inviscid flow conditions are 
appli~?· It is a tenet of first-order boundary-layer theory that the inviscid flow 
cond1t1o~s ~lo~g be ~dfg are the same as those obtained along the body surface in 
a purely mv1sc1d solution of the flow. In summary, examining Fig. 3.10, because the 
boun~-l~yer equations are parabolic, they are solved by marching downstream in 
the s d1rect1on from an initial data line, while at the same time satisfying the wall 
and outer-edge boundary conditions at each s location. 

"PA~?LIZED" VISCOUS_FLOWS. What happens when the boundary layer is 
~ot thm, ~nde~d, when the ent1re flow field of interest is fully viscous? An example 
1s shown m Fig. 3 .11, where a supersonic flow over a pointed-nose body is shown. If 
the Reynolds number is low enough, the viscous effects will reach well into the flow 
field far away from the surface. Indeed, the flow field between the shock wave and 
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Schematic of a totally viscous shock layer. 
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the body surface might be totally viscous. For this case,_ a boun~ary-layer solution is 
inappropriate; the boundary-layer equations are not vahd fo_r this flow. On the other 
hand, if the flow field does not exhibit any region~ of ~ocahzed, ~eversed, separa!ed 
flow in the streamwise direction, still another s1mphfied vers10n ?f the Nav1er
Stokes equations may suffice. For example, if all the viscous teIT?s 1~ Eq~. (2.58a) 
to (2.58c) and Eq. (2.81) that involve derivatives in the streamw1se direct10n [such 
terms as (o!ox) (AV · V + 2µ ou!ox), (oloy) (µ ovlox), and (8/ox) (k oT!ox)] are 
assumed to be small and can be neglected, and if the flow is assumed to be steady, 
then the resulting equations are called the parabolized Navier-Stok~s (PNS) 
equations. This is because the resul~ing simpl~fied version of th~ Nav1er-St~kes 
equations exhibit parabolic mathematical behavior. The PNS ~qu~tlons are denved 
in Ref. 13 and are displayed and discussed in Ref. 2, to cite JUSt two of ma~y 
sources. The advantages of the PNS equations are (1) they are simpler, i.e., contam 
less terms, than the full Navier-Stokes equations and (2) they can be solv_ed by 
means of a downstream marching procedure. On the other hand, because the viscous 
terms involving derivatives in the flow direction have been neglected, and these 
derivatives represent the physical mechanism by whi~h information is fe~ upstream 
due to viscous action in the flow, then the PNS equations are not appropnate for the 
calculation of viscous flows that involve regions of flow separation in the 
streamwise direction. This is a severe limitation for some applications. In spite 
of this drawback, the downstream marching aspect of the PNS equations is such a 
compelling advantage that this methodology is in widespread use. The type _ofwell
behaved, fully viscous flow sketched in Fig. 3.11 is perfect for a PNS solut10n, and 
the accuracy of such solutions is usually quite acceptable. 

UNSTEADY THERMAL CONDUCTION. Consider a stationary fluid (liquid or gas) 
wherein heat is transferred by thermal conduction. Moreover, assume that the 
temperature gradients in the fluid are changing as a function of time; this can ~e 
imagined as due to a time-varying wall temperature, for example. Althoug? th~s 
example is not a flow per se, the governing conduction heat transfer _equation 1s 
easily obtained from Eq. (2.73) applied to the case where V = 0. In this case, Eq. 

(2.73) becomes 

ae _ . ~ (kar) +~ (kar) +~ (kar) 
p ot - pq + ax ax oy oy oz oz 

(3.25) 

Furthermore, if there is no volumetric heat addition (q = 0), and assuming the state 

relation e = cvT. Eq. (3.25) becomes 

(3.26) 

Equation (3.26) is the governing equation for the timewi~e and s~atial variation _of T 
throughout the fluid; it is parabolic with respect to time, which allows a time-
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FIG. 3.12 
Typical transient temperature 
distributions in a constant 
property fluid ( constant p, 
cv, and k), starting from an 
impulsive increase in T w, 
from T1 to T2 at time zero. 

marching solution to the h~at conduction problem. If we further assume that k is 
constant, then Eq. (3.26) 1s written as 

(3.27) 

where a,= t~e_rmal diffusivity = kl pev. On a physical basis, a is an index of a fluid 
el~~ent s abil_1ty t~ conduct ~ner~y due to the thermal conduction compared to its 
ab1hty to retam this energ~, 1.e., its capacity to absorb heat. Equation (3.27) is the 
well-known_ heat eo~duetwn equation; again, it is a parabolic equation. 

. A typical solution of the heat conduction equation is sketched qualitatively in 
Fig. 3.12. Here we have a thermally conducting, semi-infinite fluid contained 
?~t~een two parallel walls separated by a distance L. We assume that the fluid is 
1mt1ally at constant temperature throughout at a value T- T d · ·1·b · . . . . , - 1, an m eqm I num 
with both walls w~ere m1t1ally Tw_, =:= Tw, = T1• Now assume that at time t = 0 the 
temperature at the nght-hand wall is impulsively increased to r. = T h"l th f 

w, 2, w I e at o 

GENERAL BEHAVIOR OF THE DIFFERENT CLASSES OF PARTIAL DIFFERENTIAL EQUATIONS 117 

the left-hand wall is held fixed at Tw, = T1• There will be an unsteady change in the 
fluid temperature as a result of this impulsive increase in wall temperature; the 
transient temperature distributions are governed by Eq. (3.27) written in one spatial 
dimension, i.e., 

ar &r 
-=a--at 8x2 (3.28) 

Several instantaneous distributions of T versus x are sketched in Fig. 3 .12, starting 
with the constant initial temperature at t = 0, and then progressing through 
increasing time, t2 > t1 > 0, with the final steady-state distributions given by 
the linear variation at infinite time. 

3.4.3 Elliptic Equations 

Let us consider an elliptic equation in two independent variables x and y. The xy 
plane is sketched in Fig. 3.13. Recall from Sec. 3.2 that the characteristic curves for 
an elliptic equation are imaginary-for the most part, the methodology associated 
with the method of characteristics is therefore useless for the solution of elliptic 
equations. For elliptic equations, there are no limited regions of influence or 
domains of dependence; rather, information is propagated everywhere in all 
directions. For example, consider point P in the xy plane sketched in Fig. 
3.13. Assume that the domain of the problem is defined as the rectangle abed 
shown in Fig. 3.13 and that Pis located somewhere inside this closed domain. This 
is already in contrast to the rather open domains considered in Figs. 3.3 and 3.8 for 
hyperbolic and parabolic equations, respectively. Now assume that we jab point Pin 
Fig. 3.13 with a needle; i.e., we introduce a disturbance at point P. The major 
mathematical characteristic of elliptic equations is that this disturbance is felt 
everywhere throughout the domain. Furthermore, because point P influences all 
points in the domain, then in tum the solution at point P is influenced by the entire 
closed boundary abed. Therefore, the solution at point P must be carried out 
simultaneously with the solution at all other points in the domain. This is in stark 
contrast to the "marching" solutions germane to parabolic and hyperbolic equations. 
For this reason, problems involving elliptic equations are frequently called jury 
problems, because the solution within the domain depends on the total boundary 

y 

FIG. 3.13 
Domain and boundaries for the solution of elliptic equations in 
two dimensions. 
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FIG. 3.14 
Smoke-flow photograph of the low-speed, 
subsonic flow over an airfoil. (Courtesy of 
Hikaru Ito, Meiji University, Japan.) 

domain, bound~I?' conditions must be applied over the entire boundary abed. These 
boundary conditions can take the following forms: 

1. A specification of~h_e defendent variables u and v along the boundary. This type 
of boundary condition 1s called the Dirichlet condition. 

2. A specification ~f derivatives of the dependent variables, such as ou!ox, along 
the boundary. This type of boundary condition is called the Neumann condition. 

3. A mix of both Dirichlet and Newmann conditions. 

What types of flow are governed by elliptic equations? We will consider two 
such flows, as follows. 

STEADY, SUBSONIC, INVISCID FLOW. The key, operable word here is "sub
sonic." In a subsonic flow, disturbances (which travel at the speed of sound, or 
faste~) ca~ physically_work ~hei_r ~ay upstre~m for as far as they want-theoretically, 
a finite d1sturba~ce m an mv1sc1d subsonic flow (no dissipation due to friction, 
thermal combustion, or mass diffusion) will propagate to infinity in all directions. 
For example_, m_any of you are familiar with the streamline patterns for subsonic 
flows o~er ~1rfo1ls, such as shown in the photograph in Fig. 3 .14. Notice how the 
streamlines m front of the airfoil are deflected upward and those behind the airfoil 
~re deflected _downward. The disturbances introduced by the presence of the airfoil 
1~ the subson~c flow ar~ felt t~oughout the entire flow field, including far upstream. 
Figure 3.14 1s a physical picture consistent with the mathematical behavior of 
elliptic _equations. Inviscid flow is governed by the Euler equations [Eqs. (2.82)
(2.86)]_ m_ turn, the methods of Sec. 3.2 and 3.3 show that the steady Euler equations 
are elliptic when the local Mach number is less than unity (see Example 3.1). 
Hence, the presence of an airfoil in a subsonic, inviscid flow should be felt 
everywhere throughout the flow, and Fig. 3 .14 is an example of such behavior. 

I_N~?MPRESSIBLE INVISCID FLOW. In reality, an incompressible flow is a 
hm1tmg ~ase of a subsonic flow wherein the Mach number goes to zero. (The Mach 
num_ber _is defined _as M = Via, where a is the speed of sound. In a theoretically 
precise mcompress1ble flow, the compressibility is zero and hence the speed of 
sound is infinite. If a is infinitely large, then M = 0, ~ven though V is finite.) 
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Therefore, it is no surprise that an incompressible inviscid flow is governed by 
elliptic equations; indeed, such flows are the "queen" of ellipti~ behavior. All the 
behavior of steady, subsonic, inviscid flows described above carnes over to the case 
of incompressible inviscid flow, and with a stronger effect at that. 

3.4.4 Some Comments: The Supersonic Blunt 
Body Problem Revisited 

One of the most important problems in modern high-speed aerodynamics is the 
solution of the inviscid flow over a supersonic or hypersonic blunt body. Some 
background on this problem was provided in Sec. 1.5, where the difficulty 
associated with obtaining a solution for the mixed subsonic-supersonic steady 
flow was underscored. It would be very pertinent to reread the last half of Sec. 1.5 
before progressing further. Also, turn back to Fig. 1.30. There, along ~ith the 
related text, you will find a discussion of the mixed nature of the supersonic blunt 
body flow field, where the locally subsonic flow is identified as an elliptic region 
and the locally supersonic flow is identified as a hyperbolic region. The problem in 
solving this steady, inviscid flow field is due entirely to the extreme difficulty in 
obtaining a solution technique that is valid in both regions. Now, with our vantage 
point after our discussions of the mathematical behavior of partial differential 
equations in the present chapter, we can fully understand and appreci~te the so~r~e 
of this difficulty. Because of the totally different mathematical behavior of elliptic 
and hyperbolic equations, the sudden change in nature of the Euler equations across 
the sonic line virtually precludes any practical steady flow solution of the blunt body 
problem involving a uniform treatment of both the subsonic and supersonic regions. 
However, in Sec. 1.5, a breakthrough in this problem was mentioned, which took 
place in the middle 1960s. We are now in a position to understand the nature of this 
breakthrough. Recall from Fig. 3. 7 that unsteady inviscid flow is governed by 
hyperbolic equations no matter whether the flow is locally subsonic o~ super~o~~c. 
This provides the following opportunity. Starting with rather arbitrary m1hal 
conditions for the flow field in the xy plane in Fig. 1.30, solve the unsteady, 
two-dimensional inviscid flow equations, marching forward in time as sketched in 
Fig. 3. 7. At large times, the solution approaches a steady state, where the time 
derivatives of the flow variables approach zero. This steady state is the desired 
result, and what you have when you approach this steady state is a solution for the 
entire flow field including both the subsonic and supersonic regions. Moreover, this 
solution is obtained with the same uniform method throughout the entire flow. The 
above discussion gives the elementary philosophy of the time-dependent techniqu~ 
for the solution of flow problems. Its practical numerical implementation by Moretti 
and Abbett in 1966 (see Ref 12) constituted the major scientific breakthrough for 
the solution of the supersonic blunt body problem as discussed in Sec. 1.5. At first 
glance, the use of an additional independent variable, name!~, tim~, may s~em ~ike 
extra baggage, but nothing could be further from the truth. Without mtroducmg time 
as an independent variable, the problem cannot be solved. By introducing tin:ie as ~n 
independent variable, the governing Euler equations become hy~erb?hc w~th 
respect to time, thus allowing a straightforward marching sol~tion m time, with 
the proper steady flow results appearing in the limit of large times. For the blunt 
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body problem, this steady state obtained at large times is the desired result-the 
time-marching procedure is simply a means to that end. Here is a classic example of 
the importance of understanding the mathematical behavior of various types of 
partial differential equations. In the blunt body problem, an intelligent application 
of this understanding finally resulted in a practical solution, whereas none existed 
before. 

The time-marching approach described here, where the final steady state at 
large times is the primary goal, is widely used in modem CFD for a whole host of 
different applications-it is in no way unique to the blunt body problem. For 
example, the mathematical behavior of the full Navier-Stokes equations for 
unsteady flow is not easily placed in a single category. Rather, the Navier-Stokes 
equations have both parabolic and elliptic behavior. The parabolic behavior is 
through the time derivatives of velocity and internal energy, much in the same 
manner as the heat conduction equation, Eq. (3.27), is parabolic via the time 
derivative of T. The partially elliptic behavior stems from the viscous terms, which 
provide a mechanism for feeding information upstream in the flow. However, in 
spite of the mixed nature of the Navier-Stokes equations, a time-marching solution 
is well-posed; most of the existing numerical solutions to the full, compressible 
Navier-Stokes equations use the time-marching methodology. 

3.5 WELL-POSED PROBLEMS 

We end this chapter with a definition-but a definition that we are in a position to 
appreciate. In the solution of partial differential equations, it is sometimes easy to 
attempt a solution using incorrect or insufficient boundary and initial conditions. 
Whether the solution is being attempted analytically or numerically, such an "ill
posed" problem will usually lead to spurious results at best and no solution at worst. 
The supersonic blunt body problem discussed above is a classic example. When 
considering the mixed subsonic-supersonic flow from a steady flow point of view, 
any attempt to obtain a uniformly valid solution procedure for both regions was ill
posed. 

Therefore, we define a well-posed problem as follows: If the solution to a 
partial differential equation exists and is unique, and if the solution depends 
continuously upon the initial and boundary conditions, then the problem is we/1-
posed. In CFD, it is important that you establish that your problem is well-posed 
before you attempt to carry out a numerical solution. When the blunt body problem 
was set up using the unsteady Euler equations, and a time-marching procedure was 
employed to go to the steady state at large times starting with essentially arbitrary 
assumed initial conditions at time t = 0, the problem suddenly became well-posed. 

3.6 SUMMARY 

Examine again the road map sketched in Fig. 3.1, and think about the rather 
straightforward course we mapped in order to discuss the mathematical behavior of 
various types of partial differential equations. There are two standard methods for 
determining the mathematical behavior of a given equation: the Cramer's rule 

PROBLEMS 121 

approach and the eigenvalue method, de~cribed in. Sec. 3.2 and ~-3, respec~ively. 
Many equations can be distinctly classified as either _hyperbolic, yarabohc,. or 
elliptic. Others, such as the unsteady Navier-S~okes equation~, have i:iuxe~ behav10r. 
The major mathematical behavior ofhyperbol~c and pa~ab~hc equations is tha~ t~~y 
lend themselves quite well to marching solut10ns, begmnmg fr?In_ a kno"'.n mitial 
data plane or line. In contrast, elliptic equations do ~ot. For elliptic e~uations, the 
flow variables at a given point must be solved simultaneousl~ with the_ flow 
variables at all other points. Of course, the different math~matical be~avior of 
elliptic compared to parabolic and hyperbolic e~uations is a direct r~flection of the 
different physical behavior of the flows descnbed by these equations. . 

Finally, we note that the present chapter brings us _to an end of Part I of_this 
book. We have examined and derived some of the basic thoughts and equations 
essential to an understanding and application of CFD. We are n_ow ready to move on 
to an emphasis on the numerical aspects of CFD-the subject of Part II. 

PROBLEMS 
3.1. By expanding the determinant in Eq. (3.14), obtain the compatibility equation which 

holds along the characterisitc lines. . 
The discussion in Unsteady Thermal Conduction (a subsection of Sec. 3.4.2) stated, 3

·
2

· without proof, that the heat conduction equation given ~y Eq~. (3.26) or (3.27) ~re 
parabolic equations. For simplicity, consider the one-d1mens1onal heat conduct10n 

equation 

8T a2T 
--r:x.ot - 8x2 

Prove that this equation is a parabolic equation. 

3.3. Consider Laplace's equation, given by 

{Y-cp a2cp - 0 
8x2 + 8j2 -

Show that this is an elliptic equation. 
3.4. Show that the second-order wave equation 

82u 82u -=c2-
8t2 8x2 

is a hyperbolic equation. 
3.5. Show that the first-order wave equation 

au OU_ O ~+c~-ot ax 
is a hyperbolic equation. 



PART 

II 
BASICS 
OF THE 

NUMERICS 

I n Part I we discussed the philosophy of CFD, derived and examined carefully 
the governing equations of motion for fluid dynamics, and contrasted the 

mathematical behavior of various types of partial differential equations. Such 
background is essential to CFD, even though we have not as yet mentioned the first 
thing about numerical techniques. However, now is the time! In Part II, we 
emphasize the basic aspects of the numerics of CFD. Here we will present some 
of the basic aspects of discretization, i.e., how to replace the partial derivatives ( or 
integrals) in the governing equations of motion with discrete numbers. Discretiza
tion of the partial differential equations is called.finite differences, and discretization 
of the integral form of the equations is called finite volumes. Furthermore, many 
applications of numerical solutions involve sophisticated coordinate systems and 
grid networks laid out in these systems. Sometimes, the use of such coordinate 
systems requires that the governing equations be suitably transformed into these 
systems. Thus, another aspect to be discussed-one that is due entirely to the need 
for dealing with sometimes fancy coordinate systems in CFD-is that dealing with 
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transformations and grid generation. All the above matters come under the general 
heading of the basic numerics of CFD-the subject of Part II. 

4.1 INTRODUCTION 

CHAPTER 

4 
BASIC 

ASPECTS 
OF 

DISCRETIZATION 

Numerical precision is the very soul of science. 

Sir D'Arcy Wentworth Thompson, Scottish biologist 
and natural scientist, 1917 

The word "discretization" requires some explanation. Obviously, it comes from 
"discrete," defined in The American Heritage Dictionary of the English Language 
as "constituting a separate thing; individual; distinct; consisting of unconnected 
distinct parts." However, the word "discretization" cannot be found in the same 
dictionary; it cannot be found in Websters New World Dictionary either. The fact 
that it does not appear in two of the most popular dictionaries of today implies, at 
the very least, that it is a rather new and esoteric word. Indeed, it seems to be unique 
to the literature of numerical analysis, first being introduced in the German literature 
in 1955 by W R. Wasow, carried on by Ames in 1965 in his classic book on partial 
differential equations (Ref. 24), and recently embraced by the CFD community as 
found in Refs. 13, 14, and 16. In essence, discretization is the process by which a 
closed-form mathematical expression, such as a function or a differential or integral 
equation involving functions, all of which are viewed as having an infinite 
continuum of values throughout some domain, is approximated by analogous 
(but different) expressions which prescribe values at only a finite number of discrete 
points or volumes in the domain. This may sound a bit mysterious, so let us 
elaborate for the sake of clarity. Also, we will single out partial differential 
equations for purposes of discussion. Therefore, the remainder of this introductory 
section dwells on the meaning of "discretization." 
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A?alytical solutions of partial differential equations involve closed-fonn 
express10ns which give the variation of the dependent variables continuous! 
t~roughout _the ?omain. In ~ontrast, numerical solutions can give answers at on!~ 
d1s~rete points m t~e domam, called grid points. For example, consider Fig. 4.1 
which shows a sectJ?n of a discrete grid in the xy plane. For convenience, let u~ 
assume that the spac_mg of the gri_d p~ints in the x direction is uniform and given by 
~x and that the_ spa~mg of the pomts m they direction is also uniform and given by 
~y, as shown m Fig. 4.1. In general, & and ~y are different. Indeed, it is not 
abso_lute!y necess~ry t?at & or ~y be uniform; we could deal with totally unequal 
spacmg m both d!fect10ns, where & is a different value between each successive 
?airs of grid po_ints, and ~imilarly for ~y. However, the majority ofCFD applications 
1~vol~e numencal s~lut10ns on a grid which contains uniform spacing in each 
direct1on, because this greatly si?1plifies the programming of the solution, saves 
storage space, and usually results m greater accuracy. This uniform spacing does not 
have to occur in the physical .xy space; as is frequently done in CPD the numerical 
calculati~ns are carried out in a transformed computational space whi~h has uniform 
spacm? m the transformed independent variables but which corresponds to 
nonumform spacing in the physical plane. These matters will be discussed in 
detail in C?ap. 5 .. In ~ny event, in this chapter we will assume uniform spacing in 
each coordmate d!fect1on but not necessarily equal spacing for both directions; i.e., 
we will assume & and ~y to be constants, but & does not have to equal ~y. (We 
shoul~ note_ that recent research in CPD has focused on unstructured grids, where 
the gnd pomts are placed in the flow field in a very irregular fashion; this is in 
contras! to a_ structured_ grid which reflects some type of consistent geometrical 
regulanty. F1~re 4. _I 1s a~ example of a structured grid. Some aspects of 
unstructured gnds will be discussed in Chap. 5.) 

Returning to Fig. 4.1, the grid points are identified by an index i which runs in 
~he x directi?n an? a~ index j which runs in the y direction. Hence, if (i, j) is the 
mdex for pomt P m Fig. 4.1, then the point immediately to the right of p is labeled 
as (i + 1, j), the point immediately to the left is (i - I, j), the point directly above is 
(i, j + I), and the point directly below is (i, j - I). 

y 

Ax 
~ 

y{ i-1,j+l i,j+l i+l,j+l 

p 

i-1,j i,j i+l,j 

i-1,j-l i,j-1 i+l,j-1 

FIG. 4.1 
Discrete grid points. 
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We are now in a position to elaborate on the word "discretization.'_' Imagine 
that we have a two-dimensional flow field which is governed by the Nav1er-Stokes 
equations, or as the case may be, the Euler ~quations,_ as derived in Chap. 2. These 
are partial differential equations. An anal?'11cal solut10n of these equatJo~s would 
provide, in principle, closed-fo~ expressions for u, v, p, p, ~tc., as functJon_s of x 
and y, which could be used to give values oft~e flo_w-field vanables at an;: p01_nt we 
wish to choose in the flow, i.e., at any of the 111fimte number of(~, y) pom~s 111 the 
domain. On the other hand, if the partial derivatives in the govem1~g eq~atJons are 
replaced by approximate algebraic difference quotients (to be de~ved ~n the next 
section), where the algebraic difference quotients are expressed stnctly ~n te_rms of 
the flow-field variables at two or more of the discrete grid points shown 111 Fig. 4.1, 
then the partial differential equations are totally replaced by a system _of algebraic 
equations which can be solved for the va!u~s of th_e fl~w-fiel~ vanabl~s at the 
discrete grid points only. In this sense, the ong111al partial d1fferent1al equat10ns have 
been discretized. Moreover, this method of discretization is called the method of 
finite differences. Finite-difference solutions are widely em?loyed_ in ~FD, and 
hence much of this chapter will be devoted to matters concemmg fimte differences. 

So this is what discretization means. All methods in CFD utilize some form of 
discretization. The purpose of this chapter is to derive and discuss the more 
common forms of discretization in use today for finite-difference applications. This 
constitutes one of the three main headings in Fig. 4.2, which is the road map for this 

Finite 
difference 

Basic derivations 
of finite differences: 

order of accuracy 

Finite-difference 
equations: 

truncation errors 

Discretization techniques 

Finite 
volume 

Basic derivations 
of finite-volume 

equations (Problem 4.7) 

Types of solutions: 
explicit and implicit 

Stability analysis 

FIG. 4.2 
Road map for Chap. 4. 

Finite 
element 
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chapter. The second and third main headings are labeled finite volume and finite 
element, respectively. Both finite-volume and finite-element methods have been in 
widespread use in computational mechanics for years. However, we will not discuss 
finite-volume or finite-element methods in this book, mainly because of length 
constraints. The essential aspects of finite volume discretization are dealt with via 
Problem 4.7 at the end of this chapter. It is important to note that CFD can be 
approached using any of the three main types of discretization: finite difference, 
finite volume, or finite element, as displayed in Fig. 4.2. 

Examining the road map in Fig. 4.2 further, the purpose of the present chapter 
is to construct the basic discretiaation formulas for finite differences, while at the 
same time addressing the order of accuracy of these formulas. The road map in Fig. 
4.2 gives us our marching orders-let's go to it! 

4.2 INTRODUCTION TO FINITE 
DIFFERENCES 

Here, we are interested in replacing a partial derivative with a suitable algebraic 
difference quotient, i.e., a finite difference. Most common finite-difference repre
sentations of derivatives are based on Taylor's series expansions. For example, 
referring to Fig. 4 .1, if u;, J denotes the x component of velocity at point (i, j), then 
the velocity u; + 1, J at point (i + 1, j) can be expressed in terms of a Taylor series 
expanded about point (i, j) as follows: 

U;+ l,j = U;,J + (au) LU+ (a2~) (LU)2 + (a3~) (LU)3 + · · · (4.1) 
fu .. fu .. 2 fu .. 6 

li] l,J l,J 

Equation (4.1) is mathematically an exact expression for u; + 1, 1 if (1) the number of 
terms is infinite and the series converges and/or (2) LU ----. 0. 

Example 4.1. Since some readers may not be totally comfortable with the concept of 
a Taylor series, we will review some aspects in this example. 

First, consider a continuous fimction of x, namely, f (x), with all derivatives 
defined at x. Then, the value off at a location x + & can be estimated from a Taylor 
series expanded about point x, that is, 

of &J (&) 2 8"/ (&t 
f(x + &) = f(x) + ox & + ox2 -2- + ... ox" ---;;y- +... (E.1) 

[Note in Eq. (E. l) that we continue to use the partial derivative nomenclature to be 
consistent with Eq. (4.1 ), although for a fimction ofone variable, the derivatives in Eq. 
(E.1) are really ordinary derivatives.] The significance of Eq. (E.1) is diagramed in 
Fig. E4.1. Assume that we know the value off at x (point I in Fig. E4.1); we want to 
calculate the value off at x + & (point 2 in Fig. E4.l) using Eq. (E.l). Examining the 
right-hand side of Eq. (E4.l ), we see that the first term,/ (x), is not a good guess for 
f (x +&),unless, of course, the function/ (x) is a horizontal line between points 1 
and 2. An improved guess is made by approximately accounting for the slope of the 
curve at point 1, which is the role of the second term, of/ox&, in Eq. (E. l ). To obtain 
an even better estimate of/at x + &, the third term, fi1-flox2 (&)2/2, is added, which 
approximately accounts for the curvature between points I and 2. In general, to obtain 
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af 
f(x+/1,.x)=f(x) + ax/1,.x 

a21 (/l,.x)2 

+ ax2 2 + ••• 

f(x) 

~ '--------r---"' 
Firs! guess Add to capture 

(not very good) slope 

X 

------..----, 
Add to account 

for curvature 

x+/1,.x 

FIG. E4.1 
Illustration of behavior of the first 
three terms in a Taylor series (for 
Example 4.1). 

accuracy additional higher-order terms must be included. Indeed, Eq. (E. l) 
:~:mes an ex~ct representation off (x + &) only when an infinite number of terms 
is carried on the right-hand side. To examine some numbers, let 

f(x) = sin 2nx 
At x = 0.2: f(x) = 0.9511 

(E.2) 

This exact value off (0.2) corresponds to point 1 in Fig. E4.1. Now, let & = 0.02. We 
wish to evaluate f (x + &) = J (0.22). From Eq. (E.2), we have the exact value: 

At x = 0.22: f(x) = 0.9823 

This corresponds to point 2 in Fig. E4.1. Now, let us estimate f (0.22) using Eq. (E. l ). 
Using just the first term on the right-hand side of Eq. (E.1), we have 

/(0.22) ,:,:,f(0.2) = 0.9511 

This corresponds to point 3 in Fig. E4.1. The percentage error in thi~ estimate is 
[(0.9823 - 0.9511 )/0.9823] x 100 = 3.176 percent. Using two terms m Eq. (E. I), 

of 
f(x+&) ,;:,:,f(x) + ox& 

/(0.22) ,;:,:, f(0.2) + 2n cos [2n(0.2)](0.02) 

,;:,:, 0.9511 + 0.388 = 0.9899 

This corresponds to point 4 in Fig. E4.1. The percent~ge_ error in this estimate is 
[0.9899 _ 0.9823)/0.9823] x 100 = 0.775 percent. Thi~ 1s much closer than the 
previous estimate. Finally, to obtain yet an even better estimate, let us use three terms 

in Eq. (E.l). 
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f(x + th) "'°f(x) + Z th+ f!i (~)2 

(0 02)2 

f(0.22) "'°/(0.2) + 2ncos [2n(0.2)](0.02) - 4n2 sin [2n(0.2)J-·
2
-

"'° 0.9511 + 0.0388 - 0.0075 

"'° 0.9824 

This corresponds to point 5 in Fig. E4. l. The percentage error in this estimate is 
[(0.9824 - 0.9823)/0.9823] x 100 = 0.01 percent. This is a very close estimate of 
/(0.22) using just three terms in the Taylor series given by Eq. (E.l). 

Let us now return to Eq. (4.1) and pursue our discussion of finite-difference 
representations of derivatives. Solving Eq. (4.1) for (aulax);,J, we obtain 

(
au) = U;+ 1,j - U;,j -(a2u) LU' -(a

3
u) (Lix)2 +... (4.2) 

ax . . LU' ax2 . 2 ax3 . . 6 
l,J l,j l,J 

Finite
difference 

representation 
Truncation error 

In Eq. (4.2), the actual partial derivative evaluated at point (i,j) is given on the left 
side. The first term on the right side, namely, (u;+I,J - u;,j)!Lix, is a finite
difference representation of the partial derivative. The remaining terms on the right 
side constitute the truncation error. That is, if we wish to approximate the partial 
derivative with the above algebraic finite-difference quotient, 

(
au) U·+1 · - U· · ~ l ,J l,J 

ax . ,.._, LU' 
l,J 

(4.3) 

then the truncation error in Eq. (4.2) tells us what is being neglected in this 
approximation. In Eq. (4.2), the lowest-order term in the truncation error involves 
Lix to the first power; hence, the finite-difference expression in Eq. ( 4.3) is called 
first-order-accurate. We can more formally write Eq. ( 4.2) as 

(
au) = U;+ 1,j - U;,j + O(Lix) 
ax LU' l,J 

(4.4) 

In Eq. (4.4), the symbol O(Lix) is a formal mathematical notation which represents 
"terms oforder Ax." Equation (4.4) is a more precise notation than Eq. (4.3), which 
involves the "approximately equal" notation; in Eq. (4.4) the order of magnitude of 
the truncation error is shown explicitly by the notation. Also referring to Fig. 4.1, 
note that the finite-difference expression in Eq. (4.4) uses information to the right of 
grid point (i, j); that is, it uses u; + 1, 1 as well as u;, 1. No information to the left of 
(i,j) is used. As a result, the finite difference in Eq. (4.4) is called a forward 
difference. For this reason, we now identify the first-order-accurate difference 
representation for the derivative (aulax);,J expressed by Eq. (4.4) as a.first-order 
forward difference, repeated below. 

or 
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(
au) = U;+ 1,j - U;,j + O(Lix) 
ax .. LU' 

l,J 

( 4.4) 

Let us now write a Taylor series expansion for u; - , , j, expanded about u;, j. 

(
au) (a

2
u) (-&)2 

U;-1,j = U;,j + 8 . (-LU)+ ax2 . . 2 
X i,J i,J 

+ (a3u) (-&)3 + ... 
ax3 . . 6 

l,j 

U;-1,j = Ui,j - (::). LU'+(:~} (a;)2 
l,J liJ 

_ (a3u) (&)3 + ... 
ax3 . . 6 l,j 

( 4.5) 

Solving for (aulax);,j, we obtain 

(
au) = U;,j - U;-1,j + O(Lix) 
ax . LU' 

l,J 

(4.6) 

The information used in forming the finite-difference quotient in Eq. (4.6) comes 
from the left of grid point (i, J); that is, it uses U;- 1,1 as well as u;,j. No information 
to the right of (i, J) is used. As a result, the finite difference in Eq. ( 4:6) is called a 
rearward (or backward) difference. Moreover, the lowest-?rde~ term m .the trunca
tion error involves Lix to the first power. As a result, the fimte difference m Eq. (4.6) 
is called a first-order rearward difference. . . 

In most applications in CFO, first-order accuracy is not . sufficient. To 
construct a finite-difference quotient of second-order accuracy, simply subtract 
Eq. ( 4.5) from Eq. ( 4.1 ): 

U;+I,j-Ui-1,j=2(::). _&+2(:~). (~)3 +··· (4.7) 
l,J l,J 

Equation (4.7) can be written as 

(
au) = U;+ 1,j - U;-1,j + 0(Lix)2 
ax . . 2Lix 

l,J 

(4.8) 

The information used in forming the finite-difference quotient in Eq. (4.8) comes 
from both sides of the grid point located at (i, J); that is, it uses u; + 1,j as w~II as 
u; _ i,J· Grid point (i, J) falls between the two adjacent grid points. Moreover, m the 
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truncation error in Eq. (4.7), the lowest-order terms involves (1i,:)2, which is second- · 
order accuracy. Hence, the finite-difference quotient in Eq. ( 4.8) is called a second
order central difference. 

Difference expressions for the y derivatives are obtained in exactly the same 
fashion. (See Prob. 4.1 and 4.2.) The results are directly analogous to the previous 
equations for the x derivatives. They are: 

U;,j+ ~; U;,j + O(~y) F'orward difference (4.9) 

(~;),.; U;.j -~:i,j-1 + O(~y) Rearward difference (4.10) 

U;,j+ '2~:i,j- I+ O(~y)2 Central difference ( 4.11) 

Equations (4.4), (4.6), and (4.8) to (4.11) are examples of finite-difference 
quotients for first partial derivatives. Is this all that we need for CFD? Let us return 
to Chap. 2 for a moment and take a look at the governing equations of motion. Ifwe 
are dealing with inviscid flows only, the governing equations are the Euler 
equations, summarized in Sec. 2.8.2 and expressed by Eqs. (2.82) to (2.86). Note 
that the highest-order derivatives which appear in the Euler equations are first partial 
derivatives. Hence, finite differences for the first derivatives, such as those 
expressed by Eqs. (4.4), (4.6), and (4.8), are all that we need for the numerical 
solution of inviscid flows. On the other hand, if we are dealing with viscous 
flows, the governing equations are the Navier-Stokes equations, summarized in 
Sec. 2.8.1 and expressed by Eqs. (2.29), (2.50), (2.56), and (2.66). Note that the 
highest-order derivatives which appear in the Navier-Stokes equations are 
second partial derivatives, as reflected in the viscous terms such as orxylox = 

fJ/fJx [µ(fJvlfJx + fJu/fJy)] which appears in Eq. (2.50b), and fJ/fJx (k fJT/fJx) which 
appears in Eq. (2.66). When expanded, these terms involve such second 
partial derivatives as a2ulfJx oy and fJ2T/fJx2, just for example. Consequently, 
there is a need for discretizing second-order derivatives for CFD. We can obtain 
such finite-difference expressions by continuing with a Taylor series analysis, 
as follows. 

Summing the Taylor series expansions given by Eqs. (4.1) and (4.5), we have 

(
fJ

2u) 2 (a4u) (&)4 
U·+1 ·+u·-1 ·=2u·+ - (&) + - --+··· 

I ,J I ,J l,J 0X2 . . 0x4 . . 12 
l,J l,J 

Solving for (ri2ulox);,j, 

(
fJ

2u) = U;+ I,j - 2u;,J + U;-1,j + 0(&)2 
fJx2 . . (&)2 

t,J 

( 4.12) 

In Eq. ( 4.12), the first term on the right-hand side is a central finite difference for the 
second derivative with respect to x evaluated at grid point (i, j); from the remaining 
order-of-magnitude term, we see that this central difference is of second-order 
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accuracy. An analogous expression can easily be obtained for the second derivative 

with respect to y, with the result that 

(
02u) = u;,J + 1 - 2u;, 12 + u;,J- 1 + O(~y)2 
fJy2 . . (~y) 1,J 

(4.13) 

Equations (4.12) and (4.13) are examples of second-order central second 

differences. . . 
For the case of mixed derivatives, such as fi2ulfJx fJy, appropn~te fimte-

difference quotients can be found as follows. Differentiating Eq. ( 4.1) with respect 

toy, we have 

(
au) -(au) (~) (~) (&)2 + (~) (& )3 + ... 
fJy i + I,) - oy i.j + OX fJy i,j & + ox2 fJy i,j 2 ox

3 
oy i,j 6 

Differentiating Eq. (4.5) with respect to y, we have 

(
ou) (ou) . ( fJ2u ) ( fJ

3
u ) (&)2 - - - -- &+ -2- --

oy i- l,j - ay i,j ax ay i,j ax oy i,j 2 

( a4u ) (&)3 + -- --+··· 
ox3 oy . . 6 

l.j 

Subtracting Eq. (4.15) from Eq. (4.14) yields 

(
au) -(au) = 2 (~) & + (-*-) (&)

3 

+ ... 
oy i+l,j f)y i-1,j fJxfJy i,j OX oy i,j 6 

(4.14) 

(4.15) 

Solving for (ri2ulox fJy);, 1 , which is the mixed_deriv~tive for which we are seeking a 
finite-difference expression, the above equation yields 

( 
a2u ) _ (fJu/fJy);+ 1.J - (fJu/fJy);-1,J _ (~) (&)2 +... (4.16) 

OX oy . - 2& fJx3 oy i,j 12 
I,} 

In Eq. ( 4.16), the first term on the right-hand-side involves f!u!oy, first ~valuated at 
grid point (i + 1, J) and then at grid point (i - 1, j). Retui:mng _to the gnd sketched 
in Fig. 4.1, we can see that fJuloy at each of these two gnd ~omts can be replaced 
with a second-order central difference patterned after that given by_Eq. (4:11) but 
using appropriate grid points first centered on (i + 1, j) and ~hen on (z - 1, J ). To be 
more specific, in Eq. (4.16) first replace (ouloy);+1,J with 

(
au) = U;+ I,)+ I - U;+ l,j-1 + O(~y)2 
f}y . I . 2~y 1+ .; 
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and then replace ( Bui 8y ); _ 1, 1 with the analogous difference, 

(au) = U;-I,J+ I - U;-J,j- l + O(Liy)2 
By i- l.J 2Liy 

In this fashion, Eq. ( 4. I 6) becomes 

(_!!_!!_) =u;+1,J+1-u;+1,J-I -ui-l.J+I +u;-I,J-I 
ox Dy . . 4Lix Liy 

l.j ( 4.17) 

+ O[(Lix)2, (Liy)2] 

The truncation error in Eq. (4.17) comes from Eq. (4.16), where the lowest
order neglected term is of O(Lix)2, and from the fact that the central difference 
in Eq. (4. I I) is of O(Liy)2, Hence, the truncation error in Eq. (4. I 7) must be 
0[(&)2, (Liy)2]. Equation (4.17) gives a second-order central difference for the 
mixed derivative, (ff2u!8x 8y);, 1. 

It is important to note that when the governing flow equations are used in the 
form of Eq. (2.93), only first derivatives are needed, even for viscous flows. The 
dependent variables being differentiated are U, F, G, and Hin Eq. (2.93), and only as 
fi_rst derivatives. Hence, these derivatives can be replaced with the appropriate finite
difference expressions for first derivatives, such as Eqs. (4.4), (4.6), and (4.8) to 
( 4. I I). In tum, some elements of F, G, and H involve viscous stresses such as r 

' xx, 
r 9 , and thermal conduction terms. These terms depend on velocity or temperature 
gradients, which are also first derivatives. Hence, the finite-difference forms for first 
derivatives can also be used for the viscous terms inside F, G, and H. In this fashion, 
the need to use a finite-difference expression for second derivatives, such as Eqs. 
( 4. I 2 ), ( 4. I 3 ), and ( 4. I 7), is circumvented. 

To this stage, we have derived a number of different forms of finite-difference 
expressions for various partial derivatives. To help reinforce these finite differences 
in your mind, the graphical concept of finite-difference modules is useful. All the 
above difference expressions can be nicely displayed in the context of the finite
difference modules shown in Fig. 4.3. This figure is a concise review of the finite
difference forms we have discussed, as well as illustrating on a grid the specific grid 
points that participate in the formation of each finite difference. These participating 
grid points are shown by large filled circles connected by bold lines; such a 
schematic is called a finite-difference module. The plus and minus signs adjacent to 
the participating grid points remind us of whether the information at each of these 
points is added or subtracted to form the appropriate finite differences; similarly, a 
( - 2) beside a grid point connotes that twice the variable at that grid point is 
subtracted in the formation of the finite-difference quotient. Compare the ( + ), ( - ), 
and ( - 2) in the finite-difference modules with the corresponding formula for the 
finite difference which appears to the left of each module in Fig. 4.3. 

The finite-difference expressions derived in this section and displayed in Fig. 
4.3 represent just the "tip of the iceberg." Many other difference approximations 
can be obtained for the same derivatives we treated above. In particular, more 
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(:;) . = .. , 

(!;) = ,., 

U;,; - U;.1,j 

,1x 

U,+1 j - Ui-1.t 

2.ix 

(- ) ,1x (+) 

i-1,j i,j 

(- ) ,1x ,1x 

i-1,j 

Finite-difference expressions with their appropriate finite-difference modules. 

(+) 

+1,j i 

accurate finite-difference quotients can be derived, exhibiting third-order accuracy, 
fourth-order accuracy, and more. Such higher-order-accurate difference quotients 
generally involve information at more grid points than those we have derived. For 
example, a fourth-order-accurate central finite-difference for &u!8x2 is 

(
8

2
u) = -U;+z,1 + I6u;+1,J-30u;,1 + I6u;-1,1 -u;-2,J +O(Lix)4 (4.18) 

8x2 
· · 12(&)2 
l,J 

Note that information at five grid points is required to form this fourth-order finite 
difference; compare this with Eq. (4.12), where (ffu!ox2 );,i is represented in terms 
of information at only three grid points, albeit with only second-order accuracy. 
Equation (4.18) can be derived by repeated application of Taylor's series expanded 
about grid points (i + l, j), (i, j), and (i - 1, j); the details are considered in Prob. 
4.5. We are simply emphasizing that an almost unlimited number offinite-difference 
expressions can be derived with ever-increasing accuracy. In the past, second-order 
accuracy has been considered sufficient for most CFO applications, so the types of 
difference quotients we have derived in this section have been, by far, the most 
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------------------------
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comrnonly used forms. The pros and cons of higher-order accuracy are as follows: 

I. Higher-order-accurate difference quotients, such as displayed in Eq. (4.18), by 
requiring more grid points, result in more computer time required for each time 
wise or spatial step-a con. 

2. On the other hand, a higher-order difference scheme may require a smaller 
number of total grid points in a flow solution to obtain comparable overall 
accuracy-a pro. 

3. Higher-order difference schemes may result in a "higher- quality" solution, such 
as captured shock waves that are sharper and more distinct-also a pro. In fact, 
this aspect is a matter of current research in CFD. 

For these reasons, the matter of what degree of accuracy is desirable for various 
CFD solutions is not clear-cut. Because second-order accuracy has been previously 
accepted in the vast majority of CFD applications, and because the purpose of this 
book is to present a basic introduction to the elements of CFD without undue 
complication, we will consider that second-order accuracy will be sufficient for our 
purposes in this and subsequent chapters. For a detailed tabulation of many forms of 
difference quotients, see pp. 44 and 45 of Ref. 13. 

We have one more item of business before finishing this section on finite
difference quotients. We pose the following question: What happens at a boundary? 
What type of differencing is possible when we have only one direction to go, 
namely, the direction away from the boundary? For example, consider Fig. 4.4, 
which illustrates a portion of a boundary to a flow field, with the y axis 
perpendicular to the boundary. Let grid point I be on the boundary, with points 
2 and 3 a distance liy and 2L\y above the boundary, respectively. We wish to 
construct a finite-difference approximation for ouloy at the boundary. It is easy to 
construct a forward difference as 

(OU) = U2 - UJ + O(L\y) 
Oy I L\y 

(4.19) 

y 

1',.y 
Boundary 

FIG. 4.4 
X 2' 
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which is of first-order accuracy. However, how do we obtain a result which is of 
second-order accuracy? Our central difference in Eq. (4.11) fails us because it 
requires another point beneath the boundary, such as illustrated as point 2' in Fig. 
4.4. Point 2' is outside the domain of computation, and we generally have no 
information about u at this point. In the early days of CFD, many solutions 
attempted to sidestep this problem by assuming that u2, = u2 . This is called the 
reflection boundary condition. In most cases it does not make physical sense and is 
just as inaccurate, if not more so, than the forward difference given by Eq. (4.19). 

So we ask the question again, how do we find a second-order-accurate finite
difference at the boundary? The answer is straightforward, as we will describe here. 
Moreover, we will seize this occasion to illustrate an alternative approach to the 
construction of finite-difference quotients-alternative to the Taylor's series ana
lyses presented earlier. We will use a polynomial approach, as follows. Assume at 
the boundary shown in Fig. 4.4 that u can be expressed by the polynomial 

u =a+ by+ c/ (4.20) 

Applied successively to the grid points in Fig. 4.4, Eq. (4.20) yields at grid point I 
where y = 0, 

Ut = a 

and at grid point 2 where y = Lly, 

u2 =a+ b Lly + c(Lly)2 

and at grid point 3 where y = 2Lly, 

u3 =a+ b(2Lly) + c(2Lly)2 

Solving Eqs. ( 4.21) to ( 4.23) for b, we obtain 

b = -3u1 +4u2 - U3 
2Lly 

Returning to Eq. (4.20), and differentiating with respect toy, 

au 
ay=b+2cy 

Equation (4.25), evaluated at the boundary where y = 0, yields 

( au)= b 
ay r 

Combining Eqs. (4.24) and (4.26), we obtain 

(
au) = -3U1 + 4u2 - U3 
ay 1 2Lly 

( 4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 
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Equation ( 4.27) is a one-sided finite-difference expression for the derivative at the 
boundary-called one-sided because it uses information only on one side of the grid 
point at the boundary, namely, information only above grid point I in Fig. 4.4. Also, 
Eq. (4.27) was derived using a polynomial expression, namely, Eq. (4.20), rather 
than a Taylor series representation. This illustrates an alternative approach to the 
formulation of finite-difference quotients; indeed, all our previous results as 
summarized in Fig. 4.3 could have been obtained using this polynomial approach. 
It remains to show the order of accuracy of Eq. ( 4.27). Here, we have to appeal to a 
Taylor series again. Consider a Taylor series expansion about the point I. 

u(y) = ui + (au) y + (&u) y2 + (a3u) y3 + ... 
0)'1 ay212 ay316 

(4.28) 

Compare Eqs. (4.28) and (4.20). Our assumed polynomial expression in Eq. (4.20) 
is the same as using the first three terms in the Taylor series. Hence, Eq. (4.20) is of 
O(Lly)3. Now examine the numerator of Eq. (4.27); here u1, u2, and u3 can all be 
expressed in terms of the polynomial given by Eq. (4.20). Since Eq. (4.20) is of 
O(Lly)3, then the numerator ofEq. (4.27) is also ofO(Lly)3. However, in forming the 
derivative in Eq. (4.27), we divided by Lly, which then makes Eq. (4.27) of O(Lly)2. 
Thus, we can write from Eq. (4.27) 

(
au) = -3u1 + 4u2 - U3 O(Ll )2 
ay l 2Lly + cY 

(4.29) 

This is our desired second-order-accurate difference quotient at the boundary. 
Both Eqs. (4.19) and (4.29) are called one-sided differences, because they 

express a derivative at a point in terms of dependent variables on only one side of 
that point. Moreover, these equations are general; i.e., they are not in any way 
limited to application just at a boundary; they can be applied at internal grid points 
as well. It just so happens that we have taken advantage of our discussion of finite
difference quotients at a boundary to derive such one-sided differences. Of course, 
as we have seen here, one-sided differences are essentially mandatory for a 
representation of a derivative at a boundary, but such one-sided differences simply 
offer another option when applied internally within the domain of the overall 
calculations. Furthermore, Eq. (4.29) displays a one-sided finite difference of 
second-order accuracy; many other one-sided difference formulas for a derivative at 
a point can be derived with higher orders of accuracy using additional grid points to 
one side of that point. In some CFD applications, it is not unusual to see four- and 
five-point one-sided differences applied at a boundary. This is especially true for 
viscous flow calculations. In such calculations, the shear stress and heat transfer at 
the wall, due to a flow over that wall, are of particular importance. The shear stress 
at the wall is given by (see, for example, chap. 12 of Ref. 8) 

( 4.30) 
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and the heat transfer at the wall is given by 

( 4.31) 

In finite-difference solutions of a viscous flow (solutions of the Navier-Stokes 
equations, parabolized Navier-Stokes equations, the boundary-layer equations, etc.), 
the flow-field values of u and Tare calculated at all the grid points, internal as well 
as boundary points. Then, after these flow-field values are obtained (by whatever 
algorithm is chosen, such as one of the appropriate techniques discussed in Part III 
of this book), the shear stress and heat transfer are calculated after the fact from Eqs. 
( 4.30) and ( 4.31 ). Clearly, the more accurate the one-sided finite difference used to 
represent (Duloy)w and (DT!oy)w in Eqs. (4.30) and (4.31), respectively, the more 
accurate will be the calculated results for rw and q .... ,. 

Example 4.2. Consider the viscous flow of air over a flat plate. At a given station in 
the flow direction, the variation of the flow velocity, u, in the direction perpendicular to 
the plate (the y direction) is given by the expression 

U = 1582(1 - e-y/L) (E.3) 

where L = characteristic length = l in. The units of u are feet per second. The 
viscosity coefficientµ= 3.7373 x 10- 7 slug/(ft · s). We use Eq. (E.3) to provide the 
values of u at discrete grid points equally spaced in they direction, with ~y = 0.1 in. 
Specifically, we obtain from Eq. (E.3 ): 

y, in u, ft/s 

0 0 
0.10 150.54 
0.20 286.77 
0.30 410.03 

Imagine that the values of u listed above are discrete values at the discrete grid points 
located at y = 0, 0.1, 0.2, and 0.3, in the same nature as would be obtained from a 
numerical finite-difference solution of the flow field. Indeed, assume that these 
discrete values of u are all that we know; we have used Eq. (E.3) just to specify these 
discrete values of u. Using these discrete values, calculate the shear stress at the wall 
'w three different ways, namely: 

(a) Using a first-order one-sided difference 

(b) Using the second-order one-sided difference given by Eq. (4.29) 

(c) Using the third-order one-sided difference derived in Prob. 4.6. 

Finally, compare these calculated finite-difference results with the exact value of 'was 
specified from Eq. (E.3). 
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Solution 

(a) First-order difference: 

= 150·
54 

- O = I505.4ft/(s · in) 
0.1 

fw = µ(au) = (3.7373 X 10-7 )(1505.4)(12) 
ay J=I 

= 16.7514 X 10-3 Jb/ft
2 I 

(Note that the factor 12 has been used above to convert the velocity gradient to 
units of ft/(s · ft), rather than per inch; in the calculation of 'w, we must use 
consistent units, in this case the English engineering system of units.) 

(b) Second-order difference (from Eq. 4.29): 

-3uJ=I +4uJ=2 -uJ=3 
2~y 

-3(0) + 4(150.54) - 286.77 

2(0.l) 

= 1577.0 ft/(s · in) 

fw = µ(au) = (3.7373 X 10-7)(1577.0)(12) 
8y J=l 

= \ 7.072 x 10-3 lb/ft
2 I 

(c) Third-order difference (from Prob. 4.6): 

-11 u1 = 1 + l 8u1 = 2 - 9u1 = 3 + 2u1 = 4 

My 

-11(0) + 18(150.54) -- 9(286.77) + 2(410.03) 
6(0.l) 

= 1581.4 ft/(s · in) 

fw = µ(au) = (3.7373 X 10-7 )(1581.4)(12) 
8y j=l 

= \ 7.092 X 10-3 lb/fl2 j 

(d) Exact value [from Eq. (E.3)]: 

au_ 1582 -y/L ----e 
8y L 

(E.4) 
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Recalling that L = 1 in, then at the wall (y = 0), Eq. (E.4) yields 

(:u) = 1582 ft/(s · in) 
y y=O 

Tw = µ(:) y=O = (3.7373 X 10-7
)(1582)(12) 

= 17.095 X 10-3 Ib/ft2 I 
Important: Surveying the above results; we see that the use of progressively 

higher-order-accurate difference expressions gives progressively more accurate 
values of 'w· Specifically, compared to the exact value of 7.095 x 10-3 lb/f't2, 
we have: 

Order of accuracy !w lb/ff 0/o error 

First order (part a) 6.7514 X 10-3 4.8 
Second order (part b) 7.072 X 10-3 0.3 
Third order (part c) 7.092 X 10-3 0.04 
Exact [Eq. (E.4)] 7.095 X 10-3 0 

Note from the above tabulation that the use of a second-order-accurate difference 
formula gives a much better result for 'w than a simple first-order difference and that 
the use of a third-order difference formula further improves the accuracy, but it is 
less dramatic. Here is an indication that, for most finite-difference solutions, at least 
second-order accuracy is needed, and it turns out to be sufficient. 

4.3 DIFFERENCE EQUATIONS 

In Sec. 4.2, we discussed the representation of a partial derivative by means of an 
algebraic finite-difference quotient. Most partial differential equations involve a 
number of partial derivative terms. When all the partial derivatives in a given partial 
differential equation are replaced by finite-difference quotients, the resulting 
algebraic equation is called a difference equation, which is an algebraic repre
sentation of the partial differential equation. The essence of finite-difference 
solutions in CFD is to use the difference quotients derived in Sec. 4.2 ( or others 
that are similar) to replace the partial derivatives in the governing flow equations, 
resulting in a system of algebraic difference equations for the dependent variables at 
each grid point. In the present section, we examine some of the basic aspects of a 
difference equation. 

For simplicity, we choose to examine a partial differential equation which is 
less elaborate than the governing flow equations. For example, let us consider Eq. 
(3.28), which is the unsteady, one-dimensional heat conduction equation with 
constant thermal diffusivity, repeated below. 

fJT fi2T 
-=rx.--
fJt fJx2 (3.28) 
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We choose this simple equation for convenience; at this stage in our discussions 
there is no advantage to be obtained by dealing with the much more co?1ple~ flo~ 
equations. The basic aspects of finite-difference equations to be e~ammed m this 
section can just as well be developed using Eq. (3 .28). As st~ted m. the _l.Jnstea~y 
Thermal Conduction subsection of Sec. 3.4.2, this is a parabohc partial differential 
equation. (See Prob. 3.2.) As such, it lends itself to a marching solution with respect 
to time t as discussed in Chap. 3. 

Let us replace the partial derivatives in Eq. (3.28) with finite-di~erence 
quotients. Equation (3.28) has two indepen~ent_varia~les, x an~ t. V:e consid~r the 
grid sketched in Fig. 4.5. Here, i is the runnmg m~ex m the x dtre~tton a?d n is t~e 
running index in the t direction. When one of the mdependent van_a~les m a p~rtial 
differential equation is a marching variable, such as tin Eq. (3.28), it is conven~ional 
in CFD to denote the running index for this marching variable by n and to display 
this index as a superscript in the finite-difference quotient. For example, let us 
replace the time derivative in Eq. (3.28) with a forward difference patterned after 

Eq. (4.4), i.e., 

(
f)T)n = Tt+ 

1 
- Tt -(ff2T)n M + ... 

at . tJ.t at2 
i 2 

I 

(4.32) 

where the truncation error is the same as that displayed in Eq. (4.2). Also, let us 
replace the x derivative in Eq. (3.28) with a central difference patterned after Eq. 

( 4.12), i.e., 

(
ff2T)n _ Tt+ 1 - 2Tt + Tt_ 1 -(fJ4T)n (&)2 + ... 
fJx2 ; - (&)2 fJx4 ; 12 

( 4.33) 

where the truncation error is the same as that displayed immediately above Eq. 
(4.12). Let us write Eq. (3.28) as 

fJT fi2T --rx.-=0 (4.34) 
fJt 8x2 

n + 1 

n 

~t{ Ax 
~ 

n - 1 

i-1 i+I 

FIG. 4.5 
x Grid for the differencing ofEq. (3.28). 
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Inserting Eqs. (4.32) and (4.33) into (4.34), we have 

Partial differential 
equation 

I 1 
8T &T rn+I - rn a(rn -2rn + rn ) --a--2 = 0 = I I - z+I i i-1 
at ax Ill ( Ax-)2 

Difference equation 

+ [- ([f2 T)n /l.t (fr T)n ( /l.x )2 l 
8t2 . 2 + a 8x4 + · · · 

I i 12 

Truncation error 

(4.35) 

~xa;ining Eq. (4.35), the l_eft-hand side is the original partial differential equation, 
~ ~ rst n:vo terms on the nght-hand side are the finite-difference representation of 

_ is equation, an_d the te?!1s i~ the vertical brackets give the truncation error for the 
difference equat10n. Wntmg Just the difference equation from Eq. (4.35), we have 

T( + I - r;n - a(l';"+ I - 2r;n + Tt_ I) 
/lt - ( /l.x )2 (4.36) 

~~atio~ (4.36) !s a difference equation which represents the original partial 
1 erential equat10n expressed in Eq. (3.28). However Eq (4 36) · · . . ti ' . . IS JUSt an 

~p1:{oximatwn or Eq. (3.~8); since each of the finite-difference quotients used 
m ~- ( 4.36) has a ~ncation error, then the final form of the difference e uation 
:~~ its own truncation error synthesized from the errors of each of th~ finite 

~ erence~. The truncation error for the difference equation given by Eq. (4.36) is 

~tt~y(t;~rq. (4.35). Note that the truncation error for the difference equation is 

. lmf!ortant: . The_ ~iffer~nce equation is not the same as the original partial 
differential equation-it 1s a different thing altogether The d"ffi · · I b . . . · 1 erence equation 1s an 
~ g;. raic eq~ation, w~1ch when written at all the grid points in the domain sketched 
m ~g. 4.5 yields a simultaneous system of algebraic equations In turn b 
fash

11
1on _these_ alge_braic equations are solved numerically for the depende~t :a~~:: 

at a gnd pomts, I.e., solved for rn rn T'! + I rn + I rn + 2 t I · · l 
1 h . 1 ' , + 1 • , , ; + 1 , ; , e c. n pnnc1p e, we 

can ~: Y ope ~hat the numencal results give values for Twhich represent those that 
;: b~ obtam~d from a closed-form analytical solution of the original partial 

I erential equati~n, at_ least within the truncation error. Some confidence in this 
regard can be obtamed 1f we can answer "yes" to the follo · t· D h 
diffe · d wmg ques 10n: oes t e 

. rence equ~tion _re ~ce to the original differential equation as the number of grid 
pomts goes to mfimty, 1.e., as !l.x---. O and !l.t---. O? Examining Eq (4 35) t 
!hat the truncation err~r _appro_aches zero, and hence the differenc~ e~uaii;t :~e: 
1~deed approach the ~ngmal differential equation. When this is the case, the finite
difference representation of the partial differential equation is said to be consistent. 
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If the difference equation is consistent, if the numerical algorithm used to solve the 
difference equation is stable, and if the boundary conditions are handled in a proper 
numerical fashion, then the numerical solution of the difference equation should be 
an appropriate representation of the analytical solution of the partial differential 
equation, at least to within the truncation error. However, there are several big "ifs" 
in the above statement. These "ifs," along with the undesirable propagation of 
truncation errors throughout the domain, make any successful CFD solution 
somewhat of a challenge and sometimes as much of an "art" as it is a "science." 

The purpose of this section has been to introduce the idea of difference 
equations. The general concept of a finite-difference solution is to represent the 
governing partial differential equations by means of difference equations, and to 
solve these difference equations for numerical values of the dependent variables at 
each of the discrete grid points which cover the physical domain of interest. We 
have not yet discussed any precise algorithms that might be used for such numerical 
solutions; appropriate techniques (algorithms) for solving CFD problems by the 
finite-difference approach will evolve as we work through Part II of this book and as 
we deal with specific applications in Part III. 

At this stage, it is worthwhile to return to the road map in Fig. 4.2. We have 
discussed the material represented by the first three boxes in the left column of Fig. 
4.2-we have covered the basic elements of finite differences and their use to 
construct difference equations. There are several other important considerations to 
be discussed, such as explicit versus implicit solutions, stability analyses, and 
numerical dissipation. 

4.4 EXPLICIT AND IMPLICIT 
APPROACHES: DEFINITIONS AND 
CONTRASTS 

To this point in the present chapter, we have discussed some basic elements of the 
finite-difference method. We have done nothing more than just create some 
numerical tools for future use; we have not yet described how these tools can 
be put to use for the solutions of CFD problems. The way that these tools are put 
together and used for a given solution can be called a CFD technique, and we have 
not yet discussed any specific techniques. Aspects of several difference techniques 
commonly used in CFD will be discussed in Chap. 6. However, once you choose a 
specific technique to solve your given problem, you will find that the technique falls 
into one or the other of two different general approaches, an explicit approach or an 
implicit approach. It is appropriate to introduce and define these two general 
approaches now; they represent a fundamental distinction between various numer
ical techniques, a distinction for which we need to have some appreciation at this 
stage of our discussion. 

For simplicity, let us return to the one-dimensional heat conduction equation 
given by Eq. (3.28), repeated below. 

ar &r 
8t = a 8x2 (3.28) 
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We will treat Eq. (3.28) as a "model equation" for our discussion in this section; all 
the necessary points concerning explicit and implicit approaches can be made using 
this model equation without going to the extra complexity of the governing flow 
equations. In Sec. 4.3, we used Eq. (3.28) to illustrate what was meant by a 
difference equation. In particular, in that section we chose to represent fJT/fJt with a 
forward difference and a2TlfJx2 with a central second difference, leading to the 
particular form of the difference equation given by Eq. (4.36), repeated below: 

rn+ 1 - T'.' 
I I 

!it 
rx(Tt+ I - 2Tt + Tt-1) 

(&)2 

With some rearrangement, this equation can be written as 

n + I n /}.t ( n n n ) T. = T. + (X --2 T+ I - 2T. + T I 
I I (&) I I /-

(4.36) 

(4.37) 

Let us examine the implications of Eq. (3.28) and its difference equation 
counterpart given by Eq. (4.37). Recall from our previous discussion in Sec. 4.3 that 
Eq. (3.28) is a parabolic partial differential equation. Being parabolic, this equation 
lends itself to a marching solution, as described in Sec. 3.4.2. The marching variable 
here is time t. To be more specific, consider the finite-difference grid sketched in 
Fig. 4.6. Assume that Tis known at all grid points at time level n. Time marching 
means that Tat all grid points at time level n + I are calculated from the known 
values at time level n. When this calculation is finished, we have known values at 
time level n + I. Then the same procedure is used to calculate Tat all grid points at 
time level n + 2, using the known values at level n + I. In this fashion, the solution 
is progressively obtained by marching in steps of time. Casting our attention to Eq. 
(4.37), we see a straightforward mechanism to accomplish this time marching. 
Notice that Eq. (4.37) is written with properties at time level non the right-hand side 

n+2 

ta Time-marching direction 

+ Properties at level n + 2 
------~------- to be calculated from values 

at level n + I 

Properties at level n + I 
n + J l 1r----.----.-----.----,.- to be calculated from known values 

at level n 
At ru: 
n ------~r---'----.. _______ Properties known at 

i-1 j i+ I time level n 

X 

FIG. 4.6 
Illustration of time marching. 
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FIG. 4.7 
An explicit finite-difference module. 

and ro erties at time level n + I on the left-hand side. Recall that, within the time
marrh: hilosophy all properties at level n are known and those at level n +. I are 
to be ca!~Iated. Of ;articular significance is that only ~ne un~own ~p~ears ;1}i 
(4 37) namely rn+ 1. Hence, Eq. (4.37) allows for the 1mmed1ate ~o uti?n o . ; 
fr~m ;he knO\;n ;roperties at time level n. We have a si~gle equati?n ;1th a_s1~~Ie 
unknown-nothing could be simpler. For example, consider the gn_d s own ~n ig. 
4. 7 where we choose to distribute seven grid points along the x axis. Centenng on 

grid point 2, Eq. (4.37) is written as 

r+ I = r + (X !.1t 2 (T; - 2r; + rn (4.38) 
2 2 (&) 

· T!. + I · th ntities on the right-hand side 
This allows the direct calculation of 2 smce e .qua . d . t 3 Eq ( 4 3 7) is 
of Eq. (4.38) are all known numbers. Then, centenng on gn porn ' . . 

written as 

r+t = yn + rx~(T;-2r; + T;) 
3 3 (&)2 

(4.39) 

· I · f rn + 1 from the known numbers on the right-
This allows the direct calcu ation ° :3 . · · f E (4 3 7) to 
h d ·d f E (4 39) In the same vem by sequential apphcation o q. 1 • 

an Sl e O q. . . ' . II rn + I rn + I and Tn + 
'd oints 4 5 and 6 we obtain sequentia Y 4 , s , 6 · 

gn P • ' ' h · ample of an 
What we have just presented in the above paragrap ts ~n ex . 

. . roach B definition in an explicit approach each d1fferen~e equation 
exp/z~1t appl ~ uJrnown and ~herefore can be solved explicitly for this unknow_n 

~;n:a;::i~~ifo:ard manner. Nothing could be simpler. ~his ex~Ii~it appr~:~~:~ 
further illustrated by the finite-difference module contamed w1thm th~ I I 
balloon in Fig. 4.7. Here, the module contains only one unknown at time eve 

n + I. 
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In regard to grid points 1 and 7 in Fig. 4.7, the marching solution of a 
parabolic partial differential equation presupposes the stipulation of boundary 
conditions. In regard to Fig. 4.7, this means that T1 and T7, which represent Tat the 
left and right boundaries, respectively, are known numbers at each time level, known 
from the stipulated boundary conditions. 

Equation (4.36) is not the only difference equation that can represent Eq. 
(3.28); in fact, it is only one of many different representations of the original partial 
differential equation. As a counterexample to the above discussion concerning the 
explicit approach, let us be somewhat daring and return to Eq. (3.28), this time 
writing the spatial difference on the right-hand side in terms of average properties 
between time levels n and n + 1. That is, we will represent Eq. (3.28) by 

Tn + I _ Tn l ( yn + I + Tn ) + l (-2 Tn + I _ 2 Tn) + l ( Tn + I + Tn ) 
I I = cl. 2 I+ I I+ I 2 I I 2 I - I I - I ( 4.40) 

lit (L\x)2 

The special type of differencing employed in Eq. (4.40) is called the Crank
Nicolson form. (Crank-Nicolson differencing is commonly used to solve problems 
governed by parabolic equations. In CFD, the Crank-Nicolson form, or modified 
versions of it, is used frequently for finite-difference solutions of the boundary-layer 
equations.) Examine Eq. ( 4.40) closely. The unknown T7 + 1 is not only expressed in 
terms of the known quantities at time level n, namely, T7 + 1, T7, and T7 _ 1, but also 
in terms of other unknown quantities at time level n + 1, namely, T7: / and Tt~ /_ 
In other words, Eq. (4.40) represents one equation with three unknowns, namely, 
T7ti', T7+ 1

, and T7!/. Hence, Eq. (4.40) applied at a given grid point i does not 
stand alone; it cannot by itselfresult in a solution for T7+ 1• Rather Eq. (4.40) must 
be written at all interior grid points, resulting in a system of algebraic equations from 
which the unknowns T7 + 1 for all i can be solved simultaneously. This is an example 
of an implicit approach. By definition, an implicit approach is one where the 
unknowns must be obtained by means of a simultaneous solution of the difference 
equations applied at all the grid points arrayed at a given time level. Because of this 
need to solve large systems of simultaneous algebraic equations, implicit methods 
are usually involved with the manipulations of large matrices. By now, it is easy to 
get the feeling that the implicit approach involves a more complex set of 
calculations than the explicit approach discussed earlier. In contrast to the simple 
explicit finite-difference module shown in Fig. 4. 7, the implicit module for Eq. 
(4.40) is sketched in Fig. 4.8, clearly delineating the three unknowns at level n + 1. 

Let us be more specific, using the seven-point spatial grid shown in Fig. 4.8 as 
an example. Equation ( 4.40) can be rearranged to display the unknowns on the left
hand side and the known numbers on the right-hand side. The result is 

1 +-- T. +--T. ~ yn + I _ [ cl. lit ] n + I cl. lit n + I 
2(Li_x)2 i- I (Li_x)2 1 l(L\x)2 1+ I 

n cl. lit ( n n n ) =-T ---2 r.+ 1 -2r. +r , 
1 2(11t) 1 1 1-

( 4.41) 
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FIG. 4.8 
An implicit finite-difference module. 

Simplifying the nomenclature by denoting the following quantities by A, B, and K;, 

cl. lit 
A---

- 2(11x)2 

cl. lit 
B= 1 +-

(11x)2 

K = _yn - c1. lit
2 

(yn+I -2Tt + Tr,) 
1 1 2(Ax) 1 

we can write Eq. (4.41) in the form 

ATn+l -Brn+I +Arn+I =K 
i-1 i 1+1 I 

(4.42) 

Note that K; in Eq. (4.42) consists of properties a~ time l~vel n, which are kno~. 
Hence, K; is a known number in Eq. (4.42). Retummg to Fig. 4.8, we now apply q. 

(4.42) sequentially to grid points 2 through 6. 

At grid point 2 : AT1 -BT2 +AT3 = K2 (4.43) 

Here we have dropped the superscript for convenience; it is eas~ to remember that 
r r and T represent three values at time level n + 1, and K2 ts a ~~wn numb~r 
at s~;ed bef~re. Moreover, because of the stipulated bound'.")' cond1t1ons at gnd 

oints 1 and 7, y
1 

in Eq. (4.43) is a known number. J:Ience, m E~. (4.43) ~e te_rm 
? 1 · th known T can be transferred to the nght-hand side, resultmg m mvo vmg e 1 

-BT2 +AT3 = K2 -AT1 (4.44) 

D t
. K AT by K' where K'

2 
is a known number, Eq. (4.44) is written as eno mg 2 - 1 2, 

-BT2 +AT3 = K; (4.45) 
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At grid point 3 : 

At grid point 4 : 

At grid point 5 : 

At grid point 6 : 

( 4.46) 

(4.47) 

(4.48) 

(4.49) 

In Eq. (4.49), since grid point 7 is on a boundary, T7 is known from the stipulated 
boundary condition. Hence, Eq. (4.49) can be rearranged as 

(4.50) 
where K~ is a known number. 

Equations (4.45) to (4.48) and (4.50) are five equations for the five unknowns 
T2, T3, T4, Ts, and T6 . This system of equations can be written in matrix form as 
follows. 

-B ... A ... 0 0 0 T2 K' ... ... 2 
A ... ---=s ... '"A ... 0 0 T3 K3 
0 ....... A ... --~B .......... A ... 0 T4 K4 ( 4.51) 
0 0 ...... ·A ... ---=s ......... ·A 

Ts Ks ... ... 
0 0 0 ... :4 ---=s T6 K' 6 

The coefficient matrix is a tridiagonal matrix, defined as having nonzero elements 
only along the three diagonals which are marked with the three dashed lines in Eq. 
(4.51). The solution of the system of equations denoted by Eq. (4.51) involves the 
manipulation of the tridiagonal arrangement; such solutions are usually obtained 
using Thomas' algorithm, which has become almost standard for the treatment of 
tridiagonal systems of equations. A description of this algorithm is given in App. A 
of this book; it will be handy when we discuss the applications in Part III. 

Clearly, on the basis of the above example, an implicit approach is more 
involved than an explicit approach. Also, this is not the whole story. The model 
equation we have chosen in this section, namely, Eq. (3.28), is a linear partial 
differential equation, and it leads to a linear difference equation, such as the forms 
given by Eqs. (4.37) and (4.40). On the other hand, what happens when the 
governing partial differential equation is nonlinear? For example, let us assume that 
the thermal diffusivity a in Eq. (3.28) is a function of temperature, i.e., we write 
from Eq. (3.28) 

fJT a2T 
8t = a(T) fJx2 (4.52) 

Equation (4.52) is now a nonlinear partial differential equation. This has virtually 
no effect on the explicit approach, where a difference equation can be written for Eq. 
(4.52), analogous to Eq. (4.37), as 

Tt + 
1 

= Tt + a(Tr) (:.:) 2 (I';\ 1 - 2Tt + I';n_ 1) (4.53) 
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Equation ( 4.53) is still linear in the single unknown T7 + 1, because a is evaluated ~t 
time level n; that is, a = a(T7), where T7 is a known nm_nber. On t~e o~her hand, if 
the Crank-Nicolson method is used for Eq. (4.52), the nght-hand-side 1s evaluated 
as an average between time levels n and n + l, resulting in a(T) being represented 
by l[a(Tn+I) + a(P)]. The resulting difference equation is given by Eq. (4.41), 

2 I l • h • b with the exception that now a is replaced everywhere m t at equation y 
l[a(T'.'+ 1

) + a(T'.')]. Clearly, the new difference equation involves products of 
2 1 ' . ( n+l)]Tn+I [ (Tn+l)]Tn+I d the dependent vanables, such as [ a T; ; , a . ; . ; + 1 , . an 
[a(T7+ 1)]T7~/. In other words, the resulting difference equat10n is~ nonlinear 
algebraic equation. An implicit solution would therefore de~and a s~multaneous 
solution of a large system of nonlinear equations-an exceptionall)'. difficult tas~. 
This is a tremendous disadvantage of an implicit approach. To c1rcumvent this 
problem, the difference equations are usually "linearized" i~ an approximate 
fashion. For example, if in Eq. (4.52) a is simply evaluated at time level n rather 
than an average between levels n and n + 1, then no nonlinear algebraic 
terms will appear in the difference equation; the resulting differen_ce equat~on 
will be identical to Eq. (4.31), with a evaluated as a(T7). Other lmearhzation 
ploys for implicit methods appropriate to the governing flow equations are 
discussed in Chap. 6. 

With the complexity of the implicit approach relative to the explicit 
approach in mind, the immediate question is: Why deal with the im~lici~ approach 
at all? Why not always use an explicit approach? Unfortmlately, hfe is not that 
simple. We have yet to mention the most important difference between the 
explicit and implicit approaches. Note that the increments i1x and ~t appear 
in all the above difference equations. For the explicit approach, once i1x is chosen, 
then !it is not an independent, arbitrary choice; rather, 11t is restricted to ~e equal 
to or less than a certain value prescribed by a stability criterion. If 11t is taken 
larger than the limit imposed by the stability criterion, the tim~-mar~hing 
procedure will quickly go unstable, and your computer program will qmckly 
shut down due to such things as numbers going to infinity or taking the s~ua~e 
root of a negative number. In many cases, !it must be very small t~ mamtam 
stability; this can result in long computer running times to make _c~lculati~n~ over a 
given interval of time. On the other hand, there are no _s~ch stability r~stn_ctions on 
an implicit approach. For most implicit method~, stabih~. can be ma~tamed over 
much larger values of !1t than for a correspondmg explicit method; mdeed, some 
implicit methods are unconditionally stable, meaning that any ~alu~ _of 11t, no 
manner how large, will yield a stable solution. Hence, for an implicit method, 
considerably fewer time steps are required to cover a given interval in time 
compared to an explicit method. Therefore, for some applications, ev~n tho~gh 
the implicit approach requires more computations per time st~p due to its rel~tlve 
complexity, the fact that considerably fewer time steps are requ1red to cover a given 
interval of time actually can result in a shorter run time on the computer compared 
to an explicit approach. . . . 

There is a downside to the large values of 11t allowable for implicit methods. 
To see this, we must recall that time marching in the context of CFO is used to 
accomplish one or the other of the following purposes: 



152 BASIC ASPECTS OF DISCRETIZATION 

1. To obtain a steady-state solution by means of assuming some arbitrary initial 
conditions for_a flow field, and then calculating the flow in steps of time, going 
out to a sufficiently large number of time steps until a final steady-state flow is 
approached at large values of time. In this situation, the final steady state is the 
desired result, and the time marching is simply a means to that end. The solution 
to the supersonic blunt body problem is a case in point, as discussed in Sec. 
3.4.4. 

2. To o?tain an accurate timewise solution of an inherently unsteady flow, such as 
the time-varying flow field over a pitching airfoil or the naturally unsteady flow 
patt~m that results for many separated flows. A case in point is the unsteady 
lammar separated flow over the airfoil shown in Fig. 1.3a, as discussed in Sec. 
1.2. (Go back for a moment and review the short discussion in Sec. 1.2 
associated with Fig. l .3a-it will help you to form a better impression of our 
current discussion.) 

In regard to item I above, the time-marching procedure does not have to be 
timewise-accurate; it only has to, by some means, ultimately approach the correct 
steady-state flow field. On the other hand, for item 2 above, timewise accuracy of 
the time-marching method is absolutely necessary-it is the time variation of the 
fl~w field that we want to solve. Here is where the downside of an implicit approach 
usmg a large value of lit enters our considerations. Clearly, as l':.t increases, so does 
the truncation error associated with the difference expression for the time derivative. 
In tum, an implicit method using large values of l':.t may not accurately define the 
timewise variation of the flow field. In this situation, the advantage of an implicit 
approach may be totally negated. 

So what does all this mean? It simply says that there are cases where the use of 
an explicit method makes the most sense and others where an implicit method is 
clear!~ the best choice. To help clarify this situation, the relative major advantages 
and disadvantages of these two approaches are summarized as follows. 

Explicit approach 

Advantage 

Disadvantage 
Relatively simple to set up and program. 

In terms of our above example, for a given Ax, l':.t must be less 
than some limit imposed by stability constraints. In some cases, 
l':.t must be very small to maintain stability; this can result in 
long computer running times to make calculations over a given 
interval of t. 

Implicit approach 

Advantage 

Disadvantage 

Stability can be maintained over much larger values of l':.t, hence 
using considerable fewer time steps to make calculations over a 
given interval of t. This results in less computer time. 

More complicated to set up and program. 

Disadvantage 

Disadvantage 
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Since massive matrix manipulations are usually required at each 
time step, the computer time per time step is much larger than in 
the explicit approach. 

Since large lit can be taken, the truncation error is large, and the 
use of implicit methods to follow the exact transients (time 
variations of the independent variable) may not be as accurate as 
an explicit approach. However, for a time-dependent solution in 
which the steady state is the desired result, this relative timewise 
inaccuracy is not important. 

During the period 1969 to about 1979, the vast majority of practical CFD solutions 
involving marching solutions (such as in the above example) employed explicit 
methods. Today, they are still the most straightforward methods for flow-field 
solutions. However, many of the more sophisticated CFD applications-those 
requiring very closely spaced grid points in some regions of the flow-would 
demand inordinately large computer running times due to the small marching step 
required. The calculation of high Reynolds number viscous flows, where extreme 
changes in the flow field occur close to a surface and therefore require many closely 
spaced points adjacent to the surface, is a case in point. This has made the advantage 
listed above for implicit methods very attractive, namely, the ability to use large 
marching steps even for a very fine grid. For this reason, implicit methods became 
the major focus of CFD applications in the 1980s. However, today there is an 
enhancement in computer architecture that may shift the emphasis back to explicit 
solutions, namely, the development of massively parallel processor computers such 
as the connection machine. (Recall the discussion on different types of modem 
computers in Sec. 1.5.) For such massively parallel processors, explicit calculations 
can be made at thousands of grid points in the flow all at the same instant on the 
computer. Indeed, such computers are tailor-made for explicit methods. Again, in 
retrospect, the choice between the explicit or the implicit approach for the solution 
of a given problem is not always clear; when faced with such a choice, you will have 
to use your best judgment. Our purpose in the present section has simply been to 
define the general nature of the two approaches and to constrast some of the 
advantages and disadvantages of both. 

Finally, we note that the discussion in this section, although couched in terms 
of the finite-difference method, is certainly not limited to that method. Finite
volume methods also fall under the same classification; there are explicit finite
volume techniques, and there are implicit finite-volume techniques. The distinc
tions, advantages, and disadvantages are exactly the same as discussed throughout 
this section. 

4.5 ERRORS AND AN ANALYSIS OF 
STABILITY 

Some ramifications of the stability behavior of numerical solutions were raised in 
Sec. 4.4 in conjunction with explicit methods. There, we stated that such methods 
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would be numerically unstable if the increment in the marching direction (L1t in our 
previous discussion) exceeded some prescribed value. The prescription for this 
maximum allowable value comes, in principle, from a formal stability analysis of 
the governing equations in finite-difference form. An exact stability analysis of the 
difference representation of the nonlinear Euler or Navier-Stokes equations does not 
exist. However, there are simplified approaches applied to simpler model equations 
which can provide some reasonable guidance. In this author's opinion, rigorous 
stability analyses of numerical methods is the purview of applied mathematics; it is 
certainly outside the scope of the present book. However, it is important for workers 
in CFO to have some appreciation of the nature of stability analyses and the results 
obtained therein. This can be achieved by discussing a simple, approximate analysis 
for a linear "model" equation. Such is the purpose of the present section. 

Note: The stability analyses described in the following discussions are 
applied to specific difference equations, and hence the results pertain directly to 
those specific equations. In this sense, you might consider the remainder of Sec. 4.5 
as a sequence of a few, rather extended, worked examples. However, these examples 
reflect an approach which is more general than might appear at first. Therefore, we 
will direct your attention to the forest as well as the trees. 

For our model equation, we continue to choose the one-dimensional heat 
conduction equation, namely, Eq. (3.28) repeated below: 

ar &r 
at = ct. 8x2 (3.28) 

and for the difference representation of this equation we again choose the explicit 
form given by Eq. (4.36), also repeated below: 

Tt+' - Tt _ r:t.(Tt+i -2Tt + Tt_ 1) 

L1t (&)2 
(4.36) 

What is this matter of stability all about? What is it that makes a given 
calculation go unstable? By the time you reach the end of this section, it is hoped 
that you will have a better idea about the answers to these questions. The answers 
are, for the most part, dependent upon the concept of numerical errors that are 
generated throughout the course of a given calculation and, more to the point, the 
way that these errors are propagated from one marching step to the next. Simply 
stated, if a given numerical error is amplified in going from one step to the next, then 
the calculation will become unstable; if the error does not grow, and especially if it 
decreases from one step to another, then the calculation usually has a stable 
behavior. Therefore, a consideration of stability must first be prefaced by a 
discussion on numerical errors-what they are and what they are like. Let us 
proceed with such a discussion. 

Consider a partial differential equation, such as, for example, Eq. (3.28), given 
above. The numerical solution of this equation is influenced by two sources of error: 

Discretization error, the difference between the exact analytical solution of the 
partial differential equation [for example, Eq. (3.28)) and the exact (round-off-free) 
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solution of the corresponding difference equation [for example, Eq. (4.36)). From 
our discussion in Sec. 4.3, the discretization error is simply the truncation error for 
the difference equation plus any errors introduced by the numerical treatment of the 
boundary conditions. 

Round-off error, the numerical error introduced after a repetitive number of 
calculations in which the computer is constantly rounding the numbers to some 
significant figure. 

If we let 

then 

A = analytical solution of partial differential equation 

D = exact solution of difference equation 

N = numerical solution from a real computer with finite accuracy 

Discretization error = A - D 

Round-off error = E = N - D 

From Eq. (4.54), we can write 

(4.54) 

( 4.55) 

where, again, E is the round-off error, which for the remainder of our discussion in 
this section we will simply call error for brevity. The numerical solution N must 
satisfy the difference equation. This is because the computer is programmed to solve 
the difference equation; in our example, the computer is programmed to solve Eq. 
(4.36), albeit the answer comes out with a round-off error cranked in. Hence from 
Eq. (4.36), 

nn+ I+ En+ I _ Dn _ En 
l l l l 

ct. L1t 

D7+1 +E7+, -2D7-2E7+D7_, +E7_, 

(&)2 
(4.56) 

By definition, D is the exact solution of the difference equation; hence it exactly 
satisfies the difference equation. Thus, we can write 

D7+1 - 2D7 +D7_, 

(&)2 

Subtracting Eq. (4.57) from (4.56), we have 

E7 + I - €7 E7 + I - 2E7 + E7 - I 

ct. L1t (&)2 

( 4.57) 

(4.58) 

From Eq. (4.58), we see that the error E also satisfies the difference equation. 
We now consider aspects of the stability of the difference equation, Eq. (4.36). 

If errors E; are already present at some stage of the solution of this equation ( as they 
always are in any real computer solution), then the solution will be stable if the E;'s 
shrink, or at best stay the same, as the solution progresses from step n to n + 1; on 
the other hand, if the E; 's grow larger during the progression of the solution from 
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X 

FIG. 4.9 
Schematic of the variation of round-off error as a function of x. 

steps n to n + I, then the solution is unstable. That is, for a solution to be stable, 

I 
(n + I I -'~ < 1 

n -
E; 

(4.59) 

For Eq. (4.36), let us examine under what conditions Eq. (4.59) holds. 
First of all, we need to examine how the round-off error looks. For the 

unsteady, one-dimensional problem exemplified by Eq. (3.28), the round-off error 
can be plotted versus x at any given time step. For example, one such representation 
is sketched in Fig. 4.9. Here, we assume that the length of the domain on which the 
equation is being solved is denoted by L. For convenience later on we place the 
origin at the midpoint of the domain; hence the left boundary is located at - L /2 and 
the right boundary is at + L 12. The distribution of E along the x axis is represented 
by the rather random variation sketched in Fig. 4.9. Note that E = 0 at x = -L/2 
and L /2, because there are specified boundary values at both ends of the domain, 
ud hence no error is introduced~the boundary values are always fed in as exact, 
kn ~wn numbers. At any given time, the random variation of E with x in Fig. 4.9 can 
be expressed analytically by a Fourier series as follows: 

l(x) = I:AmeikmX (4.60) 
m 

Equation ( 4.60) represents both a sme and a cosine senes, since 
eikmx = cos kmX + i sin kmX. Here, km is called the wave number. The real part 
of Eq. (4.60) represents the error. Before proceeding further, let us examine the 
meaning of the wave number. For simplicity, consider just the sine function plotted 
as a function of x as shown in Fig. 4.10. By definition, the wavelength Jc is the 
interval over x encompassing one complete wavelength, as sketched in Fig. 4.10. 
Therefore, a form of this sine function which may seem more familiar to you is 

. 2nx ( ) y = sm--y 4.61 

In the wave number notation, this would be written as 

y = sinkmx (4.62) 
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FIG. 4.10 
Sine function. 
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(b) 

FIG. 4.11 
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Sine functions. (a) Wavelength is L. (b) Wavelength is L/2. 

Comparing Eqs. (4.61) and (4.62), clearly the wave number is given by 

k _ 2n 
m - Jc (4.63) 

In Eq. (4.60), the wave number km is written with a subscript m. It remains to_explain 
the meaning of m. This is related to the number of waves that are fitted 1~s1d~ a 
given interval. Consider an interval along the x axis of length L, a~ sketched m F1~. 
4.11. If one sine wave is completely fitted within this interval, its wavelength 1s 
)c = L, as shown in Fig. 4.1 la. This sine wave is expressed by Eq. (4.62), where km 
is defined by Eq. (4.63). For this case, since A = L, then km is given by km = 2n/L. 
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Now examine the case of two sine waves fitted within the interval L, as sketched in 
Fig. 4.1 lb. The wavelength of the new sine waves in Fig. 4.1 lb is ), = L/2. The 
equation of these waves is given by 

y = sinkmx 

where now km = 2nl(L/2) = (2n!L)2. Extrapolating this thinking, if three waves 
were fitted within the interval L, then km = (2n!L)3, and so forth. Therefore, we can 
write the wave number for these various sine waves of different wavelengths as 

m=l,2,3, (4.64) 

This illustrates the meaning of the subscript m on the wave number; it is simply 
equal to the number of waves fitted into the given interval L. Clearly, from Eq. 
(4.64), the wave number itself is proportional to the number of waves in a given 
interval; the higher the wave number for a given L, the more waves we have fitted 
inside the interval. 

We are now in a better position to understand the significance of Eq. (4.60), 
where the summation over m denotes the sequential addition of sine and cosine 
functions with sequentially increasing wave numbers. That is, Eq. (4.60) is a sum of 
terms, each representing a higher harmonic. When taken out for an infinite number 
of terms, Eq. ( 4.60) can represent a continuous variation off as a function of x, as 
sketched in Fig. 4.9. However, in regard to a practical numerical solution which 
involves only a finite number of grid points, there is a constraint imposed on the 
number of terms in Eq. (4.60). To see this more clearly, consider Fig. 4.12, which 
shows the interval L over which the numerical calculations are being made. The 
largest allowable wavelength is Amax = L; this is the wavelength for the first term in 
Eq. (4.60) and corresponds tom = I. In tum, the smallest possible wavelength is 
that having all three zeros of the sine ( or cosine) function going through three 
adjacent grid points, as shown in Fig. 4.12. Hence, the smallest allowable 
wavelength is Amin= 2fu. If there are N + I grid points distributed over the 
interval L, then there are N intervals between these grid points, and hence fu = LIN. 

. 
Am;, = 2'1x I 

--· --Am., =L ---... 

FIG. 4.12 
Illustration of maximum and minimum wavelengths for the Fourier components of the round-off error. 
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Thus, ),min= 2LIN. From Eq. (4.63), 
2n 2n N 

km= 2L/N=L2 
(4.65) 

Comparing Eqs. (4.64) and (4.65), we see that m in Eq. (4.65) is equal to N/2. This 
is the highest-order harmonic allowable in Eq. (4.60). Hence, from Eq. (4.60), we 
have, for a grid with N + I grid points, 

N/2 

i:(x) = L Ameikmx (4.66) 

m=I 

We are not finished with the representation of the round-off error. Equation 
(4.66) gives the spatial variation at a given time level n. From Eq. (4.59), for an 
assessment of numerical stability, we are interested in the variation off with time. 
Therefore, we extend Eq. (4.66) by assuming the amplitude Am is a function of time. 

N/2 

i:(x, t) = L Am(t)eikmx (4.67) 

m=I 

Moreover, it is reasonable to assume an exponential variation with time; errors tend 
to grow or diminish exponentially with time. Therefore, we write 

N/2 

i:(x, t) = I: e"/ eikmx ( 4.68) 

m=I 

where a is a constant (which may take on different values for different m's). 
Equation (4.68) represents a final, reasonable form for the variation of round-off 
error in both space and time. 

After all this work to construct f in terms of a truncated Fourier series with 
amplitudes exponentially varying with time, we now make the following observa
tion. Since the original difference equation, Eq. (4.36), is linear and since the round
off error satisfies the same difference equation as proven by Eq. (4.58), then when 
Eq. (4.68) is substituted into Eq. (4.58), the behavior of each term ofth~ series is t?e 
same as the series itself. Hence, let us deal with just one term of the sen es and wnte 

(4.69) 

The stability characteristics can be studied using just this form for f with no loss in 
generality. The value of our discussion leading to the more general form for f given 
by Eq. ( 4.68) is to tell us what we are really dealing with in terms of the round-off 
error and to allow us to make the observation embodied in Eq. ( 4.69). Let us now 
proceed to find out how i: varies in steps of time and therefore to find out what 
conditions on !J.t are necessary such that Eq. (4.59) is satisfied. 

To begin with, substitute Eq. (4.69) into Eq. (4.58). 

(!'(t+/:,.t)eikmX _ eateikmx e"tikm(x+fu) _ 2eateikmX + e"leikm(x-fu) 
(4.70) 
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Divide Eq. (4.70) by eate;kmx. 

~flt -1 

(1. dt 

(!km llx _ 2 + e-ikm llx 

(&)2 

or eaflt = 1 + (::/
2 

(eikmllx + e-ikmllx _ 2) 

Recalling the identity 

Eq. (4.71) can be written as 

fl 2a ll.t 
ea t = 1 +--2 [cos (km&) - l] 

(&) 
Recalling another trigonometric identity 

• 2 km & 1 - COS (km &) 
sm -- = ----'------'-

2 2 

Eq. ( 4. 72) becomes finally 

From Eq. (4.73), 

ea flt = 1 - 4a M sin2 km & 
(&)2 2 

i:'!+ I 
I 

i:'! 
I 

Combining Eqs. (4.59), (4.73), and (4.74), we have 

I 
tf + 

1 I - / a flt / _ l 4a dt . 2 km & - e - - -- sm -- <_ 1 
t? (&)2 2 

(4.71) 

(4.72) 

(4.73) 

(4.74) 

(4.75) 

Equation (4.75) must be satisfied to have a stable solution, as dictated by Eq. (4.59). 
In Eq. (4.75) the factor 

1 - 4a M sin2 km & = G 
(&)2 2 

is called the amplifi~ation factor and is denoted by G. Evaluating the inequality in 
Eq. (4.75), namely, G :S 1, we have two possible situations which must hold 
simultaneously: 

1. 1 
4a M . 2 km & 

---sm --< 1 & 2 -
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Thus 

4a dt . 2 km & 
--sm -->O & 2 - (4.76) 

Since 4a dt/(&)2 is always positive, the condition expressed in Eq. (4.76) 
always holds. 

2. 

Thus 

4a dt . 2 km & 
l - -- sm -- > -1 & 2 -

4a dt . 2 km & 
--sm ---1<1 & 2 ~ 

For the above condition to hold, 

a !J.t 1 
--<
(&)2 - 2 

(4.77) 

Equation (4.77) gives the stability requirement for the solution of the difference 
equation, Eq. (4.36), to be stable. Clearly, for a given &, the allowed value of !J.t 
must be small enough to satisfy Eq. (4.77). Here is a stunning example of the 
limitation placed on the marching variable by stability considerations for explicit 
finite-difference models. As long as a !J.t/(&)2 :S !, the error will not grow for 
subsequent marching steps in t, and the numerical solution will proceed in a stable 
manner. On the other hand, if a M/(&)2 > !, then the error will progressively 
become larger and will eventually cause the numerical marching solution to "blow 
up" on the computer. 

The above analysis is an example of a general method called the van Neumann 
stability method, which is used frequently to study the stability properties of linear 
difference equations. 

The exact form of the stability criterion depends on the form of the difference 
equation. For example, let us briefly examine the stability characteristics of another 
simple equation, this time a hyperbolic equation. Consider the first-order wave 
equation (see Prob. 3.5): 

OU OU 
-+c-=0 
ot ox 

Let us replace the spatial derivative with a central difference. 

ou u7 + 1 - u7 _ 1 

ox 2& 

(4.78) 

(4.79) 

Ifwe replace the time derivative with a simple forward difference, then the resulting 
difference equation representing Eq. (4.78) would be 

(4.80) 
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This i~ about as simple a difference equation as can be obtained from Eq. ( 4. 78); it is 
sometimes called the Euler explicit form. However, the application of the von 
Neumann stability analysis to Eq. (4.80) shows that Eq. (4.80) leads to an unstable 
solution no matter what the value of lit is-Eq. (4.80) is therefore called 
unconditionally unstable. Instead, let us replace the time derivative with a 
fir~t-order difference, where u(t) is represented by an average value between grid 
pomts i + I and i - I, i.e., 

Then 

,:i n+I I ( n + n ) '!.!'__ - U; - 2 U i + I U i - I 

at lit ( 4.81) 

Substituting Eqs. (4.79) and (4.81) into (4.78), we have 

Un + n At n n 
n + I _ i + I U; - I Ll U; + I - U; - I u - - c- ------'---C_ 

I 2 l1x 2 (4.82) 

The _differe~cin~ us~d in the above equation, where Eq. (4.81) is used to represent 
the time denvahve, 1s called the Lax method, after the mathematician Peter Lax who 
first proposed it. If we now assume an error of the form lm(x, t) = ea1dkmt as done 
previously and substitute this form in Eq. (4.82), the amplification factor becomes 

eat= cos (km !ix) - iCsin (km !ix) (4.83) 

where C = c lit! /ix. The stability requirement is f eat f ::; I, which when applied to 
Eq. (4.83) yields 

(4.84) 

In Eq. (4.84), C is called the Courant number. This equation says that lit::; /ix/c for 
the numerical solution of Eq. (4.82) to be stable. Moreover, Eq. (4.84) is called the 
Courant-Friedrichs-Lewy condition, generally written as the CFL condition. It is an 
important stability criterion for hyperbolic equations. The CFL condition dates back 
to 1928; the original work can be found in Ref. 25. 

The CFL condition, i.e., the Courant number must be less than or at most 
equal to unity, is also the stability condition which holds for the second-order wave 
equation (see Prob. 3.4), 

a2u 2 8
2u 

-=c-
at2 ax2 (4.85) 

There is a connection between the characteristic lines associated with Eq. ( 4.85) and 
the CFL condition, a connection which helps to elucidate the physical significance 
of the CFL condition. Let us pursue this connection. These characteristic lines (see 
Sec. 3.2) for Eq. (4.85) are given by 

{ 
ct x-
-ct 

(right-running) 
(left-running) 

(4.86a) 
(4.86b) 
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and are sketched in Fig. 4.13a and b. In both parts of Fig. 4.13 let point b be the 
intersection of the right-running characteristic through grid point i - 1 and the left
running characteristic through grid point i + I. However, point b, determined by the 
intersection of characteristic lines through grid points i - I and i + I, also has a 
slightly different significance--one associated with the CFL stability condition, 
which states that, at most, the Courant number C = I . To see this more clearly, let 
lite~ 1 denote the value of lit given by Eq. (4.84) when C = I. Then, from Eq. 
(4.84), 

l1x 
litc=I = -

C 

b 

{
. - - - - - - - - - - - - - - - - -

{ 
---------- --

!J.tC=I 

Atc<1 

t 

C<l 
Stable 

FIG. 4.13 

i-1 i 
~ 

Ax 

i+l 

'----------------- X 

e 

(a) 

d 

i-1 
~ 

Ax 

i+l f 

'----------------- X 

(b) 

(4.87) 

(a) Illustration of a stable case. The numerical domain includes all the analytical domain. ( b) Illustration 
of an unstable case. The numerical domain does not include all the analytical domain. 
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If in Fig. 4. _I 3a and b we move a distance '1tc=I directly above grid point i, we find 
o~rselves directly on top of point b. This is because from the characteristic line 
given by Eqs. (4.86a) and (4.86b) s 

L1x 
.1t = ±

c (4.88) 

Obv_iously, the inc:ement .1t in Eq. (4.87), having to do with the CFL condition, and 
t?e mcrement .1t m Eq. (4.88), having to do with the intersection of characteristic 
Imes, are the same values: since the right-hand sides ofEqs. (4.87) and (4.88) are the 
s~me. Therefore, '1tc= 1 1s exactly the distance between point b and grid point i in 
Fig. 4.13a and b. Now assume that C < 1, which pertains to the sketch in Fig. 
4.13a. Then from E~. (4._84), _'1tc< 1 <Mc=,, as shown in Fig. 4.13a. Let point d 
correspond to the gnd pomt directly above point i existing at time t + .1t s· 

· · C< I· mce 
~ropert1e_s at po1~t d a:e calculated n~merically from the difference equation using 
1~formatlon at gnd ~om~s 1 - I and 1 + 1, the numerical domain for point d is the 
t~angle ~de s?own m Fig. 4.13a. The analytical domain for point d is the shaded 
tnangle ~n. Fig. 4.13a, defined by the characteristics through point d. These 
charac~enshcs a~e parall~l to those through point b. Note that in Fig. 4.13a, the 
numencal domam of pomt d includes the analytical domain. In contrast consider 
the case shown in Fig .. 4.I~b. Here, C > 1. Then, from E~. (4.84), 
'1tc>1 ~ '1t~'=1,_as shown m Fig. 4.13b. Let point din Fig. 4.13b correspond 
to ~he gnd pomt directly abo~e point i existin~ at time t + '1tc > 1• Since properties at 
po_mt d ~re c_alculated n~mencally from the difference equation using information at 
gnd po_mts. 1 - 1 and 1 + 1, th~ numerical domain for point d is the triangle adc 
shown m Fig. 4.13b. The analyt~c~l domain for point dis the shaded triangle in Fig. 
4.13b,. defined ~y the chara~tenstics through point d. Note that in Fig. 4.13b, the 
~umencal domai_n does not mclude all the analytical domain. Moreover, Fig. 4.13b 
1s fo~ C ~ 1, wh1ch_leads to unstable behavior. Therefore, we can give the following 
physical mterpretahon of the CFL condition: 

For stability, the numerical domain must include all the analytical domain. 

. Th~ above _cons_iderations dealt with stability. The question of accuracy, which 
1s sometJm_es qmte different, can also be examined from the point of view of Fig. 
4.13. Consider a stabl_e cas~, as shown in Fig. 4.13a. Note that the analytical domain 
?f dependence for pomt d 1s the shaded triangle in Fig. 4.13a. From our discussion 
m Chap. 3, th_e properties at point d theoretically depend only on those points within 
the sha~ed tnangle. ~owever, note that the numerical grid points i - 1 and i + 1 
~re outside the domam of dependence for point d and hence theoretically should not 
mfluern~e the pr~perties at point d. On the other hand, the numerical calculation of 
p_rope_rtie~ at pomt d takes information from grid points i - I and i + I. This 
situation 1s exacerbated when '1tc < 1 is chosen to be very small .1t ,,,,,, At 
I th· 'C<1,,L.1c=1· 
_n 1s case, even though t~e calculations are stable, the results may be quite 
inaccurate du~ to the large mismatch between the domain of dependence of point d 
and the location of the actual numerical data used to calculate properties at d. 
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In light of the above discussion, we conclude that the Courant number must be 
equal to or less than unity for stability, C ::; 1, but at the same time it is desirable to 
have C as close to unity as possible for accuracy. 

4.5.1. Stability Analysis: A Broader Perspective 

The preceding discussion focused on the behavior of errors as a means to analyze 
the stability characteristics of a given difference equation; in particular, the behavior 
of the round-off error f, as defined in Eq. (4.55), was studied. This might leave the 
incorrect impression that if we had a perfect computer with no round-off error, then 
there would be no instabilities. Such is not the case. The general concept of 
numerical stability is, in reality, based on the timewise behavior of the solution 
itself; it does not inherently depend on the behavior of the round-off error per se. For 
example, instead of considering Eq. (4.60), we could set up a more general von 
Neumann analysis where the solution itself is written as a Fourier series as follows: 

(4.89) 
m 

where Vm is the amplitude of the mth harmonic of the solution. In tum, the 
amplification factor is written as 

For stability I G I ::; 1. 

vn+I 
G=-m

vn 
m 

(4.90) 

This, and other considerations of stability, are left for your future studies. Our 
purpose here has been simply to introduce you to the basic thought that stability 
considerations are important to CFD and to give you some idea, no matter how 
incomplete, how these considerations can be approached. 

4.6 SUMMARY 

"Discretization" has been the key word in the present chapter. We have seen how to 
discretize partial differential equations, including the governing flow equations. 
Such discretization is the foundation of finite-difference methods. In addition, via 
Problem 4.7, you will see how to discretize the governing flow equations in integral 
form. Such discretization is the foundation of finite-volume methods. Both finite
difference and finite-volume methods abound in CFD. However, keep in mind that 
the discretizations discussed in this chapter are simply tools; they do not by 
themselves constitute any specific technique for the solution of a given flow 
problem. A CFD technique is defined by what tools we choose for a solution, how 
and in what sequence we use these tools to pursue a solution, and how we handle the 
boundary conditions. Some techniques that have been popular in CFD are discussed 
in Chap. 6, and applications of these techniques to some classic fluid flow problems 
are illustrated in detail in Part III of this book. On the other hand, in the present 
chapter we have touched on a few important aspects of CFD techniques without 
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detailing the techniques themselves. For example, we have noted that any CFD 
technique falls within one or the other of two general categories, explicit approaches 
or implicit approaches. We have discussed to some extent just what we mean by 
explicit and implicit approaches. Furthermore, we have touched on the stability 
aspects of these approaches and have examined the von Neumann stability analysis 
which gives us some insight to the stability restrictions and stability criterion for 
explicit methods. So with this chapter we have taken a giant step in the world of 
CFD. 

Before progressing further, return to Fig. 4.2, the road map for this chapter, 
and make certain that you feel comfortable with the material which constitutes each 
block in this road map. Note that we have emphasized the finite-difference method 
and have chosen not to address the finite-volume or finite-element methods. Finite
element methods are still not used to any great extent in CFD; finite-difference and 
finite-volume methods account for about 95 percent of all practical CFD solutions. 
In time, this situation may change. We note that the situation is reversed in structural 
mechanics, when the numerical method of choice is almost always the finite
element method. The road map in Fig. 4.2 also emphasizes that the matters of 
implicit versus explicit methods, as well as matters of stability, are common to both 
the finite-difference and finite-volume methods. 

Finally, we note that we are not quite ready to go directly to a discussion of 
CFD techniques. There remains one item of unfinished business, namely, the 
aspects of grid generation and the necessary transformations which it entails. This is 
the subject of the next chapter. 

GUIDEPOST 

We have reached the stage where you have enough information to actually set up a 
meaningful calculation for certain types of flows. This guidepost is intended for those of you 
who want to get on the fast track toward "getting your hands dirty" with an actual computer 
project. For those of you who want to add more depth to your background in CPD before 
tackling a computer project, simply continue to read on. We will delve into the matters of grid 
generation and transformation in the next chapter-very important material for the application 
discussed in Chap. 8. However, for those of you who are really tired of reading at this stage 
and want to work on a computer project, the following guidepost is suggested. This guidepost 
will take you through implicit and t:xplicit solutions of a special incompressible viscous flow 
problem: Couette flow. To carry through this application, you need essentially no more 
information than you already have. Therefore, 

Go to Secs. 9.1 to 
9.3, Couette flow solution -> 

(implicit). 

Then go to 
Prob. 9.1, explicit 

solution of Couette flow. 

The flow of information associated with the above guidepost is diagrammed in Fig. 1.32a, 
which you should briefly reexan1ine at this time. Note that only a few essential aspects are 
being driven home with this excursion, essentially only those associated with implicit and 
explicit finite-difference philosophies. 
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There is yet another but more lengthy option that you can take from here. Another 
guidepost will take you through an explicit, time-marching solution of~e Euler equa~ions for 
a quasi-one-dimensional nozzle flow. This excursion is more demandmg of your time, but 
again it gives you an opportunity to tackle a computer project with essentially the information 

you now have. Therefore, 

Go to Sec. 6.3, 
MacCormacks 's -> 

technique. 

Then go to Sec. 7. I to 7.4, the 
computer solution of isentropic 

subsonic and supersonic nozzle flows. 

The flow of information associated with the above guidepost is diagramed in Fig. 1.32b, which 
you should briefly reexamine at this time. Note that the essential aspects being driven home are 
those of time-marching finite-difference solutions, some of which involve the concept of 

artificial viscosity. 
Should you choose to undertake either or both of these computer projects at this stage, 

make certain after you are finished to return to the point we are at now and continue with your 
general reading in CPD. We will move on to the subject of grid generation in Chap. 5 and then 
cover a number of different CPD techniques in Chap. 6. 

PROBLEMS 
4.1. Using Taylor's series, derive first-order forward-difference and rearward-difference 

expressions for 8u!&y. 
4.2. Using Taylor's series, derive the second-order central difference for 8ul&y. 
4.3. Consider the function <P (x, y) = e' + eY. Consider the point (x, y) = (I, 1). 

(a) Calculate the exact values of 8<Pl8x and 8</J!&y at this point. 
(b) Use first-order forward differences, with Ax= Liy = 0.1, to calculat_e approximate 

values of 8<JJl8x and 8</Jl&y at point ( 1, 1 ). Calculate the percentage difference when 
compared with the exact values from part (a). 

(c) Use first-order rearward differences, with Ax= Liy = 0.1, to calculate approximate 
values of 8<jJ/8x and 8</Jl&y at point ( 1, 1 ). Calculate the percentage difference when 
compared with the exact values from part (a). 

(d) Use second-order central differences, with Ax = Liy = 0.1, to calculate approx
imate values for 8<jJ!8x and 8</J!&y at point (1, 1). Calculate the percentage 
difference when compared with the exact value from part (a). 

4.4. Repeat Prob. 4.3, but with Ax = Liy = 0.01. Compare the accuracy of the finite
difference results obtained here with those obtained in Prob. 4.3. 

4.5. Derive Eq. (4.18). 
4.6. Derive the following expression, which is a third-order-accurate one-sided difference. 

(: },J = 
6
:y ( -1 I u;,J + I 8u;,J + 1 - 9u;,J+2 + 2u;,J+3) 

4.7. Derive a discretized form of the generic integral form of the continuity, momentum, and 
energy equations obtained in Prob. 2.2. This discretized form is the essence of the finite 
volume approach. 



CHAPTER 

5 
GRIDS 
WITH 
APPROPRIATE 
TRANSFORMATIONS 

The area of numerical grid generation is relatively 
young in practice, although its roots in 
mathematics are old. This somewhat eclectic 
area involves the engineer's feel for physical 
behavior, the mathematician's understanding of 
functional behavior, and a lot of imagination, with 
perhaps a little help from Urania. 

Joe F. Thompson, Z. V A. Warsi, and C. Wayne Mastin, 
from Numerical Grid Generation, North-Holland, 
New York, 1985 

5.1 INTRODUCTION 

Think about the finite-difference approach discussed in Chap. 4; it requires that 
calculations be made over a collection of discrete grid points. The arrangement of 
these discrete points throughout the flow field is simply called a grid. The 
determination of a proper grid for the flow over or though a given geometric 
shape is a serious matter--one that is by no means trivial. The way that such a grid 
is determined is called grid generation. The matter of grid generation is a significant 
consideration in CFD; the type of grid you choose for a given problem can make or 
break the numerical solution. Because of this, grid generation has become an entity 
by itself in CFD; it is the subject of numerous special conferences, as well as several 
books (see Refs. 26 and 27). 

The generation of an appropriate grid or mesh is one thing; the solution of the 
governing flow equations over such a grid is quite another thing. Assume that (for 
reasons to be discussed later) we construct a nonuniform grid in our flow field. We 
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have seen in Sec. 4.2 that the standard finite-difference approach requires a uniform 
grid. We do not have a direct way of numerically solving the governing flow 
equations over a nonuniform grid within the context of a finite-difference method. 
Instead, the nonuniform grid must (somehow) be transformed into a uniform, 
rectangular grid. Moreover, along with this transformation, the governing partial 
differential equations must be recast so as to apply in this transformed, rectangular 
grid. Since the need for such grid transformations is inherent in the finite-difference 
method, then much of what we have to say in this chapter concerning the 
transformation of the governing partial differential equations pertains just to that 
method. Let us proceed accordingly. 

If all CFD applications dealt with physical problems where a uniform, 
rectangular grid could be used in the physical plane, there would be no reason 
to alter the governing partial differential equations derived in Chap. 2. We would 
simply apply these equations in rectangular (x, y, z, t) space, finite difference these 
equations according to the difference quotients derived in Sec. 4.2 and 4.3, and 
calculate away, using uniform values of Ax, i1y, &, and i1t. However, few real 
problems are ever so accommodating. For example, assume we wish to calculate the 
flow over an airfoil, as sketched in Fig. 5.1. In Fig. 5.1, we have placed the airfoil in 
a rectangular grid. Note the problems with this rectangular grid: 

1. Some grid points fall inside the airfoil, where they are completely out of the flow. 
What values of the flow properties do we ascribe to these points? 

2. There are few, if any, grid points that fall on the surface of the airfoil. This is not 
good, because the airfoil surface is a vital boundary condition for the determi
nation of the flow, and hence the airfoil surface must be clearly and strongly seen 
by the numerical solution. 

y 

_.-
--<I- - - - - .. - - - - - t - -

~ ~ I • ... - -, -

X 

FIG. 5.1 
An airfoil in a purely rectangular grid. 
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As a result, we can conclude that the rectangular grid in Fig. 5.1 is not appropriate 
for the solution of the flow field. In contrast, a grid that is appropriate is sketched in 
Fig. 5.2a. Here we see a nonuniform, curvilinear grid which is literally wrapped 
around the airfoil. New coordinate lines ~ and '1 are defined such that the airfoil 
surface becomes a coordinate line, '1 = constant. This is called a boundary-fitted 
coordinate system, and will be discussed in detail in Sec. 5. 7. The important point is 
that grid points naturally fall on the airfoil surface, as shown in Fig. 5.2a. What is 
equally important is that, in the physical space shown in Fig. 5.2a, the grid is not 
rectangular and is not uniformly spaced. As a consequence, the conventional 
difference quotients are difficult to use. What must be done is to transform the 
curvilinear grid in physical space to a rectangular grid in terms of~ and '1· This is 

(a) 'L 
X 

Tj 

C 

a b 

(b) 

FIG. 5.2 
Schematic of a boundary-fitted coordinate system. (a) Physical plane; (b) computational plane. 
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shown in Fig. 5.2b, which illustrates a rectangular grid in terms of~ and IJ. The 
rectangular grid shown in Fig. 5.2b is called the computational plane. The 
transformation must be defined such that there is a one-to-one correspondence 
between the rectangular grid in Fig. 5.2b and the curvilinear grid in Fig. 5.2a, called 
the physical plane. For example, points a, b, and c in the physical plane (Fig. 5.2a) 
correspond to points a, b, and c in the computational plane, which involves uniform 
~~ and uniform ~'1- The governing partial differential equations are s0lved by a 
finite-difference method carried out in the computational space (Fig. 5.2b). Then the 
computed information is directly carried back to the physical plane via the one-to
one correspondence of grid points. Moreover, when the governing equations are 
solved in the computational space, they must be expressed in terms of the variables 
~ and '1 rather than of x and y. That is, the governing equations must be transformed 
from (x, y) to (~, r,) as the new independent variables. 

The purpose of this chapter is to first describe the general transformation of 
the governing partial differential equations between the physical plane and the 
computational plane. Following this, various specific grids will be discussed. As 
stated earlier, this material is an example of a very active area of CFD research 
called grid generation. In this sense, we can only scratch the surface of activity in 
the present chapter; however, what is presented in this chapter is sufficient to give 
you the basic ideas and philosophy of grid generation and how it relates to the 
overall, larger picture of CFD in general. 

The road map for this chapter is presented in Fig. 5.3. The general aspects of 
the transformation process are reflected in the left column of boxes, all of which 
then feed into the grid generation process reflected in the right column of boxes. We 
now proceed to examine what is meant by the derivative transformation in the next 
section; i.e., we proceed to the first box in the left-hand column. 

5.2 GENERAL TRANSFORMATION OF THE 
EQUATIONS 

For simplicity, we will consider a two-dimensional unsteady flow, with independent 
variables x, y, and t; the results for a three-dimensional unsteady flow, with 
independent variables x, y, z, and t, are analogous and simply involve more terms. 

We will transform the independent variables in physical space (x, y, t) to a new 
set of independent variables in transformed space (~, '1, t), where 

~ = ~(x, y, t) 

'1 = 11(x, Y, t) 
't = t(t) 

(5.la) 

(5.lb) 

(5.lc) 

Equations (5.la) to (5.lc) represent the transformation. For the time being, the 
transformation is written in generic form; for an actual application, the transforma
tion represented by Eqs. (5.la) to (5.lc) must be given as some type of specific 
analytical relation, or sometimes a specific numerical relation. In the above 
transformation, t is considered a function of t only and is frequently given by 
t = t. This seems rather trivial; however, Eq. (5.lc) must be carried through the 
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transformation in a formal manner or else certain necessary terms will not be 
generated. 

Consider one or more partial differential equations written in terms of x, y, and 
t as the independent variables~say, for example, the continuity, momentum, and 
energy equations derived in Chap. 2. In these equations, the independent variables 
appear in the form of derivatives, such as fJp/fJx, fJu!fJy, fJe/fJt. Therefore, to 
transform these equations from (x, y, t) space to (<;, 17, i) space, we need a 
transformation for the derivatives; i.e., we need to replace the x, y, and t derivatives 
in the original partial differential equations with corresponding derivatives with 
respect to <;, 17, and T. In other words, we need to replace fJu/fJy with some 
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combination of fJu/fJ<;, fJu/817, etc. This derivative transformation can be obtained 
from the original transformation given by Eqs. (5.la) to (5.lc) as follows. From the 
chain rule of differential calculus, we have 

The subscripts in the above expression are added to emphasize what variables are 
being held constant in the partial differentiation. In our subsequent expressions, 
subscripts will be dropped; however, it is always useful to keep them in your mind. 
Thus, we will write the above expression as 

Similarly, 

Also, 

or 

a 
ax 

a 
fJy 

(:<;) (:;) + (:11) (::) 

(:<;) (:) + (:11) (:) 

:t = (:<;) (~;) + (:11) (~;) + (:?:) (~;) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Equations (5.2), (5.3), and (5.5) allow the derivatives with respect to x, y, and t to be 
transformed into derivatives with respect to <;, 17, and T. For example, in the 
governing flow equations, such as Eqs. (2.29), (2.33), (2.50a) to (2.50c), (2.56a) to 
(2.56c), (2.66), and (2.81 ), wherever you see a derivative with respect to x, replace it 
with Eq. (5.2); wherever you see a derivative with respect toy, replace it with Eq. 
(5.3); and wherever you see a derivative with respect tot, replace it with Eq. (5.5). 
The coefficients of the derivatives with respect to <;, 17, and T are called metrics; for 
example, fJ<;!fJx, fJ<;lfJy, 817/fJx, and 817/fJy are metric terms which can be obtained 
from the general transformation given by Eqs. (5.la) to (5.lc). If Eqs. (5.la) to 
(5.lc) are given as closed-form analytic expressions, then the metrics can also be 
obtained in closed form. However, the transformation given by Eqs. (5. la) to (5. lc) 
is frequently a purely numerical relationship, in which case the metrics can be 
evaluated by finite-difference quotients, typically central differences. 

Examining the equations which govern a viscous flow, as derived in Chap. 
2, we see that they involve second derivatives which appear in the viscous 
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terms. Examples are Eqs. (2.58a) to (2.58c), which involve terms such as {)/{)x (µ 8v/8x). Therefore, we need a transformation for these derivatives; they 
can be obtained as follows. From Eq. (5.2), let 

A - !!_ - (!!_) (8() + (!!_) ({)r,) - 8x - 8( ax {)r, 8x 

Then, 

!2 = :; = ! [ (!) (!!) + (:Y/) (!:)] 

= (:() (:o + (~;) (a:a() + (:Y/) (:~) + (!:) (a:ar,) (5-6) 

B C 

The last step in Eq. (5.6) is obtained from the simple rule for differentiation of a 
product of two terms. The derivatives denoted by Band C in Eq. (5.6) are a "mixed 
bag"; they involve differentiation with respect to one variable in the (x, y, t) system 
and another variable in the((, r,, ,) system. This is not desirable, because we want 
to express a2!8x2 purely in terms of derivatives with respect to (, r,, and r. 
Therefore, we need to work further with the terms denoted by B and C. The mixed 
derivatives denoted by B and C can be reexpressed as follows. 

Recalling the chain rule given by Eq. (5.2), we have 

B - (!:_) (8() (~) ({)r,) - ae 8x + {)r, 8( 8x (5.7) 

Similarly, 

c = a:ar, = ! (~) = (afar,)(!;) + (~2) (!:) (5-8) 

Substituting Band C from Eqs. (5.7) and (5.8) into Eq. (5.6) and rearranging the 
sequence of terms, we have 
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(5.9) 

Equation (5.9) gives the second partial derivative with resp~ct_to x in te~s offir~t, 
second, and mixed derivatives with respect to ( and r,, mult1phed by vanous metnc 
terms. Let us now continue to obtain the second partial with respect toy. From Eq. 

(5.3), let 

Then, 

: = : = ~ [ ( :() ( :) + ( :Y/) (:)] 
= (:() (~) + (:) (ar{)y) + (:Y/) (~) + (:) (a:{)y) 

E F (5.10) 

Using Eq. (5.3), 

and 

E = ~ (:() = (i2) (:) + (a:a() (:) 
F = ~ (:r,) = (a:a() (:) + (~2) (:) 

(5.11) 

(5.12) 

Substituting Eqs. (5.11) and (5.12) into Eq. (5.10), we have, after rearranging the 

sequence of terms, 

(5.13) 

Equation ( 5 .13) gives the second partial derivative with respect to y in. te~s of 
first second, and mixed derivatives with respect to ( and Y/, multtphed by 
vari~us metric terms. We now continue to obtain the second partial with 

respect to x and y. 
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_!!_ = ~ (~) _an_ a [(a) (a') (a) (a11)] ax ay ax ay - ax - ax a, ay + a
11 

ay 

= (~) (~) + (a') (_!!__) + (~) (~) (a11) ( a2 ) a, ax 8y ay a, ax a11 ax ay + oy a11 ax 
B C 

(5.14) 

Substitu!ing Eqs. (5.7) and (5.8) for B and C, respectively, into Eq. (5.14) and 
rearrangmg the sequence of terms, we have 

a2 
OX 8y (~) (~) + (~) (~) + ( a2 ) (a') (a') ~ fuoy ~ fuoy ~ 2 fu oy 

+ (if_) (ar,) (ar,) + (__!!_) [ (a11) (a') (a') (a11)] ar,2 ax oy a, a11 ax oy + ax oy 

(5.15) 

Equation ( 5 .15) gives the second partial derivative with respect to x and y in terms of 
first,. second, and mixed derivatives with respect to ( and 17, multiplied by various 
metnc terms. 

Examine all the equations given in the boxes above. They represent all that is 
necessary to _transform the g?verning flow equations obtained in Chap. 2 with x, y, 
and t as the mdependent vanables to (, r,, and r as the new independent variables. 
Clearly, when this transformation is made, the governing equations in terms of(, 1'/, 
~n~ r. be~ome ~ather lengthy. Let us consider a simple example, namely, that for 
mv1sc1d, motahonal, steady, incompressible flow, for which Laplace's equation is 
the governing equation. 

Example 5.1 

Laplace's equation (5.16) 

Transforming Eq. (5.16) from (x, y) to((, 11), where ( = ~(x, y) and 11 = 77(x, y), we 
have from Eqs. (5.9) and (5.13), 

(a2 <1>) (0() 2 

+ 2 (ft) (811) (0() (a2 <1>) (811) 
2 (8</J) (a2 () 

ae ax 0( 811 ax ax + 8112 ax + 0( 8x2 

+ (8¢) (8
2

11) + (82¢) (8() \ 2 (ft) (811) (8() (a2¢) (811) 
2 

811 8x2 ae 8y 811 8( 8y 8y + 0112 8y 

+(~~) (~) + (~:) (~) = 0 
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Factoring some of the terms in the above equation, we have finally 

:(t [ G!)\(:YJ + :! [ (~:Y+(:YJ 
+ 2 

8~

2

:11 [ G:) (!!) + G:) (:) J 

8¢ (82( 82() 8</J (a211 a211) = 0 (5.17) + O( 8x2 + 8y2 + 811 8x2 + 8y2 

Examine Eqs. (5.16) and (5.17); the former is Laplace's equation in the physical (x, y) 
space, and the latter is the transformed Laplace's equation in the computational((, 11) 
space. The transformed equation clearly contains many more terms. It is easy to 
mentally extrapolate what the governing continuity, momentum, and energy equations 
as derived in Chap. 2 would look like in the transformed space-lots and lots of terms. 

Note: The need to apply the transformations for the second derivatives, 
namely, those given by Eqs. (5.9), (5.13), and (5.15), disappears when the governing 
flow equations are used in the strong conservation form expressed by Eq. (2.93). For 
a moment, return to Sec. 2.10 and examine Eq. (2.93), as well as the definitions of 
the column vectors given by Eqs. (2.94) to (2.98). Note that the viscous terms 
in F, G, and H, expressed by Eqs. (2.95) to (2.97), appear directly in the form 
'xx, 'xy, k fJT!ox, etc. These terms involve only first derivatives of the velocity (such 
as ou!ox, ouloy) or first derivatives of the temperature. For the general transforma
tion of these terms inside F, G, and H, only the transformation of the first 
derivatives, such as given by Eqs. (5.2) and (5.3), is needed. In tum, the first 
derivatives which appear in Eq. (2.93) are also transformed via Eqs. (5.2), (5.3), and 
(5.5). Therefore, when the governing flow equations are used in the form of Eq. 
(2.93), the transformation is carried out via a dual application of the first derivatives, 
i.e., a dual application of Eqs. (5.2), (5.3), and (5.5). In contrast, the governing 
equations expressed in the form of Eqs. (2.58a) to (2.58c), for example, have the 
viscous terms appearing directly as second derivatives. For a transformation of the 
governing equations in this form, both the first-derivative transformation, Eqs. (5.2), 
(5.3), and (5.5), and the second-derivative transformation, Eqs. (5.9), (5.13), and 
(5.15), are needed. 

Once again we emphasize that Eqs. (5.1) to (5.3), (5.5), (5.9), (5.13), and 
(5.15) are used to transform the governing flow equations from the physical plane 
[(x, y) space] to the computational plane[((, r,) space], and that the purpose of the 
transformation in most CFD applications is to transform a nonuniform grid in 
physical space (such as shown in Fig. 5.2a) to a uniform grid in the computational 
space (such as shown in Fig. 5.2b). The transformed governing partial differential 
equations are then finite-differenced in the computational plane, where there exists a 
uniform Li~ and a uniform fir,, as shown in Fig. 5.2b. The flow-field variables are 
calculated at all grid points in the computational plane, such as points a, b, and c in 
Fig. 5.2b. These are the same flow-field variables which exist in the physical plane 
at the corresponding points a, b, and c in Fig. 5.2a. The transformation that 
accomplishes all this is given in general form by Eqs. (5.la) to (5. lc). Of course, to 
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carry out a solution for a given problem, the transformation given generically by 
Eqs. (5. la) to (5. lc) must be explicitly specified. Examples of some specific 
transformations will be given in subsequent sections. 

S.3 METRICS AND JACOBIANS 

In Eqs. (5.2) to (5.15), the terms involving the geometry of the grid, such as a,1ax, 
a,1/Jy, 811/ox, 811!/Jy, are called metrics. If the transformation, Eqs. (5.la) to (5.lc), 
is given analytically, then it is possible to obtain analytic values for the metric terms. 
However, in many CFD applications, the transformation, Eqs. (5.la) to (5.lc), is 
given numerically, and hence the metric terms are calculated as finite differences. 

Also, in many applications, the transformation may be more conveniently 
expressed as the inverse of Eqs. (5.la) to (5.lc); that is, we may have available the 
inverse transformation 

X = x(,, 11, -r) 

y = y(,, 11, -r) 

t = t(-r) 

(5.18a) 

( 5.18b) 

(5.18c) 

In Eqs. ( 5. l 8a) to ( 5. l 8c ), , , 11, and -r are the independent variables. However, in the 
derivative transformations given by Eqs. (5.2) to (5.15), the metric terms a,1ax, 
811!/Jy, etc., are partial derivatives in terms ofx,y, and t as the independent variables. 
Therefore, in order to calculate the metric terms in these equations from the inverse 
transformation in Eqs. (5.18a) to (5.18c), we need to relate a,iax, 811!/Jy, etc., to the 
inverse forms oxlo,, /Jylo,,, etc. These inverse forms of the metrics are the values 
which can be directly obtained from the inverse transformation, Eqs. (5.18a) to 
(5.18c). Let us proceed to find such relations. 

Consider a dependent variable in the governing flow equations, such as the x 
component of velocity, u. Let u = u(x, y), where from Eqs. (5.18a) and (5.18b), 
x = x(,, 11) and y = y(,, 11). The total differential of u is given by 

au au 
du=-dx+-dy 

ox fJy 

It follows from Eq. (5.19) that 

and 

au au ox au fJy 
a, = ax a, + fJy a, 

au au ox au fJy 
a11 = ax a,, + fJy a11 

(5.19) 

(5.20) 

(5.21) 

Equations (5.20) and (5.21) can be viewed as two equations for the two unknowns 
oulox and oul/Jy. Solving the system of Eqs. (5.20) and (5.21) for oulox using 
Cramer's rule, we have 
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au fJy 

a, a, 

au fJy 

au a11 a11 (5.22) = fJy ox ax 
a, a, 

ax fJy 

a11 a11 

In Eq. (5.22), the denominator determinant is identified as the Jacobian determi

nant, denoted by 

ax fJy 

J = o(x, y) = a, a, 
(5.22a) 

- a(,, 11) - ox fJy 

a11 a,, 
Therefore, Eq. (5.22) can be written in the following form, where the numerator 
determinant is displayed in its expanded form 

: =} [ (:~) (:) - (:~) (Z) J (5.23a) 

Now let us return to Eqs. (5.20) and (5.21) and solve for oul/Jy. 

ax au 

a, a, 

ax au 
au a11 a11 
fJy ox fJy 

a, a, 

ax fJy 

a11 a11 

or : =} [ (:~) (~~) - (:~) (~~)] (5.23b) 

Examine Eqs. (5.23a) and (5.23b). They express the derivatives of the flow
field variables in physical space in terms of the derivatives of the flo~-field 
variables in computational space. Equations (5.23a) and (5.23b) accomplish ~e 
same derivative transformations as given by Eqs. (5.2) and (5.3). However, unlike 
Eqs. (5.2) and (5.3) where the metric terms are a,1ax, 811!/Jy, etc., the ne:w Eqs. 
(5.23a) and (5.23b) involve the inverse metrics oxlo,, /Jy/811, etc. ~lso notice that 
Eqs. ( 5 .23a) and ( 5 .23b) include the jacobian of the transformation. Therefore, 
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whenever you have the transformation given in the form of Eqs. (5.18a) to (5.18c), 
from which you can readily obtain the metrics in the form ax/8!:,, ax!ar,, etc., the 
transformed governing flow equations can be expressed in terms of these inverse 
metrics and the jacobian J. To make this discussion more generic, let us write Eqs. 
(5.23a) and (5.23b) in a slightly more general form. 

and 

~ =} [ (~) (~) - (~) (~)] 

~ =} [ (JY/) (;;) - (Jc,)(;;)] 

(5.24a) 

(5.24b) 

Since the dependent variable u was carried in Eqs. (5.23a) and (5.23b) just as an 
artifice to derive the inverse transformation, Eqs. (5.24a) and (5.24b) emphasize that 
the inverse derivative transformation can be applied to any dependent variable (not 
just u). Finally, we note that the second-derivative transformation can also be 
expressed in terms of the inverse metrics; i.e., there is the analog to Eqs. (5.9), 
(5.13), and (5.15) which contains the inverse metrics and thejacobian. We will not 
take the space to derive these analogous expressions here. 

It is worthwhile to state the obvious. When in the literature you see the 
governing flow equations in the transformed coordinates and you see the jacobian J 
appearing in the transformed equations, you usually know that you are dealing with 
the inverse transformation and the inverse metrics in these equations. When you do 
not see J in the transformed equations, you are usually dealing with the direct 
transformation and the direct metrics as originally defined in Sec. 5.2. The only 
exception to these statements is the material to be discussed in Sec. 5.4. Once again, 
you are reminded that when you are given the direct transformation as represented 
by Eqs. (5. la) to (5. lc), then the direct metrics such as ac,lax, ar,lay are most easily 
obtained from this form of the transformation, and the derivative transformation 
embodied in Eqs. (5.2), (5.3), and (5.5) is the most straightforward. On the other 
hand, when you are given the inverse transformation as represented by ( 5. l 8a) to 
( 5. l 8c ), then the inverse metrics such as ax! at,, aylar, are most easily obtained, and 
the derivative transformation embodied in Eqs. (5.24a) and (5.24b) is the most 
straightforward. 

You are reminded that in this chapter we have been treating two spatial 
variables, x and y. A similar but more lengthy set of results can be obtained for a 
three-dimensional spatial transformation from (x, y, z) to(!:,, Y/, (). Consult Ref. 13 
for more details. Our discussion above has been intentionally limited to two 
dimensions in order to demonstrate the basic principles without cluttering the 
consideration with details. 

Equations (5.24a) and (5.24b) can be obtained in a slightly more formal 
manner. Let us examine this more formal approach, because it leads to a general 
method for dealing directly with the different metrics-a general method which is a 
fairly direct way of extending the above results to three spatial dimensions, should 
you need to do so. Again, in the following we will deal with two spatial dimensions 
for simplicity. Consider the direct transformation for two dimensions, given as 

!:, = c,(x, y) 

Y/ = r,(x, y) 
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(5.25a) 

(5.25b) 

(Note: Comparing Eqs. (5.25a) to (5.25b) with (5.la) to (5.lc), you ~ill obse1:e 
that we have dropped "C = t from the present discussion. Since we are mteres~ed m 
only the spatial metrics in this discussion, the consideratio~ ofthe_transformation of 
time is not relevant.) From the expression for an exact differential, we have from 
Eqs. (5.25a) and (5.25b) 

at, at, 
de,=- dx+-dy 

ax 8y 
ar, ar, 

dr, = - dx + - dy 
ax 8y 

or, in matrix form, 

[ :~J = [E :1 [: J 
ax ay 

Now consider the inverse transformation, given by 

X = x( (,, Yf) 

y = y(c,' Y/) 
Taking the exact differentials, we have 

ax ax 
dx = - de,+- dr, 

at, ar, 

8y 8y 
dy = - de,+- dr, 

at, ar, 

or, in matrix form, 

[: J = [E El [ :~J 
at, ar, 

(5.26a) 

(5.26b) 

(5.27) 

(5.28a) 

(5.28b) 

(5.29a) 

(5.29b) 

(5.30) 

Solving Eq. (5.30) for the right-hand column matrix, i.e., multiplying by the inverse 
of the 2 x 2 coefficient matrix, we have 

[

ax 

[de,] = at, 
dr, ay 

at, 

;;]-I [dx] 
ay dy 

ar, 

(5.31) 
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Comparing Eqs. (5.27) and (5.31 ), we have 

(5.32) 

Fo~lowing the standard rules for creating the inverse of a matrix, Eq. (5.32) is 
wntten as 

[_: -:1 r a(] 
ox 

ox 8y a~ a~ 
01] 01] ox ox ( 5.33) 

ox 8y a~ 01] 

8y 8y 
a~ 01] 

Consid~r the_ determinant in the denominator of Eq. (5.33). Since the value of a 
determinant 1s unchanged by transposing its terms, we have 

ox ox ox 8y 
a~ or, a~ a~ 
8y ay ox =J (5.34) 8y 
a~ 01] 01] 01] 

Note that ~e right-hand determinant of Eq. (5.34) is precisely the jacobian J of the 
trans1:o~ahon, as can be seen from the definition of J given by Eq. (5.22a). 
Subshtutmg Eq. (5.34) into (5.33), we have 

ox] 01] 

ox 
a~ 

(5.35) 

Co~parin~ like elements of the two matrices in Eq. (5.35), we obtain the 
relationships for the direct metrics in terms of the inverse metrics namely 

' ' 
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8~ I oy 
ox J 01] 

817 = I 8y 
ax J a~ 
8~ I ox 

-- -ay J a,, 
817 I ox 

--ay J a~ 

(5.36a) 

(5.36b) 

(5.36c) 

(5.36d) 

Hence, the above formalism leads directly to thl! relationship between the direct and 
inverse metrics. That the above results are consistent with our previous analyses can 
be seen by substituting Eqs. (5.36a) to (5.36d) into Eqs. (5.2) and (5.3), obtaining 

! =} [ (:~) (:) - (~) (:)] 
; =} [ (~) (!;)- (;) (!;)] 

The above two equations are identically Eqs. (5.24a) and (5.24b), which gives our 
derivative transformation expressed in terms of the inverse metrics. The extension of 
the above formalism to three spatial dimensions, leading to the three-dimensional 
counterpart of Eqs. (5.36a) to (5.36d), is straightforward. 

5.4 FORM OF THE GOVERNING 
EQUATIONS PARTICULARLY SUITED FOR 
CFD REVISITED: THE TRANSFORMED 
VERSION 

Return for a moment to Sec. 2.10, where we presented the strong conservation 
form of the governing flow equations, represented by Eq. (2.93). F,r the case 
of unsteady flow in two spatial dimensions, with no source terms, this equation 
reduces to 

(5.37) 

(The treatment here of two spatial dimensions x and y rather than carrying all three 
dimensions x, y, and z is just for simplicity; the extension of the following analysis 
to three dimensions is straightforward.) 

Question: When Eq. (5.37) is written in the transformed(~, 17) space, can it 
be recast in strong conservation form; i.e., can it be written in a transformed form 
such that 
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(5.38) 

where F, and G, are suitable combinations of the original F and G flux vectors? If 
so, we will be a?le to retain in our transformed space all those advantages of the 
strong conservation form that were ascribed to some CFO calculations discussed in 
Sec. 2.10. The answer to the above question is yes. Let us see how and why. 

First, transform the spatial variables in Eq. (5.37) according to the derivative 
transformation given by Eqs. (5.2) and (5.3). 

fJU + fJF (fJ!;) + fJF (fJYJ) + fJG (fJ!;) + fJG (fJYJ) = O 
at fJ!; ax ori ax fJ!; fJy ari ay (5.39) 

Multiply Eq. (5.39) by the jacobian J defined by Eq. (5.22a): 

J~~ + J(~:) (~;)+JG:'.:)(;;) +JG~)(~;)+ J(:) (;~) ~ 0 

(5.40) 

Putting Eq. (5.40) on the shelf for a moment, consider the simple derivative 
expansion of the term JF(fJ!;!fJx), that is, 

fJ[JF(fJ!;jfJx)] =J(fJ!;) fJF !!_ ( 8!;) 
fJ!; ox 8!; + F 8!; J ox (5.41) 

Rearranging Eq. (5.41), we have 

J(fJF) (8~) = fJ[JF(fJ!;/fJx)] _ F !!_ ( 8!;) 
8!; ax fJ!; fJ!; J ax (5.42) 

Similarly, taking the YJ derivative of JF (fJri!fJx) and rearranging, we have 

J (fJ F) (fJri) = fJ [JF ( ori /ax)] _ F !!_ (J ari) 
ori ax off ori ox (5.43) 

In a similar way, the terms JG(fJ!;!fJy) and JG(fJrilfJy) can be expanded and 
rearranged as 

J(fJG) (fJ!;) = fJ[JG(fJ!;/fJy)] _ !!_ ( fJ!;) 
fJ!; fJy fJ!; G fJ!; J fJy (5.44) 

and J(fJG) (fJYJ) = fJ[JG(fJri/fJy)] _ G!!_ (Jori) 
ari fJy ari ari fJy (5.45) 

Substituting Eqs. (5.42) to (5.45) into Eq. (5.40) and factoring, we have 
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The last two terms in Eq. (5.46), which appear in brackets, are zero, as follows. 
Substituting Eqs. (5.36a) to (5.36d) into these terms, we have 

fJ ( fJ!;) fJ ( ari) fJ (fJy) fJ (fJy) 
fJ!; Jax + ori Jax = fJ!; ari - ari fJ~ 

fJ2y fJ2y 
= -----=O 

fJ!; ari ari fJ!; -

and 

Thus, Eq. (5.46) can be written as 

where 

U1 =JU 

a?; a~ 
F1 =JF-+JG-

fJx fJy 
ari ari 

G1 =JF-+JG-
fJx fJy 

(5.47) 

( 5.48a) 

( 5.48b) 

(5.48c) 

Equation (5.47) is the generic form of the governing flow equations written in strong 
conservation form in the transformed(!;, ri) space. Such a form was first obtained in 
1974 by Viviand (Ref. 28) and Vinokur (Ref. 29). 

Note in Eq. (5.47) that the newly defined flux vectors F 1 and G, are 
combinations of the physical flux vectors F and G, where the combinations 
involve the jacobian J and the direct metrics (not the inverse metrics, as defined 
in Sec. 5.3). Here is the exception to one of the statements made in Sec. 5.3; there it 
was stated that the appearance of the jacobian in the transformed equations signaled 
the use of the inverse metrics. This is not the case when the transformed equations 
are expressed in the strong conservation form given by Eq. (5.47). Indeed, if Eqs. 
(5.36a) and (5.36b) are substituted into the forms for F1 and G1, given by Eqs. 
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(5.48b) and (5.48c), we have 

(5.49a) 

and (5.49b) 

Note that when F 1 and G1 are expressed in terms of the inverse metrics as in Eqs. 
(5.49a) and (5.49b), the jacobian does not appear. These are not statements of 
critical importance-they just come under the heading of "interesting observa
tions." 

5.5 A COMMENT 

Return to our road map given in Fig. 5.3. Up to this point in the present chapter we 
have dealt with the concept of a transformation from the physical (x, y) space to the 
computational(,, 17) space, as reflected in the left column in Fig. 5.3. However, we 
have yet to examine any actual example of such a transformation; this is the subject 
of the center column in Fig. 5.3. In the previous sections, we have developed the 
transformation expressions in very general and generic terms. Keep in mind that 
such a transformation is consistent with the demands of finite-difference methods, 
where the finite-difference expressions are evaluated on a uniform grid. If such a 
uniform grid is compatible with the boundary geometry and the fl.ow problem in the 
physical plane, then a transformed grid is not necessary, and all that we have 
discussed so far in this chapter is superfluous. However, for realistic problems with 
realistic geometries, this is generally not the case; either the nature of the flow 
problem itself ( such as the viscous flow over a surface where a larger number of grid 
points should be packed closer to the surface) and/or the shape of the boundary 
(such as a curved surface that should be fitted with a curvilinear, boundary-fitted 
coordinate system) will usually demand a transformation which carries a nonuni
form grid in the physical plane to a uniform grid in the computational plane. Such a 
transformation is inherently not required for finite-volume methods, which can deal 
directly with a nonuniform mesh in the physical plane. 

In the remainder of this chapter, we will examine some actual transformations, 
i.e., some specific formulations represented by the generic form given by Eqs. 
(5.la) to (5.lc). In the process, we will be dealing with specific aspects of grid 
generation. We will now be running down the center column of Fig. 5.3. 

5.6 STRETCHED (COMPRESSED) GRIDS 

Of all the grid generation techniques to be discussed, the simplest is treated in this 
section. It consists of stretching the grid in one or more coordinate directions. 

Example 5.2. Consider the physical and computational planes shown in Fig. 5.4. 
Assume that we are dealing with the viscous flow over a flat surface, where the 
velocity varies rapidly near the surface as shown in the velocity profile sketched at the 
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FIG. 5.4 
Example of grid stretching. (a) Physical plane; (b) computational plane. 

left of the physical plane. To calculate the details of this flow ne_ar the surfa~e, a finely 
spaced grid in the y direction should be used, as sketched m the physical plan~. 
However, far away from the surface, the grid can be coarser. Therefore, a ~roper gnd 
should be one in which the horizontal coordinate lines become progressively more 
closely spaced in the vertical direction as the surface ~s approached. On the othe~ ha~d, 
we wish to deal with a uniform grid in the computational plane, as also shown m ~1g. 
5.4. Examining Fig. 5.4, we see that the grid in the physical space is "~tretched," as if a 

· "- gn'd were drawn on a piece of rubber and then the upper portion of the rubber 
un11orm . h' h 
were stretched upward in they direction. A simple analytical transformation w 1c can 
accomplish this grid stretching is 

~=x 

1J = ln(y + 1) 

(5.50a) 

(5.50b) 
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The inverse transformation is 

x=¢ 

y=e~-1 
(5.5Ia) 

(5.51b) 

Examine _these equations more closely with Fig. 5.4 in mind. In both the physical and 
computational planes, the vertical grid lines are uniformly spaced in the x direction· 
this is reflected in both Eqs. (5.50a) and (5.5 la). In the physical plane, iix is the sam~ 
throughout. In the computational plane, Li~ is the same throughout. Moreover 
iix = Lif The grid is not stretched in the x direction. However, such is not th~ 
case for the horizontal grid lines. The horizontal lines are uniformly spaced in 
the computational plane by intent; we stipulate that b.77 be the same everywhere in 
the computational plane. In tum, what happens to the corresponding values of Liy 
m the physical plane? The answer is easily seen by differentiating Eq. (5.51b) with 
respect to IJ. 

or 

dy = e~ 
di] 

dy = e~ di] 

Replacing dy and di] with finite increments, we have approximately 

Liy = e~ Lil] (5.52) 

~ote from Eq. (5.52) that as 1J becomes larger, i.e., as we move further above the plate 
m Fig. 5.4, the value of Liy becomes progressively larger for the same constant value of 
Cl.rJ. In other :,vords, as ":e move in the vertical direction away from the plate, although 
we have a umform gnd m the computational plane, we encounter progressively larger 
values of Liy; that is, the grid in the physical plane appears to be stretched in the 
vertical direction. This is what is meant by a stretched grid. Moreover, the direct 
transformation given by Eqs. (5.50a) and (5.50b), or the inverse transformation given 
by _Eq_s. (5.5 la) and (5.5 lb), is the mechanics by which the stretched grid is generated. 
This 1s the simplest essence of what is meant by grid generation. 

Example 5.3. Let us examine what happens to the governing flow equations in both 
the physical a~d the computational planes. For simplicity, we will assume steady flow, 
and ~e ~ill illustrate by means of the continuity equation. Taking the continuity 
equation m the form of Eq. (2.25), specializing it to a steady flow, and writing it in 
cartesian coordinates, we have 

8(pu) 8(pv) 
--+--=0 ax fJy (5.53) 

This is the continuity equation written in terms of the physical plane. This equation 
can be formally transformed to the computational plane using the generic derivative 
transformation given by Eqs. (5.2) and (5.3); the resulting form is 

8(pu) (8¢) + 8(pu) (81]) + 8(pv) (8¢) 8(pv) (817) _ 8¢ ax 811 ax 8¢ fJy + 811 fJy - O (5.54) 

The metrics in Eq. (5.54) are obtained from the direct transformation given by Eqs. 
(5.50a) and (5.50b), namely, 
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8¢ = I 
ax 

8¢ = 0 
8y 

811 =0 
ax 

817 
fJy y+I 

Substituting the metrics from Eqs. (5.55) into (5.54), we obtain 

8(pu) +-1- 8(pv) = 0 
8¢ y+ 1 811 

However, from Eq. (5.50b), y + I = e~. Therefore, Eq. (5.56) becomes 

8(pu) + 2_ 8(pv) = 0 
8¢ e~ 817 

or e~ 8(pu) + _8(pv) = 0 
8¢ 817 

(5.55) 

(5.56) 

(5.57) 

Equation (5.57) is the form of the continuity equation that holds in the computational 
plane. For the first time in this chapter, we have just witnessed an actual transformation 
of a governing flow equation from the physical plane to the computational plane; with 
this, it is hoped that some of the generic ideas presented in the earlier sections of this 
chapter are beginning to come more into focus. 

Example 5.4. To illustrate further, let us repeat the above derivation but this time 
from the point of view of the inverse transformation defined by Eqs. (5.51a) and 
(5.51b). Returning to Eq. (5.53), and applying the generic inverse derivative 
transformation given by Eqs. (5.24a) and (5.24b), 

! [8(pu) (f)y) _ 8(pu) (f)y)] + ! [8(pv) (ax) _ 8(pv) (ax)] = 0 (5.58) 
J 8¢ 817 817 8¢ J 817 8¢ 8¢ 817 

The inverse metrics in Eq. (5.58) are obtained from the inverse transformation given 
by Eqs. (5.51a) and (5.51b) as follows. 

8x=I 8x=0 
8¢ 811 

(5.59) 

Substituting Eqs. (5.59) into (5.58), we have 

~ 8(pu) 8(pv) _ 
0 e ~+--a;,- (5.60) 

This again is the transformed continuity equation. Indeed, Eq. (5.60) is identical to Eq. 
(5.57). All that we have done here is to demonstrate how the transformed equation can 
be obtained from either the direct transformation or the inverse transformation:. the 
results are exactly the same. 

Note in the above derivations that the continuity equation was first trans
formed by means of the derivative transformations; the results were Eq. (5.54) for 
the direct transformation and Eq. (5.58) for the inverse transformation. These are 
still generic transformations at this stage. The transformation only becomes specific 
when the specific metrics associated with the specific transformation are substituted 
into Eq. (5.54) or Eq. (5.58). We can now recognize the following important aspect 
of any transformation of the governing flow equations. It is the metrics that carry all 
the specific information pertinent to a specific transformation. Let us imagine the 
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following division of effort. Assume you are responsible for numerically calculating 
a given flow field over a given body. Assume that the responsibility for the 
generation of the grid around the body rests with another person ( or group) down 
the hall. When you are ready to make your calculations, you go to your friendly grid 
generation person, who will give you the metrics for the transformation. That is all 
the information about the transformation which you need in order to numerically 
solve the flow problem in the computational plane. On the other hand, you will also 
need to know the one-to-one correspondence of the location of each grid point in 
both the computational and physical planes in order to carry your solution back to 
the physical plane. For example, consider again the stretched grid discussed above. 
Solve the continuity equation in the form of Eq. (5.57), as well as the appropriate 
transformed versions of the momentum and energy equations (not shown here for 
simplicity) for the dependent flow-field variables in the computational plane. 
Among lots of other data from the solution, you will have the value of density at 
grid point (i, j), Pi, j, where the point (i, j) is located in the computational plane, as 
shown at the bottom of Fig. 5.4. However, from the one-to-one correspondence of 
the location of the same grid point (i, j) in the physical plane shown at the top of 
Fig. 5.4, you also know the value of the density at the point in the physical plane; 
namely, it is the same value Pi, j obtained from the solution of the governing 
equations at grid point (i, j) in the computational plane. 

Example S.S. Let us consider a more elaborate version of grid stretching. The 
example is taken from Ref. 30 and 31, where the supersonic viscous flow over a blunt 
base is studied. Here, grid stretching is carried out in both the x and y directions. The 
physical and computational planes are illustrated in Fig. 5.5. The streamwise 
stretching in the x direction is accomplished through a transformation used by 
Holst (Ref. 32), given below: 

x = ~ {sinh[(( -xo)Pxl +A} (5.61) 

where 

A = sinh(PxXo) (5.62) 

and 1 l+(ef3x-l)(o 
(5.63) xo =~In 

2Px I+ (e-/3, - i)(o 

In Eq. (5.61), (o is the location in the computational plane where the maximum 
clustering is to occur and Px is a constant which controls the degree of clustering at (o, 
with larger values of Px providing a finer grid in the clustered region. The transverse 
stretching in the y direction is accomplished by dividing the physical plane into two 
sections: (1) the space directly behind the step and (2) the space above (both in front of 
and behind) the step. The transformation is based on that used by Roberts (Ref. 33) 
and is given by 

- (Py+ 1) - (Py - l)e-c(~-1-a)/(1-a) 

Y- (2a + 1)(1 + e-c(~-1-a)/(1-a)) (5.64) 

STRETCHED (COMPRESSED) GRIDS 191 

Flow 

y 

Physical plane X 

1J 

Computational plane 

FIG. 5.5 
Comparison of uniform and compressed grids. (From Ref',. 30 and 31.) 

whe1e 

/Jv + 1 
c=log~~ 

/Jy - 1 

In Eq. (5.64), P.v and a are appropriate constants and ~re different for the t_wo sectio~s 
identified above. The algebraic transformations given above result m the gnd 
stretching shown in Fig. 5.5. Note in Fig. 5.5 that the blunt _bas~ i~self has ~o 
active grid points inside it, for the obvious reason that no flow exists ms1de the sohd 
base. The grid generation formulas given by Eqs. (5.61) to ~5.64) _are show~ here 
strictly as an example of a more sophisticated stretched gnd. This author 1s not 
necessarily recommending them above all others; the choice of a particular stretched 
grid is up to you as deemed most appropriate for your particular problem. Feel free to 
use whatever artistic license you feel comfortable with. 
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Referring to our chapter road map in Fig. 5.3, we have just finished the first 
item under grid generation, namely, stretched grids. We now move on to the next 
item, the all-important concept of boundary-fitted coordinate systems in general. In 
this context, it should be noted that the grids shown in Figs. 5.4 and 5.5 are 
effectively boundary-fitted coordinate systems in that the solid surfaces are 
coordinate lines in the grid. However, this is because the physical geometry 
of the flat plate (Fig. 5.4) and the blunt base (Fig. 5.5) conveniently fit into an 
already rectangular-configured grid. The next section treats the more general case of 
curved boundary surfaces, which obviously do not fit a rectangular grid in the 
physical plane. 

5.7 BOUNDARY-FITTED COORDINATE 
SYSTEMS: ELLIPTIC GRID GENERATION 

To introduce this section, let us examine a boundary-fitted coordinate system within 
the context of a straightforward problem. Consider the flow through the divergent 
duct shown in Fig. 5.6a. Curve de is the upper wall of the duct, and line Jg is the 
centerline. For this flow, a simple rectangular grid in the physical plane is not 
appropriate, for the same reasons discussed in Sec. 5.1. Instead, we draw the 
curvilinear grid in Fig. 5.6a which allows both the upper boundary de and the 
centerline Jg to be coordinate lines, exactly fitting these boundaries. In tum, the 
curvilinear grid in Fig. 5.6a must be transformed to a rectangular grid in the 
computational plane, Fig. 5.6b. This can be accomplished as follows. Let Ys = J (x) 
be the ordinate of the upper surface de in Fig. 5.6a. Then the following 
transformation will result in a rectangular grid in (~, 17) space: 

~=x 

11 = !_ 
Ys 

(5.65) 

where Ys = J(x) (5.66) 

For example, consider point d in the physical pl1me, where y = Yd = ys(xd). When 
this coordinate is substituted into Eq. (5.66), we have 

11d =Yd= Ys(xd) = l 
Ys Ys(Xd) 

Hence, in the computational plane, point dis located along 11 = 11d = I. Now move 
to point c in the physical plane, where y = Ye = ys(xe). The ordinate of point c is 
obviously different from that at point d; that is, Ye > Yd· However, when Ye is 
substituted into Eq. (5.66), we have 

11 
= Ye = Ys(xc) = l 

e Ys Ys(Xc) 

Hence, in the computational plane, point c is located along 11 = 11e = 1. This is the 
same 11 coordinate as point din the computational plane. From the above discussion, 
it is clear that all the points along the curved upper boundary in the physical plane 
fall, via the transformation given by Eq. (5.66), along the horizontal line 11 = 1 in 
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A simple boundary-fitted coordinate system. (a) Physical plane; (b) computational plane. 

the computational plane. This allows a uniform rectangular grid in the computa
tional plane. Such is the essence of curvilinear boundary-fitted coordinate _sy~tems 
in the physical plane and their transformation to a uniform rectangular gnd m the 
computational plane. 

GUIDEPOST 

The following discussion on elliptic grid generation, as well as the treatment of adaptive 
grids in Sec. 5.8, represents very important aspects of modem grid generation in CFD. This 
author strongly encourages you to study this material, at least from the point of view of 
understanding the basic ideas. However, because of the lack of sophistication, the applications 
in Part III will not deal with these ideas. Therefore, if you are looking for a shortcut at this 
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stage, the following guidepost is suggested. 

Go directly to Sec. 5.9. 

The above is a simple example of a boundary-fitted coordinate system. A 
more sophisticated example is shown in Fig. 5.7, which is an elaboration of the case 
illustrated in Fig. 5.2. Consider the airfoil shape given in Fig. 5.7a. A curvilinear 
system is wrapped around the airfoil, where one coordinate line IJ = IJI = constant is 
on the airfoil surface. This is the inner boundary of the grid, designated by r I in 
both the physical and computational planes in Fig. 5.7. The outer boundary of the 
grid is labeled r 2 in Fig. 5. 7 and is given by IJ = IJz = constant. The shape and 
location of the inner boundary r I is fixed by the airfoil shape on which it is placed. 
The shape and location of the outer boundary r 2 is somewhat arbitrary-it is 
whatever you choose to draw. Examining this grid, we see that it clearly fits the 
boundary, and hence it is a boundary-fitted coordinate system. The lines which fan 
out from the inner boundary r 1 and which intersect the outer boundary r 2 are lines 
of constant ~, such as line ef for which ~ = ~ 1 = constant. The value of the constant 
is also your choice. That is, for each of the ~ = constant curves, you designate a 
numerical value for ( For example, along curve ef you might designate ~ = 0.1. 
Along curve gh you might designate ~ = 0.2, and so forth. Also note that in Fig. 
5. 7 a the lines of constant IJ totally enclose the airfoil, much like elongated circles; 
such a grid is called an 0-type grid for airfoils. Another related curvilinear grid can 
have the '1 = constant lines trailing downstream to the right, not totally enclosing the 
airfoil (except on the inner boundary r 1). Such a grid is called a C-type grid. We 
will see an example of a C-type grid shortly. 

Question: What transformation will cast the curvilinear grid in Fig. 5.7a into 
a uniform grid in the computational plane as sketched in Fig. 5.7b? To answer this 
question, imagine that the curvilinear grid in the physical plane is drawn on top of a 
piece of graph paper ruled in cartesian (x, y) coordinates. Therefore, along the inner 
boundary r 1, the physical coordinates are known: 

(x, y) known along r 1 

That is, for any given point on r 1, there is a set of two known numbers, namely, the 
x and y coordinates of that point. Similarly, the physical (x, y) coordinates of the 
outer boundary r 2 are also known, because r 2 is simply a rather arbitrarily drawn 
loop around the airfoil. Once this loop r 2 is specified, then the physical (x, y) 
coordinates along it are known: 

(x, y) known along r2 
This hints of a boundary-value problem where the boundary conditions (namely, the 
values ofx andy) are known everywhere along the boundary. Recall from Sec. 3.4.3 
that the solution of elliptic partial differential equations requires the specification of 
the boundary conditions everywhere along a boundary enclosing the domain. 
Therefore, let us consider the transformation in Fig. 5.7 to be defined by an elliptic 
partial differential equation [in contrast to the algebraic relations used in the case of 
the stretched grids, namely, Eqs. (5.51a) and (5.51b), and in the case of the simple 
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FIG. 5.7 · 1 1 
Schematic ofan elliptically generated, boundary-fitted grid. (a) Physical plane; (b) computatJona Pane. 

contoured duct in Fig. 5.6, namely, Eqs. (5.65) and (5.66)]. One of the simplest 
elliptic equations is Laplace's equation 

(5.67) 

(5.68) 
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In Eqs. (5.67) and (5.68), ~ and 11 are dependent variables and x and y are dependent 
variables. Let us switch these roles and write the inverse, where x and y become the 
dependent variables. The result is 

cJ2x &x {J2x 
r:t. 8e - 2/3 8~ 811 + y 8112 = O (5.69) 

and 
82y 82y 82y 

a 8~2 - 2/3 8~ 811 + a 8112 = o (5.70) 

where 

r:t. = (Z;Y+(Z~Y 
/3 = (Z;) (Z;) + (Z~) (Z~) 

(
8x)

2 (ay)2 
Y = 8~ + 8~ 

Equations (5.69) and (5.70) are elliptic partial differential equations with x, y as 
dependent variables and~. 11 as independent variables. Return to Fig. 5.7; a solution 
of Eqs. (5.69) and (5.70) allows the calculation of the (x, y) coordinates of grid 
points in the physical plane as a function of the ( ~, 11) location of the same grid 
points in the computational plane. However, for a properly posed problem dealing 
with elliptic equations, we need to specify boundary conditions along the entire 
boundary of the domain, as stated in Sec. 3.4.3. Consider as our domain the 
computational plane shown in Fig. 5.7b, bounded above and below by r 2 and r

1
, 

respectively, and on the side by r 3 and r 4 . To this point in our discussion, we have 
specified the values of x and y along the boundaries r I and r 2 only; we need also to 
have some boundary conditions given along r 3 and r 4 to have a properly posed 
problem. To accomplish this, return to the physical plane in Fig. 5.7a. Imagine that 
we go to the extreme right of the O grid shown there, take a razor blade, and make a 
"cut" to the trailing edge of the airfoil. This cut now introduces two additional 
boundaries, namely, the curves qp and sr, denoted by r 3 and r 4 , respectively. In Fig. 
5.7a, the curves qp and sr are shown slightly separated; this is for clarity only. In 
reality, qp and sr are the same curve in the xy plane; qp simply denotes the upper 
surface of the cut and sr denotes the lower surface, but they lie on top of each other. 
In the physical plane, the points q ands lie on top of each other, and the points p and 
r also lie on top of each other; indeed, the entirety of r 3 lies on top of r 4 . However, 
this is not the case in the ~11 plane shown in Fig. 5.7b. Here, r 3 and r 4 are totally 
separated and form the right and left boundaries, respectively, of the domain in the 
computational space. It is almost as if the O grid in the physical plane, after the cut 
is made, is unwrapped, with r 4 being swung below and out to the left. In the 
computational plane, q and s are separate grid points and r and p are separate grid 
points. Return for a moment to the physical plane. The cut has been made rather 
arbitrarily, but once we make it, then we know the (x, y) coordinates along the cut. 
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That means we now have values of x and y specified along r3 and r4 in Fig. 5.7b. 
Reviewing the relationship between the physical and computational planes, we can 
state the following. The airfoil surface in the physical plane, curve pgecar, becomes 
the lower straight line denoted by r 1 in the computational plane. Similarly, the outer 
boundary in the physical plane, curve qhfdbs, becomes the upper straight line 
denoted by r 2 in the computational plane. The left and right sides of the rectangle in 
the computational plane are formed from the cut in the physical plane; the left side 
is line rs denoted by r 4 in Fig. 5. 7 b, and the right side is line qp denoted by r 3 in 
Fig. 5.7b. 

The computational plane is sketched again in Fig. 5.8, just to emphasize what 
is happening. Here we emphasize that values of (x, y) are now known along all four 
boundaries r I, r 2, r 3, and r 4. This is the essence of a properly posed boundary
value problem for the solution of elliptic partial differential equations. In tum, Eqs. 
(5.69) and (5.70) are such elliptic equations. For each grid point inside the domain 
shown in Fig. 5.7b, these equations can be solved numerically, along with the 
specified boundary values of (x, y) along r 1, r 2 , r 3 and r 4, to give the 
corresponding (x, y) values of that same grid point in the physical plane. For 
example, consider the internal grid point labeled A in Fig. 5.8; this corresponds to 
the point labeled A in both the physical and computational planes in Fig. 5.7. At 
point A in the computational plane, Eqs. (5.69) and (5.70) are solved for its (x, y) 
coordinates. This now locates point A in the physical plane. In tum, for all the 
uniformly spaced grid points in the ~11 plane, the solution of Eqs. (5.69) and (5.70) 
now locates these same points in a nonuniform manner in the xy plane. That is, a 
given grid point (~;, 11)) in the computational plane corresponds to the calculated 
grid point (x;, yj) in physical space. The solution ofEqs. (5.69) and (5.70) is carried 
out by an appropriate finite-difference solution for elliptic equations; for example, 
relaxation techniques are popular for such equations. Because this transformation is 
being carried out via the solution of a system of elliptic partial differential 
equations, it is called elliptic grid generation. 

Note that the above transformation, using an elliptic partial differential 
equation to generate the grid, does not involve closed-form analytic expressions; 
rather, it produces a set of numbers which locate a grid point (x;, yj) in physical 
space which corresponds to a given grid point(~;, 11) in computational space. In 
tum, the metrics in the governing flow equations (which are solved in the 
computational plane), such as 8~!8x, 811/ay, are obtained from finite differences; 
central differences are frequently used for this purpose. For example, at any given 
grid point located at (i, j) in both the physical and computational planes, we can 
write for the metric at that point 

~i+l,j-~i-1,j 

X;+l,j -X;-J,j 

and so forth. In tum, these values of the metrics are fed directly into the transformed 
governing flow equations that are being solved in the transformed plane, i.e., in the 
uniform grid in the ~11 plane, thus allowing the flow field around the airfoil to be 
obtained. 
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FIG. 5.8 
Computational plane, illustrating the boundary conditions and an internal point. 

Once again, it is important to keep in mind what we are doing here. Equations 
(5.69) and (5.70) have nothing to do with the physics of the flow field. They are 
simply elliptic partial differential equations which we have chosen to relate ~ and 17 
to x and y and hence constitute a transformation (a one-to-one correspondence of 
grid points) from the physical plane to the computational plane. Because this 
transformation is governed by elliptic equations, it is an example of a general class 
of grid generation called elliptic grid generation, as stated earlier. Such elliptic grid 
generation was first used on a practical basis by Joe Thompson at Mississippi State 
University, and is described in detail in the pioneering article given in Ref. 34. This 
reference gives a great deal more detail, as well as more generalization, than 
presented in the present section; it is highly recommended that you examine this and 
other references before embarking on any elliptic grid generation of your own. The 
purpose of the present section is to help you understand the basic ideas. 

The curvilinear, boundary-fitted coordinate system shown in Fig. 5.7a is 
illustrated in a qualitative sense in that figure for purposes of instruction. An actual 
grid generated about an airfoil using the above elliptic grid generation approach is 
shown in Fig. 5.9, which is a computer graphic taken from Ref. 6. Using 
Thompson's grid generation scheme (Ref. 34), Kothari and the present author 
(Ref. 6) have generated a boundary-fitted coordinate system around a Miley airfoil. 
(The Miley airfoil is an airfoil specially designed for low Reynolds number 
applications by Stan Miley at Mississippi State University.) In Fig. 5.9, the white 
speck in the middle of the figure is the airfoil, and the grid spreads away from the 
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airfoil in all directions. In Ref. 6, low Reynolds number flows over airfoils were 
calculated by means of a time-marching finite-difference solution of the com
pressible Navier-Stokes equations. The free stream is subsonic; hence, the outer 
boundary must be placed far away from the airfoil because of the far-reaching 
propagation of disturbances in a subsonic flow. A detail of the grid in the near 
vicinity of the airfoil is shown in Fig. 5.10. Note from both Figs. 5.9 and 5.10 that 
the grid is a C-type grid in contrast to the 0-type grid sketched in Fig. 5.7. The 
black areas in Figs. 5.9 and 5.10 are densely packed grid points that are not resolved 
by the computer graphics picture. The grid shown in Figs. 5.9 and 5.10 is precisely 
that used to obtain some of the low Reynolds number airfoil results discussed in 
Sec. 1.2, and in particular the results shown in Fig. 1.4. Also, Fig. 1.14 is an 
excellent example of a boundary-fitted grid wrapped outside and inside a gas 
turbine engine. 

We end this section by emphasizing again that the elliptic grid generation, 
with its solution of elliptic partial differential equations to obtain the internal grid 
points, is completely separate from the finite-difference solution of the governing 
equations. The grid is generated first, before any solution of the governing equations 
is attempted. The use of Laplace's equation [Eqs. (5.67) and (5.68)] to obtain this 

FIG. 5.9 

---1 

---+---
I 

__ --l___J 

Elliptically generated grid wrapped around a Miley airfoil, from the calculations by Kothari et al. The 
small, white speck at the focus of the grid is the airfoil. This reflects the necessity to place the far-field 
boundary a large distance from the body for a numerical solution of a subsonic flow. 
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10 

FIG. 5.10 
A small, detailed section of the boundary-fitted grid of Fig. 5.9, in the near vicinity of the airfoil. 

grid has nothing to do whatsoever with the physical aspects of the actual flow field. 
Here, Laplace's equation is simply used to generate the grid only. 

5.8 ADAPTIVE GRIDS 

The concept of a stretched grid as outlined in Sec. 5.6 is motivated by the desire to 
cluster a large number of closely spaced grid points in those regions of the flow 
where large gradients in the flow-field properties exist, hence improving the 
numerical accuracy of a given CFD calculation. This motivation is driven by 
more than just trying to minimize the truncation error with closely spaced points; it 
is also a matter of simply having enough grid points to properly capture the physics 
of the flow. A qualitative example of this is the viscous flow over a flat plate, 
sketched in Fig. 5.11. In the real physical flow, there will be a boundary layer that 
grows thicker with increasing downstream distance along the plate. Let x be the 
distance along the plate measured from the leading edge. The local thickness of the 
boundary layer is <5, where i5 = b(x). Consider the grid shown in Fig. 5.1 la; here we 
see a coarse grid where not a single grid point is placed in the real boundary layer. 
That is, Lly > i5 for the first row of grid points above the plate. When a numerical 
calculation is made on this grid, and the no-slip condition of u = 0 is applied at the 
wall, a velocity profile is obtained like that sketched at the right of Fig. 5.1 la. Some 
type of profile will be obtained, with u increasing in they direction; it will be a 
boundary-layer-like profile but indicating a thickness far in excess of the real 
boundary-layer thickness. In contrast, consider the grid shown in Fig. 5.l lb; this is 
also a coarse grid, with an equal number of points in the y direction as used in Fig. 
5.1 la. However, in Fig. 5.1 lb the grid is compressed such that at least some points 
are in the real boundary layer. That is, ~y < i5 for the first row of grid points above 
the plate. When a numerical calculation is made on this grid, the resulting velocity 
profile shown at the right of Fig. 5.1 lb will be a more realistic representation of the 
real boundary layer. In essence, the coarse uniform grid shown in Fig. 5.1 la misses 
the physical boundary layer altogether; the viscouslike velocity profile shown at the 
right is simply due to the application of the no-slip condition at the wall. In contrast, 
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FIG. 5.11 
Two sketches demonstrating the need to concentrate a number of grid points in the boundary layer. (a) 
No grid points in the boundary layer; (b) at least some points in the boundary layer. 

the coarse but compressed grid shown in Fig. 5 .11 b at least captures some of the 
features of the real boundary layer. 

Obviously, the purpose of the compressed ( or stretched) gri~ is to put grid 
points in the flow field where the action is and to remove. gnd p01~ts from those 
regions where there is little or no action. H_owev~r, ~s discussed m Sec. 5.6_, a 
stretched grid is an algebraically generated gnd which 1s set up bef?re the solution 
of the flow is calculated. Moreover, once it is set up, it is locked m place for t_he 
entire flow-field solution. However, how do you know in advance where the maJor 
action is going to occur in the flow without actually solving the problem first? ~ou 
may set up a stretched grid in advance, but you may miss completely the region 
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where the real action is; i.e., you may not be so lucky as to set up your more closely 
spaced points so that they coincide with the regions of large gradients in the flow. 
Therein lies the motivation for an adaptive grid, which is the subject of this section. 

An adaptive grid is a grid network that automatically clusters grid points in 
regions of high flow-field gradients; it uses the solution of the flow-field properties 
to locate the grid points in the physical plane. An adaptive grid can be visualized as 
one which evolves in steps of time in conjunction with a time-dependent solution of 
the governing flow-field equations, which computes the flow-field variables in steps 
of time. During the course of the solution, the grid points in the physical plane move 
in such a fashion to "adapt" to regions of large flow-field gradients as these 
gradients evolve with time. Hence, the actual grid points in the physical plane are 
constantly in motion during the solution of the flow field and become stationary 
only when the flow solution approaches a steady state. Therefore, unlike the 
stretched grid discussed in Sec. 5.6 and the elliptic grid generation discussed in Sec. 
5.7, where the generation of the grid is completely separate from the flow-field 
solution, an adaptive grid is intimately linked to the flow-field solution and changes 
as the flow field changes. The hoped-for advantages of an adaptive grid are 
associated with the grid points being automatically clustered in regions where the 
"action" is occurring. These advantages are (l) increased accuracy for a fixed 
number of grid points or (2) for a given accuracy, fewer grid points are needed. 
Adaptive grids are still very new in CFD, and whether or not these advantages are 
always achieved is not well established. 

An example of a simple adaptive grid is that used by Corda (Ref. 35) for the 
solution of viscous supersonic flow over a rearward-facing step. Here, the trans
formation is expressed in the form 

& = B 11.~ 
I+ b(8g/8x) 

(5.71) 

and 11.y = C '1.11 
1 + c(8g/8y) 

(5.72) 

where g is a primitive flow-field variable, such asp, p, or T. If g = p, then Eqs. 
(5.71) and (5.72) cluster the grid points in regions of large pressure gradients; if 
g = T, the grid points cluster in regions of large temperature gradients; and so forth. 
In Eqs. (5.71) and (5.72), 11.~ and '1.11 are fixed, uniform grid spacings in the 
computational ~11 plane, b and c are constants chosen to increase or decrease the 
effect of the gradient in changing the grid spacing in the physical plane, Band Care 
scale factors, and & and 11.y are the new grid spacing in the physical plane. Because 
8g/8x and 8g/8y are changing with time during a time-dependent solution of the 
flow field, then clearly & and 11.y change with time; i.e., the grid points move in the 
physical space. Clearly, in regions of the flow where 8g/8x and 8g/8y are large, Eqs. 
(5.71) and (5.72) yield small values of t1.x and 11.y for a given 11.~ and '1.11; this is the 
mechanism which clusters the grid points. This process is illustrated in Fig. 5.12, 
where the physical plane is shown in part (a) and the computational plane in part 
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(b). Consider the specific grid point labeled Nin Fig. 5.12b. T~is point is.fixed in the 
~11 space; it does not move with time. So is its adjacent grid pomt, labeled N : 1. As 
usual the distance between grid point N and N + I is 11.r Now examme the 
corre~ponding grid points in the physical plane, Fig. 5.12a. The location of points N 
and N + 1 in the physical plane at time level t are denoted by the black dots. The 
distance between these two points in the x direction is ('1.x)\ where the superscript t 
denotes the time level t. The x location of point N at time level t, denoted by x~, 
depends on the various values of & between points 1 and 2, points 2 and 3, etc. 

That is, 

(5.73) 

Now consider the situation at the next time level, t + M. Because 8g/8x will in 
general change from one time level to the next during the time-marching process, 
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FIG. 5.12 
Schematic of the mechanics of an adaptive 
grid. (a) Physical plane; (b) computational 

plane. 
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then Eq. ( 5. 71) yields a new value of Llx, denoted by ( L1x l +.1.t at time level t + !it. 
Hence, the x location of point N shifts to a new value at time t + !it, denoted by 
x~+l:i.t_ Of course, because of the simultaneous application of Eq. (5.72), the y 

location of point N shifts also. The new locations of points N and N + 1 at time 
level t + lit are shown by crossmarks in Fig. 5.12a; the new value of Llx, namely, 
(&)1 

+ 1:i.t, is also shown. The new x location of point Nat time level t + lit is given 
by 

(5.74) 

Equations analogous to (5.73) and (5.74) can be written for they location. 
You are reminded again that, in dealing with an adaptive grid, the computa

tional plane consists of fixed points in the (Y/ space; these points are fixed in time; 
i.e., they do not move in the computational space. Moreover, !ii; is uniform and 11.Y] 

is uniform. Hence, the computational plane is the same as we have discussed in 
previous sections. The governing flow equations are solved in the computational 
plane, where the x, y, and t derivatives are transformed according to Eqs. (5.2), (5.3), 
and (5.5). In particular, examine the transformation given by Eq. (5.5) for the time 
derivative. In the case of stretched or boundary-fitted grids as discussed in Secs. 5.4 
and 5.5, respectively, the metrics a(lat and ar,lat were zero, and Eq. (5.5) yields 
8/at = 818,. However, for an adaptive grid, 

and 

%; = (%;)x,y 

;; = (%;)x,y 
are finite. Why? Because, although the grid points are fixed in the computational 
plane, the grid points in the physical plane are moving with time. The physical 
meaning of (a(lat)x, y is the time rate of change of ( at a.fixed (x, y) location in the 
physical plane. Similarly, the physical meaning of ( ar,lat)x, Y is the time rate of 
change of r, at a.fixed (x, y) location in the physical plane. Imagine that you have 
your eyes locked to a fixed (x, y) location in the physical plane. As a function of 
time, the values of ( and r, associated with this.fixed (x, y) location will change. This 
is why a(lat and 8r,!8t are finite. In tum, when dealing with the transformed flow 
equations in the computational plane, all three terms on the right-hand side of Eq. 
(5.5) are finite and must be included in the transformed equations. In this fashion, 
the time metrics a(lat and ar,lat automatically take into account the movement of 
the adaptive grid during the solution of the governing flow equations. 

The values of the time metrics in the form shown in Eq. (5.5) are. a bit 
cumbersome to evaluate; on the other hand, the related time metrics 

and 

are much easier to evaluate numerically; they stem directly from the forms of the 
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adaptive grid transformation given by Eqs. (5.71) and (5.72). For ~xample, re~m 
to Fig. 5.12. We can represent the time metric (axl?t!~:,, by taki~g th.e relative 
change in the x locations of points N and N + 1 and dividmg by the time mcrement 

!it. That is, 
x1+1:i.1 -xt 

N N 
lit 

(5.75a) 

where x~+l:i.tandx~ are given by Eqs. (5.74) and (5.73), respectively. An analogous 
expression can be written for (ay/at)~.,, as follows: 

(ay) =y~l:i.t -y'.w (5.75b) 
at ~.,, tit 

where y~1:i.1and y:W are given by expressions analogous to Eqs. (5.73) and 

(5.74), i.e., 

I' 

M 

and 
t+l:i.t _ ~( A )t+l:i.t 

YM - ~ uy i 

I' 

The meaning of Mis as follows. Examine Fig. 5.12, where we have prev!ously 
focused on the grid point labeled N; here, N is simply the value of the x i~dex, 
namely, i = N. For the same grid point, M denotes the value of th~ co~espondmg Y 
index, namely,j = M. The above summations are taken in th~ y dtrect_10n, summed 
over points 1 ', 2', 3', etc., as shown in Fig. 5.12a. Since the time metn~s (8~/at)~.,, 
and ( aylatk ,, are the ones most directly obta_ined from the t~ansf~rmat10n given by 
Eqs. (5.71) and (5.72) and since the derivative transformation given by E~. (5.?) 
involves the time metrics (a(lat)x, y and (ar,lat)x, y, we must find the relationship 
between these two sets of metrics. Let us proceed as follows. 

Return to the general inverse transformation given by Eqs. (5.18a) to (5.18c). 
In particular, examine Eq. (5.18a), repeated below. 

x = x((, Y/, r) (5.18a) 

Forming the exact differential, we have 

dx = (ax) d( + (ax) dr, + (ax) dr 
0( ti,! or, ~., or ~.,, 

(5.76) 

In Eq. (5.76), the change in x, dx, is expressed in terms ot: changes i~ (, Y/, and r, 
namely, d(, dr,, and dr, respectively. If these changes are ~akmg place with respect to 
time, holding x and y constant, Eq. (5.76) can be wntten as 

l a ax a( ax or, ax 
~Y= (a(),,,, (at)x,y+(ar,\,, (atty+(a,\.,, ,,y 

(5.77) 
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In ~q. (5. 7!), ~8x/8t)x, y is identically zero, because xis being held constant in this 
p~rtial d~nv~t1ve. We are als~ ~tipulating that the generic Eq. (5.18c), where 
t - t(r), 1s given by t = r. This 1s why (8r/8t)x,y = I in Eq. (5.77). With these 
values, Eq. (5. 77) becomes 

_ (8x) = (8x) (8') + (8x) (81]) 
8r ¢, 1/ 8, r1,T 8t x,y 81] ¢, r 8t x,y (5.78) 

Note t~at we continue t~ carry the subscripts on the partial derivatives to avoid any 
~on

1 
fusion over what vanables are held constant. Now consider Eq. (5.18b), repeated 

eow, 

(5.18b) 
Hence 

(5.79) 

Thus, from this result we write 

( ~O = (8y) (8') + (8y) ( 81]) + ( 8y) ({)yf I 
)(fii }x,y 8, 1/, r 8t x,y 81] ¢, r 8t x,y 8, ¢. ,,xJfi} x,y (5.80) 

or -(Zt ~ (!n,, (:;),, +(:) ,, (:;t (5.81) 

Examine Eqs._ (5.78) an~ (5.81); they have in common the metrics (8,!8t)x Y and 
( 81]! 8t)x, y U smg Cramer s rule, we solve Eqs. ( 5. 78) and ( 5. 81) first for ( 8,/ 8t)x, Y. 

-(Z:)¢.,, (Z;}_r 

(8') = -(tr\,1/ (~},r 
8t x,y (8x) (8x) 

8, 'f,t 81] ¢,r 

(5.82) 

(Z;\,r (:\,r 
Recognizing that r = t, and that the denominator is the J·acobian J. E (5 82 
b (d . ' q. . ) ecomes roppmg subscripts) 

8, _ ~ [-(8x) ({)y) ({)y) (8x)] 
8t - J 8t 81] + 8t 81] (5.83) 
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In a similar fashion, solving Eqs. (5.78) and (5.81) for (81]/8t)x,y, we find that 

;; = ~ [-(::) (Z) - (Z) (Z;) J (5.84) 

Let us recapitulate. For an adaptive grid which is designed to evolve during 
the course of a time-marching solution, the governing flow equations, when 
transformed for solution in the computational ,,, plane, must contain all the 
terms in the time transformation given by Eq. (5.5). We note that the time metrics in 
Eq. (5.5) are 8'!8t and 81]/8t. These time metrics can be evaluated from Eqs. (5.83) 
and (5.84), respectively. In tum, in Eqs. (5.83) and (5.84), the terms 8x/8t and {)y/8t 
are calculated via Eqs. (5.75a) and (5.75b), respectively. The spatial metrics 8x/8,, 
8xl81], {)y/8,, and {)y/81] which appear in Eqs. (5.83) and (5.84) as well as in the 
jacobian J can be replaced by central differences. For example, 

8x X;+l,j-Xi-1,j 
-

8, 2i1., 
8x x,,J+ 1 - x,,J-1 
81] 2i1.,, 
8y Y;+ 1,J - Yi-1,J 
8, 2i1., 
8y Yi,J+ I - Yi,j-1 
81] 2i1.,, 

where, in the above equations, i = N and j = M. 
An example of an adapted grid for the supersonic flow over a rearward-facing 

step is given in Fig. 5.13, taken from the work of Corda (Ref. 35). Flow is from left 
to right. The adapted grid shown in Fig. 5.13 is the final, steady-state grid obtained 
after the time-marching flow-field solution has reached its steady state at large time. 
Note that, as the steady state is approached, the time metrics 8'!8t, 81]/8t, 8x/8t, and 
{)y/8t all approach zero; i.e., the grid points in the physical xy plane cease to move. 
Note in Fig. 5.13 that the grid points cluster around the expansion wave emanating 
from the top comer of the step and around the reattachment shock wave downstream 
of the step. It is interesting to note that the adapted grid itself is a type of flow-field 
visualization method that helps to identify the location of waves, shear layers, and 
other gradients in the flow. Returning to the original adaptive grid transformation 

FIG. 5.13 
Adapted grid for the rearward-facing step problem from Corda. 
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given by Eqs. (5.71) and (5.72), if g = p, then the grid points in the physical plane 
cluster in regions of large density gradients-this is the computational analog to a 
schlieren photograph taken in the laboratory. Note that the grid in Fig. 5.13 takes on 
the trappings of a type of "CFO schlieren" picture. 

As a final note in this section, there are many different approaches for the 
generation of adaptive grids. The above discussion is just one; it is based on the 
ideas presented by Dwyer et al. in Ref. 36. Adaptive grids are in a current state of 
rapid development in modem CFO; you are encouraged to consult the modem 
literature on this extensive subject before embarking on any serious adaptive grid 
efforts of your own. The adaptive grid technique described in the present section 
was chosen for its simplicity, because our interest here is to give you just a feeling 
for the general idea. 

5.9 SOME MODERN DEVELOPMENTS IN 
GRID GENERATION 

As stated in Sec. 5. I, grid generation is a very active research and development 
activity within the general discipline of CFO. In this chapter, we have only 
introduced some of the basic ideas. However, let us take a quick look at two 
examples which reflect modem applications of grid generation within the practical 
world of aerodynamics. 

The first example is the grid used to calculate the flow-field results over the 
Northrop F-20 airplane as presented in Figs. 1.6 and 1.7. Return to Chap. 1 for a 
moment and examine these figures. They were obtained by means of a numerical 
solution to the three-dimensional Euler equations, as described in Ref. 9. It is always 
a major challenge to construct a three-dimensional grid around a complex con
figuration such as the F-20. For the cases shown in Figs. 1.6 and 1.7, a three
dimensional boundary-fitted coordinate system is chosen with an elliptic grid 
generation following the ideas presented in Sec. 5.7, combined with an adaptive 
grid scheme following the ideas presented in Sec. 5.8. Sections of the grid are 
shown in Fig. 5 .14, taken from Ref. 9. Here we see the grid coordinate lines in the 
surface of the body, the centerline plane, and the plane of the wing. 

The fuselage is angled diagonally across the figure, with the nose at the lower 
left. The wing, tail, and rear portion of the fuselage appear solid white, due to the 
dense clustering of grid points in those regions where the grid has adapted to large 
flow-field gradients. Figure 5.14 represents a combination of grid generation ideas 
presented in this chapter, cast in the framework of a modem application of CFO. 
Figure 5.14 also sheds more light on how the results of Figs. 1.6 and 1.7 were 
obtained, thus helping to close the loop on some of the introductory discussion in 
Chap. I. 

A complete airplane is, in general, a complex geometric configuration, which 
sometimes requires grid generation even more elaborate than the single boundary
fitted grid discussed in Sec. 5.7 and as exemplified by Fig. 5.14. In many practical 
fluid dynamic applications, modem CFO solutions have employed a grid made up 
of two or more separate grids, with interfaces between each other. That is, the grid 
consists of two or more blocks, where each block is a separate grid different from 
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FIG. 5.14 · I fi ( n The configuration 
An elliptically generated adaptive grid wrapped around an F-20 a1rp ane con gura 10 · 

surface, centerline plane, and wing plane are shown. (From Ref 9.) 

the others. These different blocks cover different zones of the flow field, . an_d 
hence such grids are frequently called zonal grids. An example of a zonal gnd 1~ 

shown in Fig. 5.15, taken from Refs. 37 and 38. Here we see only pa~ ofa 20-bloc 
rid system for the computation of the flow over an F-16 fighter airplane. We see 

!even of the upper blocks in Fig. 5.15. The remaining blocks are used t? help define 
the flow over the inlet, etc. One of the major problems encountere? m the use of 
zonal block methods is the proper geometric interfacing across a?Jac~nt zones, a 
proper "connectivity" so that the accuracy of the CFO calculation is no~ com-

romised. Furthermore, each block can in principle be gener~ted b_Y a differ~nt 
~cheme; i.e., one block might be an algebraic,_ stretched gnd us~ng ~artes~an 
coordinates (see Sec. 5.6); an adjacent block might be a~ algebraic gn? ~smg 
cylindrical coordinates; and yet another adjacent block ?1.ight be an elhptlcally 
generated grid (see Sec. 5.7). This compounds the co~ectIVity problems. A ~rther 
discussion of these matters is beyond the scope of this book; for more details, see 

for example, Refs. 37 and 38. 
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FIG. 5.15 
A zonal grid wrapped around an F-16 ai I Surfi . . 
Refs. 3 7 and 38. Copyright © 1990 1~e. R ~ce dgnd _1hs shown_ as_ part of a 20-block grid. (From 

, · epnnte wit perm1sswn.) 

S.lO SOME MODERN DEVELOPMENTS IN 
FINITE-VOLUME MESH GENERATION· 
UNSTRUCTURED MESHES AND A RETURN 
TO CARTESIAN MESHES 

~~:S it~t ~~ ~~:· 5, all the ~ds discussed and displayed have been couched in 
m e- I erence algonthm applications with the d d' 

:!fc~v:;;0,:u:;;~;:~;;;i7:! ";!.:!'\!cal i'· there exi: ~=r.:..t~ 
~nite-difference calculations are then m:e o!: this ~i!o:pu~~I?n~ space. The 

tional spac~, after_ whi~h the flow-field results are transferred g;ire:l ~a~~~~~; 
corres~;ndmg pomts m the physical space. Go back and look at ysome of the 

~ol~unl1~: gid~ in the physi_cal space, s~ch as Figs. 5.5, 5.9, 5.10, and 5.13 to 
r· · . ug_ t ey are nonuniform, there 1s a certain "regularity" to them· the ·d 
mes fi m physical space pertain to constant coordinate values ~ 11 and ' ( · ~ 
:2:r-~;:;.;~o~=~rd: to;;~:;:;;e;ro~:= t:~·n: :::~:~~ 
struc~red gri~:. a certam structure to all these grids; such grids are called 

Here is another thought. The nonuniform grids you are lookin t . . spre can also be visualized as a mesh of finite-volume cells s!:e i;;,:hr~ 
vo ume method does not demand a uniform rectangular 'd c. · . m e-' gn ,or computations (as 
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does the finite-difference method), then such finite-volume calculations can be 
made directly in the physical plane on a nonuniform mesh. No transformations are 
necessary. Therefore, in the context of a finite-volume method, mesh generation 
simply involves the construction of the mesh in physical space. (Recall that our 
treatment of the finite volume method is introduced in this book via Problems 2.2 
and 4.7.) Thus, if we wish, we can view Fig. 5.9 (for example) as a picture of a 
finite-volume mesh, on which the finite-volume calculations can be made directly. 
Moreover, in the same vein as described in the previous paragraph, the mesh 

represented by Fig. 5.9 is a structured mesh. 
Here is yet another thought. There is nothing about the finite-volume method 

that demands a structured mesh; it can be applied to mesh cells of any arbitrary 
shape. This has given rise to the use of unstructured meshes. Perhaps the best way to 
describe what is meant by an unstructured mesh is to look at some. An unstructured 
mesh around a multielement airfoil is shown in Fig. 5.16, taken from Ref. 39. 
Another unstructured mesh for the calculation of the flow over a compression comer 
is shown in Fig. 5 .17, taken from Ref. 40. Clearly, there is no regularity to these 
meshes. There are no coordinate Jines that correspond to a constant ~. 17, and (. 
These grids are totally unstructured. This allows for maximum flexibility in 
matching mesh cells with the boundary surfaces and for putting cells where you 
want them. Constructing an unstructured mesh might be viewed in some sense as a 
work of art~you can shape the mesh cells as you like and put them wherever you 
want in the physical space. Of course, you have to develop the computer logic to 
automate the cell generator. Although unstructured meshes have been used for 

FIG. S.16 
An unstructured mesh around a multielement airfoil. (From Ref 39. Copyright © 1991, A1AA. 

Reprinted with permission.) 
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~ ~ ,.,-,- 7' 7\~ ... \ 
.. --..,--

FIG. 5.17 
An unstructured mesh around a compression comer. (From Ref 40. Copyright 'C 1991, AJAA. 
Reprinted with permission.) 

finite-element calculations in structural mechanics for a number of years, they are 
relatively new to the field of CFO. Indeed, in the field of grid or mesh generation for 
CFD, unstructured meshes are, at the time of writing, receiving a great deal of 
attention. 

It is somewhat ironic that, at the same time that unstructured meshes have 
become popular, current advances are also being made in the extreme opposite 
direction: the use of cartesian meshes with the maximum degree of structure. At the 
beginning of this chapter, we momentarily considered a cartesian grid, such as 
shown in Fig. 5.1, and then immediately rejected it for general use because of the 
difficulty posed by grid points appearing inside the body, as well as the lack of grid 
points on the boundary surface. However, if we view Fig. 5.1 as a finite-volume 
mesh, then it takes on a new dimension, so to speak. The mesh cells away from the 
body can be rectangular, and those cells adjacent to the body can be modified in 
shape such that one side of each cell is along the body surface. This is shown 
schematically in Fig. 5.18. A cartesian mesh for the calculation of the flow over an 
airfoil (including flap deflection) is shown in Fig. 5.19, taken from Ref. 41. The 
generation of this mesh also incorporates some adaptation following the philosophy 
discussed in Sec. 5.8. A cartesian mesh around a double ellipsoid (a body shape 
somewhat like the space shuttle) is shown in Fig. 5.20, also taken from Ref. 41. In 
this case, the cartesian mesh is for the calculation of supersonic flow over the body, 
and the mesh adaptive procedure clusters the rectangularlike cells around the bow 
and canopy shock waves, as clearly seen in Fig. 5.20. Reference 41 represents one 
of the most recent investigations of cartesian meshes at the time of writing; for more 
details, consult this reference. · 

5.11 SUMMARY 

This ends our general discussion of grid and mesh generation for the numerical 
computation of fluid-flow problems. Returning to the road map in Fig. 5.3, recall 
that our presentation has followed three generai routes, as reflected by the three 
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~!~;
0
!· ~~ a cartesian mesh near a surface. Those mesh cells adjacent to the surface are highlighted by 

bold lines; they are modified so that one side of the cell hes along the surface. 

vertical columns. Knowing that finite-difference solutions us~ally require that the 
computations be made in a transformed plane-the computat10_nal plane--t~e first 

1 d alt with the general aspects of derivative transformations, along with the ~~1:r: as:ects of metrics and jacobians. As pa~ of this discussion, w_e demons!rat~~ 
that the governing flow equations can be cast m a str?ng cons~rvat10n fo~ m t e 
transformed space, analogous to their strong conservatt~n f~rm m the phy_sical spa~e 
presented in Chap. 2. Moving to the second column m Fig. 5.~, we_disc~ssed m 
some detail the various aspects of grid gen~ration. f~r use m finite-difference 
solutions with examples given for stretched gnds, elhpttcall~ generated_bo~ndary-

fi tted grids adaptive grids and zonal grids. Moving to the thtrd column m Fig. 5.3, 
' ' · 1 1 1 1· note that the pertaining to mesh generation for fimte-vo ume ca cu a 1?ns, we . 

previously mentioned grids in physical space can also be viewe~ as fin_ite-volume 
meshes. This is represented by the connecting line~ fr~m the vanous gn? box~s. to 
the main vertical trunk line under mesh generation m Fig._ 5.3. ~owever, m addition 
under the third column, we have the very modem c~nsi~erattons of unstructur~d 
meshes and cartesian meshes. The material presented m thi_s chapter, as reflected m 
Fig. 5.3, is an important element ofCFD; if_you_are uncertain or co~fused ab?ut any 
aspects represented by the various boxes m Fig. _5.3, make certam to review the 
relevant sections in this chapter before progressmg further. 
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FIG. 5.19 
~ cartes!anri~e;

9
h
9
for the calculation of the subsonic flow over a multielement airfoil. (From Ref 41 

opyrzg t ~ 1, AIAA. Reprmted with permission.) · · 

o.oso H-+++rl-1-1# 
y 

X 0.050 

FIG. 5.20 
A cartesian mesh for the calculation of 
the hypersonic flow over a double ellip
s01d, a configuration somewhat like 
t~e space shuttle. (From Ref 41. Copy
right © 1991, AIAA. Reprinted with 
permission.) 
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PROBLEM 
5.1. Consider a polar coordinate system drawn in the space about a circular cylinder. 

Discuss this system in relation to the general idea of a boundary-fitted coordinate 
system. Also, calculate the metrics for this system. Note: We will deal with such a 
coordinate system in Prob. 6.2, wherein the inviscid incompressible flow around a 
circular cylinder is calculated. The results obtained here are useful for Prob. 6.2. 
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6 
SOME 
SIMPLE 
CFD 
TECHNIQUES: 
A BEGINNING 

Technique-The systematic procedure by which a 
complex or scientific task is accomplished. 

The American Heritage Dictionary of the English 
Language, 1969 

6.1 INTRODUCTION 

This_ ch~pter is the last stepping-stone of Part II of this book; Part III deals with 
~pphcahons of CFO to various flow problems. To deal with any such applications, it 
is nec~ssary to ~rst un~erstand the basic form and nature of the governing equations 
of flmd dynamics;_ this was_ the purpo_se of Part I. Second, it is necessary to 
understand. the ba~1~s of vanous numencal discretizations that can be applied to 
these equations; th1s_1s the purpose of Part II. With the present chapter, we fulfill this 
pull?ose. Here we will _take th~ basic numerical discretization approaches discussed 
earlier and mold them mto vanous techniques that will allow the numerical solution 
of ~ow prob~em~. It is in this chapter that we polish off the tools necessary for the 
vanous applications to be discussed in Part III. 

. ~odern CFO i~ awash with different techniques-some old, some new, some 
qmte s1mpl~ and straightforward, and some very sophisticated and elaborate. They 
all h~ve their streng~hs and wea~esses. In this light, let us set forth the philosophy 
?fth1s_chapter, and mdeed the philosophy for the remainder of this book. This book 
is not mtended to be an exposition of the latest state of the art in CFO. The state of 
the art c~n be found in the vast journal and technical report literature. This book is 
also not mtended to be a source book for all the existing CFO techniques. (There are 
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several advanced-level textbooks in CFO that provide a wide survey of many 
techniques, such as Refs. 13-18.) Rather, the purpose of this book is to provide 
the reader with a simple, uncluttered introduction to CFD and to establish a base 
from which the reader can move on to more advanced texts and courses in the 
field. Its role is somewhat analogous to a first undergraduate course in fluid 
dynamics, namely, to provide the student with some basic ideas, as well as the 
interest and motivation to go further with more advanced courses and state-of-the
art studies. Therefore, the CFO techniques discussed in this chapter arc chosen for 
their simplicity as well as their usefulness. Our purpose here is to develop some 
CFO tools that are not overly sophisticated-tools that can be appreciated and 
understood at the introductory level adopted for this book but which are utilitarian 
enough to allow the solution of a variety of flows discussed in Part III. More 
sophisticated, state-of-the-art CFO techniques are discussed in Chap. I I, near the 
end of the book. 

Finally, we note that any one particular CFO technique will not be appropriate 
for all problems; the diverse mathematical nature of different partial differential 
equations (such as described in Chap. 3) will ensure that some algorithms will work 
best for hyperbolic equations, others will work best for elliptic equations, etc. We 
will make this type of distinction as we progress. 

Let us now begin to construct some techniques suitable for applications in 
CFO. We will do this in a generic way, leaving specific applications to specific 
problems for Part III. For simplicity, we will consider only two-dimensional flows; 
the extra work brought on by including a third dimension is not important for our 
purposes here. Wherever necessary, we will assume a calorically perfect gas ( one 
with constant specific heats). 

Finally, the road map for this chapter can be found in Fig. 6.35; note that it 
itemizes the techniques to be discussed here, along with the general nature of their 
applicability. Remember to consult this road map as you progress to each new 
section. 

6.2 THE LAX-WENDROFF TECHNIQUE 

The Lax-Wendroff technique is an explicit, finite-difference method particularly 
suited to marching solutions. The idea of numerical solutions obtained by marching 
in steps of time or space was discussed in Chap. 3; such marching solutions are 
associated with the solution of hyperbolic and parabolic partial differential 
equations. A good example of a flow-field problem governed by hyperbolic 
equations is the time-marching solution of an inviscid flow using the unsteady 
Euler equations. The behavior of such a time-marching solution is discussed in the 
Unsteady, Inviscid Flow Subsection of Sec. 3.4. l and is sketched in Fig. 3.7. (It is 
recommended that you review this subsection before progressing further.) 

For purposes of illustration, let us consider an unsteady, two-dimensional 
inviscid flow. The governing Euler equations are derived in Chap. 2 and itemized in 
Sec. 2.8.2. They are rearranged below in nonconservation form, obtained from Eqs. 
(2.82), (2.83a), (2.83b), and (2.85). 
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Continuity : 
( 6.1) 

x momentum: 
(6.2) 

y momentum: 
(6.3) 

Energy: 
( 6.4) 

In t?~ above e_quations, we have assumed no body forces and no volumetric heat 
add1~10n;_ that 1s, f = 0 and q = 0 .. Equation (6.4) is obtained from Eq. (2.85) by 
multiplymg the momentum equation by velocity and then subtracting the result 
from Eq. (2.8_5)--the same type of derivation that generated Eq. (2.73) from Eq. 
(2.66). Equat10ns (6.1) to (6.4) are hyperbolic with respect to time. 

. We n~w proceed to set up a numerical solution of Eqs. (6.1) to (6.4) using a 
hme-m~rchmg app~oach; n?te that these equations are already arranged in a 
con\emen~ fonn, with the time derivatives isolated on the left-hand side and the 
spatial denvat1v~s on the right-hand side. The Lax-Wendroff method is predicated 
on _a T~ylor senes expan~ion in. time, as follows. Choose any dependent flow 
v~nabl~, for p~rposes of 11lustrat10n, let us choose density p. Consider the two
~imensional gnd sho_wn in Fig. 6.1. L_et Pi.; denote the density at grid point (i, J) at 
~im~ t. Then the density at the same gnd pomt (i, j) at time t + 11.t, denoted by l + tJ.1 
is given by the Taylor series ',J ' 

1+tJ.t _ 1 (ap)
1 

(a
2
p)

1 
(11t)

2 

P,.1 - P;. 1 + a . 11.t + -
2 

-- + · · · 
t , 

1 
at . . 2 

. l,J 
(6.5) 

When ~mploying Eq. (6.5), we assume that the flow field at time tis known, and Eq. 
(6.5) gives the new flow field at time t + 11.t. In Eq. (6.5), l . is known from the 

l,J 

y 

;-1.;,1 { i,j+I i+l,j+I 
tJ.y 

Ax 
~ 

i-1,j i,j i+l,j 

i-1,j-l i,j-1 i+ l,j-1 

FIG. 6.1 
X Rectangular grid segment. 
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existing flow field at time t. Ifwe can find numbers for (ap!at)L 1 and (D2p!at2)L1, 
then the value of density at the next step in time, p\,1 tJ.t can be calculated explicitly 
from Eq. (6.5). Analogous Taylor series are written for all the other dependent 
variables. For example, 

(
au)

1 (82u)1 

(M)2 ut+tJ.t = u1 
. + - 11.t + - --+ .. · 

,,1 ,,1 at . . ai2 . . 2 
l,J l,J 

(6.6) 

(8v)1 (82v)' (M)2 v1 + tJ.t = v1 . + - 11.t + - --+ " . 
,,1 ,,1 at . . a12 . . 2 

l,J l,j 

( 6.7) 

(
oe)

1 

(
02 

e)' ( 11.t )2 e1+tJ.1=i. + - M + - --+ ... 
,,1 ,,1 ot . . a12 . . 2 

l,J l,j 

(6.8) 

Equations (6.5) to (6.8) can be used to advance the flow-field variables at each grid 
point to the next step in time, based on known values of PL 1, u:.1, v;,

1
, and <1 at time 

t, as long as we can find numbers for the time derivatives evaluated at time t, that is, 
as long as we have numbers for (op!ot):,1, cauiot)L, ca2uiat2)L1, e_tc., which app_ear 
on the right side ofEqs. (6.5) to (6.8). Smee Eqs. (6.5) to (6.8) are Just mathematics, 
clearly the physics of the flow must enter the calculation somehow. Physics is what 
determines the time derivatives (oplot/ , (ff p!o?): 1, etc., where the physics is 

l,J ' 
embodied in the governing flow equations given by Eqs. (6.1) to (6.4). To be more 
specific, let us concentrate on the calculation of density at time t + 11.t as stipulated 
by Eq. (6.5). In this equation, a number for (oplat)\, 1 is obtained from the continuity 
equation, Eq. ( 6.1 ), where the spatial derivatives are given by second-order central 
differences. That is, from Eq. ( 6.1 ), 

(
op)t = _ ( 1 . u/+ 1,J - u/-1,1 + d . P/+ 1.1 - P:- 1,1 
ot . . P,,J 211.x '· 1 211.x 

1,J 

+ '. . V;,J + 1 - V;,J- 1 + v1 P:,J + 1 - Pi.J- 1) ( 6.9) 
P,,1 211.y ,,1 211.y 

In Eq. (6.9), all quantities on the right-hand side are known because the flow field at 
time tis known. Hence, Eq. (6.9) provides a number for (oplotX,1, which is inserted 
into Eq. (6.5). This takes care of the second tenn on the right side ofEq. (6.5). The 
third term, ( a2 p!ai2):_ 

1
, is obtained in a similar fashi_on but requires more effort. 

Specifically, differentiate Eq. (6.1) with respect to time. 

&p &u OU op &p op OU &v 
at2 = - P ax at + ax ot + u ax at + ax ai + P ay at 

av op &p op av 
+ EJy ot + v EJy at + EJy ot ( 6.10) 

The mixed second derivatives in Eq. ( 6.10), such as a2ul( ox ot), are obtained by 
differentiating Eqs. (6.1) to (6.4) with respect to the proper spatial variable. For 
example, a2ul(ox ot) is obtained by differentiating Eq. (6.2) with respect to x. 
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( 6.11) 

In Eq. ( 6.11 ), all terms on the right side are expressed as second-order, centered 
finite-difference quotients at time t; that is, 

( 
fJ2 u )1 

= __ i/ .. u; ,_ 1 1 - 2 u; 1 + u; _ I. 1 
Dx fJt . '1 (fu:)2 

I.I 

1/ . . I ur i/ - vr I pr 2 r + r + IJ, - L/ I 1+!,j 1-l.1+- i+l.J- Pi.) P;-1,j 

2~y 2.fu: p;j (fu:)2 

I I I I 
P;+1. 1 -P1-1.J P1->-1. 1 -P; ·1.J 

- (pl,))2 2& 2.fu: (6.12) 

Examine Eq. (6.12); all terms on the right-hand side are known from the known 
flow field at time t. This provides a number for the left-hand side, i.e., a number for 
( ffu!Dx fJt);, 1 . In tum, this number is substituted for the term Eiul( fJx fJt) which 
appears in Eq. (6.10). Continuing with the evaluation ofEq. (6.10), a number for 
fJ

2 
p,'( Dx fJt) is found by differentiating Eq. ( 6.1) with respect to x and replacing all 

derivatives on the right side with second-order central differences, analogous to the 
fom1 of Eq. (6.12). To conserve space, we will not write out the full result here. 
Continuing further with Eq. (6.10), a number for fivl(fJy fJt) is found by differ
entiating Eq. (6.3) with respect toy and replacing all derivatives on the right side 
with second-order central differences. The last mixed derivative in Eq. (6.10), 82p/ 
(Dy 8t), is found by differentiating Eq. (6.1) with respect toy and replacing all 
derivatives on the right side with second-order central differences. The only 
remaining derivatives on the right side of Eq. ( 6.10) are the first spatial derivatives, 
namely, fJu!Dx, fJvlfJy, op/Dx, and op/Dy, replaced by second-order central differ-
ences 

(
OU)

1 

U·+ I · - U - I · - - l ,J l ,} 

OX I,) 2& 

and so forth, as well as the first time derivatives 8p/8t, 8u/8t, and 8v/8t. A number 
for fJp!Dt has already been obtained from Eq. (6.9). Numbers for 8u/8t and 8v/8t are 
obtained in like fashion by inserting second-order central differences into the right
hand side of Eqs. (6.2) and (6.3), respectively. With all this, we finally obtain a 
number for 8

2
p!Dr from Eq. (6.10). In tum, this is substituted into Eq. (6.5). Since 

8p/8t was obtained earlier from Eq. (6.9), we now have known values at time t for 
all three terms on the right side of Eq. (6.5), namely, l , (8pl8t)1 , and 
(8

2
p/8r);, 1 . This allows the calculation of density at ti~e' t + ~t, 

1

riamely, 
P/.7"'\ obtained from Eq. (6.5). 
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To find the remaining flow-field variables at grid point (i, j) at time t + M, we 
simply repeat the above procedure. For example, to find the value of the x 
component of velocity at time t + ~t, u;,j"'1, go to Eq._ (6.6) a?d insert va_lues 
for (ouloti and (fful8rY obtained from Eq. (6.2) in a hke fash10n as descnbed 
above for the density. As you can see, the algebra marches on, but the idea is the 
same. To obtain they component of velocity at time t + ~t, v'.,j "'t, use Eq. (6.7), 
where values for (fJvlotY and (82v/8rf are obtained from Eq. (6.3). To obtain the 
internal energy at time t + M, e;+"'1, use Eq. (6.8), where values for (oe/fJtf and 
(a2e!8rf are obtained from Eq. '(6.4). With this, the flow-field vari~bles ~t g~d 
point (i, 1) are now known at time t + ~t. This is illustra!ed schematlcal~y. m F1~. 
6.2, where the spatial grid in two time planes t and t + ~t 1s shown. Exammmg this 
figure, we clearly see that the Lax-Wendroff method allows us to obtain explicitly 
the flow-field variables at grid point (i, j) at time t + M from the known flow-field 
variables at grid points (i, j), (i + 1, j), (i - 1, j), (i, j - 1 ), and (i, j + I) at time t. 
The flow-field variables at all other grid points at time t + ~t are obtained in like 
fashion. 

This is the essence and the details of the Lax-Wendroffmethod. It has second
order accuracy in both space and time. The idea is straightforward, but the algebra is 
lengthy; as you can see, most of the lengthy algebra is associated with the second 
time derivatives in Eqs. (6.6) to (6.8). Fortunately, there is a shortcut around much of 
this algebra-this is the subject of the next section. 

(t+ llt)-V-------------------

y 

i+l,j 

t-1L------------------~ 
X 

FIG. 6.2 
A schematic of the grid for time marching. 
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6.3 MACCORMACK'S TECHNIQUE 

MacCormack's technique is a variant of the Lax-Wendroff approach but is much 
simpler in its application. Like the Lax-Wendroffmethod, the Maccormack method 
is also an explicit finite-difference technique which is second-order-accurate in both 
space and time. First introduced in 1969 (Ref. 43), it became the most popular 
explicit finite-difference method for solving fluid flows for the next 15 years. Today, 
the Maccormack method has been mostly supplanted by more sophisticated 
approaches, some of which will be discussed in Chap. 11. However, the 
Maccormack method is very "student friendly;" it is among the easiest to un
derstand and program. Moreover, the results obtained by using MacCormack's 
method are perfectly satisfactory for many fluid flow applications. For these reasons, 
Maccormack 's method is highlighted here and will be used for some of the 
applications in Part III. It is an excellent method for introducing the fresh learner to 
the joys of CFD. 

Consider again the two-dimensional grid shown in Fig. 6.1. For purposes of 
illustration, let us address again the solution of the Euler equations itemized in Eqs. 
(6.1) to (6.4). In Sec. 6.2 we discussed a time-marching solution using the Lax
Wendroff technique. Here, we will address a similar time-marching solution but 
using MacCormack's technique. As before, we assume that the flow field at each 
grid point in Fig. 6.1 is known at time t, and we proceed to calculate the flow-field 
variables at the same grid points at time t + l'lt, as illustrated in Fig. 6.2. First, 
consider the density at grid point (i, j) at time t + M. In Maccormack 's method, this 
is obtained from 

/+111 =/.+(op) M 
l,J l,j at av 

( 6.13) 

where (aplat)av is a representative mean value of 8p/8t between times t and t + M. 
Compare Eq. (6.13) with its counterpart for the Lax-Wendroff method, Eq. (6.5). 
In Eq. (6.5), the time derivatives are evaluated at time t, and the carrying of the 
second d_erivative (a2pl8rX,i is necessary to obtain second-order accuracy. In 
contrast, m Eq. (6.13), the value of (8p/8t)av is calculated so as to preserve second
order accuracy without the need to calculate values of the second time derivative 
( & p/8r);,1, which is the term which involves a lot of algebra. With Maccormack 's 
technique, this algebra is circumvented. 

Similar relations are written for the other flow-field variables. 

ut+111 = u1 '+ (au) M ,,1 ,,1 at 
av 

( 6.14) 

1+111 _J (av) v. =v, .+ - M 
,,1 ,,1 at 

av 
( 6.15) 

1+111 1 (Be) e . = e . + - llt 
,,1 ,,1 at 

av 
( 6.16) 

Let us illustrate by using the calculation of density as an example. Return to 
Eq. (6.13). The average time derivative, (8p/8t)av, is obtained from a predictor
corrector philosophy as follows. 
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Predictor step. In the continuity equation, Eq. ( 6.1 ), replace the spatial derivatives 
on the right-hand side with forward differences. 

(
8p)1 ( 1 u:+1.; - u:.J + 1 P;+1,J - Pi,1 
at = - P,,; l'lx u;,J l'lx 

l,J 

+ 1 v;,1+1 - P;,1 + vt .Pi,1+1 - PL) 
P,, 1 l'ly ,,1 l'ly 

( 6.17) 

In Eq. (6.17), all flow variables at time tare known values; i.e., the right-hand side is 
known. Now, obtain a predicted value of density, C/JY + 

11\ from the first two terms of 

a Taylor series, as follows. 

(-)t+l1t = pt + (0
P)

1 
l'lt (6.18) 

P ,,1 ,, 1 at .. 
l,j 

In Eq. (6.18), p;,i is known, and (8p/8t);_ 1 is a known number from Eq. (6.17); 

hence (p)1+111 is readily obtained. The value of(p);,j 111 is only a predicted value of 
density; i~'ls only first-order-accurate since Eq. (6.18) contains only the first-order 

terms in the Taylor series. 
In a similar fashion, predicted values for u, v, and e can be obtained, i.e., 

(uf +111 = u1 . + ( 8
u)

1 
l'lt (6.19) 

1.1 ', 1 at .. 
l,J 

(vf+ 111 = v1 
. + (8v)1 

l'lt (6.20) 
,,1 ,.1 at .. 

l,j 

(ef+l1I =i .+ (f)e)t /lt (6.20a) 
,,1 ,,1 at .. 

l,] 

In Eqs. (6.19) to (6.20a), numbers for the time derivatives on the right-hand side are 
obtained from Eqs. (6.2) to (6.4), respectively, with forward differences used for the 
spatial derivatives, similar to those shown in Eq. ( 6.17) for the continuity equation. 

Corrector step. In the corrector step, we first obtain a predicted value of the time 
derivative at time t + M, (8p/8ty+ 111 , by substituting the predicted values of p, u, 
and v into the right side of the co~iinuity equation, replacing the spatial derivatives 

with rearward differences. 

- 1+/11 [ (-)t+/11 (-)t+l1t 

(
ap) = _ (-)1+111 u i,j - u i-1,j 
at . . P ', 1 l'lx 

l,J 

(-)t+111 (-)t+l1t (-)t+/11 (-)t+111 
(
-)t+111 p i,j - p i-1,j + (-)1+/11 V i,j - V i,j-1 

+ u i,j l'lx p l,J l'ly 

(
-)t+l1t p i,j - p i,j-1 (-)t+111 (-)1+/11] 

+ V ,.; /ly 
( 6.21) 
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The .average value of.the ti~e derivative of density which appears in Eq. (6.13) is 
obtamed from the anthmetic mean of (ap/atY . obtained from Eq (6 17) d (aplat);~t:.t, obtained from Eq. (6.21). '• 1

' . . ' an 

(op) = ~ [(ap)
1 

+ (op) 
1

+t:.1J at av 2 at . . at . . 
l,J l,J 

'---v----' '----v--' 

(6.22) 

From Eq. From Eq. 
. (6.17) (6.21) 

This allows us to obtain the final, "corrected" value of density at time t + I.it from 
Eq. (6.13), repeated below: 

1+t:.t 1 (op) 
P;,J = P;,J + at av I.it (6.13) 

. The. pre~i~tor-c?rrector seque~ce descri~ed ~bove yields the value of density 
at gnd pomt (1, J) at time t + I.it, as illustrated m Fig. 6.2. This sequence is repeated 
at all gnd pomts to obtain the density throughout the flow field at time t + I.it. To 
calculate u, v, and e at. t!°:e t + I.it, the same technique is used, starting with Eqs. 
(6.14) to (6.16) and utJhzmg the momentum and energy equations in the form of 
Eqs. (6.2) to .(6.4) to obtai~ the average time derivatives via the predictor-corrector 
sequence, usmg forward differences on the predictor and rearward differences on 
the corrector. 

MacCormack's. techniqu~ as described above, because a two-step predictor
corrector ~equence 1s used with forward differences on the predictor and with 
rearward differences on the corrector, is a second-order-accurate method. Therefore 
it has the same accuracy as the Lax-Wendroff method described in Sec. 6.2'. 
However, the Maccormack method is much easier to apply, because there is no need 
to evaluate the second time derivatives as was the case for the Lax-Wendroff 
method. To see this more clearly, recall Eqs. ( 6.10) and ( 6.11 ), which are required 
for . the Lax-Wendroff method. These equations represent a large number of 
add1t10nal calculation~. Moreo:er, for a more complex fluid dynamic problem 
such as the flow ?fa viscous_ flmd, the differentiation of the continuity, momentum, 
and energy. equat10~s t? obta1~ the second derivatives, first with respect to time, and 
then .the mixed denvat1ves with respect to time and space, can be very tedious and 
provides an extr~ s~urce for human error. MacCormack's method does not require 
such second denvatlves and hence does not deal with equations such as (6.10) and 
(6.11 ). 

In MacCo?Tiack's technique, the use of forward differences on the predictor 
and rearward d1~erences on the corrector is not sacrosanct; the same order of 
a~curacy 1s obtamed by using rearward diffences on the predictor and forward 
d1fferen.ces on the corrector. Indeed, a time-marching solution can be carried out by 
altematmg between these two sequences at every other time step, if you so choose. 

GUIDEPOST 

If you are anxious to start a computer project using MacCormack's technique, you can 
follow this gmdepost now and return to Chap. 6 at a later time. 
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Go to Sec. 6.6, 
artificial viscosity. 

Then go to all 
---+ of Chap. 7, 

nozzle flows. 

On the other hand, if you want a broader perspective on various CFD techniques before you 
start the applications in Part III, simply continue to read the remaining sections in the present 
chapter. 

6.4 SOME COMMENTS: VISCOUS FLOWS, 
CONSERVATION FORM, AND SPACE 
MARCHING 

We have chosen to illustrate the Lax-Wendroff (Sec. 6.2) and Maccormack (Sec . 
6.3) techniques by assuming an inviscid flow, using the nonconservation form of the 
Euler equations, and discussing a computational time-marching step. None of these 
have to be the case; these techniques can be applied just as well to viscous flows, to 
the conservation form of the governing flow equations, and to space marching. Let 
us examine each of these comments in tum. 

6.4.1 Viscous Flows 

Viscous flows are governed by the Navier-Stokes equations, summarized in Sec. 
2.8.1. Written in the form for steady flow, these equations have a mathematical 
behavior which is partially elliptic. The Lax-Wendroff and Maccormack techniques 
are not appropriate for the solution of elliptic partial differential equations. 
However, the unsteady Navier-Stokes equations have a mixed parabolic and elliptic 
behavior, and therefore the Lax-Wendroff and Maccormack techniques are suitable. 
Indeed, the Maccormack technique has been used extensively for solutions of the 
unsteady Navier-Stokes equations by means of time-marching solutions. The idea is 
the same as discussed in Sec. 6.3; the Navier-Stokes equations are written with the 
time derivatives on the left side and spatial derivatives on the right side of the 
equations. The spatial derivatives are replaced in tum by forward and rearward 
differences on the predictor and corrector steps, respectively.* The approach is 
exactly the same as discussed in Sec. 6.3; the only difference is the larger number of 
spatial derivatives that are present in the Navier-Stokes equations compared w the 
Euler equations. 

6.4.2 Conservation Form 

For simplicity, we will continue to use the Euler equations in our discussion. The 
conservation form of the Euler equations suitable for CFD calculations was 

* This statement is true for the convective terms. However, it has been the author's experience, as well 
as that of many others, that the viscous terms should be centrally differenced on both the predictor and 
corrector steps. 
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discussed in Sec._ 2.1 O;_ this foi:111 was embodied in the generic equation given by Eq. 
(2.93). Rearrangmg this equat10n, and considering a two-dimensional flow, we have 

f.JU f.JF f.JG 
8t = - f.Jx - f.Jy +J (6.23) 

where the elements of the column vectors U, F, G, and J are given by Eqs. (2.105) to 
(2.109), ~espectively. Clearly, v~lues for the elements of U, namely, p, pu, pv, and 
p( e + V 12 ), can be calculated m steps of time using either the Lax-Wendroff or the 
Maccormack technique. The approach is exactly the same as discussed in Secs. 6.2 
and 6.3. Keep i_n ~ind th~t since the dependent variables in Eq. (6.23) are flux 
vanable~, the_ pn~itlve vanables have to be decoded at the end of each time step in 
the fash10n given m Eqs. (2.100) to (2.104). At this stage, please return to Sec. 2.10 
~here such matters associated with the conservation form of the equations are 
discuss~d and revie~ that mat~rial before progressing further. You will find that, by 
now, w~th the techmcal matunty you have obtained in the ensuing chapters, Sec. 
2.10 will have r~newed significance for you and your understanding will be 
e~hance~. There is an?th~r reason for reviewing Sec. 2.10 right now-it leads 
directly mto the matenal m the next subsection. 

6.4.3 Space Marching 

To ill~strate_ the space-marchi~g i~ea, let us apply MacCormack's technique to the 
t~o-~imens10nal flow shown m Fig. 6.3. The general flow direction is from left to 
nght m the _xy plane. For simplicity, a~sume the flow is inviscid; hence the governing 
flow equat10ns are the Euler equat10ns. In the generic, conservation form this 
system of equations is given by Eq. (2.110), reduced to a two-dimensional fo:m as 

y 

f.JF f.JG 
-=J-
f.Jx f.Jy 

General flow direction 

i-1,j+I { i,j+I 

lly 
Llx 

,---->---.., 

i-1,j i,j i+l,j 

i-1,j-l i,j-1 

X 

(6.24) 

FIG. 6.3 
A schematic of the grid for space 
marching. 
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For a subsonic flow, Eq. (6.24) is elliptic, and MacCormack's technique does not 
apply; indeed, any space-marching technique will not apply. However, as mentioned 
in Chap. 3, for a flow that is locally supersonic everywhere, Eq. (6.24) is hyperbolic. 
In this case, space marching is appropriate, and MacCormack's technique is 
applicable. With this in mind, notice that Eq. (6.24) is written with the x derivative 
isolated on the left-hand side and the source term and they derivative on the right
hand side. Return to Fig. 6.3. Assume that the flow-field variables are known along 
the vertical line in the xy plane; this line is the initial data line. Also assume that the 
flow is locally supersonic everywhere. Then a solution can be obtained, starting with 
the initial data line and marching downstream in the x direction. We will illustrate 
the process for a single spatial step using MacCormack's technique. The ideas are 
the same as discussed in Sec. 6.3, except that here the spatial variable x performs the 
same role as the time variable tin Sec. 6.3. For example, in Fig. 6.3 assume the flow 
variables are known along a vertical line at a given x location. (The calculation was 
started using the initial data along the vertical line x = x0 .) Let this vertical line run 
through the grid points (i, j + 1 ), (i, j) and (i, j - 1) in Fig. 6.3. That is, the flow 
variables at these three grid points are considered known. MacCormack's technique 
allows the calculation of the flow variables at grid point (i + l,j) from the known 
values at (i, j + 1 ), (i, j) and (i, j - 1 ), as follows. The value of the solution vector 
F in Eq. (6.24) at grid point (i + 1, j) can be found from 

Fi+ I =Fi+ (f.JF) LU 
1 1 f.Jx av 

(6.25) 

Note that, in keeping with our previous notation, the index for the marching 
variable, in this case i, is used as a superscript. In Eq. (6.25), (f.JF!f.Jx)av is a 
representative average value of the x derivative of F evaluated between x and 
x + LU. It is found from Eq. (6.24) by means of a predictor-corrector approach, as 
follows. 

Predictor step. In Eq. ( 6.24), replace the y derivative with a forward difference: 

(f.JF)i- i GJ+1 - G} - -J-----
f.Jx i ; ~y 

( 6.26) 

In Eq. (6.26), all terms on the right side are known numbers, because the flow is 
known along the vertical line through point (i, j). Calculate a predicted value for Fat 
point (i + 1, j) from a Taylor series: 

pi+I =Fi+ (f.JF)i LU (6.27) 
; ; f.Jx . 

J 

where, as in Sec. 6.3, the barred quantity represents a predicted quantity. Keep in 
mind that the shorthand vector notation shown in Eqs. (6.26) and (6.27) represents 
these operations on the individual continuity, momentum, and energy equations, 
where the elements of F and G are given by Eqs. (2.106) and (2.107), respectively. 
That is, F} + 1 represents the predicted values of its individual elements, given for 
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the present two-dimensional case by 

(pu)/ I 

(pu2 + p)/ I 

F) + I = (puv)/ I 

[ ( 

2 v2 i+l pu e+T) +put 
( 6.28) 

Before progressing further, the calculated values on the right side ofEq. (6.28) must 
be decoded to obtain predicted values of the primitive variables, as discussed in that 
pa~ of Sec. 2.10 associated with Eqs. (2.11 la) to (2.11 le). These primitive 
vanables are needed to form the numbers for the flux vector G in the corrector 
step, as follows. 

Corrector step. Calculate a predicted value of (8Fl8xi + 1 at location x + Lix 
de~oted by (8F!8x)1 + 

1
, by inserting the predicted values foi J and G into Eq. (6.24): 

usmg rearward differences. That is, 

(
f}F) i+ I - e,H I - G'+ I _ = J' + I _ J J - I 

8x i 1 Lly ( 6.29) 

In_ E~ .. (6.29).' the valu_es of c;+ 1 and c;: i are constructed from the predicted 
pnm1t1ve vanables which had been decoded earlier in the predictor step. The 
average value, (8F/8x)av, is now formed as an arithmetic mean 

(f}F) = ~ [(f}F)i + (f}F)i+ 1
] 

8x av 2 8x i 8x i 
'-----v--' ----;.._, 

From Eq. 
(6.26) 

From Eq. 
(6.29) 

(6.30) 

In tum, the final, corrected value of F;+J,i is obtained from Eq. (6.25), repeated 
below: 

Fi+ 1 =Fi+ (f}F) LU 
1 1 8x av 

( 6.25) 

~!earl~, this spatial, downstream marching solution using MacCormack's technique 
1s a d1rect analog of the time-marching solution discussed in Sec. 6.3, with the 
marching variable x playing the role of the earlier marching variable t. 

There are two noteworthy differences associated with the downstream 
marching ~pproa~h. compa~ed to the time-marching approach. The first has already 
been mentioned; 1t 1s associated with the need to decode the primitive variables from 
the flux ~ariables. This decoding is simple when a time-marching solution of the 
conservation _fo~ of the equations is employed, as reflected in Eqs. (2.100) to 
(2.104 ), but 1t 1s more elaborate when a spatial-marching solution of the con-
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servation form equations is used, as reflected in Eqs. (2.11 la) to (2.11 le). Of 
course, for a time-marching solution using the nonconservation form of the 
equations, no decoding is needed at all; the dependent variables are the primitive 
variables themselves, as we have seen in Secs. 6.2 and 6.3. The second difference 
between the two marching procedures, at least for explicit solutions, is that the 
downstream marching procedure demands the use of the conservation form of the 
governing equations so that the x derivative can be isolated as a single term, as 
displayed in Eq. (6.24). This can not be done with the nonconservation form of the 
equations, as a quick examination of Eqs. ( 6.1) to ( 6.4) will show. Here, with the 
time derivatives set to zero, three out of the four equations have two terms each 
involving x derivatives, and therefore a single x derivative can not be isolated on the 
left-hand side without another x derivative still appearing on the right-hand side. 
This, of course, destroys the explicit nature of the downstream marching approach 
as discussed here. 

6.5 THE RELAXATION TECHNIQUE AND 
ITS USE WITH LOW-SPEED INVISCID 
FLOW 

The relaxation technique is a finite-difference method particularly <;uited for the 
solution of elliptic partial differential equations. Low-speed, subsonic inviscid flow 
is governed by elliptic partial differential equations, as discussed in Sec. 3.4.3. 
Therefore, the relaxation technique is frequently applied to the solution of low
speed subsonic flow. Relaxation techniques can be either explicit or implicit. See 
Ref. 13 for an in-depth discussion of various relaxation techniques as applied to 
CFO problems. In the present section, we will describe an explicit relaxation 
technique, sometimes called a point-iterative method. 

For purposes of illustration, let us consider an inviscid, incompressible, two
dimensional irrotational flow. For such a flow, the governing flow equations reduce 
to a single partial differential equation, namely, Laplace's equation, in terms of the 
scalar velocity potential <l>, where <l> is defined such that V = V<l>. We will not 
provide the details here but rather make the assumption that you have some 
familiarity with such matters. If not, or if you simply need a review of the derivation, 
see, for example, Sec. 3.7 of Ref. 8. We will simply state here that the governing 
equation is 

&<I> [)2<1> 

fJx2 + 8y2 = 0 ( 6.31) 

We wish to solve Eq. (6.31) numerically on the grid shown in Fig. 6.4. 
Replace the partial derivatives in Eq. (6.31) with second-order, central second 
differences, given by Eqs. (4.12) and (4.13). 

<l>i + 1,j - 2<l>i.j + <l>i - Lj + <l>i,j + I - 2<l>i,j + <l>i,j- I = O 

( Lil' )2 ( Lly )2 
(6.32) 

Examining the grid in Fig. 6.4, note that grid points I through 20 constitute the 
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A 
y Boundary 

17 16 15 14 13 12 11 

18 IO 

i,j+l 

~ 
19 24 25 A ),. 9 -g 

::, 
i-1,j ~ )': . i+l,j 0 

l,j i:Q 

20 21 22 23 8 
i,j-1 
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FIG. 6.4 
Schematic for relaxation technique. 

boundary of the domain. As discussed in Sec. 3 .4.3, boundary conditions must be 
stipulated over the entire boundary enclosing the domain in order for the solution of 
an elliptic equation to be well-posed. In terms of the grid shown in Fig. 6.4, this 
means that <1>1 through <1>20 are known values, equal to the given boundary 
conditions at points 1 through 20. The values of <I> at all other grid points
the internal grid points-are unknown. Equation (6.32), centered around grid point 
(i,j), contains five of these unknowns, namely, <I>;-1,J, <I>;, 1, <l>;+1,J, <I>;, 1 +1, 
<I>;, 1 _ 1. In principle, Eq. (6.32) can be written around each of the internal grid 
points (there are 15 such points in Fig. 6.4), leading to a system of 15 linear 
algebraic equations with a total of 15 unknowns. There are several direct methods 
for solving these simultaneous equations. One is the standard Cramer's rule; 
however, the number of calculations required for the implementation of Cramer's 
rule is very large, due to the need to evaluate determinants of the size 15 x 15 for 
the present example. For any real calculation, hundreds or even thousands of grid 
points may be employed. Clearly, the use of Cramer's rule is out of the question for 
such applications. Another, and much more reasonable, direct solution is gaussian 
elimination (see, for example, Ref. 13). However, the simplest approach is to use a 
relaxation technique, as described below. 

The relaxation technique is an iterative method, wherein values of four of the 
quantities in Eq. (6.32) are assumed to be the known values at iteration step n and 
only one of the quantities is treated as an unknown at iteration step n + 1. In Eq. 
(6.32), let us choose <l>;,J as that unknown. Solving Eq. (6.32) for <l>;, 1, we have 

(l>n+l = (&)2(~y)2 [<l>7+1,J+<l>7-1,J + <1>7,J+I +<1>7,j-1] (6.33) 
I,) 2(~y)2 + 2(&)2 (&)2 (~y)2 
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In Eq. (6.33), the superscripts n and n + 1 indicates_ the itera~ion step; it has noth~ng 
to do with our previous use of the superscript to designate a ~ime- or space-m~chmg 
step. Indeed, as we know, such marching is not appropnate for the solution of 
elliptic equations. Rather, in Eq. (6.33),. <1>7,;-1 represents the unJa_i~wn !o be 
calculated at the next iteration step, n + 1, m terms of the known quantities <I>;+ 1,1, 
,nn . <l>n . and <I>n . from the previous step n. (This approach is called the 
'¥; - I J' I J +I' I,) - I 
Jacobi method.) To get the whole process started, we first assume value~ for <I> at a!l 
grid points except one, at which <I> is treated as the unknown. Equat10n (6.33) is 
used to calculate that unknown. After repeated application of Eq. (6.33) to all the 
grid points, we have finished the first iteration, n = 1, .and ":e go on to the next step, 
n = 2. This whole process is repeated for as many iterations as a~e nece~sary _to 
converge to a solution. To be more specific, consi~er Eq. (6.~3) a~phed at gnd pomt 
21 in Fig. 6.4. Assume that we have already earned out n iterations. Then, for the 

n + 1 iteration, Eq. (6.33) yields 

n+ I _ (&)2(~y)2 [<1>;2 + <l>20 + <1>;4 + <1>2] (6.34) 
<1>21 - 2(~y)2 + 2(&)2 (&)2 (~y)2 

In Eq. (6.34), <1>2( 1 is the unknown; <1>22 and <1>24 are known from the p~e:ious 
iteration, and <1>20 and <1>2 are known from the stipulated boundary c.onditions. 

It is suggested that updated values of <I> be used as soon as possible on the 
right-hand side ofEq. (6.33). For example, after we hm'.e c~lculated <1>2( 1 

fro°: Eq. 
(6.34), we move on to grid point 22, where an application of Eq. (6.33) yields 

n + I _ (&)2 (~Y)
2 

[<1>;3 + <1>;( I + <1>;5 + <l>Jl ( 6.35) 
<1>22 - 2(~y)2 + 2(&)2 (&)2 (~y)2 

In Eq. (6.35), <1>2{ 1 is the unkn~wn; <!>23 and <1>25 are ~own fromn~~ _previous 
iteration, <1>3 is known from the stipulated boundary condit10n, ~nd <1>21 . 1s kn~wn 
from Eq. (6.34), which was the immediately preceding calculation. In this fash_ion, 
the unknown <I>'s at iteration n + 1 are progressively calculated along a given 
horizontal line, sweeping from left to right. (This approach is cal_led the (!auss
Seidel method.) There is nothing magic about this sweeping direction. Dunng the 
progressive solution ofEq. (6.33), we could just as well set up sequences that sweep 
from right to left, from top to bottom, or from botto°: to t_op. . 

The above procedure is repeated for a number of iterations; convergence ~s 
achieved when <I>n + 1 - <I>n . becomes less than some prescribed value at all gnd 

I,) I,) h' d . th 
points. The degree to which you wish convergence to be ac ieve is up to you; e 
more iterations you take, the greater will be the accuracy. 

Frequently, the convergence to a solution sometimes can be enhanced by a 
technique called successive overrelaxation. This is ~n e~trapol~tion pro~edure based 
on the following idea. We interpret Eq. (6.33) as yieldmg an mtermedrnte value of 

<I>· · denoted by <1>n 1+ 1, where 
l,)' l, 

( 6.36) 
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Note that we have chosen to write the value of<l>7il . in Eq. (6.36) at iteration level 
n + 1 with the assumption that we are sweeping 'horn left to right as discussed 
earlier, and hence the value of <l>n, i l 

1
. is known at this stage. Similarly, <l>n +_I I is 

' I,) 

known at this stage because we are starting our sweeping procedure at the bottom of 
the grid, and sequentially stepping to the next higher row of grid points. Then we 
use the value of<l>?,j obtained at the end of the previous iteration, and <1>7,j I obtained 
from Eq. (6.36), to extrapolate a value for <I>U I as follows: 

(6.37) 

In Eq. (6.37), OJ is a relaxation factor whose value is usually found by trial-and-error 
experimentation for a given problem. If OJ > I, the above process is called 
successive overrelaxation. If OJ < I, the process is called underrelaxation and 
is usually used when the convergence behavior is oscillating back and forth between 
some value. For overrelaxation, generally the value of OJ is bounded by I < OJ < 2 
(see Ref. 13). In any event, the use ofEq. (6.37) with an appropriate value for OJ can 
reduce the number of iterations necessary to achieve convergence and therefore 
reduce the computational time-in some problems by a factor of 30 according to 
Ref. 13. 

6.6 ASPECTS OF NUMERICAL 
DISSIPATION AND DISPERSION; 
ARTIFICIAL VISCOSITY 

Many aspects of life are never quite what they appear to be at first impression
CFD is no different. For example, in the present chapter we have discussed 
several techniques for the numerical solution of the governing flow equations. 
We have approached these discussions, as well as those in previous chapters, 
from the point of view that numerical solutions of the Euler or Navier-Stokes 
equations are being obtained within an accuracy determined by the truncation and 
round-off errors. The focus has been on the fact that we are solving some specific 
partial differential equations but that the numerical solutions are always somewhat 
m error. 

There is a different perspective that we can take on this matter, one with a 
shade of difference compared to our previous discussions. For simplicity, let us 
consider a model equation, namely, the one-dimensional wave equation given by 

au au 
-+a-=0 at ax (6.38) 

with a > 0. We consider (6.38) to be the specific partial differential equation that 
we want to solve numerically. Let us choose to discretize this equation by using a 
first-order forward difference in time and a first-order rearward difference in space. 
Then Eq. (6.38) is represented by the following difference equation: 

(6.39) 
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From our previous perspective, a solution of Eq. (6.3~) represents a nu~erical 
solution ofEq. (6.38) within a certain accuracy as determmed by the truncation and 
round-off errors. From our discussions in Chap. 4, we kno~ that the a_ccurac~ of Eq. 
(6.39) is given by O(Llt, Llx). Let us now take a sli~htly different P?mt of view. !o 
help establish this view, we replace u/+"'1and u/_ 1m Eq. (6.39) with Taylor senes 

expansions as follows: 

i+t.t t (au)t (&u)t (M)2 (a3u)t (Llt)3 + ... 
U; = U; + at i Llt + at2 i 2 + at3 i 6 

(6.40) 

1 1 (au)1 (a2u)1 

(Llx)2 _ (a3u)
1 

(Llx)3 + ... 
U; - I = U; - ax i ,:lx + ax2 i 2 ax3 i 6 

( 6.41) 

Substituting Eqs. (6.40) and (6.41) into (6.39), we have 

[ (8;;): +(:~): ~ + (':,~): (&2' + l 
+ a [ (::): - (~;): ';' + (::~): (~)' + · · ] ~ 0 (6.42) 

Rearranging Eq. (6.42), we obtain 

Pause for a moment and examine Eq. (6.43). The left-hand side is exactly the _Ieft
hand side of the original partial differential equation given by Eq: (6.38); t?e nght
hand side of Eq. (6.43) is the truncation erro: associa~ed with the difference 
equation given by Eq. (6.39). Clear~y, this trun~ahon error 1s O(Ll~, Llx). ~et ~snow 
replace the time derivatives on the nght-hand side of Eq. (6.43_) with x denvative_s a~ 
follows. First, differentiate Eq. (6.43) with respect to t. (We will drop the subsc~pt '. 
and superscript t, since we know that all derivatives are being evaluated at pomt 1 

and at time t.) 

a2u a2u a3u Llt &4u (M)2 
at2 + a ax at = - at3 2 - at4 -6-

a3u a Llx &4u a(Llx)2 
+ ax2 at -2- - ax3 at -6- + ... (6.44) 
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Also, differentiate Eq. (6.43) with respect to x and multiply by a. 

&u 2 &u _ 83u a M a4u a(At)2 
a +a --------

ot ox 8x2 8t2 ox 2 ot3 ox -6-

&u a2 & a4u a2(&)2 
+ 8x3 -2- - 8x4 6 +... (6.45) 

Subtracting Eq. (6.45) from (6.44), we have 

&u _ 2 &u 83u M fru (At) 2 a3u a & 
8t2 - a 8x2 - 8t3 2 - 8t4 -6- + 8x2 ot -2-

- a4u a(&)
2 + ~ a M a4u a(At)2 

8x3 ot 6 8t2 ox 2 + 8t3 ax -6-

&u a2 & a4ua2(&)2 
- ox3 -2- + 8x4 6 +... (6.46) 

We can_express Eq. (6.46) in a more compact form by displaying only the first-order 
terms, 1.e., 

(6.47) 

Equation (6.47) provides the expression for a2ul8t2 which is to be substituted for 
the ~rst_ term on the right-hand side of Eq. (6.43). Before carrying out this 
substitution, however, let us treat the second term on the right-hand side of Eq. 
(6_.43), namely, the third time derivative. We do this by differentiating Eq. (6.47) 
with respect to time, yielding 

a3u 2 a3u 
8t3 = a ax2 ot + O(At, &) (6.48) 

Differentiating Eq. (6.45) with respect to x and multiplying by a, we have 

2 a3u 3 8
3u 

a 8x2 ot + a ox3 = O(M, &) (6.49) 

Adding Eqs. (6.48) and (6.49), we have 

83u 83u 
8t3 = -a3 8x3 + O(At, &) (6.50) 

Equation (6.50) provides an expression for the third time derivative to be inserted 
int~ b~th Eq_s. (6.47) and (6.43). Returning to Eq. (6.47), we see two mixed 
d~nvatives with respect to t and x that must be treated. Differentiating Eq. (6.47) 
with respect to x, we have 

a3u 2 a3u 
8t3 ox= a 8x3 + O(At, &) ( 6.51) 
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Also, rearranging Eq. (6.48), we have 

a3u 1 83u 
£l z a = 2 a 3 + o(At, &) 
ux t a t 

Substituting Eq. (6.50) into (6.52), we have 

a3u 83u 
8x2 ot = -a 8x3 + O(M, &) 

Substituting Eqs. (6.50), (6.51) and (6.53) into (6.47), we obtain 

&u _ 2 &u At [ 3 a3u 3 a3u O(A &)] 
8t2 - a 8x2 + 2 a 8x3 + a 8x3 + t, 

& [ 2 a3u 2 a3u ] 
+2 -a ox3 -a ox3 +O(At,&) 

Substituting Eqs. (6.54) and (6.50) into (6.43), we have 

ou 8u &u a2 At a3u a3(At)2 83u a2(&)(M) 
-+a-=------ +-----
ot ax 8x2 2 8x3 2 8x3 2 

a3u a3(At) 2 &u a & a3u a (&) 2 

+ ox3 6 + 8x2 -2- - 8x3 6 

(6.52) 

(6.53) 

(6.54) 

+0[(At) 3
, (M)2(&), (M)(&)2

, (&) 3
] (6.55) 

A rearrangement ofEq. (6.55), along with the definition ofv as v = a Ml&, yields 

8u+aou=a&(l-v)&u+a(&)2 (3v-2v2- l)a3u 
ot ax 2 8x2 6 8x3 

+ O[(At)3, (At)2 (&), (At)(&)2, (&)3
] (6.56) 

Note that Eq. (6.56) is a partial differential equation in its own right, containing the 
terms ou!ot, ou!ox, a2u!8x2, a3u!ox3, etc. Finally, with Eq. (6.56) in mind, we are 
ready to emphasize the different perspective mentioned at the beginning of this long 
paragraph. Previously, we viewed an exact solution (no round-off error) of the 
difference equation, Eq. ( 6.39), as constituting a numerical solution of the original 
partial differential equation given by Eq. (6.38) but with an error given by the 
truncation error. However, there is another way of looking at this matter. In reality, 
the exact solution (no round-off error) of the difference equation, Eq. (6.39), 
constitutes an exact solution (no truncation error) of a different partial differential 
equation, namely, Eq. (6.56). Eq. (6.56) is called the modified equation. To repeat, 
when the difference equation, Eq. (6.39), is used to obtain a numerical solution of 
the original partial differential equation, Eq. (6.38), in reality this difference 
equation is solving quite a different partial differential equation-it is solving 
Eq. (6.56) instead of Eq. (6.38). 

The derivation and display of the modified equation, as obtained above, is of 
more importance than just establishing a different perspective on the meaning of the 
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~xact so_lution of a difference equation. Equation (6.56) also gives us some 
1~format10n on _the behavior to be expected of the numerical solution of the 
d_1fference ~quation. F_or ex~mple,

2 
exa~ine Eq. (6.56) closely. On the right-hand 

s'.de there 1s a term mvolvmg [) u/ox . For a moment, shut out all other con
siderations from your mind and just visualize the governing equations for a viscous 
flow, ~amely, the Navier-Stokes ~quati~ns given by Eqs. (2.58a) to (2.58c). These 
equations have terms such _as.[) ~/[)x multiplied by the viscosity coefficient µ. 
These terms represent the d1ss1patlve aspect of the physical viscosity on the flow 
Now return ~o Eq. (~.56). The te~ o2

ul8x2 appearing here acts as a dissipativ~ 
term, much like t?e viscous terms m the Navier-Stokes equations. However, in Eq. 
( ~.56), this term_ 1s a consequence of the numerical discretization embodied in the 
d1ffe~ence_ eq~at10n, Eq. (6.3_9), and is therefore purely of numerical origin, with no 
p~ys_1cal s1gmficance. For this reas?n, the appearance of this term (and those like it) 
w1thm the fram~wo~k o~ a numencal solut10n is called numerical dissipation. In 
~rn, the coe~c1e~t m ~his term, such as (a fu"/2) (1 - v) in Eq. (6.56), acts much 
like the_?hys1c~l v1sc~s1~ a~d is therefore called the artificial viscosity. In CFD, the 
~erms numencal d1ss1pat10n" and "artificial viscosity" are frequently used 
mter~hangeably and generally connote the diffusive behavior of a numerical 
solu_t10n-:---a be~avior th~t is ~urely numerical in origin. For example, the original 
partial differential equation with which we began this section Eq (6 38) d ·b h . , . . , escn es 
t e propaga:1on of a w~ve through an inviscid fluid in one dimension. In reality, if 
we _start at time zero with an ~xact discontinuous wave as sketched in Fig. 6.5, then 
dunn~ the cou~se of the solut10n the effect of numerical dissipation will be to spread 
out this wave m much the same way that real physical viscosity would spread the 
wav~. Of course, the reason why the wave will spread in our numerical solution has 
nothmg to do with physical viscosity; rather, it has everything to do with the fact 
that the exact_numerical solution of the difference equation, Eq. (6.39), is a solution 
ofEq. (6.56) mstead of the original partial differential equation given by Eq. (6.38), 
and Eq. (6.56) has some terms on the right-hand side that play the role of 

u ,I. u 

- X 
(a) 

(b) 

FIG. 6.5 

Effect of numerical dissipation. (a) Initial wave at time t = O. (b) Shape of the wave at some time t > o 
from the numencal solution as affected by numerical dissipation. 
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dissipation. Many algorithms used in CFD contain this effect of artificial viscosity 
implicitly in their procedure. 

Somewhat related to the above concepts is the effect of numerical dispersion, 
which creates a numerical behavior different from that of numerical dissipation. 
Dispersion results in a distortion of the propagation of different phases of a wave, 
which shows up as "wiggles" in front of and behind the wave. This is illustrated 
schematically in Fig. 6.6. One of the values of deriving and displaying the modified 
equation associated with a given difference equation is that the relative behavior of 
diffusion and dispersion can be assessed. Numerical dissipation is the direct result 
of the even-order derivatives on the right-hand side of the modified equation 
(ffulox2

, f.fu!ox4
, etc.), and numerical dispersion is the direct result of the odd

order derivatives (83u/8x3
, etc.). Since the right-hand side of the modified equation 

is the truncation error, we can state that generally when the leading term of the 
truncation error is an even-order derivative, the numerical solution will display 
mainly dissipative behavior, and when the leading term is an odd-order derivative, 
the solution will display mainly dispersive behavior. 

We come now to the bottom line of the discussion in this section. We have 
shown that artificial viscosity can appear within a given algorithm simply because 
of the form of the modified equation-such artificial viscosity is said to be present 
implicitly in the numerical solution. Although such artificial viscosity compromises 
the accuracy of a solution (which is a bad thing), it always serves to improve the 
stability of a solution (which is a good thing.) Indeed, for many applications in CFD, 
the solution does not have enough artificial viscosity implicitly in the algorithm, and 
the solution will go unstable unless more artificial viscosity is added explicitly to the 
calculation. This raises one of the most perplexing aspects of CFD. As you 
intentionally add more artificial viscosity to a numerical solution, you are increasing 
the probability of making the solution more inaccurate. On the other hand, by 
adding this artificial viscosity, you are at least able to obtain a stable solution, 
whereas without it, in some cases no solution would be attainable. (Flow problems 
with very strong gradients, such as shock waves, wherein such shock waves are 

u u 

-- X 

(a) (b) 

FIG. 6.6 
Effect of numerical dispersion. (a) Initial wave at t = 0. (b) Shape of the wave at some time t > 0 from 
the numerical solution as affected by numerical dispersion. 
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capt~,:ed within the flow_ by using a shock-capturing approach, are particularly 
sensitive and usually reqmre the explicit addition of artificial viscosity for a stable 
and smooth solution.) Is any solution, no matter how inaccurate, better than no 
solution at all? The answer to this question for any given problem is a matter of 
circ~stance and judgment. It is this author's opinion, backed up by the collective 
expenence of the CFD community, that in those applications where the use of 
artificial viscosity has been necessary, the judicious use of this quantity has led, for 
the most part, to reasonable and sometimes very accurate numerical solutions. 
However, you have to know what you are doing in this regard. 

Let us examine a specific form of artificial viscosity which has been 
reasonably successful in many applications and which has been used fre
quently in connection with MacCormack's technique described in Sec. 6.3. For 
purp~ses ?f illustration, assume that we are dealing with the governing flow 
equations m the form ofEq. (2.93), written below for an unsteady, two-dimensional 
flow. 

au aF ac 
-=----+J at ax fJy (6.57) 

':here U is. the solu~ion vector, U = [p, pu, pv, p(e + V2/2)]. At each step of the 
tlme-marchmg solut10n, a small amount of artificial viscosity can be added in the 
following form: 

st = CxlP/+ 1,j - 2p;,j + p;_ 1) I I I 

1. 1 pt . + 2p 1 +pt . (U;+ 1,1 - 2Ui,J + U,_ 1,1) 
1+ I,; 1,; 1- l,; 

CylP
1 

·+ 1 - 2p
1 

· + P 1 · 1 I + 1,1 1,1 1,1- (u1. - 2u1. ui ) 
pt . + 2pt +pt . 1,;+ I i,; + i,j-1 l,J+ I I,) 1,;- l 

(6.58) 

Equation (6.58) is a fourth-order numerical dissipation expression; it is designed to 
"tweak" the calculations by a magnitude equivalent to a fourth-order term in the 
truncation error; i.e., it is equivalent to adding an extra fourth-order term to the 
rig~t-hand si~e of the modified equations for the system of difference equations 
which are bemg solved. The fourth-order nature of Eq. (6.58) can be seen in the 
numerators, wh~ch ~e products of two second-order central difference expressions 
for second der_ivahves. In Eq. (6.58), Cx and Cy are two arbitrarily specified 
paramete~s; typical values ~f Cx and Cy range from 0.01 to 0.3. The choice is up to 
you and 1s usually determmed after some experimentation with different values 
~ss~s~ing their effect on the particular calculation. In Eq. (6.58), U denotes th~ 
mdividual elements of the solutions vector, taken separately. To see this more 
clear_ly, assume that we are using MacCormack's technique. On the predictor step, 
S/,1 is evaluated based on the known quantities at time t; on the corrector step, the 
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values on the right-hand side ofEq. (6.58) are the predicted Q:>arred) quantities, with 
the corresponding value of s:,1 so obtained denoted by s;,;"'1. 

C 1-1+t.1 2-t+i'.1 +p-t+At I 
-1+t.1 - X Pi+l,j - Pi.j i-1,j ([;t+t.1_ - 2[!t+i'.1 + [!1-_:i'.t_) 
si,j - -t+i'.t 2-t+i'.t +-t+i'.t. 1+1,J 1,) I 1,J 

P;+ 1,J + P,, 1 P1-1,; 

I -1+AI 2 -i+At + -1+At I 
Cy P;,J+I - P;,J Pi,J-1 ([Jt+t.1 _ 2 01+t.1 + [Jt+"'t) (6.59) 

+ -t+i'.t 2-t+i'.1 -t+i'.t 1,;+l l,J 1-l,; 
Pi,j+ I+ Pi,j + Pi,j-1 

The values of S 1 
. and s 1+"'1are added to MacCormack's technique at the following 

stages of the c~fculatio~~ Using the calculation of den~ity from the continuity 
equation as an example, calculate SI.J from Eq. (6.58) with U = p. Then add the 
artificial viscosity term to Eq. (6.58), which now becomes 

P1+t.1 = / . + (8
P)

1 

lit+ s1 
. (6.60) 

1,1 1,1 at . . 1,1 
I,) 

On the corrector step, the corrected value of density at time t + lit is obtained from 
Eq. (6.13) with the artificial viscositys;,;Mcalculated from Eq. (6.59) added as an 
extra term, that is, 

1+t.1 = 1 . + (0
P) 1it + 81+At (6.61) P1, 1 P1, 1 81 ,,1 

av 

Note: There is nothing sacrosanct about the form for artificial viscosi~ expr~sse_d 
by Eqs. (6.58) and (6.59). It happens to be an empirically based expression which 1s 
given here just for the sake of discussion._ . . . 

To what extent does the addition of art1fic1al v1scos1ty affect the accuracy of a 
problem? There is no pat answer to this question; it depends in a large part on ~he 
nature of the flow problem itself. However, some feel for the extent. to which 
artificial viscosity can impact the solution of a flow problem can be _obtamed from 
Ref. 44; there, a series of numerical experiments are reported wherem the value of 
artificial viscosity was progressively varied and the resulting effects on the flow
field variables were examined. Some of the results are reviewed here so that you can 
obtain some of this feel. The flow problem is that of the supersonic visco~s flow 
over a rearward-facing step, as shown in Fig. 6.7a. The finite-difference gnd ~sed 
for this study is shown in Fig. 6. 7 b. The flow field is cal_culate~ by means of a time
marching numerical solution of the Navier-Stokes equations us1~g th~ M~cC?rmack 
technique described in Sec. 6.3. The expression for artificial viscosity is given by 
Eqs. (6.58) and (6.59), and various calculations are made with values of Cx and Cy 

ranging from Oto 0.3. The calculations are made for a freestream Mach nur~ber ~f 
4.08 and a Reynolds number (based on step height) of 84~. The step height 1s 
O 51 cm and the calculations are made for a surface which extends 12. 5 cm 
u~strea~ of the step and 2.04 cm downstream of the st~p: A calo~cally perfect gas 
with the ratio of specific heats equal to 1.31 is used (this is to partially si~ulate t~e 
"effective gamma" for partially dissociated air in a supersomc combustion ~Jet 
environment). Figure 6.8 shows the computed pressure contours for the flow, usmg 
MacCormack's technique. Here, four different contour pictures are shown, one each 
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Flow 

(a) 

111111111 
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FIG. 6.7 
(a) Rearward-facing step geometry. (b) 51 x 21 grid used for the calculations. 

for a different value of Cx and Cy ranging from O to 0.3. At the top of Fig. 6.8 we see 
the computed flow field using zero artificial viscosity. The frame immediately below 
it gives the results wherein Cx = Cy = 0.1. The next frame corresponds to 
Cx = Cy = 0.2, and the final frame has Cx = Cy = 0.3. The expansion wave from 
the top comer and the recompression shock wave downstream of the step can be 
seen in all frames. However, careful examination of Fig. 6.8 shows that as Cx and Cy 
are progressively increased (the magnitude of the artificial viscosity is increased), 
the quantitative and qualitative aspects of the flow are perturbed. In Fig. 6.8a, where 
zero artificial viscosity is used, the recompression shock wave is fairly sharp and 
distinct, but there are wiggles ahead of and behind the shock. It is not easy to obtain 
a stable, converged solution in this case; the calculations are sensitive, and some 
"nursing" of the program is required. As the magnitude of the artificial viscosity is 
progressively increased, as shown in Fig. 6.8b to d, the solution behaves in a more 
stable fashion, but the structures of the resulting steady-state flows are somewhat 
different. This can be seen by comparing Fig. 6.8a and d; in Fig. 6.8d with heavy 
artificial viscosity, the recompression shock has been smoothed by the increased 
numerical dissipation. In contrast to Fig. 6.8a, we see no wiggles in Fig. 6.8d, and 
the shock wave is much more diffuse, while at the same time its location has 
translated upward. In Fig. 6.7a, three different axial locations are denoted by the 
numbers I, 2, and 3. The velocity profiles (velocity versus vertical location y) for 
these three locations are shown in Fig. 6.9a to c. In each figure, the profiles are 
given for four different values of the artificial viscosity. Note that the velocity 
profiles are affected by artificial viscosity. Finally, the wall pressure distribution
the variation of pressure on the wall versus x location measured along the surface
is given in Fig. 6.10. Here, x = I cm is the location of the step, and the pressure 
distributions shown are those downstream of the step. The pressure at x = I cm is 
essentially the base pressure, i.e., the pressure on the vertical step itself. Four 
different curves are shown in Fig. 6.10, each one corresponding to a different value 
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(b) 

FIG. 6.8 .fi . 1 . .ty Pressure contours calculated with values of . 1 · t the effects of art1 c1a viscos1 . 08 Numenca expenmen on . fr O to O 3 The freestream conditions are Mx = 4. , 
the dissipation factors Cx and Cy ranging 3olm d R .. Ids number= 849 (based on a step height of 
T x = I 046 K, ratio of specific heats Y = I. , an eyno 
0.51 cm). The wall temperature Tw = 0.2957Tx. 

of artificial viscosity. Although the pressure distribution ~arth~r downstream of the 
step is relatively insensitive to the. a~ount_ of a~tificial v1scos1ty, the base pressure 
. lf . uite sensitive to the artificial v1scos1ty. 
itse ;a!: The impact of artificial viscosity on the qu~litative a~pe~ts o~ a fl?w 

solution is like that of the physical viscosityµ. ~y inc~easmg t~e ~rti~cit ::~:~~~~ 
shock waves are thickened and smoothed, just hke an mcrease . p ys1ca ~ t d by 
of viscosity would cause. The details of separate? flo~ reg10ns are a ec e ·n 

artificial viscosity, just like an in~rease in phylslical v1sc~s1tyr~~~~ ~:~efi:r j~~; a~ 
rtificial viscosity, we are changmg the overa entropy eve o . . . . . 

:hysical viscosity would cause. Finally, ~y increasing. the Rart1fi~;l v1sc~:~1:;~h: 
numerical solution, we are in effect reducmg the effective eyno s num 
flow, just as an increase in µ would cause. 
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numeJh~ ~~ose_ of this section has been to introduce you to the concepts of 
s th ~a t;stpation and. the use ~f artificial viscosity for the stabilization and 
t~o~dd~fo~ i~:-~u1:°~n~al so_lutions. Many applications in CFD do not require 
. . . . ~ eta vtscostty. On the other hand, artificial viscosity b th ~~:;c~;; an t!?00

~ ~d explicitl~ added as needed, is a fact of life in' m~y 
so u tons. uc matters still remain a highly empirical aspect of CFD 
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FIG. 6.10 
Numerical experiment on the effects of arti
ficial viscosity. Surface pressure distributions 
downstream of the step. Pressure given here is 
the nondimensional pressure referenced to 
freestream pressure. Same freestream condi
tions as listed in Fig. 6.8. 

solutions; you will usually want to play around with various amounts of artificial 
viscosity until you are satisfied with the quality of the solution. Finally, this rather 
arbitrary, almost capricious aspect of CFD has been a thorn in the side of practioners 
for the past several decades. However, in the past few years, innovative methods in 
applied mathematics have addressed the problem of artificial viscosity in an 
intelligent fashion, leading to new algorithms which automatically use only the 
proper amount of artificial viscosity only in regions where it is needed. An example 
is the TVD (total-variation-diminishing) concept. Such aspects are discussed in 
Chap. 11. As you proceed further with your studies of CFD in the future, you will 
most likely reap the benefits of such mathematical advancements. 

6.7 THE ALTERNATING-DIRECTION
IMPLICIT (ADI) TECHNIQUE 

Let us return to the consideration of implicit solutions as exemplified by the Crank
Nicolson technique, introduced in Sec. 4.4. In this section, an example of a 
marching solution is given; Eq. (3.28) is used as a model equation with t as the 
marching variable. There exists only one other independent variable in the equation, 
namely, x. As long as we are dealing with linear equations, the implicit solutions 
using the Crank-Nicolson scheme are directly obtained from the use of Thomas' 
algorithm (see App_ A). This is the case in Sec. 4.4, where a finite-difference 
representation of Eq. (3.28) is given in the tridiagonal form by Eq. (4.42). This 
tridiagonal form is readily solved by the use of Thomas' algorithm. 

Note that the difference equation is linear. In Sec. 4.4, the original partial 
differential equation, Eq. (3.28), is linear, hence leading to a linear difference 
equation. In cases governed by nonlinear partial differential equations, a more 
general idea for obtaining linear difference equations is discussed in Sec. 11.3.1. 
When solving an inherently nonlinear problem by means of an implicit scheme, the 
matter of linearizing the difference equations is of utmost importance so that 
Thomas' algorithm (or some equivalent) can be used to expedite the calculations. 
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Such matters are discussed in Sec. 11.3.1; it is not necessary for us to elaborate 
further in this section. 

The main thrust of the present section is concerned with the other aspect that 
destroys the tridiagonal nature of the difference equations, namely, multidimen
sionality involving more than one variable in addition to the marching variable. To 
see this more clearly, consider a model equation based on the unsteady, two
dimensional heat conduction equation, Eq. (3.27), written in two spatial dimensions 
as follows: 

(6.62) 

Paralleling the Crank-Nicolson development in Sec. 4.4, Eq. (6.62) can be written in 
finite-difference form as 

rn+l_p_ !(rn+/.+T\1 )+!(-2rn+1_2rn )+!(rn+/.+rn, .) 
I.] I.I - cl. I+ -} I ,} l,J l.J I - ,} l - ,J 

!lt - (Ax)2 

+)(T7,J1 1 +T7,1+1)+!(-2T7,j
1 

-2T7,)+i(T7,j~ 1 +T7,J-I) 

(lly)2 
(6.63) 

Equation (6.63) is the equivalent in .xy space to the one-dimensional form given 
by Eq. (4.40). However, unlike Eq. (4.40) which reduces to the tridiagonal form 
given by Eq. (4.42), Eq. (6.63) contains.five unknowns, namely, r7:/;, T?j 1

, 

T7 ~ i, 1, T7,j 1 i, and T7.l ~ 1, where the last two unknowns prevent a t~diagonal 
form. Hence, Thomas' algorithm can not be used. Although matrix methods exist 
which can solve Eq. (6.63), the computer time is much longer than that for a 
tridiagonal system. As a result, there is a distinct advantage in developing a scheme 
that will allow Eq. (6.62) to be solved by means of tridiagonal forms only. Such a 
scheme, namely, the alternating-direction-implicit (ADI) scheme, is the main 
subject of this section. 

Recall that Eq. (6.62) is being solved by means of a marching technique; 
that is, T(t + !lt) is being obtained in some fashion from the known values of 
T(t). Let us achieve the solution of T(t + llt) in a two-step process, where 
intermediate values of T are found at an intermediate time, t + !lt/2, as follows. 
In the first step over a time interval !lt/2, replace the spatial derivatives in 
Eq. (6.62) with central differences, where only the x derivative is treated implicitly. 
That is, from Eq. (6.62), 

Tn+l/2 - rn. rn+I/2 -2Tn+I/2 + rn+l/2 rn. - 2rn. + rn. 
,, 1 ,. 1 =a 1+1,; ,,; ,-1,1 +a ,,1+1 ,,1 ,,;-I 

!lt/2 (Ax)2 (lly)2 

(6.64) 

Equation (6.64) reduces to the tridiagonal form 

ATn+l/2 -BTn+l/2 +ATn+l/2 =K; 
,- l,J ,,; ,+ !,J (6.65) 

where 

cl. l1t 
A--

- 2(Ax)2 

cl. !lt 
B= 1 +-

(Ax)2 
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n cl. !lt n - 2Tn + Tn . ) 
K =-T. ----(T- ·+1 ij 1;-I 

l l,J 2(lly)2 l,J ' ' 

+ 1/2 · · · fi d, ·ng Thomas' 
Equation (6.65) yields a ~o~ution_ for T/,J for all 1, keepmg{ xe" :;e " in the x 
I orithm That is exammmg Fig. 6.11, at a fixed value of J, we s P . 

a _g . · · E' (6 65) to solve for Tn + 112 for all values of i. If there are N gnd 
dlfection, usmg ~- ·. ,,; fr . = 1 t N This sweep utilizes 

oints in the x dlfechon, then we sweep om l o . f . d 
~homas's algorithm once. This calculation is then repeated at t~e next row~ g~ 

oints designated by j + l. That is, replace Jin Eq. (6.65)_ by J + 1 and so ve ?r 
} +-1/2 for all values of i from 1 to N, using Thomas' algonthm. If there are M g~d 

,.;+ 1 • dMf · · e there are Msweeps m 
points in they direction, this process IS repeate . Imes, 1. ., . h. . 
the x direction, resulting in Thomas' algorithm bemg used Mtimes. T IS sweepmg 

(i,j) = (I, 1) 

In this plane, 
Eq. (6.65) 
leads to 
values of 

T ."•"2 at :-1 /J,.t 
ttmet+ 2 

y 

X 

FIG. 6.11 . d. · t btain Tat time t + l'lt/2. 
First step in the ADI process. Sweeping m the x irect10n o o 
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in the x direction is shown schematically in Fig. 6.11. At the end of this step, the 
values of Tat the intermediate time t + !it/2 are known at all grid points (i, }); that 
. T n + 112 . kn 11 ( . ") 1s, i,J 1s own at a z,1. 

The second step of the ADI scheme takes the solution to time t + !it, using the 
known values at time t + !it/2. For this second step, the spatial derivatives in Eq. 
(6.62) are replaced with central differences, where the y derivative is treated 
implicitly. That is, from Eq. (6.62), 

rn+I_Tn+l/2 Tn+1/2_2Tn+1/2+Tn+l/2 rn+I -2rn+1+rn+1 
1,1 1,1 =a z+l,J 1,1 1-1,J +a 1,1+1 1,1 1,1-I 

!it/2 (!ix)2 (!iy)2 

Equation (6.66) reduces to the tridiagonal form 

where 

crn++I I - nrn+ I+ crn+ 11 = L'J· 
l)j l,J l,j -

a !it 
C=--

2(!iy)2 

a !it 
D=l+-

(!iy)2 

L = -Tn+ 1;2 _ ~ (Tn+ 1;2 _ 2Tn+ 1;2 + Tn+ 1;2) 
'} l,J 2(tix)2 1+1,1 l,J 1-l,1 

(6.66) 

(6.67) 

Note that r + 
112 

is known at all grid points from the first step. Equation (6.67) 
yields a solution for T7,J I for all}, keeping i fixed, using Thomas' algorithm. That 
is, examining Fig. 6.12, at a fixed value ofi, we sweep in they direction, using Eq. 
(6.67) to solve for T?,J 1 

for all values of}, where j goes from l to M. This sweep 
utilizes Thomas 's algorithm once. This calculation is then repeated at the next 
column of grid points designated by i + 1. That is, replace i in Eq. ( 6.67) by i + I 
and solve for T'/ + l,J for all values of} from I to M, using Thomas's algorithm. This 
process is repeated N times; i.e., there are N sweeps in they directio11, resulting in 
Thomas' algorithm being used N times. This sweeping in the y direction is shown 
schematically in Fig. 6.12. At the end of this step, the values of Tat time t + !it are 
known at all grid points (i, j); that is, TZj I is known at all (i, j). 

At the end of this two-step process, the dependent variable T has been 
marched a value !it in the direction oft. Although there are two independent spatial 
variables x and y in addition to the marching variable t, this marching scheme 
involves only tridiagonal forms, and the solution has been achieved by the repeated 
application of Thomas' algorithm. Because the scheme involves two steps, one in 
which the difference equation is implicit in x and the other in which the difference 
equation is implicit in y, the source of the name of the scheme-a/ternating
direction-implicit-is obvious. 

The ADI scheme is second-order-accurate in t, x, and y; that is, the truncation 
error is of O[(!it)

2
, (!ix)2, (!iy)2]. See Refs. 13 to 17 for details. 

n+ I -

M. 
2 
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(i,j) = (I, I) i+l 

In this plane, 
Eq. (6.67) 
leads to 
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X 

FIG. 6.12 ct· · bt · Tat time t + 11t Second step in the ADI process. Sweeping in the y lfectwn to o am · 
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This scheme has found application in many fluid flow problems. In t~e form 
described above, it is particularly useful for the solution of proble?"1s descnbe~ by 
parabolic partial differential equations. Also, the scheme _d~scnbed above 1s : 
s ecial form of a general class of schemes involving a sphtt_mg of two or mo'.e 
ciirections in an implicit solution of the governing flow eq_uatlons so ~s 

1 
to ~btai~ 

tridia onal forms. Hence, ADI can represent a general descnptor of aw o e c as~ o 
sche!es, one of which has been described in this sectio~. ~nother popular vers1~n 
of an ADI scheme is called approximate factorization; this is a more advanced topic 
which is discussed in Sec. 11.3.2. 

6.8 THE PRESSURE CORRECTION 
TECHNIQUE: APPLICATION TO 
INCOMPRESSIBLE VISCOUS FLOW 

A numerical technique for the solution of invis~id, inco~p'.ess_ible flow :"as 
d. d · Sec 6 5 namely the relaxation technique. Inviscid, mcompress1?le iscusse m · · , ' · d h 1 ation 
flow is governed by elliptic partial differential ~quatlon~, an t e_ re ax 
technique, which is essentially an iterative process,_ 1s a classi~al nume~cal meth~~ 
for solving elliptic problems. In contrast, viscous, mcompress1ble flow ts govern 
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by the incompressible Navier-Stokes equations, which exhibit a mixed elliptic
parabolic behavior, and hence the standard relaxation technique as described in Sec. 
6.5 is not particularly helpful. The purpose of the present section is to describe an 
iterative process called the pressure correction technique, which has found wide
spread application in the numerical solution of the incompressible Navier-Stokes 
equations. The pressure correction technique has been developed for practical 
engineering solutions by Patankar and Spalding (Ref. 67) and is discussed at length 
in Ref. 68. The technique is embodied in an algorithm called SIMPLE (semi
implicit method for pressure-linked equations), pioneered by Patankar and Spald
ing, which has found widespread application over the past 20 years for both 
compressible and incompressible flows. However, in the present section we will 
focus on the use of the pressure correction method to solve incompressible, viscous 
flow. 

Before describing the pressure correction method, there are two considerations 
associated with an incompressible flow solution that need to be addressed. They are 
the subject of the next two subsections. 

6.8.1 Some Comments on the Incompressible 
Navier-Stokes Equations 

The compressible Navier-Stokes equations are derived in Chap. 2 and summarized 
in Sec. 2.8.1. The incompressible Navier-Stokes equations can be obtained from the 
compressible form simply by setting density equal to a constant. That is, with 
p = constant, Eq. (2.29) becomes 

(6.68) 

(6.69) 

(6.70) 

( 6.71) 

Note that in writing Eqs. (6.69) to (6.71), the terms in Eqs. (2.57a) to (2.57.f) 
explicitly involving V · V have been set to zero due to Eq. (6.68). The fact that 
V · V = 0 for incompressible flow allows a further reduction of Eqs. ( 6.69) to ( 6. 71 ), 
as follows. 

(6.72) 

Rearranging Eq. (6.72), we have 
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au av aw 
( 6.72a) ----

ax ay oz 

Differentiating Eq. (6.72a) with respect to x, we obtain 

a2u 82v &w 
(6.73) ------

ax2 axay axay 

Adding a2u!ax2 to both sides of Eq. (6.73) and multiplying by µ, we obtain 

&u a2u &v 82w 
2µ- = µ- - µ-- - µ-- (6.74) 

ax2 ax2 ax ay ax ay 

Substituting Eq. (6.74) for the second term on the right side of Eq. (6.69) and 
expanding other terms in Eq. (6.69), we obtain 

Du op a2u 82v 82w 82v 
p Dt = - ax + µ ax2 - µ ax ay - µ ax ay + µ ax ay 

a2u &u &w 
+ µ ay2 + µ az2 +µax ay + pfx (6.75) 

Canceling terms in Eq. (6.75), we obtain a convenient form of the x-momentum 
equation for a viscous, incompressible flow as 

Du op (a
2
u a

2
u &u) 

p Dt = - ax+ 11 ax2 + ay2 + az2 + pfx 

Du op 2 
p Dt = - ax + µ v' u + pfx or (6.76) 

where v 2u is the laplacian of the x component of velocity, u. Equations (6.70) and 
( 6. 71) can be treated in a similar fashion. The resulting system of equations is the 
incompressible Navier-Stokes equations, summarized below. 

Continuity : v'·V=O (6.77) 

Du op 2 (6.78) xmomentum: p - = - - + µ v' u + pfx 
Dt ax 

ymomentum: 
Dv op 2 (6.79) p - = - - + µ y' V + pJ; 
Dt ay y 

z momentum: 
Dw op 2 (6.80) p- = - - + µ v' w + pfz 
Dt oz 

Note that Eqs. (6.77) to (6.80) are self-contained; they are four equations for 
the four dependent variables u, v, w, and p. Through the assumptions of p = constant 
and µ = constant, the energy equation has been completely decoupled from the 
analysis. The implication here is that the continuity and momentum equations are all 
that are necessary to solve for the velocity and pressure fields in an incompressible 
flow, and that if a given problem involves heat transfer, and hence temperature 



250 SOME SIMPLE CFD TECHNIQUES: A BEGINNING 

gradients exist in the flow, the temperature field can be obtained directly from the 
energy equation after the velocity and pressure fields are obtained. In this section, 
we will not deal with a temperature field; rather, we will assume that T = constant, 
which is compatible with our earlier assumption that µ = constant [because 
µ = f(T)]. Hence, Eqs. (6.77) to (6.80) are sufficient for our discussion here. 

Clearly, from the above discussion we see that the incompressible Navier
Stokes equations are derived in a straightforward fashion from the compressible 
Navier-Stokes equations. In tum, this might lead us to think that a numerical 
solution of the incompressible equations might be obtained in a straightforward 
fashion from a numerical technique fashioned for the compressible equations. 
Unfortunately, this is not the case. For example, ifwe write a computer code to solve 
the compressible Navier-Stokes equations using a time-marching MacCormack's 
technique as described in Sec. 6.3, the explicit time step 11.t is restricted by stability 
conditions. An approximate stability condition for an explicit Navier-Stokes 
solution is given in Ref. 13 as 

11.t < 1 

- lul/Ax+ lvl/11y+a/1!(Ax)2 + 1/(11y)2 
( 6.81) 

For a compressible flow, the speed of sound a is finite, and Eq. (6.81) will yield a 
finite value of 11.t for the numerical solution. However, for an incompressible flow, 
the speed of sound is theoretically infinite, and hence Eq. (6.81) would yield 11.t = O 
for such a case. Clearly, for the numerical solution of an incompressible flow, 
something else must be done. This phenomenon is further reinforced by the 
observation that a compressible-flow CFO solution technique, when applied to a 
flow field where the Mach number is progressively reduced toward zero, takes 
progressively more time steps to converge; it is the author's experience that a 
compressible-flow code run for a flow which is everywhere at a local Mach number 
of about 0.2 or less takes a prohibitive amount of time to converge, and indeed has a 
tendency to be unstable at such a low Mach number. 

For such reasons, in CFO, solution techniques for the incompressible Navier
Stokes equations are usually different from those used for the solution of the 
compressible Navier-Stokes equations. The pressure correction method, to be 
described shortly, transcends this difficulty; it has been used with reasonable 
success for compressible flow but with even more success for incompressible flow. 
It is an accepted and widely used technique for incompressible, viscous, CFO 
applications. Therefore, we focus on this method in the present section. 

6.8.2 Some Comments on Central Differencing of 
the Incompressible Navier-Stokes Equations: The 
Need for a Staggered Grid 

The incompressible continuity equation 1s given by Eq. (6.77), which in two 
dimensions is 

(6.82) 
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A central difference equation representing Eq. (6.82) is 

U;+l,j- Ui-1,j + V;,J+I - V;,J-1 = O 
2Ax 211.y 

(6.83) 

This difference equation numerically allows the checkerboard velocity distribution 
given in Fig. 6.13. Illustrated there is a zigzag type of distribution of both the x 
component and y component of the velocity, u and v, respectively. In the x direction, 
u varies as 20, 40, 20, 40, etc., at successive grid points, and in the y direction, v 
varies as 5, 2, 5, 2, etc., at successive grid points. If these numbers are substituted 
into Eq. (6.83), both terms are zero at every grid point; i.e., the discrete velocity 
distribution shown in Fig. 6.13 satisfies the central difference form of the continuity 
equation. On the other hand, the checkerboard velocity distribution in Fig. 6.13 is 
basically nonsense in terms of any real, physical flow field. 

The problem described above does not occur for compressible flow, where the 
inclusion of the density variation in the continuity equation would generally wipe 
out the checkerboard pattern illustrated in Fig. 6.13 after the first time step. 

A related problem is encountered in regard to central differences in the 
momentum equations, Eqs. (6.78) to (6.80). Imagine a two-dimensional discrete, 
checkerboard pressure pattern as illustrated in Fig. 6.14. In particular, consider the 
central difference formulation for the pressure gradients: 

8p P,+ 1,1 - P,-1,1 

ax 2Ax 
(6.84a) 

8p _Pi,J+I -Pi,J-1 

8y 211.y 
(6.84b) 

y 20 40 20 40 2 0 

5 5 5 5 5 

20 40 20 40 2 0 

2 2 2 2 2 

20 40 u=20 40 2 0 

5 5 v=5 5 5 

20 40 20 40 2 0 

2 2 2 2 2 

20 40 20 40 2 0 

5 5 5 5 5 

X 

FIG. 6.13 
Discrete checkerboard velocity distribution at each grid point; the number at the upper right is u and 
that at the lower left is v. 
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y 50 100 50 100 5 0 

8 20 8 20 8 

50 100 50 100 5 0 

8 20 8 20 8 

50 100 50 100 5 0 

X 

FIG. 6.14 
Discrete checkerboard pressure distribution. 

For the checkerboard pressure distribution illustrated in Fig. 6.14, Eqs. (6.84a) and 
(6.84b) give zero pressure gradients in the x and y directions, respectively. Clearly, 
the pressure field discretized in Fig. 6.14 would not be felt by the Navier-Stokes 
equations; rather, the numerical solution would effectively see only a uniform 
pressure in x and y. 

In short, when central differences are used for the incompressible Navier
Stokes equations, the resulting difference equations are of a form that, when 
presented with the nonsensical velocity and pressure distributions shown in Figs. 
6.13 and 6.14, will tend to perpetuate these distributions. Admittedly, some early 
central difference algorithms for incompressible viscous flow ignored this problem, 
and successful solutions were still obtained, presumably because of special 
treatment of the boundary conditions or by some other fortuitous aspect of the 
numerical procedure. However, given the weakness of the central difference 
formulation described above, we should justifiably feel uncomfortable, and we 
should look for some "fix" before embarking on the solution of a given problem. 

Two such fixes are suggested. If upwind differences are used instead of central 
differences, the problem immediately goes away. A discussion of upwind differ
ences is given in Sec. 11.4. However, another fix is to maintain central differencing 
but stagger the grid, as described below. 

A staggered grid is illustrated in Fig. 6.15. Here, the pressures are calculated 
at the solid grid points, labeled (i - 1, j), (i, j), (i + I, j), (i, j + 1 ), (i, j - I), etc., 
and the velocities are calculated at the open grid points, labeled (i - ! , j), (i + f, j), 
(i, j + !), (i, j - !), etc. Specifically, u is calculated at points (i - ! , j), (i + 2 , j), 
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FIG. 6.15 
Staggered grid. 

X 

etc., and vis calculated at different points (i, j + !), (i, j - !), etc. The key feature 
here is that pressures and velocities are calculated at different grid points. In Fig. 
6.15, the open grid points are shown equidistant between the solid grid points, but 
this is not a necessity. An advantage of this staggered grid is, for example, that when 
u; + 112, 1 is calculated, a central difference for op!EJx yields (p; + 1, 1 - Pi,J)/ Ax; that 
is, the pressure gradient is based on adjacent pressure points, which eliminates the 
possibility of a checkerboard pressure pattern as sketched in Fig. 6.14. Also, a 
central difference expression for the continuity equation, Eq. (6.82), centered 
around point (i, j) becomes 

U;+ l/2,J - Ui- l/2,j + V;,J+ 1/2 - V;,J-1/2 = Q 

Ax ~y . 
(6.85) 

Because Eq. (6.85) is based on adjacent velocity points, the possibility of a 
checkerboard velocity pattern as sketched in Fig. 6.13 is eliminated. 

6.8.3 The Philosophy of the Pressure Correction 
Method 

The pressure correction technique is basically an iterative approach, where some 
innovative physical reasoning is used to construct the next iteration from the results 
of the previous iteration. The thought process is as follows: 
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1. Start the iterative process by guessing the pressure field. Denote the guessed 
pressures by p*. 

2. Use the values of p* to solve for u, v, and w from the momentum equations. 
Since these velocities are those associated with the values of p*, denote them by 
u*, v*, and w*. 

3. Since they were obtained from guessed values of p* the values u* v* and w* 
when substituted into the continuity equation, will 'not necessaril~ sa~isfy tha~ 
equation. Hence, using the continuity equation, construct a pressure correction p' 
which when added top* will bring the velocity field more into agreement with 
the continuity equation. That is, the "corrected" pressure p is 

p =p* + p' (6.86) 

Corresponding velocity corrections u', v', and w' can be obtained from p' such 
that 

u = u* + u' 

v = v* + v' 

w = w* + w' 

(6.87a) 

(6.87b) 

(6.87c) 

4. In Eq. (6.86), designate the new value p on the left-hand side as the new value of 
p*. Return to step 2, and repeat the process until a velocity field is found that 
does satisfy the continuity equation. When this is achieved, the correct flow field 
is at hand. 

6.8.4 The Pressure Correction Formula 

The pressure correctionp' was introduced in Eq. (6.86). The calculation of the value 
of p' is the subject of this subsection. For simplicity, we will consider a two
dimensional flow; the additional terms associated with the third dimension are 
treated in a like manner. Also, we will neglect body forces. 

The x- and y-momentum equations for an incompressible viscous flow are 
given by Eqs. (6.78) and (6.79), respectively. These equations are in nonconserva
tion form. In conservation form, they are (see Sec. 2.8) 

o(pu) + o(pu
2
) + o(puv) = - op+ (o

2
u + &u) 

ot OX oy ox µ ox2 oy2 
(6.88) 

and 

o(pv) + o(pvu) + o(pv2) = - op+ (o
2
y + o2

v) 
ot OX oy oy µ ox2 oy2 

(6.89) 

As discussed in Chap. 2, the conservation form follows directly from the model of 
an infinitely small volume fixed in space. Because of this model, a finite-difference 
form of Eqs. (6.88) and (6.89) will be somewhat akin to the discretized equations 
obtained from a finite-volume approach. The original formulation of the pressure 
correction method by Patankar and Spalding (Refs. 67 and 68) involved a finite-
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volume approach. In the present section, we will continue with a finite-difference 
approach; by using the conservation form of the governing partial differential 
equations, this finite-difference approach gives essentially the same discretized 
equations as would be obtained in a finite-volume method. We proceed to develop 
the discretized equations which are the basic tools of the pressure correction 
method. We choose to use a forward difference in time, and central differences for 
the spatial derivatives. Note that the pressure correction method is really a certain 
philosophy, i.e., a certain approach, as explained in Sec. 6.8.3, and the choice of any 
particular differencing scheme within this philosophy is generally satisfactory. That 
is, the scheme developed below is not the only approach; it is just a reasonable 
choice out of several. 

Consider a region in a staggered grid as illustrated in Fig. 6.16. Recall that the 
pressures are evaluated at the solid grid points and the velocities at the open grid 
points. We will difference Eq. (6.88) centered around the point (i + !, J) in Fig. 
6.16. (For reference purposes, an equivalent finite-volume approach would deal 
with the shaded cell in Fig. 6.16.) We will need average values ofv at the points a 
and b on the top and bottom, respectively, of the shaded cell. These are defined by 
linear interpolation between the two adjacent points; i.e., define 

At point a : 

At point b: 

y 

i,J+1 

. I . 
l-2,J 

.. I 
l,J- 2 

FIG. 6.16 

v1+ 1/2 = ! (v;.J+ 1;2 + V;+ LJ+ 1;2) 

v1-1;2 = ! (v;.J- l/2 + V;+ l.J- l/2) 

a 
i+l,J+j 

i+~.j 

i+l,j 

i+l,J-l ~y 
b }¥ 

i+j,J-1 

'--v-----' 

/ix/2 
'-------y----' 

!'U 

X 

(6.90a) 

(6.90b) 

Computational module for the x-momentum equation. The filled-in area is an effective control volume. 
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Centered around point (i + !, j) a difference representation of Eq. (6.88) is 

( )n + 1 _ ( )n [( z)n ( 2 n pu i+ 1/2.J pu i+ 1/2,J = _ pu i+3/2,J - pu );_ 1;2,J 

11t 2Ax 

+ (puv)7+1/2,J+I - (puv)7+1/2,j-ll _P7+1,J-P7,1 
211y Ax 

+ µ [ u;>J/2,, - li~;;, I+ "7_ ,;2,1 + "7+ 1/2,j, , - 2~~;;;,1 + U;+ 1/2,1 1 l 
(6.91) 

or 

(6.92) 

where, from Eq. (6.91), 

Equation (6.92) is a difference equation representing the x-momentum equation. 
Note that v and v in Eqs. (6.91) and (6.92) are those values defined by Eqs. (6.90a 
and b ), i.e., v and v use different grid points than those for u. 

In like manner, a difference equation for the y-momentum equation is 
obtained. Here, we will difference Eq. ( 6.89) centered around point (i, j + ! ) 
as shown in Fig. 6.17. We define average values of u at the points c and don the le1t 
and right sides of the shaded cell in Fig. 6.17 as follows: 

At point c: 

At point d: 

U = 1 (ui-1/2,j + U;-1/2,)+ 1) 

U = !(u;+J/2,j + U;+J/2,)+i) 

Using a forward difference in time and central differences in space, Eq. (6.89) 
becomes 

( )n + I _ ( )n l1 f1t (pn n 
pv i,J+ 1/2 - pv i,J+ 1/2 + B t - Ax i,J+ 1 - P;) (6.93) 

i-1.j+; 

FIG. 6.17 
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i.J+i 

i.J+l i+U+I 

i,j i+j .J 

. . I 
1.J-' 

i+ LJ+j 

X 

Computational module for they-momentum equation. The filled-in area is an effective control volume. 

where 

B = _ [(pvu)7+1,J+1/2 - (pvu)7_1,1+1/2 (pv2)7,J+3/2 - (pv2);,1-112] 
2Ax + 2~ 

+ µ ["' + 1,1+ 1;2 - 27:t + v, _ 1,1 + 1/2 + v/.1+3/2 - li~t + v/.1-1/2] 

Note that u and u in Eq. (6.93) are those values defined by the average values at 
points c and d, i.e., u and u use different grid points than those for v. 

As outlined in Sec. 6.8.3, at the beginning of each new iteration, p = p*. For 
this situation, Eqs. (6.92) and (6.93) become, respectively, 

( * )n + I ( * )n + A* 11 11t (p* * ) pu ;+1/2,J = pu i+l/2,J t- Ax i+l,J-Pi,J (6.94) 
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and ( *)n+l ( *)n B*~ ~t(p* *) 
pv i,J+ 1;2 = pv i,J+ 1;2 + t - ~y i,J+ 1 - P;,J (6.95) 

Subtracting Eq. (6.94) from Eq. (6.92), we have 

( ')n + I ( ')n A' A ~! (p' 1 )n 
pu i+l/2,J= pu i+l/2,J+ ut- Ax i+l,J-Pi,J (6.96) 

where 

( ')n+l ( )n+l ( *)n+l 
pu ; + 1;2,J = pu ; + 1;2,J - pu ; + I/2,J 

(pu')7+1/2,J = (pu)7+1;2,J - (pu*)7+1;2,J 

A' =A-A* 
I * 

P;+1,J =Pi+1,J-Pi+l,J 

I * 
Pi,J = Pi,J - P;,J 

Subtracting Eq. (6.95) from Eq. (6.93), we obtain 

( ')n + I ( ')n B' ~ M (p' , ) 
pv i,J+1;2= pv i,J+l/2+ t- ~y i,J+I -Pi,J (6.97) 

where 

( ')n+l ( )n+l ( *)n+l 
pv i,J+l/2 = pv i,J+l/2 - pv i,J+l/2 

(pv')7,1+1/2 = (pv)7,J+l/2 - (pv*)7,J+l/2 

B' =B-B* 
I * 

Pi,}+ I = Pi,}+ I - Pi,}+ I 

I * 
Pi,J = Pi,J - Pi,J 

Eqs. (6.96) and (6.97) are the x- andy-momentum equations expressed in terms of 
the pressure and velocity corrections p', u', and v' defined by Eqs. (6.86), (6.87a), 
and (6.87b), respectively. 

We are now in a position to obtain a formula for the pressure correction p' by 
insisting that the velocity field must satisfy the continuity equation. However, we are 
reminded that the pressure correction method is an iterative approach, and therefore 
there is no inherent reason why the formula designed to predict p' from one iteration 
to the next be physically correct; rather, we are concerned with only two aspects: ( 1) 
the formula for p' must yield the values that ultimately lead to the proper, converged 
solution, and (2) in the limit of the converged solution, the formula for p' must 
reduce to the physically correct continuity equation. That is, we are allowed to 
construct a formula for p' which is simply a numerical artifice designed to expedite 
the convergence of the velocity field to a solution that satisfies the continuity 
equation. When this convergence is achieved, p' -+ 0, and the formula for p' 
reduces to the physically correct continuity equation. 

With the above aspects in mind, let us proceed to obtain the pressure 
correction formula. Following Patankar (Ref. 68), let us arbitrarily set A', B', 
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(pu'f, and (pv'f equal to zero in Eqs. (6.96) and (6.97), obtaining 

')n+ I ~t (p' 1 )n 
(pu i+ t/2,J = - Ax i+ 1,J - Pi.J (6.98) 

and I n + I ~f (p' I )n 
(pv )i,J + 1;2 = - Ax i,J + 1 - Pi,J (6.99) 

Considering that we are simply constructing a numerical artifice which will provide 
some guidance in the iterative procedure, the above should not make you totally 
uncomfortable. Returning to the definition of (pu')7: /12_1 given just below Eq. 
(6.96), namely, 

( ')n + I ( )n + I ( *)n + I 
pu i+l/2,J = pu i+l/2,J - pu i+t/2,J 

we can write Eq. (6.98) as 

( )n+l ( *)n+l ~t(p, 1 )n 
pu i+ 1;2,J = pu i+ 1/2,J - Ax i+ l,J - Pi.J (6.100) 

Returning to the definition of (pv')~; J ,12given just below Eq. (6.97), namely, 

( ')n+l ( )n+l ( *)n+l 
pv i,J+l/2 = pv i,J+l/2 - pv i.J+l/2 

we can write Eq. (6.99) as 

( )n+l ( *)n+l ~f(p' 1 )n 
pv i,J+l/2 = pv i,J+l/2 - ~y i,J+I -Pi,J (6.101) 

Returning to the continuity equation 

and writing the corresponding central difference equations centered around point 
(i, j), we have 

(pu )i + 1/2,J - (pu )i - 1;2,J (pv);,J + 1;2 - (pv)i,J- I/2 _ 
0 Ax + ~y -

(6.102) 

Substituting Eqs. ( 6.100) and ( 6.101) into ( 6.102) and dropping the superscripts, 
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we have 

(pu*);+ I/2,J - M/ &(p;+ I,J - P;) - (pu*);_ 1;2,J + lit/ &(p;,J - p;_ ,) 

,1x 

(pv*) ·+i;2 -l'J.t/!J.y(p' ·+ 1-p' )-(pv*) _, 12 +/'J.t/&(p' -p' _ 1) + l,J I,} I,} l,j l,J 1,J = 0 
l'J.y 

Rearranging Eq. (6.103), we obtain 

I b I b I I I d 0 ap . + 'P + I . + 'P - I . + cp . + I + cp - I + = I,} I ,} I ,J l,J l,J 

where 

a~ 2 Li),+ (:;)'J 
b=-~ 

(&)2 

lit 
C=---

(!'J.y)2 

(6.103) 

(6.104) 

d = ~[(pu*);+J/2,J - (pu*)i-1/2,J] + ~)(pv*)i,J+l/2 - (pv*)i.J-1/2] 

Equation ( 6.104) is the pressure correction formula. It has an elliptic behavior, 
consistent with the fact that a pressure disturbance will propagate everywhere 
throughout an incompressible flow. Thus, Eq. (6.104) can be solved for p' by means 
of a numerical relaxation technique, such as described in Sec. 6.5. 

Note that din Eq. (6.104) is the central difference formulation of the left-hand 
side of the continuity equation expressed in terms of u* and v*. During the course 
of the iterative process, u* and v* define a velocity field that does not satisfy 
the continuity equation; hence in Eq. (6.104), d # 0 for all but the last iteration. 
In this sense, d is a mass source term. By definition, in the last iteration, the 
velocity field has converged to a field that satisfies the continuity equation, and 
hence, theoretically, d = 0 for this last iteration. In this sense, although a 
mathematical artifice was used to obtain Eq. (6.104), in the last iterative step 
we can construe Eq. (6.104) as being a proper physical statement of the con
servation of mass. 

It is interesting to note that the pressure correction formula, Eq. (6.104), is a 
central difference formulation of the Poisson equation in terms of the pressure 
correction p'. 

(6.105) 

If the second partial derivatives in Eq. (6.105) are replaced by central differences 
and if Q = d/(l'J.t &), then Eq. ( 6.104) is obtained. (This short derivation is left as 
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Prob. 6.1.) Poisson's equation is one of the well-known equations from classical 
physics and mathematics, and it is worthwhile to observe that the pressure 
correction formula is nothing more than a difference equation representation 
of the Poisson equation for p'. We also note that the Poisson equation is an 
elliptic equation, which mathematically verifies the elliptic behavior of the pressure 
correction formula. 

6.8.5 The Numerical Procedure: The SIMPLE 
Algorithm 

To bring all the above discussion into perspective, we now summarize the numerical 
steps for the pressure correction method. The following description is the essence of 
the SIMPLE algorithm as set forth in Patankar (Ref. 68). The acronym SIMPLE 
stems from semi-implicit method for pressure-linked equations. The semi-implicit 
terminology refers to our arbitrary setting of A', B', (pu'f, and (pv'f equal to zero 
in Eqs. (6.96) and (6.97), thus allowing the pressure correction formula, Eq. (6.104), 
to have p' appearing at only four grid points. If this artifice had not been used, the 
resulting pressure correction formula would have included velocities at neighboring 
grid points. These velocities are in tum influenced by pressure corrections in their 
neighborhood, and the resulting pressure correction formula would have reached 
much further into the flow field, essentially coupling the entire pressure correction 
field in one equation. This would have represented a "fully implicit" equation. 
Instead, because of the above artifice, Eq. ( 6.104) contains pressure corrections at 
only four grid points, and hence it is termed as only semi-implicit by Patankar (Ref. 
68). 

The step-by-step procedure for the SIMPLE algorithm is as follows: 

1. Keeping in mind the staggered grid as sketched in Fig. 6.15, guess values of 
(p*f at all the "pressure" grid points (the filled points in Fig. 6.15). Also, 
arbitrarily set values of (pu*f and (pv*f at the proper "velocity" grid points 
(the open points in Fig. 6.15). Here, we are considering the grid points internal to 
the flow field; the treatment of points on the boundaries will be discussed later. 

2. Solve for (pu*f+ 1 from Eq. (6.94) and (pv*f+ 1 from Eq. (6.95) at all 
appropriate internal grid points. 

3. Substitute these values of(pu*f+' and (pv*f+ 1 into Eq. (6.104), and solve for 
p' at all interior grid points. (This solution can be carried out by a relaxation 
procedure such as described in Sec. 6.5.) 

4. Calculate pn+I at all internal grid points from Eq. (6.86), i.e., 

pn+l = (p*/ +p' 

5. The values of pn+ 1 obtained in step 4 are used to solve the momentum equations 
again. For this, we designate pn+ 1 obtained above as the new values of (p*f to be 
inserted into Eqs. (6.94) and (6.95). With this interpretation, return to step 2 and 
repeat steps 2 to 5 until convergence is achieved. A reasonable criterion to use 
for a measure of convergence is when the mass source term d approaches zero. 
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When convergence is achieved, the velocity distribution has been obtained 
which satisfies the continuity equation. The whole function of the pressure 
correction formula, Eq. (6.104), is to aim the iteration process in such a direction 
that, when the velocity distribution is calculated from the momentum equations, it 
will eventually converge to the correct distribution which satisfies the continuity 
equation. 

Something needs to be said in regard to the superscripts n and n + 1 used in 
the above equations. Equations (6.88) and (6.89) are the unsteady momentum 
equations, and hence the corresponding difference equations, Eqs. (6.92) and (6.93), 
utilize the standard superscript notation, n for a given time level and n + 1 for the 
next time level. On the other hand, the terms that were neglected in the derivation of 
the pressure correction formula, Eq. (6.104), result in a stepwise iteration process 
(the process described by steps 2-5 above) which in no way is timewise-accurate. 
However, this is no problem, because the pressure correction method is designed to 
solve for a steady flow, and we obtain this steady flow via an iterative process. From 
this point of view, it is best to interpret the superscripts n and n + 1 in the above 
equations as simply designating sequential iteration steps, with no significance to 
any real transient variation. Also in this sense, the value of lit that appears in the 
above equations can be viewed simply as a parameter which has some effect on the 
speed at which convergence is achieved. 

On a related matter, Eq. (6.104) may exhibit a divergent (rather than a 
convergent) behavior for some applications. Patankar suggests using some under
relaxation in such cases; i.e., instead of using Eq. (6.86) in step 4, use the equation 

(6.106) 

where rJ.P is an underrelaxation factor; a value of about 0.8 is suggested. It may also 
be helpful in some cases to underrelax the values of u* and v* obtained from Eqs. 
(6.94) and (6.95). 

6.8.6 Boundary Conditions for the Pressure 
Correction Method 

How are boundary conditions specified consistent with the philosophy of the 
pressure correction method? This question is addressed here. For geometric 
simplicity, consider the constant-area duct sketched in Fig. 6.18; a staggered grid 
is distributed inside the duct. For an incompressible viscous flow, the physical 
problem is uniquely specified if: 

1. At the inflow boundary, p and v are specified and u is allowed to float. If p is 
specified, then p' is zero at the inflow boundary. Hence, in Fig. 6.18, 

I I I I 0 
P1 = P3 = Ps = P1 = 

v2, v4, v6 are specified and held fixed. 

2. At the ou(flow boundary, p is specified and u and v are allowed to float. Hence 
I I I I 0 

Ps = P10 = P12 = P14 = 
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Wall: u=v=O; 
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FIG. 6.18 
Grid schematic for the discussion of boundary conditions for the pressure correction method. 

3. At the walls, the viscous, no-slip condition holds at the wall. Hence, the velocity 
at the wall is zero. 

U15 = U17 = U\9 = U21 = U22 = Uz4 = U26 = Uzg = 0 

For the numerical solution, we need one more boundary condition at the wall. Since 
Eq. (6.104) has elliptic behavior and is solved by a relaxation technique, a boundary 
condition associated with p' must be specified over the complete boundary 
containing the computational domain. From items l and 2 above, we have 
p' = 0 at the inflow and outflow boundaries. A condition associated with p' at 
the walls can be derived as follows. Evaluate they-momentum equation at the wall, 
where u = v = 0. With these velocity values inserted into Eq. (6.79), we have at the 
wall (neglecting body forces) 

(op) = (&v &v) 
ay w µ ax2 + ay2 w 

(6.107) 

Since vw = 0, then in Eq. (6.107), (a2v!ax)w = 0. Also, in the near vicinity of the 
wall, vis small; hence, in Eq. (6.107) we can reasonably assume that (a2v!ay)w is 
small. Thus, from Eq. (6.107) we can comfortably state the approximate (but 
reasonable) pressure boundary condition at the wall to be given by 

(6.108) 

Discretizing Eq. (6.108), we have (refering to Fig. 6.18) 

P1 =p3 P16 = p29 Ps =p7 etc. 
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With this, a pressure boundary condition is numerically specified over the complete 
boundary enclosing the computational domain. 

GUIDEPOST 

The previous discussion on the pressure correction method is all that you need to know 
to tackle the incompressible viscous flow problem in Sec. 9 .4, namely, the solution of Couette 
flow by means of an iterative solution of the two-dimensional incompressible Navier-Stokes 
equations. Therefore, if you are anxious to set up a computer project using the pressure 
correction method, you can 

Go directly to Sec. 9.4. 
However, if you choose this route, make certain to afterward return to the present location in 
the book and resume your general reading with the next section on computer graphics. 

6.9 SOME COMPUTER GRAPHIC 
TECHNIQUES USED IN CFD 

We end this chapter on simple CFD techniques with a discussion of some computer 
graphic "techniques" that are frequently employed in the presentation of CFD data. 
This section is different from the preceding sections in that we are not going to 
present any specific numerical technique for the solution of a flow problem; rather, 
in the present section we discuss how computer graphics is used as an essential tool 
by the computational fluid dynamicist to display the results of a CFD calculation. 
There are various graphical techniques used for the presentation of data, and hence 
it seems appropriate to include in this chapter on techniques an overview of such 
graphical techniques that are most frequently encountered in CFD. 

We can classify the ways that CFD data are usually presented under six 
categories, to be discussed below. The computational fluid dynamicist usually 
implements these various modes of graphical representation via the use of existing 
computer graphic software rather than developing the details of new computer 
graphic programs himself or herself. It is generally not the purview of CFD to be 
involved with the development details of computer graphic software but rather to 
simply use this software as a tool. We will reflect this attitude in the present section. 
There are many existing software packages used by computational fluid dynamicists 
today. In the case of this author's students, TECPLOT, a software package provided 
by Amtec Engineering, is used. For this reason, many of the various computer 
graphic figures presented in this section were generated with TECPLOT; this is not 
to be construed as an endorsement of a specific product but rather simply as an 
example of a standard graphics software approach. New techniques and software for 
computer graphics are evolving as rapidly as those for CFD itself, so when your 
time comes, you will want to make your own choice of an appropriate graphics 
software package. 

The majority of ways that CFD results are presented graphically can be 
classified under six general categories. Illustrations of these categories constitute the 
remainder of this section. 
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6.9.1 xy Plots 

You are perhaps most familiar with xy plots; you have been dealing with them at 
least since your first course in algebra. On a two-dimensional graph, they represent 
the variation of one dependent variable versus another independent variable. Return 
for a moment to Fig. 1.6b to f These are good examples of xy plots. In thi:, case they 
are plots of pressure coefficient versus nondimensional chordwis~ dista~ce; each 
different plot, from Fig. 1.6b to f, corresponds to a different spanwise station. S~ch 
xy plots are the simplest and most straightforward category of co~puter graph1~al 
representation of CFD results. Although such graphs are not particularly_ sophis
ticated, they still remain the most precise quantitative way to present numencal data 
on a graph; that is, another person can readily read quantitative data from curves on 
an xy plot without making any mental or arithmetic interpolation. 

6.9.2 Contour Plots 

A disadvantage of xy plots as described above is that they usually do not illustrate 
the global nature of a set of CFD results all in one view. On the other hand, contour 
plots do provide such a global view. 

A contour line is a line along which some property is constant. We have 
already seen some contour plots. For example, return to Fig. 1.6a: This is a cont~ur 
plot for pressure coefficient on the surface of an F-20 fighter airplane. Each !me 
corresponds to a constant value of pressure coefficient. Generally, contours are 
plotted such that the difference between the quantitative value of the depende~t 
variable from one contour line to an adjacent contour line is held constant. In this 
fashion, in regions where the dependent variable is rapidly ch~ngin~ in space, the 
adjacent contour lines are closely spaced together; in contrast, m reg10ns w~ere the 
dependent variable is slowly changing in space, the adjacent _contour Imes are 
widely spaced. In Fig. 1.6a, the regions where the contour Imes a~e b~nched 
together indicate regions of large pressure gradients on the surface-m t~is case 
pinpointing regions where shock waves are present on the surface of the airplane. 
Another example of contour plots is given in Fig. 6.8a to d. Here, pressure conto~rs 
are shown for the two-dimensional, viscous, supersonic flow over a rearward-facmg 
step. The regions of large gradients in the flow-the expansion wave from the top 
edge of the step and the recompression shock wave further downstream-are clearly 
seen in these contour plots. 

It is clear from examining these contour plots that the global nature of the flow 
is seen in one single view; to obtain the same global feeling for the results from xy 
plots, say to ascertain the locations of the shock and expansion wave_s, we wo_uld 
have to examine a number of xy plots. Contour plots are clearly a supenor graphical 
representation from this point of view. On the other hand, it requires more ~ffort to 
read precise quantitative data from a contour plot as compared to a curve m an -'Y 
plot. Although each contour may be labeled as to the constant numerical valu~ of 
the-property it represents, the obtaining of numerical values between co?tour Imes 
requires some mental and/or numerical interpolation in space, an imprecise process 
to say the least. 



266 SOME SIMPLE CFO TECHNIQUES: A BEGINNING 

The plotting of a contour diagram by hand is a long, laborious process, 
although such plots were made (very infrequently) by some intrepid souls before the 
advent of the computer. This is in contrast to xy plots, which have been made by 
hand with aplomb since the days of Rene Descartes in the seventeenth century. 
Therefore, the proliferation of contour plots with the advent of the computer is 
understandable; in CFD, contour plots are one of the most commonly found 
graphical representations of data. 

Let us examine a few more examples of contour plots from some modem CFD 
applications, pointing out various nuances and subcategories. For example, consider 
Fig. 6.19a and b. These are contour plots of the transverse velocity (the y 
component of velocity, v) in the flow field behind a detonation wave propagating 
through a combustible mixture of H2, 0 2 , and argon. The detonation wave is 
propagating from left to right; the front of the wave is seen as the almost 
perpendicular cluster of contours at the right of the figures. The detonation wave 
is propagating into a uniform gas, which is the region to the right of the front; by 
definition there are no contours in this uniform, constant-property region-it 
appears as a totally clear region at the extreme right in the figures. Combustion 
of the hydrogen and oxygen occurs behind the detonation front. Because of the 
physical presence of slight disturbances in the flow behind the front, the flow field 
becomes two-dimensional, with transverse waves, along with various slip lines, as 
can be seen in the contour plot. The purpose of including Fig. 6. l 9a and b in this 
discussion is to point out the effect of the number of contour lines chosen for a given 
graph. Figure 6. l 9a contains 15 different contour levels; each contour is labeled 
with a number or letter, and the value of the transverse velocity in centimeters per 
second is given in the table of contour values at the right of the graph. Now examine 
Fig. 6.19b; this is the same set of data but plotted with 35 contour levels. Clearly, 
Fig. 6.19b gives a sharper, clearer picture of the flow field than Fig. 6.19a. This 
comparison clearly illustrates the value of including a sufficiently large number of 
contour lines in your plot. 

Figure 6.19a and b is an example of line contour plots. Another type of 
contour plot is a.flooded contour, illustrated in Fig. 6.20. This figure shows the same 
data for the transverse velocity as presented in Fig. 6.19b, but instead of using lines, 
a constant property is denoted by a constant intensity of color shading. In this case, 
gray is the color, and Fig. 6.20 is called a gray-scale color map. Therefore, instead 
of illustrating the flow with a discrete number of contour lines, the regions between 
these lines are simply filled with a color intensity that denotes the value of the flow
field property-the regions between the lines are "flooded" with color intensity. 
The color-coded velocity scale is shown at the right of Fig. 6.20. 

The author wishes to thank James Weber, one of his graduate students at the 
University of Maryland, for providing these figures obtained as part of his doctoral 
research. These calculations were made using a finite-volume scheme called the 
flux-corrected transport (FCT) method, as described in Ref. 69. 

Let us examine contour plots for another type of flow-field situation, in this 
case the shock-shock interaction problem sketched in Fig. 6.21. Here, the straight 
oblique shock from a wedge in a Mach 8 flow impinges on the bow shock from a 
cylinder placed above the wedge. The interaction of the shock waves from the 
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FIG. 6.20 
Flooded contours on a gray-scale color map. Same data for transverse velocity as given in Fig. 6.19b. 
(Calculations by, and figure obtained from, James Weber, University of Maryland.) 
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FIG. 6.21 
Schematic of the shock-shock interaction from a wedge shock impinging on a bow shock from a 
cylinder mounted above the wedge. (Obtained from Charles Lind, University of Maryland.) 
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FIG. 6.23 
Density contour plot of the type IV shock-shock interaction; M 00 = 5.04, Reynolds number (based on 
cylinder diameter)= 3.1 x 105. (Calculations by, and figure obtained from, Charles Lind, University 

of Maryland.) 
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wedge and the cylinder creates a complex flow field in the region of interaction. 
Notice in Fig. 6.21 that the curved shock wave from the cylinder becomes kinked in 
the region where the wedge shock impinges. The boundary-fitted coordinate system 
shown in Fig. 6.22 is created to solve the Navier-Stokes equations in this interaction 
region, using a finite-difference method. Density contours for this flow field 
( designated a type IV shock interaction because of the special geometric features 
of the angles made by the two intersecting shocks) are shown in Fig. 6.23. The 
incident wedge shock enters the computational grid from the lower left, as shown. 
The bow shock from the cylinder is identified by the very sharp clustering of 
contour lines bordering the left of the interaction region. The flow downstream of 
the bow shock is a complex region of refracted shocks and slip lines. However, the 
details of this type of flow can be made clearer by constructing a contour plot not of 
density but of the density gradient. Such a plot is shown in Fig. 6.24. This is a 
flooded contour plot on a gray-scale color map of density gradient. It is interesting 
to note that, in a physical laboratory situation, actual photographs of shock waves 
can be made by means of a special optical system called a schlieren system. In a 
schlieren photograph, shock and expansion waves are made visible by the refraction 
of light waves through the flow, which creates a pattern of various dark and light 
intensities proportional to the magnitude of the local gradient of density in the flow. 
Hence, the flooded contour plot in Fig. 6.24 is really a CFD-generated schlieren 
picture of the flow-field, analogous in every sense to a schlieren photograph 
that would be obtained in the laboratory. This illustrates another subcategory of 
contour plots and shows the tremendous versatility of the whole concept of contour 
plotting. 

The author wishes to thank Charles Lind, a graduate student at the Uni
versity of Maryland, for providing these figures obtained as part of his doctoral 
research. 

The contour plots shown in Figs. 6.8 and 6.19 to 6.24 are made from two
dimensional flow-field calculations; the representation of these contour lines in the 
plane of the paper is therefore sufficient to give a global picture covering the whole 
geometric extent of the flow. But what happens when you have a three-dimensional 
flow? One answer is a multizone three-dimensional contour plot, such as shown in 
Fig. 6.25, taken from Ref. 70. Here we see pressure contours drawn for the transonic 
flow over an airplane wing, where the graphic shows the three-dimensional flow in 
perspective. Contours in three vertical planes at different spanwise stations are 
shown, along with contours on the upper surface of the wing. Such a plot gives a 
reasonable global picture of the three-dimensional flow over the wing, including the 
location of a shock wave on the upper surface near the leading edge, evidenced by 
the bunching up of some of the contour lines. An improvization of such a three
dimensional perspective plot is the "straight-on" composite view shown in Fig. 
6.26, taken from Ref. 71. Here we see helicity density contours shown directly (not 
in perspective) in four different cross-flow planes for the flow over an ogive-cylinder 
in low-speed, subsonic flow at a 40° angle of attack. The side view of the body is 
also shown, with the axial locations of the four cross-flow planes clearly marked. In 
addition, some of the streamlines in the separated flow over the top of the body are 
shown in the side view. 
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Computer-produced schlieren of the type IV interaction; a flooded contour_plot of_dens1ty gradient om 
a CFO calculation. (Calculations by, and.figure obtained from, Charles Lmd, Umverszty of Maryland.) 

6.9.3 Vector and Streamline Plots 

A vector plot is a display of a vector quantity (in CFO, usually velocity) at discre~e 
grid points, showing both magnitude and direction, where the base of each vector IS 
located at the respective grid point. We have already seen examples of vector plots 
for two-dimensional flows in Figs. 1.13, 1.15, 1.19, 1.23, and 1.25, and for a three
dimensional flow in Fig. 1.21. Return to these figures, and examine them ~om the 
point of view of examples of a computer graphic technique. F~r conve~Ience, a 
vector plot for the compressible subsonic flow over a forward-facmg step IS shown 
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FIG. 6.25 

Pressure contours in the three-dimensional transonic flow over an ONERA M6 · E 
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Off-surface streamlines and helicity density contours around an ogive cylinder M = 
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FIG. 6.27 
Two-dimensional vector plot and streamlines for the compressible subsonic flow over a forward-facing 
step. (After Ref 72. Courtesy of Amtec Engineering, Bellevue, Washington.) 

in Fig. 6.27, obtained from Ref. 72. Two streamlines are also shown in Fig. 6.27-
an example of a composite plot illustrating two variables on the same graph. 

In CFD, as in all aspects of fluid dynamics in general, illustrations of 
streamlines are excellent tools for examining the nature of a flow. We have already 
seen two-dimensional streamline plots in Figs. 1.3, 1.10, 1.17, and 1.27. An 
example of a three-dimensional streamline plot is seen in Fig. 1.7. The three
dimensional particle tracks shown in Fig. 1.8 are essentially in this same category. 
Return to these figures, and examine them in light of our discussion here. For 
further illustration, Fig. 6.28 shows a composite of both streamlines and velocity 
vectors for the inviscid flow over the surface of a three-dimensional hypersonic 
body shape, obtained from Ref. 72. 

6.9.4 Scatter Plots 

In a scatter plot, a symbol (square, circle, etc.) is drawn at discrete grid points in the 
flow, where the magnitude of some scalar quantity (pressure, temperature, etc.) is 
indicated by either the size of the symbol, its shading, its color, or some 
combination thereof. For example, Fig. 6.29 is a scatter plot for the compressible 
subsonic flow over a forward-facing step, obtained from Ref. 72. The diameter of 
each circle indicates the magnitude of they component of velocity, and the shading 
of each circle indicates the magnitude of the density. 

6.9.5 Mesh Plots 

Mesh plots consist of lines connecting grid points in either a two- or three
dimensional grid. We have already seen examples of two-dimensional mesh plots in 
Figs. 1.9, 1.11, 5.9, 5.10, 5.13 to 5.17, 5.19, and 5.20. A three-dimensional mesh 
plot is shown in Fig. 1.26. Examine again these figures, this time as examples of a 
computer graphic technique. A computer graphic display of a mesh for a three-
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FIG. 6.28 

Three-dimensional vectors and streamlines on the surface of a hypersonic body. (From Ref 72. 
Courtesy of Amtec, Engineering, Bellevue, Washington.) 

dimensional flow calculation over a wing is shown in Fig. 6.30, obtained from Ref. 
70. This mesh was used for the calculation of the transonic flow results shown in 
Fig. 6.25. Another type of mesh plot is that showing only the mesh on the surface of 
a body, such as illustrated in Fig. 6.31. Here, the mesh covers the entire body, 
including both top and bottom surfaces, but the computer graphic display is 
designed to remove the hidden lines, therefore obtaining a clearer picture. Finally, 
another improvization is shown in Fig. 6.32, which illustrates a three-dimensional 
mesh with the body shape shown as a light-source-shaded surface. This figure is a 
dramatic example of the quality and sophistication of modem computer graphics. 

6.9.6 Composite Plots 

Many of the categories of different plots described above can be combined into a 
single plot, called a composite plot. Figure 6.27 is a simple example of a composite 
plot, where two quantities are overlaid in the same graph. Figure 6.33 illustrates a 
composite plot showing four different zones on a body surface, where different 
graphical results are shown in each zone. 
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FIG. 6.29 f I · (d. t f 
A two-dimensional scatter plot showing the magnitude of the y component o . ve oc1ty rnme er o 
circles) and the value of density (shading of circles) for the compressible subsomc flow over a forward
facing step. (From Ref 72. Courtesy of Amtec Engineering, Bellevue, Washington.) 

FIG. 6.30 · I · d t bt in the 
A three-dimensional mesh plot for the calculation of the flow over an a1rp ane wmg use o o a 
flow field results shown in fig. 6.25. (From Ref 70. Courtesy of Elsevier Science Publzshers.) 
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FIG. 6.31 
A three-dimensional mesh plot on the surface of a body. The mesh is wrapped completely over the body, 
but the computer graphic shown here is designed to remove the hidden lines, for clarity. (From Ref 72. 
Courtesy of Am tee Engineering, Bellevue, Washington.) 

6.9. 7 Summary on Computer Graphics 

Computer graphics is a dynamically evolving discipline, and the CFD community is 
constantly taking advantage of any new techniques for the display of its data. The 
graphical display of three-dimensional CFD results, a dream in the minds of 
researchers just 20 years ago, is commonplace today. As one final example, we offer 
Fig. 6.34, obtained from Ref. 73. Here we see a complete airplane displayed in 
three-dimensional perspective, with contours of pressure coefficient displayed over 
its surface. Such a computer graphics display is not only a technical record of 
quantitative results, it is also an aesthetic work of art. 

Yes, a work of art-that is part of modem computer graphics. Perhaps no 
better example of this can be given than the Engineering Research Center for 
Computational Field Simulation-a National Science Foundation Center for engi
neering research established at Mississippi State University for the purpose of 
enhancing the methods of grid generation, CFD, and computer graphics. Under the 
direction of Dr. Joe Thompson at Mississippi State, this interdisciplinary center has 
become one of the world's leading sources of new advancements in CFD and in 
graphical displays. An important and unique aspect of this center is that on its staff 
are faculty from the university's department of art-a true testimonial that computer 
graphics today is a work of art. 
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FIG. 6.32 h h b d . h 
A three-dimensional mesh plot for the calculation of the flow over a body, w ere t e o Y 1s s o:,vn as a 
light-source-shaded surface. (From Ref 72. Courtesy of Amtec Engineering, Bellevue, Washzngton.) 

Finally, we note that Chap. 12 contains many additional examples of CFD 
results displayed by computer graphic techniques; you may want to tum to Chap. 12 
at this point in your reading and just flip through. tho.se results to further enhance 
your appreciation of the roll of computer graphics m CFD. 

6.10 SUMMARY 
In this chapter, we have taken the final steps in our discussi~n of the basic~ of the 
numerics necessary for the numerical solution of the govemmg ~ow e~uatt~ns .. In 
particular, we have tied together the fundamental aspects of numencal discrettza_t10n 
discussed in Chap. 4 and shown how they can b~ p~t together to form vanous 
techniques for the numerical solution of the contmmo/, momen~m, and ~nerg.y 
equations. We have seen that the choice of an appropnate .numenc~l tec~rnque _ is 
closely related to the mathematical beha:ior of th~ origmal part~al diffe~enttal 
equations. (Is the problem driven by elliptic, p~rabohc, ?r hyperbolic behavior, or 
some combination thereof?) The techniques discussed m this chapter have been 
well-established over the past two decades (and longer for some cases). They are 
intentionally chosen for their relative simplicity and straightforward ~spects-they 
establish a certain foundation that will enable you to better appreciate the more 
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X 

')I 
FIG. 6.33 
A composite plot, illustrating four different zones on a body surface, where different graphical results 
are shown m each zone. (From Ref 72. Courtesy of Amtec Engineering, Bellevue, Washington.) 

modem, more sophisticated techniques which you will find in more advanced 
studies of CFD and in the modem applications of CFD in industry and research 
laboratories. 

We did not begin this chapter with a road map, but it is fitting that we end with 
one. Figure 6.35 gives the general path; look over this road map and make certain 
that you feel comfortable with the details associated with each box in the map. If 
you are not quite certain about any aspects, return to the appropriate section in this 
chapter and review the material again. After you have done this, you will be ready to 
forge ahead to Part III of this book. 

Remember the techniques in this chapter were chosen on the basis of their 
relative simplicity, while at the same time being sufficient for the applications to be 
treated in Part III. These techniques are essentially "student-friendly," and they have 
a great deal to offer in opening up the joys and power of CFD to the beginning 
student. Indeed, the material in Parts I and II of this book is intended to introduce 
!he reader to some of the philosophy, the definitions, and concepts of the discipline 
m a (hopefully) easy-to-understand manner. The intent is to make you feel 
comfortable with the material, not to overwhelm you with some of the more 
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FIG. 6.34 
Three-dimensional pressure coefficient contours over the surface of a generic fighter aircraft. 
M

00 
= 0.85, angle of attack= 10°, angle of yaw= 30°. (From Ref 73. Courtesy of Elsevier Science 

Publishers.) 

mathematically sophisticated new techniques that represent the current state-of-the
art of CFD. However, you will not be left totally in the dark about the modem CFD; 
Part IV will introduce you to some aspects of this modem state-of-the-art, but at a 
proper stage in your learning process so that it hopefully will make sense to you. So 
press on to Parts III and IV; Part III will serve to reinforce what you have already 
learned, and Part IV will inform you about some of the new techniques that 

characterize CFD today. 

PROBLEMS 
6.1. Show that the pressure correction formula, Eq. (6.104), is a central difference 

formulation of Poisson's equation for the pressure correction, namely, Eq. ( 6.105). 
6.2. The velocity potential for an incompressible, inviscid, irrotational flow over a circular 

cylinder is governed by Laplace's equation, as described in Sec. 6.5. Write Laplace's 
equation in polar coordinates. Write a computer program that numerically solves this 
equation for the velocity potential in the flow field around the cylinder. Plot the velocity 
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pot~~tial as a function of radial distance away from the cylinder at several an ular 
ihos1ti~~sd Ca~~la:~ and plot the pressure coefficient distribution ~long the surfa~e of t c_y I~ er. I I~a y, co~pare all these numerical results with exact results from the 
c ass1ca ana yt1cal solut10n for the flow over a cylinder. 

PART 

III 
SOME 

APPLICATIONS 

W e are now ready to examine precisely how CFD can be used to solve 
various flow problems. We have had to wait to do this until we 

completed our study of the governing flow equations and their mathematical 
behavior in Part I. We have also had to wait until we completed our study of the 
basic numerical aspects of discretization of partial differential equations (finite 
differences) or of integral equations (finite volumes), our discussion of grid 
generation and transformations, and our development of varjous techniques in 
Part II. We have had to wait for all these aspects to fall into place before we could 
address some applications, because the application of CFD generally requires the 
simultaneous knowledge of all the above aspects. However, we are now ready to 
launch into the world of applications-the subject of Part III of this book. The 
applications chosen in Part III all have a common theme; they are flow problems 
which are relatively basic and straightforward and which, for the most part, have 
exact analytical or semianalytical solutions obtained from an independent, theore
tical study. These choices are made for three reasons: (1) they allow the clear 
illustration of the details of application of CFD to flow problems without muddying 
these applications with complex fluid dynamic details; (2) they are flow problems 
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which you are most likely to be familiar with from previous studies, and therefore 
feel somewhat comfortable with; and (3) the known, exact solutions allow a direct 
comparison with our CFD results, thus allowing us to obtain a feeling for how 
accurate CFD can be and what it takes to achieve this accuracy. Therefore, each of 
the chapters in Part III treats a specific flow problem and highlights the application 
of CFD to that specific problem. The applications will involve one or more of the 
techniques discussed in Chap. 6. In the process, you will have the opportunity to see 
the detailed implementation of these techniques, to see their strengths and weak
nesses, to obtain a better understanding of what these techniques really mean, and to 
obtain a feeling for the real "nitty-gritty" aspects of working through CFD solutions 
for various types of flows. No effort is made to deal with the complex three
dimensional flows which constitute the bulk of modem CFD attention today-this is 
left to more advanced studies and workplace applications well beyond the scope of 
this book. Some of these modem applications were discussed in Chap. I and serve 
as an incentive for you to pursue further studies of CFD after finishing this book 
( further studies in the form of advanced books, courses, and applications in the 
workplace). 

CHAPTER 

7 
NUMERICAL 
SOLUTIONS 

OF QUASI
ONE

DIMENSIONAL 
NOZZLE 

FLOWS 

When you measure what you are speaking 
about, and express it in numbers, you know 

something about it; but when you cannot 
measure it, when you cannot express it in 

numbers, your knowledge is of a meager and 
unsatisfactory kind: it may be the beginning of 

knowledge, but you have scarcely, in your 
thoughts, advanced to the stage of science. 

William Thomson, Lord Kelvin, from Popular Lectures 
and Addresses, 1891-1894 

7.1 INTRODUCTION: THE FORMAT FOR 
CHAPTERS IN PART III 

For the next fout chapters, which constitute Part III, the following format will be 
followed. Each chapter will deal with a specific flow field; for example, the_ present 
chapter deals with the quasi-one-di1?~nsio~al flow throu~h a co~vergent-d1vergent 
nozzle. Each chapter will be subd1v1ded mto three mam parts. 

1. Physical description of the flow. The ph_ysica~ aspec~s of the flow will_ be 
described, and pertinent equations and relahonsh1ps obtamed ~om the anal~tJcal 
solution will be reviewed. If experimental data are appropnate, they will be 
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discussed. The purpose here is to give you a physical understanding of the flow 
field, to be calculated subsequently with our CFD techniques. 

2. CFD solution: intermediate steps. A specific CFD technique (one of those 
discussed in Chap. 6) will be chosen for the numerical solution of the flow 
problem. The pertinent partial differential equations or the integral form of 
the equations, as the case may be, most suited for the specific CFD technique 
as applied to the specific flow problem will be set forth. The solution will be 
set up, step by step, and the numerical operations will be carried through in 
detail for the first few steps. Numbers will be given for all stages of the 
calculation during these intermediate steps so that you can compare them 
directly with your own calculations. Such matters as the calculations at internal 
points, at the boundaries, the numerical implementation of boundary condi
tions, and the determination of step size (if appropriate) will be covered in 
detail. 

3. CFD solution: final results. Tabulations and graphs of the final numerical 
solution to the flow field will be given. These final results will be compared with 
the exact analytical (and/or experimental) results, and an evaluation of the 
accuracy of the CFD solution will be made. 

Note: You have an option at this stage. You can decide simply to read these 
chapters, obtain a detailed understanding of the implementation of various CFD 
techniques to various problems, and get a feeling for the results. Or, you can also 
decide to write your own computer programs to calculate the answers yourself. It is 
for those of you who make the latter decision that some of the intermediate numbers 
obtained on the way toward a solution will be given. These numbers will be boxed 
and easy to follow so that you can check on the early calculational aspects of the 
problem. Also, the final answers will be given in some detail so that you can check 
the final results obtained from your computer program. You are strongly encouraged 
to make this latter decision: to write your own computer programs for the various 
solutions as we progress through the next four chapters. Simply reading the material 
is certainly worthwhile, but it is analogous to sitting on the sidelines watching a 
football game. By writing your own programs and calculating along with the steps 
given in the book, you will be playing the game yourself and getting your hands 
dirty. To really learn CFD, you must get your hands dirty; i.e., you must wade into 
the calculations and do them yourself. The flow problems and their CFD solutions 
given in the next four chapters are suitable for personal computers; you do not need 
a powerful mainframe or even a major workstation for their solution. Indeed, the 
present author has used his own Macintosh computer for the solutions described 
herein. 

In some cases, more than one CFD technique will be used to solve the same 
flow problem. This is done to give you some comparison of the strengths and 
weaknesses of one technique versus another and a feeling for the relative difficulty 
of setting up one technique on the computer compared to another. 

We are finally ready to go. This author wishes you happy computing! 
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7.2 INTRODUCTION TO THE PHYSICAL 
PROBLEM: SUBSONIC-SUPERSONIC 
ISENTROPIC FLOW 
The flow problem discussed here can be found in any gas dynamic textbook; for 
example, it is covered in detail in Chap. 10 of the author's book ~undamentals of 
Aerodynamics, 2d ed. (Ref. 8), as well as in Chap. 5 of the auth?r s b~ok Modern 
Compressible Flow, 2d ed. (Ref. 21 ). In the present s~ction, we will review some of 
the important physical and analytical aspects of this flow. . 

We consider the steady, isentropic flow through a convergent-divergent nozzl_e 
as sketched in Fig. 7 .1. The flow at the inlet to the nozzle comes from a_ reservoir 
where the pressure and temperature are denoted by p0 , and To, respectively. The 
cross-sectional area of the reservoir is large ( theoretically, A --+ oo ), and hence the 
velocity is very small ( V --+ O). Thus, Po and T0 are the stagnatio~ values,_ or total 
pressure and total temperature, r~spectively. Th~ flow expands 1sentrop1cally. to 
supersonic speeds at the nozzle exit, where the exit pressure, temperature, veloc11?", 
and Mach number are denoted by Pe, Te, V.,, and Me, respectlv~ly. The flow IS 

locally subsonic in the convergent section ?f the nozzl~, some at th~ throat 
(minimum area), and supersonic at the d1ver~ent sec~1on. T?e ~omc flow 
(M = 1) at the throat means that the local velocity at this location 1s equal to 
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FIG. 7.1 
Schematic for subsonic-supersonic isentropic nozzle flow. 
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the local speed of sound. Using an asterisk to denote sonic flow values, we have at 
the throat V = V* = a*. Similarly, the sonic flow values of pressure and temperature 
are denoted by p* and T*, respectively. The area of the sonic throat is denoted by 
A*. We assume that at a given section, where the cross-sectional area is A, the flow 
properties are uniform across that section. Hence, although the area of the nozzle 
changes as a function of distance along the nozzle, x, and therefore in reality the 
flow field is two-dimensional (the flow varies in.the two-dimensional .ry space), we 
make the assumption that the flow properties-vary only with x; this is tantamount to 
assuming uniform flow properties across any given cross section. Such flow is 
defined as quasi-one-dimensional fl.ow. 

The governing continuity, momentum, and energy equations for this quasi
one-dimensional, steady, isentropic flow can be expressed, respectively, as 

Continuity : (7.1) 

Momentum: (7.2) 

Energy: 
v2 v2 

h1 +-1 = h2 +-1 
2 2 

(7.3) 

where subscripts I and 2 denote different locations along the nozzle. In addition, we 
have the perfect gas equation of state, 

p=pRT (7.4) 

as well as the relation for a calorically perfect gas, 

(7.5) 

Equations (7.1) to (7.5) can be solved analytically for the flow through 
the nozzle. Some results are as follows. The Mach number variation through 
the nozzle is governed exclusively by the area ratio A/A* through the 
relation 

(
A)2- 1 [ 2 ( y-1 2)J(y+1)/(y-IJ 
- -- -- l+--M 
A* M 2 y + I 2 

(7.6) 

where y = ratio of specific heats = cplcv. For air at standard conditions, y = 1.4. For 
a nozzle where A is specified as a function of x, hence A/A* is known as a function 
of x, then Eq. (7.6) allows the (implicit) calculation of Mas a function of x. This is 
sketched in Fig. 7.2b. In turn, the variation of pressure, density, and temperature as a 
function of Mach number ( and hence as a function of Al A*, thus x) is given, 
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respectively, by 

-= I +--M2 
p ( y- I )-y/(y-1) 

Po 2 (7.7) 

-= I+--M2 
p ( y-1 )-1/(y-1) 

Po 2 (7.8) 

!_ = (1 + y - I M2)-I 
To 2 (7.9) 

These variations are sketched in Fig. 7.2c to e. 

The nozzle flow described above just does not "happen" by itself Th t · "f 
Y?U take the ?ozzle sketched in Fig. 7.2a and place it on a desk in front ·ofy~u

1
s;h

1 

a1r does ~ot Just start flowing through the nozzle by itself. As with all mecha~ica~ 
sy_stems, it takes a force to accelerate a given mass; the nozzle flow is no different. In 
this case, the fore~ exerted on the gas to accelerate it through the nozzle is supplied 
~j~: p;ssure rat10 acr?ss the ?ozzle,polPe· For a nozzle with a specified area ratio 
fl , t e pre_ssu~e ratio reqmred to establish the subsonic-supersonic isentropic 

?w sketched_ m Fig. 7.2 m~st ?ea very specific value, namely, that value shown in 
Fig. 7.2c. ~h_1s pre~sure ratio ~s a boundary condition applied to the flow; in the 
laboratory, It 1s p~ov1ded by a high-pressure air reservoir at the inlet and/or a vacuum 
source at the exit. 

7.3 CFD SOLUTION OF SUBSONIC
SUPERSONIC ISENTROPIC NOZZLE FLOW· 
MACCORMACK'S TECHNIQUE . 

At t~~s poin!, you _are reminded that ~ny num~rical solution of the steady, isentropic 
quasi_ one-d1men_s1on~I nozzle flow 1s overkill; we have a closed-form analytical 
solution as descnbed m ~ec. 7.2, and therefore in general a numerical solution is not 
needed. However, _tha! is not the point. What we want to accomplish here is to 
illustr~te the apphcatlon ?f various CFD techniques, and we are intentionally 
choosmg a flo~ problem with a known analytic solution for this illustration. That is 
we are followmg the philosophy as set forth in Sec. 7.1. ' 

_In this secti?n w~ choose to illustrate the application of Maccormack 's 
tec?Tiiq~e as descnbe~ m Sec. 6.3. In particular, we will set up a time-marchin 
fimte~d1fference solut10n for the quasi-one-dimensional nozzle flow. Before r!~ 
gressmg further, pause at this point, return to Sec. 6.3, and read it again carefulli In 
the p~esent section, we will assume that you fully understand M~cCorma~k's 
!echn1que to the extent described in Sec. 6.3. Also reexamine Fig I 32b h" h 
illustrates the major ideas that feed into this application. . . , w IC 

7.3.1 The Setup 

In this section, we will set up three eschelons of equations as follows: 
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1. The governing flow equations will be couched in terms of partial differential 
equations suitable for the time-marching solution of quasi-one-dimensional flow 
(the closed-form algebraic equations discussed in Sec. 7.2 are for a steady flow 
and are not suitable for the present purpose). 

2. The finite-difference expressions pertaining to MacCormack's technique as 
applied to this problem will be set up. 

3. Other details for the numerical solution (such as the calculation of the time step 
and the treatment of boundary conditions) will be formulated. 

THE GOVERNING FLOW EQUATIONS. Beginning with step 1 above, recall that 
we have derived the governing partial differential equations for inviscid flow (the 
Euler equations) in Chap. 2; these are summarized in Eqs. (2.82) to (2.86 ). Since we 
are dealing with a one-dimensional inviscid flow for our nozzle problem, it would 
seem appropriate to take Eqs. (2.82) to (2.86), simply write them down for one
dimensional flow, and proceed ahead. After all, these equations have been derived in 
Chap. 2 in the most general sense, and we should be able to make use of them. 
Howeve1; such is not the case with quasi-one-dimensional nozzle flow. Why? The 
answer lies with the simplifying assumption we have made with quasi-one
dimensional flow as described in Sec. 7 .2, namely, we assume that the flow 
properties are uniform across any given cross section of the nozzle. In so doing, we 
have somewhat twisted the physics of the flow.* Return to Fig. 7. I for a moment. 
Note that, in reality, the real nozzle flow is a two-dimensional flow because, with the 
area changing as a function of x, in actuality there will be flow-field variations in 
both the x and y directions. This is the real physics of the flow, and Eqs. (2.82) to 
(2.86) properly describe such a two-dimensional flow. On the other hand, the 
assumption of quasi-one-dimensional flow dictates that the flow properties are 
functions of x only. Since this assumption twists the real physics of the flow, then 
Eqs. (2.82) to (2.86) are not necessarily appropriate for quasi-one-dimensional flow. 
On the other hand, for the equations that are appropriate for quasi-one-dimensional 
flow, we would at least like for the overall physical principles of (I) mass 
conservation, (2) Newton's second law, and (3) energy conservation to hold 
exactly, in spite of our twisted physics due to the quasi-one-dimensional assump
tion. To ensure that these physical principles are satisfied, we must return to the 
integral forms of the governing equations derived in Chap. 2 and apply these 
integral forms to a control volume consistent with the quasi-one-dimensional 
assumption. Let us proceed. 

* To say that we are "twisting" the physics of the flow is a rather strong statement in order to emphasize 
a point. What we are really doing with our quasi-one-dimensional assumptions is constructing a 
simplified engineering model of the flow. Such modeling to simplify more complicated problems is 
done very frequently in engineering and physical science. Of course, the price we pay for such modeling 
is usually some compromise with the real physics of the flow. 
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We start with the integral form of the continuity equation given by Eq. (2.19), 
repeated below: 

! J J J p d"Y + J J pV · dS = O (2.19) 

s 

We appl~ this _equation to the shaded control volume shown in Fig. 7.3. This control 
volume 1s a slice of the nozzle flow, where the infinitesimal thickness of the slice is 
~x. On the left side of the control volume, consistent with the quasi-one-dimen
s10nal assumption, _the density, :elocity, pressure, and internal energy, denoted by p, 
V, p, and e, respectively, are umform over the area A. Similarly, on the right side of 
the control volume, the density, velocity, pressure, and internal energy, denoted by 
P + dp, V + dV, p + dp, and e + de, respectively, are uniform over the area 
A + dA. Applied to the control volume in Fig. 7.3, the volume integral in Eq. 
(2.19) becomes, in the limit as dx becomes very small, 

:t J J JP d"Y = ! (pA dx) (7.10) 
-.y· 

wh~re _A dx is the volume of the control volume in the limit of dx becoming 
vamshmgly small. The surface integral in Eq. (2.19) becomes 

FIG. 7.3 

J J pV · dS = -pVA + (p + dp)(V + dV)(A + dA) (7.11) 

s 

p 

V 
p 
e 

A 

A +dA 

p+ dp 

V+dV 
p+dp 
e + de 

Control volume for deriving the partial differential equations for unsteady, quasi-one-dimensional flow. 
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where the minus sign on the leading term on the right-hand side is due to the vectors 
V and dS pointing in opposite directions over the left face of the control volume, 
and hence the dot product is negative. (Recall from Chap. 2 that dS always points 
out of the control volume, by convention.) Expanding the triple product term in Eq. 
(7 .11 ), we have 

J J pV · dS = - pVA + pVA + pV dA + pA dV + p dV dA 

s 

+AV dp + V dA dp +A dV dp + dp dV dA (7 .12) 

In the limit as dx becomes very small, the terms involving products of differentials 
in Eq. (7.12), such asp dV dA, dp dV dA, go to zero much faster than those terms 
involving only one differential. Hence, in Eq. (7 .12), all terms involving products of 
differentials can be dropped, yielding in the limit as dx becomes very small 

J J pV · dS = pV dA + pA dV +AV dp = d(pAV) 

s 

Substituting Eqs. (7.10) and (7.13) into (2.19), we have 

a 
at (pA dx) + d(pAV) = 0 

(7.13) 

(7 .14) 

Dividing Eq. (7 .14) by dx and noting that d(pA V)/ dx is, in the limit as dx goes to 
zero, the definition of the partial derivative with respect to x, we have 

o(pA) + o(pAV) = O 
at ax 

(7 .15) 

Equation (7 .15) is the partial differential equation form of the continuity equation 
suitable for unsteady, quasi-one-dimensional flow. It ensures that mass is conserved 
for this model of the flow. 

It is interesting to pause for a moment and compare this with the general 
continuity equation for three-dimensional flow, Eq. (2.82b), specialized for one
dimensional flow. For such a case, Eq. (2. 82b) becomes 

op+ o(pu) = 0 (7.16) 
at ax 

where u is the x component of velocity. Clearly, Eq. (7.16) is different from Eq. 
(7 .15). Equation (7 .16) applies to a truly one-dimensional flow, where A is constant 
with respect to x. It does not represent a proper statement of the conservation of 
mass for our model of quasi-one-dimensional flow, where A = A(x); instead, Eq. 
(7 .15) is a proper statement of mass conservation for our model. Of course, note that 
for the special case of constant-area flow, Eq. (7.15) reduces to Eq. (7.16). 

We now turn to the integral form of the x component of the momentum 
equation, (from Prob. 2.2) written below for an inviscid flow (neglecting the viscous 
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stress terms) with no body forces, 

gt J J J(pu) d1- + J j(puV) · dS = - J J(p dS)x (7.17) 

s s 

where the term (p dS)x denotes the x component of the vector p dS. We apply Eq. 
(7.17) to the shaded control volume in Fig. 7.3. In Eq. (7.17), the integrals on the 
left side are evaluated in the same manner as discussed above in regard to the 
continuity equation. That is, 

and 

;t J J j(pu) d'f- = gt (pVA dx) 

J J(puV) · dS = -pV2A + (p + dp)(V + dV)
2

(A + dA) 

s 

(7.18) 

(7.19) 

The evaluation of the pressure force term on the right-hand side ofEq. (7.17) is best 
carried out with the aid of Fig. 7.4. Here, the x components of the vector p dS are 
shown on all four sides of the control volume. Remember that dS always points 
away from the control volume; hence any x component (p dS)x that acts toward the 
left (in the negative x direction) is a negative quantity, and any x component (p dS)x 
that acts toward the right (in the positive x direction) is a positive quantity. Also note 
that the x component of p dS acting on the top and bottom inclined faces of the 
control volume in Fig. 7.4 can be expressed as the pressure p acting on the 
component of the inclined area projected perpendicular to the x direction, (dA)/2; 
hence, the contribution of each inclined face (top or bottom) to the pressure integral 
in Eq. (7.17) is -p(dA/2). All together, the right-hand side ofEq. (7.17) is expressed 
as follows: 

J J(p dSt = -pA + (p + dp)(A + dA) - 2p(d;) 

Substituting Eqs. (7.18) to (7.20) into (7.17), we have 

f) 

0
/pVA dx) - pV2A + (p + dp)(V + dV)2(A + dA) 

(7.20) 

= pA - (p + dp)(A + dA) + p dA (7.21) 

Canceling like terms and ignoring products of differentials, Eq. (7.21) becomes in 
the limit of dx becoming very small 

f) 
at (pVA dx) + d(pV2A) = -A dp (7.22) 
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FIG. 7.4 
The forces in the x direction act
ing on the control volume. 

Dividing Eq. (7 .22) by dx and taking the limit as dx goes to zero, we obtain the 

partial differential equation 

a(pVA) + 8(pV
2
A) = -A ap (7.23) 

at ax ax 

We could live with Eq. (7.23) as it stands-it represents the conservation fo~ of 
the momentum equation for quasi-one-dimensional flow. Ho~ev~r, let us obta~n t~e 
equivalent nonconservation form. This is done by mult1plymg the contmmty 
equation, Eq. (7.15), by V, obtaining 

va(pA) + va(pVA) = 0 
at ax 

(7.24) 

and then subtracting Eq. (7.24) from Eq. (7.23). 

a(pVA) - va(pA) + 8(pV2A) - va(pVA) = -Af)p 
at at ax ax ax 

(7.25) 
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Expanding the derivatives on the left-hand side of Eq. (7.25) and canceling like 
terms, we have 

pA aav + pAVav = -A ap 
t ax ax (7.26) 

Dividing Eq. (7.26) by A, we finally obtain 

(7.27) 

I 

Equatio~ (7.2?) is the momentum equation appropriate 'for quasi-one-dimensional 
flow, wntten m nonconservation form. 

_On~ of the reasons for obtaining the non conservation form of the momentum 
e~uatJo? 1s to compa_re it with the general result expressed by Eq. (2.83a). For one
d1mens10nal flow with no body forces, Eq. (2.83a) is written as 

au au ap 
p at + pu ax = - ax (7.28) 

This i_s stylistically the same form as Eq. (7.27) for quasi-one-dimensional flow. 
Equa~10ns (7.2~) and (7.28) simply demonstrate that the classic form of Euler's 
equation, genencally written as 

dp=-pVdV 

holds for both types of flow. 

Finally, let us ~onsi_der the integral form of the energy equation, as obtained in 
Pro~. 2.2. For an adiabatic flow (q = 0) with no body forces and no viscous effects, 
the mtegral form of the energy equation is 

! J J JP ( e + ~
2

) dY + J J p ( e + ~2

) V · dS = - J J ~V) . dS (7.29) 
r s s 

Applied to the shaded control volume in Fig. 7.3, and keeping in mind the pressure 
forces shown in Fig. 7.4, Eq. (7.29) becomes 

![p(e+ :2

)Adx]-p(e+ :
2

)vA 

[ 
(V + dV)2] +(p+dp) e+de+ 

2 
(V+dV)(A+dA) 

= -[-pvA + ~ + dp)(V + dV)(A + dA) - 2(pv~A)] (7.30) 

Neglecting products of differentials and canceling like terms, Eq. (7.30) becomes 

! [p(e+ ~
2

)A dx] +d(peVA) + d(p~
3

A) = -d~AV) (7.31) 
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or 

gt [p(e+ ~
2

)Adx] +d[p(e+ ~
2

)vA] = -d~AV) (7.32) 

Taking the limit as dx approaches zero, Eq. (7.32), becomes the following partial 
differential equation: 

a[p(e + V2 /2)A] a[p(e + V2 /2) VA] a~AV) -'-------'---" + = - ---
at ax ax 

(7.33) 

Equation (7.33) is the conservation form of the energy equation expressed in terms 
of the total energy e + V 212, appropriate for unsteady, quasi-one-dimensional flow. 
Let us obtain from Eq. (7.33) the nonconservation form expressed in terms of 
internal energy by itself. The latter can be achieved by multiplying Eq. (7.23) by V, 
obtaining 

a[p(V2/2)A] + a[p(V3/2)A] = -AVap 
at ax ax 

and subtracting Eq. (7.34) from (7.33), yielding 

a(peA) a(peVA) a(AV) 
~+ ax =-p~ 

(7.34) 

(7 .35) 

Equation (7.35) is the conservation form of the energy equation expressed in terms 
of internal energy e, suitable for quasi-one-dimensional flow. The nonconservation 
form is then obtained by multiplying the continuity equation, Eq. (7 .15), by e, 

a(pA) a(pA V) _ O (
7 

_
36

) 
e~+e ax -

and subtracting Eq. (7.36) from Eq. (7.35), yielding 

ae ae a(AV) 
pA at + pAV ax = -p ~ (7 .37) 

Expanding the right-hand side and dividing by A, Eq. (7.37) becomes 

ae ae av V aA 
p-+pV-= -p--p--

at ax ax A ax 

or 
ae ae av a(In A) 

p at + p Vax = -p -8-x - p V ---=-a-x--'- (7 .38) 

Equation (7.38) is the nonconservation form of the energy equation expressed in 
terms of internal energy, appropriate to unsteady, quasi-one-dimensional flow. 

The reason for obtaining the energy equation in the form ofEq. (7.38) is that, 
for a calorically perfect gas, it leads directly to a form of the energy equation in 
terms of temperature T. For our solution of the quasi-one-dimensional nozzle flow of 
a calorically perfect gas, this is a fundamental variable, and therefore it is convenient 
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to deal with it as the primary dependent variable in the energy equation. For a 
calorically perfect gas 

Hence, Eq. (7.38) becomes 

(7.39) 

As an interim summary, our continuity, momentum, and energy equations for 
unsteady, quasi-one-dimensional flow are given by Eqs. (7}5), (7.27), and (7.39), 
respectively. Take the time to look at these equations; you see three equations with 
four unknown variables p, V, p, and T. The pressure can be eliminated from these 
equations by using the equation of state 

p=pRT (7.40) 

along with its derivative 

op= R(p 8T + Tap) 
ax ax ax 

(7.41) 

With this, we expand Eq. (7 .15) and rewrite Eqs. (7 .27) and (7 .39), respectively, as 

a(pA) av aA ap 
Continuity: ~ + pA ax+ pV ax+ VA ax= 0 (7.42) 

Momentum: av av ( aT ap) p-+pV-=-R p-+T-
at ax ax ax 

(7.43) 

Energy: (7.44) 

At this stage, we could readily proceed to set up our numerical solution of 
Eqs. (7.42) to (7.44). Note that these are written in terms of dimensional variables. 
This is fine, and many CFD solutions are carried out directly in terms of such 
dimensional variables. Indeed, this has an added engineering advantage because it 
gives you a feeling for the magnitudes of the real physical quantities as the solution 
progresses. However, for nozzle flows, the flow-field variables are frequently 
expressed in terms of nondimensional variables, such as those sketched in Fig. 
7.2, where the flow variables are referenced to their reservoir values. The 
nondimensional variables p/p0 , p/p0 , and TIT0 vary between O and I, which 
is an "aesthetic" advantage when presenting the results. Because fluid dynamicists 
dealing with nozzle flows so frequently use these nondimensional terms, we will 
follow suit here. (A number of CFD practitioners prefer to always deal with 
nondimensional variables, whereas others prefer dimensional variables; as far as the 
numerics are concerned, there should be no real difference, and the choice is really a 
matter of your personal preference.) Therefore, returning to Fig. 7.1, where the 
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reservoir temperature and density are denoted by To and p0 , respectively, we define 
the nondimensional temperature and density, respectively, as 

I T 
T=

To 

I p 
p=-

Po 

h re (for the time being) the prime denotes a dimensionless variable. Moreover, 
:tt~ng L denote the length of the nozzle, we define a dimensionless length as 

I X 
X =-

L 

Denoting the speed of sound in the reservoir as ao, where 

ao = /yRTo 

we define a dimensionless velocity as 

I V 
V=

ao 

Also, the quantity Liao has the dimension of time, and we define a dimensionless 

time as 

I f 
t =--

L/ao 

Finally, we ratio the local area A to the sonic throat area A* and define a 

dimensionless area as 

I A 
A=

A* 

Returning to Eq. (7.42) and introducing the nondimensional variables, we 

have 

a(p'A') (p0A*) 'A' 8V' (poA*a0 ) + p'V' 8A' (PoaoA*) 
at' L/ao + p ax' L ax' L 

+ V'A'ap' (aoA*po) =0 (7.45) 
ax' L 

Note that A' is a function ofx' only; it is not a function of time _(th~ nozzle geo~etry 
is fixed, invariant with time). Hence, in Eq. (7.45) the time denvahve can be wntten 

as 

a(p'A') , ap' ____:_ __ = A -
at' at' 
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With this, Eq. (7.45) becomes 

Continuity : op'= - I av' - 'V' o(ln A') I op' 
ot' p ox' p ox' - V ox' (7.46) 

Returning to Eq. (7.43) and introducing the nondimensional variables, we 
have 

p' av' (Poao) + p'V' av' (poal) = -R ( I oT' T' op') (Po To) 
ot' L/ao ox' L p ox'+ ox' L 

or p' av'= - 'V' av' - ( I oT' ti' op') RTo 
ot' P ax' P a ' + a ' 2 x x a0 

In Eq. (7.47), note that 

Hence, Eq. (7.47) becomes 

RTo 
7 0 

yRTo 
ya6 

Momentum: av' = -v' av'_! (or' T' op') 
ot' ox' y ox' + p' ax 

(7.47) 

(7.48) 

Returning to Eq. (7.44) and introducing the nondimensional variables, we 
have 

p'c 8T' (PoTo) + 'V' oT' (p0a0T0 ) 
V ot' L/ao p Cv ox' L 

= -p'RT' [oV' + V' o(ln A')] (p0T0a0 ) 

ox' ox' L 

(7.49) 

In Eq. (7.49), the factor Rlcv is given by 

R R 
Cv = R / ( Y - 1) = Y - I 

Hence, Eq. (7.49) becomes 

Energy: ar' = -V'oT' _ ( _ I)r'[ov' v,o(ln A')] 
ot' ox' y ox'+ ox' (7.50) 

That is it! We are finally finished with the first eschelon as itemized at the 
beg~nning of this su~section .. After what may seem like an interminable manip
ulatio_n of the go:emmg equations, we have finally set up that particular form of the 
equa~10ns that will be most appropriate as well as convenient for the time-marching 
solution of quasi-one-dimensional nozzle flow, namely Eqs. (7.46) (7.48) and 
(7.50). ' ' · ' · 
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THE FINITE-DIFFERENCE EQUATIONS. We now proceed to the next 
eschelon, namely, the setting up of the finite-difference expressions using Mac
Cormack's explicit technique for the numerical solution of Eqs. (7.46), (7.48), and 
(7.50). To implement a finite-difference solution, we divide the x axis along the 
nozzle into a number of discrete grid points, as shown in Fig. 7.5. (Rei.:all that in our 
quasi-one-dimensional nozzle assumption, the flow variables across the nozzle 
cross section at any particular grid point, say point i, are uniform.) In Fig. 7.5, the 
first grid point, labeled point I, is assumed to be in the reservoir. The points are 
evenly distributed along the x axis, with Ax denoting the spacing between grid 
points. The last point, namely, that at the nozzle exit, is denoted by N; we have a 
total number of N grid points distributed along the axis. Point i is simply an arbitrary 
grid point, with points i - I and i + I as the adjacent points. Recall from Sec. 6.3 
that MacCormack's technique is a predictor-corrector method_ In the time-marching 
approach, remember that we know the flow-field variables at time t, and we use the 
difference equations to solve explicitly for the variables at time t + !it. 

First, consider the predictor step_ Following the discussion in Sec. 6.3, we set 
up the spatial derivatives as forward differences. Also, to reduce the complexity of 
the notation, we will drop the use of the prime to denote a dimensionless variable. In 
what follows, all variables are the nondimensional variables, denoted earlier by the 
prime notation. Analogous to Eq. (6.17), from Eq_ (7.46) we have 

(
op)1

= _ 1 Vf+i - Vf _ 1 V1 ln A;+1 - In A;_ V1 Pi+ 1 - p; 
at . P, Ax P, ' Ax ' Ax (7 .51) 

I 

.!:: I /'u 

1 Nozzle 
exit 

0 r-'---, 

t ,-1~-----~----~----~----~----~---~·--~·--~·--~·--~·--~•--~~--'1•· ~ I 
~ 11 i-1 i+I 1 N X 

FIG. 7.5 
Grid point distribution along the nozzle. 
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From Eq. (7.48), we have 

( av)t= -V/ Vf+ I - Vf - ~ (Tf+1 - Tf + T/ P;+I - p;) 
at i Ax y Ax p; Ax (7.52) 

From Eq. (7.50), we have 

( 8T)
1

= -V/ Tf+1 - Tf _ (y- I)T1(Vf+1 - Vf + V1 ln A;+1 - In A;) 
Ot i Llx I Ax I Ax (7.53) 

Analogous to Eqs. (6.18) to (6.21), we obtain predicted values of p v, and r, 
denoted by barred quantities, from ' 

/ 
p;+M = p; + c:::y lit (7.54) 

fi/+tir = V/ + c::y lit (7.55) 

t,r+tir = Tf + (~~): lit (7.56) 

I~ Eqs. (?.5~) to ~7.56), P; , V;, and I'; are known values at time t. Numbers for the 
~~~e

3
)~envatives m Eqs. (7.54) to (7.56) are supplied directly by Eqs. (7.51) to 

Moving t~ the c_om~ctor s!ep, we return_ to Eqs. (7.46), (7.48), and (7.50) and 
repla~e- the spatial denvatlves with rearward differences, using the predicted (barred) 
quantities. Analogous to Eq. (6.22), we have from Eq. (7.46) 

(
Op) t+M - fit+fit - fit+M . 
_ = -p1+tit I 1-] _ -t+fit v1+t,1ln Al - In A;-1 at i I Ax P,. ,. _Ax __ _ 

(7.57) _ P-r+tir _ p-r+tir _ vt+fit I i-] 

I Ax 

From Eq. (7.48), we have 

- - i I - - I 1-] I I i I (
av)

1
+"'

1
_ v-i+M v:+M _ vr~111t 1 (fH"11 _ fH"'I fH"'tp-1+"11 _ P-1+M) 

at i Ax y Ax + p;+"'t Ax -

From Eq. (7.50), we have 
(7.58) 

(
8T) t+fit - ft+fit - ft+M 
- = - vr+tit I ,- I - ( - I)ft+fit 
Qt i I Ax y i 

X I i-1 + v.t+fit n i - n Ai-] 
(

v_.t+tit _ v1+ti1 I A I ) 

Ax I Llx (7.59) 
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Analogous to Eq. (6.22), the average time derivatives are given by 

__!!_ = 0. 5 __!!_ + __!!_ (
8 

) [(a )1 

(
8 )

1

+M] 
ot av ot i ot i 

'-,,----' --.,,,.-, 
From Eq. From Eq. 
(7.51) (7.57) 

( av) = 0_5 [(av)1+(av) 1

+"'
1

] 

Ot av Ot I Ot I 

'-,,----' 

From Eq. 
(7.52) 

--.,,,.-, 
From Eq. 

(7.58) 

(
8T) = 0.5 [(8T)1+(8T)t+Ml 
Ot av Of I Ot I 

'-,,----' 

From Eq. 
(7.53) 

From Eq. 
(7.59) 

(7.60) 

(7.61) 

(7.62) 

Finally, analogous to Eqs. (6.13) to (6.16), we have for the corrected values of the 
flow-field variables at time t + lit 

p1+M = p1 + (op) lit 
I I ()( av 

(7.63) 

vi+M = vi+ (av) lit 
I I Ot av 

(7.64) 

rr+tit = Tt + (8T) lit 
I I Qt av 

(7 .65) 

Keep in mind that all the variables in Eqs. (7.51) to (7.65) are the nondimensional 
values. Also, Eqs. (7 .51) to (7 .65) constitute our second eschelon of equations, 
namely, the finite-difference expressions of the governing equations in a form that 
pertains to MacCormack's technique. 

CALCULATION OF TIME STEP. We now proceed to the third and final eschelon 
of equations mentioned at the beginning of this section, namely, the setting up of 
other details necessary for the numerical solution of the quasi-one-dimensional 
nozzle flow problem. First, we ask the question: What about the magnitude of lit? 
The governing system of equations, Eqs. (7.42) to (7.44), is hyperbolic with respect 
to time. Recalling our discussion of stability considerations in Sec. 4.5, a stability 
constraint exists on this system analogous to that found in Eq. (4.84), namely, 

Ax 
lit= C-

a+ V 
(7.66) 
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Recall from Sec. 4.5 that C is the Courant number; the simple stability analysis of a 
linear hyperbolic equation carried out in Sec. 4.5 gives the result that C < l for an 
explicit numerical solution to be stable. The present application to ~ubsonic
supersonic isentropic nozzle flow is governed by nonlinear partial differential 
e~uat_ions, nam~ly, Eqs. (7_.46), (7.48), and (7.50). In this case, the exact stability 
cntenon for a lmear equat10n, namely, that C S 1, can only be viewed as general 
guidance for our present nonlinear problem. However, it turns out to be quite good 
guidance, as we shall see. Also note that, in contrast to Eq. (4.84), Eq. (7.66) is 
written with the sum a + Vin the denominator. Equation (7.66) is the Courant
Friedrichs-Lowry ( CFL) criterion for a one-dimensional flow, where Vis the local 
flow velocity at a point in the flow and a is the local speed of sound. Equation 
(7.66), along with CS 1, simply states that f..t must be less than, or at best equal to, 
the time it takes a sound wave to move from one grid point to the next. Equation 
(7.66) is in dimensional form. However, when t, x, a, and Vare nondimensionalized, 
the nondimensional form of Eq. (7.66) is exactly the same form as the dimensional 
case. (Prove this to yourself.) HJ:!OC.e, we will hereafter treat the variables in Eq. 
(7.66) as our nondimensional yariables defined earlier. That is, in Eq. (7.66), l1t is 
the increment in nondimensional time and & is the increment in nondimensional 
space; l1t and & in Eq. (7.66) are precisely the same as appear in the non
dimensional equations (7.51) to (7.65). Examining Eq. (7.66) more carefully, we 
note that, although & is the same throughout the flow, both V and a are variables. 
Hence, at a given grid point at a given time step, Eq. (7.66) is written as 

(f..tf = C & 
' a;+ Vf (7.67) 

At an adjacent grid point, we have from Eq. (7.66) 

(/1)1 - C & 
i+1 - 1 + vi 

ai+I i+I 
(7.68) 

Clearly, (f..tX and (f..t); + 1 obtained from Eqs. (7.67) and (7.68), respectively are, in 
general, different values. Hence, in the implementation of the time-marching 
solution, we have two choices: 

1. In utilizing Eqs. (7.54) to (7.56) and (7.63) to (7.65), we can, at each grid point i, 
employ the local values of (f..t); determined from Eq. (7.67). In this fashion, the 
flow-field variables at each grid point in Fig. 7.5 will be advanced in time 
according to their own, local time step. Hence, the resulting flow field at time 
t + l1t will be in a type of artificial "time warp," with the flow-field variables at a 
given grid point corresponding to some nonphysical time different from that of 
the variables at an adjacent grid point. Clearly, such a local time-stepping 
approach does not realistically follow the actual, physical transients in the flow 
and hence cannot be used for an accurate solution of the unsteady flow. However, 
if the final steady-state flow field in the limit of large time is the only desired 
result, then the intermediate variation of the flow-field variables with time is 
irrelevant. Indeed, if such is the case, the local time stepping will frequently lead 
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to faster convergence to the steady state. This is why some practiti~ners use ~he 
local time-stepping approach. However, there is always a philosophical question 
that arises here, namely, does the local time-stepping method alwa~s le~d to the 
correct steady state? Although the answer is usually yes, there 1s still some 
reason for a small feeling of discomfort in this regard. 

The other choice is to calculate (f..t); at all the grid points, i = 1 to i = N, and 2
· then choose the minimum value for use in Eqs. (7.54) to (7.56) and (7.63) to 

(7.65). That is, 

f..t=minimum(M~, 11!~,--·, Mf, ... , f..tN) (7.69) 

The resulting f..t obtained from Eq. (7.69) is then us~d in Eqs. (7.54) ~o (7._56) 
and (7.63) to (7.65). In this fashion, the flow-field ~anab~es at all the gnd p~mts 
at time t + f..t all correspond to the same physical time. _H~nce, the time
marching solution is following the actual unsteady flow van~t10ns that would 
exist in nature; i.e., the solution gives a time-accurat~ s~lutlon of the actual 
transient flow field, consistent with the unsteady contmmty, moment:um, a~d 
energy equations. This consistent time_ marchin~ is the approach we will use m 
the present book. Although it may reqmre more time ste~s to app~oach the steady 
state in comparison to the "local" time stepping descnbed e~rhe~, ~e can feel 
comfortable that the consistent time-marching approach 1s g1vmg. us_ t~e 
physically meaningful transient variations-which ~equently . are of mtnns1c 
value by themselves. Thus, in our subsequent calculations, we will use Eq. (7.69) 
to determine the value of M. 

BOUNDARY CONDITIONS. Another aspect of the numeric_al solution is t~at of 
boundary conditions-an all-important aspect, because ~1thout t~e physically 
proper implementation of boundary conditions and their numencally proper 
representation, we have no hope whatsoeve~ in obtain~ng a proper num~~cal 
solution to our flow problem. First, let us examme the physical bou_nda~ cond1ti?ns 
for the subsonic-supersonic isentropic flow shown i~ Fig._ 7.2, which 1s the subject 
of this section. Returning to Fig. 7.5, we note that gnd pomts 1 and J.: r~present the 
two boundary points on the x axis. Point l is essentially _in the rese~oir; 1t represents 
an inflow boundary, with flow coming from the reservo1~ and entenng the nozzle. In 
contrast, point N is an outflow boundary, with flow leavmg the n?zzle at the nozzle 
exit. Moreover, the flow velocity at point l is a ve1?' low, subs~mc val~e. (The flow 
velocity at point 1, which corresponds to a fimte area r~tio A,!A , cannot be 
precisely zero; if it were, there would be no mass flow entenng the n?~zle. Hence, 
point 1 does not correspond exactly to the reservoir, whe~e by ?efi~1tion the flow 
velocity is zero. That is, the area for the reservoir is theoretically mfimt~, and we a~e 
clearly starting our own calculation at point l where the_ c~oss-section~l ~rea 1s 
finite.) Hence, not only is point 1 an inflow boundary, 1t _is a subs~nzc mflo~ 
boundary. Question: Which flow quantities should be specified ~t t~1s subsomc 
inflow boundary and which should be calculated as part of the sol~tion (1.e., ~llowed 
to "float" as a function of time)? A formal answer can be obtamed_by usmg t~e 
method of characteristics for an unsteady, one-dimensional flow, as mtroduced m 
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Chap_ 3. We did not develop the method of characteristics in Cha 
necessary to precisely study this question about the boundary co~·df t .to t~e- e;tent 
such a matter is bey_ond the scope of this book. However, we will ment:i:~ m eed, 

~~;u;\ a ttudy, .wdh_1ch ydou will find to be physically acceptable. In a subsec~i:~~: 
. . . . ' we m tcate that unsteady, inviscid flow is overned b . 

equations, and therefore for one-dimensional unsteady flg th Y_ hyperbolic 
h t . . r ow ere exist two real 

c tuaractenhs~1cfimes through any point in the xt plane. This is illustrated in Fig 3 6· 
re m o t 1s gure and e · ·t full . · · , 
h . . . xamme I care y before contmuing on. Note that the tw 

c aracte~st~c Imes thr?ugh point p in Fig. 3.6 are labeled left- and ri ht-runnin o 
charkacMtenshttcs, respect~vely. Physically, these two characteristics represe!t infinitelyg 
wea ac waves which are t · 
B th M h . propaga mg upstream and downstream, respectively 

o ac waves are travelmg at the speed of sound a. Now turn to Fi 7 6 h. . 
t~ws _our_ convergent-divergent nozzle (Fig. 7.6a) with an xt diagr!~ ·ske7c~~: 

e ow It (Ftg. 7.6b). Concentrate on grid point I in the xt plane in Fig. 7.6b. At point 

At point I 
vi >a1' 

FIG. 7.6 

• Subsonic flow 

Subsonic 
inflow 

boundary 

(a) 

(b) 

• Supersonic flow 

N 

Subsonic 
outflow 

boundary 

N X 

AtpointN 
VN > aN. 

Study of boundary conditions: subsonic inflow and supersonic outflow. 

X 
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1, the local flow velocity is subsonic, Vi < a1• Hence, the left-running characteristic 
at point 1 travels upstream, to the left in Fig. 7.6; i.e., the left-running Mach wave, 
which is traveling toward the left (relative to a moving fluid element) at the speed of 
sound easily works its way upstream against the low-velocity subsonic flow, which 
is slowly moving from left to right. Hence, in Fig. 7 .6b, we show the left-running 
characteristic running to the left with a combined speed a 1 - V1 (relative to the 
fixed nozzle in Fig. 7.6a). Since the domain for the flow field to be calculated is 
contained between grid points 1 and N, then at point 1 we see that the left-running 
characteristic is propagating out of the domain; it is propagating to the left, away 
from the domain. In contrast, the right-running characteristic, which is a Mach wave 
propagating to the right at the speed of sound relative to a fluid element, is clearly 
moving toward the right in Fig. 7.6b. This is for two reasons: (1) the fluid element at 
point I is already moving toward the right, and (2) the right-running Mach wave 
(characteristic) is moving toward the right at the speed of sound relative to the fluid 
element. Hence, the right-running characteristic is propagating to the right (relative 
to the nozzle) at a combined velocity of V1 + a 1. What we see here is that the right
running characteristic is propagating from point I into the domain of the calcula
tion. 

What does all this have to do with boundary conditions? The method of 
characteristics tells us that at a boundary where one characteristic propagates into 
the domain, then the value of one dependent flow-field variable must be specified at 
that boundary, and if one characteristic line propagates out of the domain, then the 
value of another dependent flow-field variable must be allowed to float at the 
boundary; i.e., it must be calculated in steps of time as a function of the timewise 
solution of the flow field. Also, note that at point I a streamline flows into the 
domain, across the inflow boundary. In terms of denoting what should and should 
not be specified at the boundary, the streamline direction plays the same role as the 
characteristic directions; i.e., the streamline moving into the domain at point 1 
stipulates that the value of a second flow-field variable must be specified at the 
inflow boundary. Conclusion: At the subonic inflow boundary, we must stipulate the 
values of two dependent flow-field variables, whereas the value of one other variable 
must be allowed to float. (Please note that the above discussion has been 
intentionally hand-waving and somewhat intuitive; a rigorous mathematical devel
opment is deferred for your future studies, beyond the scope of this book.) 

Let us apply the above ideas to the outflow boundary, located at grid point Nin 
Fig. 7 .6. As before, the left-running characteristic at point N propagates to the left at 
the speed of sound a relative to a fluid element. However, because the speed of the 
fluid element itself is supersonic, the left-running characteristic is carried down
stream at the speed (relative to the nozzle) of VN - aN. The right-running 
characteristic at point N propagates to the right at the speed of sound a relative 
to the fluid element, and thus it is swept downstream at the speed (relative to the 
nozzle) of VN + aN. Hence, at the supersonic outflow boundary, we have both 
characteristics propagating out of the domain; so does the streamline at point N. 
Therefore, there are no flow-field variables which require their values to be 
stipulated at the supersonic outflow boundary; all variables must be allowed 
to float at this boundary. 
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The above discussion details how the inflow and outflow boundary conditions 
are to be handled on an analytical basis, The numerical implementation of this 
discussion is carried out as follows, 

Subsonic inflow.boundary (point 1). Here, we must allow one variable to float; we 
choose the velocity V1, because o~ a physical basis we know the mass flow through 
the nozzle must be allowed to adJust to the proper steady state, and allowing Vi to 
~oat mak~s the most sense as part of this adjustment. The value of Vi changes with 
time and 1s calculated from information provided by the flow-field solution over the 
internal points, ~Th~ internal points are those not on a boundary, i.e,, points 2 
through N - I m Fig, 7.5), We use linear extrapolation from points 2 and 3 to 
~alc~late Vi. T~is is illustrated in Fig, 7.7, Here, the slope of the linear extrapolation 
hne 1s determmed from points 2 and 3 as 

SI Vi - V2 
ope=---

Ax 
Using this slope to find V1 by linear extrapolation, we have 

, V3-V2 
~ = V2- Ax 

- Ax 
or V1 = 2V2 - V3 (7,70) 

All oth~r flow-~eld variables are specified. Since point I is viewed as essentially the 
reservo,Ir, we stipulate the density and temperature at point I to be their respective 
stagnat1~n values, Po and To, respectively. These are held.fixed, independent of time. 
Hence, m terms of the nondimensional variables, we have 

} fixed, independent of time (7.71) 

V 

V3 

v:~~~~~~~' 
/ / I 2 I 

/ I I 

I 

X 

FIG. 7.7 
Sketch for linear extrapolation. 
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Supersonic outflow boundary (point N)., Here, we mu~t allow all flow-field 
variables to float We again choose to use lmear extrapolation based on the flow
field values at the internal points, Specifically, we have, for the nondimensional 
variables, 

VN = 2VN-1 - VN-2 

PN = 2PN-1 - PN-2 

TN= 2TN-I - TN-2 

(7.72a) 

(7,72b) 

(7.72c) 

NOZZLE SHAPE AND INITIAL CONDITIONS. The nozzle shape, A = A(x), is 
specified and held fixed, independent of time, For the case illustrated in this section, 
we choose a parabolic area distribution given by 

A = I + 2.2(x - I.5)2 0:::; x:::; 3 (7.73) 

Note that x = 1.5 is the throat of the nozzle, that the convergent section occurs for 
x < 1.5, and that the divergent section occurs for x > 1.5. This nozzle shape is 
drawn to scale in Fig. 7.8. , . 

To start the time-marching calculations, we must stipulate initial conditions 
for p, T, and Vas a function of x; that is, we must set up v.alues of p, T, ::_ind Vat time 
t = O. In theory, these initial conditions can be purely arbitrary. In practice, there are 

O 0.3 0.6 0.9 L2 L6 0.8 2.1 2.4 2.7 3.0 

Nondimensional distance along nozzle 

FIG. 7.8 
Shape of the nozzle used for the present calculations. This geometric picture is not unique; for a 
calorically perfect gas, what is germane is the area ratio distribution along t~e nozzle. Hence, assummg 
a two-dimensional nozzle, the ordinates of the shape shown here can be ratloed by any constant factor, 
and the nozzle solution would be the same. 
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two reasons why you want to choose the initial conditions intelligently: 

1. The closer the initial conditions are to the final steady-state answer, the faster the 
time-marching procedure will converge, and hence the shorter will be the 
computer execution time. 

2. If the initial conditions are too far away from reality, the initial timewise 
gradients at early time steps can become huge; i.e., the time derivatives 
themselves are initially very large. For a given time step !1t and a given 
spatial resolution Ax, it has been the author's experience that inordinately large 
gradients during the early part of the time-stepping procedure can cause the 
program to go unstable. In a sense, you can visualize the behavior of a time
marching solution as a stretched rubber band. At early times, the rubber band is 
highly stretched, thus providing a strong potential to push the flow field rapidly 
toward the steady-state solution. As time progresses, the flow field gets closer to 
the steady-state solution, and the rubber band progressively relaxes, hence 
slowing down the rate of approach [i.e., at larger times, the values of the time 
derivatives calculated from Eqs. (7.60) to (7.62) become progressively smaller]. 
At the beginning of the calculation, it is wise not to pick initial conditions which 
are so far off that the rubrer band is "stretched too far," and may even break. 

Therefore, in your choic~'Qfi_!litial conditions, you are encouraged to use any 
knowledge you may have about a given problem in order to intelligently pick some 
initial conditions. For example, in the present problem, we know that p and T 
decrease and V increases as the flow expands through the nozzle. Hence, we choose 
initial conditions that qualitatively behave in the same fashion. For simplicity, let us 
assume linear variations of the flow-field variables, as a function of x. For the 
present case, we assume the following values at time t = 0. 

p = I - 0.3146x 

T = I - 0 .23 l 4x 

V = (0.1 + l.09x)T112 

7.3.2 Intermediate Numerical Results: The First 
Few Steps 

(7.74a) 

(7.74b) 

(7.74c) 

In this section, we give a few numerical results which reflect the first stages of the 
calculation. This is to give you a more solid impression of what is going on and to 
provide some intermediate results for you to compare with when you write and run 
your own computer solution to this problem. 

The first step is to feed the nozzle shape and the initial conditions into the 
program. These are given by Eqs. (7.73) and (7.74); the resulting numbers are 
tabulated in Table 7.1. The values of p, V, and T given in this table are fort = 0. 

The next step is to put these initial conditions into Eqs. (7 .51) to (7.53) to 
initiate calculations pertaining to the predictor step. For purposes of illustration, let 
us return to the sketch shown in Fig. 7.5 and focus on the calculations associated 
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TABLE 7.1 
Nozzle shape and initial conditions 

X A p V T 

L A' Po ao To 

0 5.950 1.000 0.100 1.000 

0.1 5.312 0.969 0.207 0.977 

0.2 4.718 0.937 0.311 0.954 

0.3 4.168 0.906 0.412 0.931 

0.4 3.662 0.874 0.511 0.907 

0.5 3.200 0.843 0.607 0.884 

0.6 2.782 0.811 0.700 0.861 

0.7 2.408 0.780 0.790 0.838 

0.8 2.078 0.748 0.877 0.815 

0.9 1.792 0.717 0.962 0.792 

1.0 1.550 0.685 1.043 0.769 

1.1 1.352 0.654 1.122 0.745 

1.2 1.198 0.622 1.197 0.722 

1.3 1.088 0.591 1.268 0.699 

1.4 1.022 0.560 1.337 0.676 

1.5 1.000 0.528 1.402 0.653 

1.6 1.022 0.497 1.463 0.630 

1.7 1.088 0.465 1.521 0.607 

1.8 1.198 0.434 1.575 0.583 

1.9 1.352 0.402 1.625 0.560 

2.0 1.550 0.371 1.671 0.537 

2.1 1.792 0.339 1.713 0.514 

2.2 2.078 0.308 1.750 0.491 

2.3 2.408 0.276 1.783 0.468 

2.4 2.782 0.245 1.811 0.445 

2.5 3.200 0.214 1.834 0.422 

2.6 3.662 0.182 1.852 0.398 

2.7 4.168 0.151 1.864 0.375 

2.8 4.718 0.119 1.870 0.352 

2.9 5.312 0.088 1.870 0.329 

3.0 5.950 0.056 1.864 0.306 

with grid point i. We will choose i = 16, which is t~e gri~ point at the throat of the 
nozzle drawn in Fig. 7.8. From the initial data given m Table 7.1, we have 

P; = P16 = 0.528 

Pi+ 1 = p17 = 0.497 

V; = Vi6 = 1.402 

Vi+ 1 = V17 = 1.463 
T; = T16 = 0.653 

T;+ 1 = T17 = 0.630 
Ax= 0.1 
A;= A16 = 1.0 

A;+ 1 = A 11 = 1.022 

lnA16=0 
In A17 = 0.02176 
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Substitute these values into Eq. (7 .51 ). 

- = -0.528 - 0.528(1.402) . -(
ap)t=O (1.463 - 1.402) (0 02176 0) 
at 16 0.1 0.1 

_ 1.402 (0.497 - 0.528) 
0.1 

= 1-0.0445 1 

Substitute the above values into Eq. (7.52) 

(
av)1

=0 ( _ = -1.402 1.463 - 1.402) 
at ,6 0.1 

__ I [0.630 - 0.653 + 0.653 (0.497 - 0.528)] 
1.4 0.1 0.528 0.1 

= i-o.418 1 

Substitute the above values into Eq, (7.53). 
( 

(
aT)t=O (0:630 - 0 653) 7ii 16 = -1.402 . 0.1 . - (1.4 - 1)(0.653) 

X [1.463 - 1.402 (0.02176 - 0)] 
0 1 

+ 1.402 
· 0.1 

= ,~0-.08-43-, 

Please note: The numbers shown in the boxes above are the precise numbers 
rounded to three significant figures, that came out of the author's Macintosh 
computer. If. you choose to run through the above calculations with your hand 
calculator usmg all the above entries, there will be slight differences because the 
numbers you feed into the calculator are already rounded to three significant 
figur~s, and hence the subsequent arithmetic operations on your calculator will lead 
to shght errors compared to the computer results. That is, your hand-calculator 
results may not always give you precisely the numbers you will find in the boxes 
but they will certainly be close enough to check the results. ' 

The next step is to calculate the predicted values (the "barred" quantities) 
from Eqs. _(7.54! to (7.56). To do this, we first note that l1t is calculated from Eq. 
(7.69), which picks th~ minimum_ value of !:it; from all those calculated from Eq. 
(7.67) evaluated for all ~nternal pomts i = 2, 3, ... , 30. We do not have the space to 
show all these calculations here. As a sample calculation, let us calculate (!!t)\6 o 
from Eq. (7.67). _At pres~nt, w~ will assume a Courant number equal to 0.5; that is, 
C = 0.5. Also, m nond1mens1onal terms, the speed of sound is given by 

a= Jr (7.75) 

CFD SOLUTION OF SUBSONIC-SUPERSONIC ISENTROPIC NOZZLE FLOW: MACCORMACK"S TECHNIQUE 311 

where in Eq. (7.75) both a and Tare the nondimensional values (a denotes the local 
speed of sound divided by a0 ). Derive Eq. (7.75) for yourself. Thus, from Eq. (7.67), 

we have 

!:it 1= - C = 0 5 = 0 0226 0 
[ 

!:ix ] [ 0.1 ] 
( ), 6 - (T

16
)'12 + Vi

6 
. (0.653) 1/

2 + 1.402 . 

This type of calculation is made at all the interior grid points, and the minimum 
value is chosen. The resulting minimum value is 

!:it= 0.0201 

With this, we can calculate p, V, and T as follows. From Eq. (7.54), noting that 

t = 0 + !:it = !:it, 

itl,'11 = p~60 + (ap)t=O l1t = 0.528 + (-0.0445)(0.0201) 
at 16 

= 1 o.527 1 

From Eq. (7 .55) 

( )

1-0 

vf6M = vf6° + av - M = 1.402 + (-o.418)(0.0201) 
at 16 

=QE] 
From Eq. (7.56) 

t{6t.t = rf6° + (aT)
1

=

0 

M = o.653 + (0.0843)(0.0201) 
at 16 

= l~~-.6-55~! 

At this stage, we note that the above calculations are carried out over all the 
internal grid points i = 2 to 30. The calculations are too repetitive to include here. 
Simply note that when the predictor step is completed, we have p, V, and Tat all 
the internal grid points i = 2 to 30. This includes, of course, p\5.1.1 ,V{5.1.1 

, and 
Tf5M . Focusing again on grid point 16, we now insert these barred quantities at 
grid points 15 and 16 into Eqs. (7.57) to (7.59). This is the beginning of the 
corrector step. From Eq. (7.57) we have 

- t=.1.t 
(ap) = -0.527(0.653) - o.527(1.39)(-0.218) - 1.39(-0.368) 

at 16 

= I o.328 1 

From Eq_ (7.58) we have 

(
8)t=.1.t 1 ( O 655) 
; 

16 

= -1.39(0.653) - u -0.251 + 0:521 = 1 -o.4oo 



312 NUMERICAL SOLUTIONS OF QUASI-ONE-DIMENSIONAL NOZZLE FLOWS 

From Eq. (7.59) we have 

8 t=!.it 
( 0~}

6 
= -1.39(-0.257) - (1.4 - I )(0.655)[0.653 + 1.39(-0.218)] 

=I 0.267 1 
With these values, we form the average time derivatives using Eqs. (7.60) to (7.62). 
From Eq. (7.60), we have at grid point i = 16, 

C~~) av= o.5(-0.0445 + o.328) =I 0.142 1 

From Eq. (7.61), we have at grid point i = 16, 

(c;;;)av = 0.5(-0.418 + 0.400) = / -0.409 

From Eq. (7.62), we have at grid point i = 16, 

CZ) av= 0.5(0.0843 + 0.267) = I 0.176 

We now complete the corrector step by using Eqs,,{r.63) to (7.65). From Eq. (7.63), 
we have at i = 16, , 

I, 

p~6!.it = 0.528 + 0.142(0.0201) = ~ 

From Eq. (7.64), we have at i = 16, 

V{6 !.it = 1.402 + (-0.409)(0.0201) = ~ 

From Eq. (7.65), we have at i = 16, 

T{6!.it = 0.653 + 0.176(0.0201) = ~ 

Definin_g a nondimensional pressure as the local static pressure divided by the 
reservo1r pressure p 0 , the equation of state is given by 

p=pT 

where p, p, and Tare nondimensional values. Thus, at grid point i = 16, we have 

P~6!.it = P~6!.itT[6!.it = 0.531(0.656) = I 0.3491 

This now completes the corrector step for grid point i = 16. When the above 
corrector-step calculations are carried out for all grid points from i = 2 to 30, then 
we have completed the corrector step for all the internal grid points. 

It_ r~mains to calculate the flow-field variables at the boundary points. At the 
subsomc mflow boundary (i = I), V1 is calculated by linear extrapolation from grid 
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points 2 and 3. At the end of the corrector step, from a calculation identical to that 
given above, the values of V2 and V3 at time t = !1t are V2 = 0.212 and V3 = 0.312. 
Thus, from Eq. (7.70), we have 

V1 = 2V2 - V3 = 2(0.212) - 0.312 = I 0.111 I 
At the supersonic outflow boundary (i = 31) all the flow-field variables are 
calculated by linear extrapolation from Eqs. (7.72a) to (7.72c). At the end of 
the corrector step, from a calculation identical to that given above, V29 = 1.884, 
V30 = 1.890, p29 = 0.125, p30 = 0.095, T29 = 0.354, and T30 = 0.332. When these 
values are inserted into Eqs. (7.72a) to (7.72c), we have 

V31 = 2V30 - V29 = 2(1.890) - 1.884 = I 1.895 

P31 = 2p30 - p29 = 2(0.095) - 0. 125 = I 0.066 I 

T31 = 2T30 - T29 = 2(0.332) - 0.354 = I 0.309 I 

With this, we have completed the calculation of all the flow-field variables at 
all the grid points after the first time step, i.e., at time t = /).f. A tabulation of these 
variables is given in Table 7.2. Note that the Mach number is included in this 
tabulation. In terms of the nondimensional velocity and temperature, the Mach 
number (which is already a dimensionless parameter defined as the local velocity 
divided by the local speed of sound) is given by 

V 
M=~ 

vi 
(7.76) 

Examine Table 7.2 closely. By reading across the line labeled I= 16, you will find 
the familiar numbers that we have generated for grid point i = 16 in the above 
discussion. Take the time to make this comparison. The entries for all other internal 
grid points are calculated in a like manner. Also note the values at the boundary 
points, labeled I = 1 and I = 31 in Table 7.2. You will find the numbers to be the 
same as discussed above. 

7.3.3 Final Numerical Results: The Steady-State 
Solution 

Compare the flow-field results obtained after one time step (Table 7.2) with the 
same quantities at the previous time (in this case the initial conditions given in Table 
7.1). Comparing these two tables, we see that the flow-field variables have changed. 
For example, the nondimensional density at the throat (where A = 1) has changed 
from 0.528 to 0.531, a 0.57 percent change over one time step. This is the natural 
behavior of a time-marching solution-the flow-field variables change from one 
time step to the next. However, in the approach toward the steady-state solution, at 
larger values of time (after a large number of time steps), the changes in the flow
field variables from one time step to the next become smaller and approach zero in 
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0.8 

TABLE 7.2 
Flow-field variables after the first time step 0.7 

Exact 

X A p V T p 0.6 
I M 

L A' Po au To Po 

I 0.000 5.950 l.000 0.11 I 1.000 1.000 0.111 
0.5 

0 200 400 600 800 !000 

2 O.IOO 5.312 0.955 0.212 0.972 0.928 0.215 
3 0.200 4.718 0.927 0.3!2 0.950 0.881 0.320 
4 0.300 4.168 0.900 0.41 I 0.929 0.836 0.427 LO 
5 0.400 3.662 0.872 0.508 0.908 0.791 0.534 T 

6 0.500 3.200 0.844 0.603 0.886 0.748 0.640 To 
0.9 

7 0.600 2.782 0.817 0.695 0.865 0.706 0.747 Exact 

8 0.700 2.408 0.789 0.784 0.843 0.665 0.854 
9 0.800 2.078 0.760 0.870 0.822 0.625 0.960 0.8 

10 0.900 l.792 0.731 0.954 0.800 0.585 1.067 
11 l.000 1.550 0.701 1.035 0.778 0.545 1.174 0.7 
12 l.100 l.352 0.670 l.113 0.755 0.506 1.281 
13 l.200 l.198 0.637 l.188 0,731 0.466 l.389 
14 1.300 1.088 0.603 l.260 0.707 0.426 1.498 0.6 

1000 0 200 400 600 800 
15 1.400 1.022 0.567 1.328 0.682 0.387 1.609 
16 1.500 1.000 0.531 1.394 0.656 0.349 l.720 
17 1.600 J.022 0.494 1.455 0.63! 0.312 1.833 

0.8 
18 l.700 l.088 0.459 1.514 0.605 0.278 l.945 fl_ 
19 1.800 1.198 0.425 1.568 0.581 0.247 2.058 Po 
20 1.900 1.352 0.392 1.619 0.556 0.218 2.171 0.7 
21 2.000 1.550 0.361 1.666 0.533 0.192 2.282 
22 2.100 l.792 0.330 J.709 0.510 0.168 2.393 0.6 
23 2.200 2.078 0.301 1)48 0.487 0.]46 2.504 Exact 

24 2.300 2.408 0.271 r-782 0.465 0.126 2.614 
25 2.400 2.782 0.242 .813 0.443 0.107 2.724 0.5 

26 2.500 3.200 0.213 1:838 0.421 0.090 2.834 
27 2.600 3.662 0.184 l.858 0.398 0.073 2.944 0.4 
28 2.700 4.168 0.154 1.874 0.376 0.058 3.055 0 200 400 600 800 1000 

29 2.800 4.718 0.125 1.884 0.354 0.044 3.167 
30 2.900 5.312 0.095 l.890 0.332 0.032 3.281 
31 3.000 5.950 0.066 1.895 0.309 0.020 3.406 M 1.3 

1.2 
the limit of large time. At this stage, the steady state (for all practical purposes) has 
been achieved, and the calculation can be stopped. This termination of the 1.1 
calculation can be done automatically by the computer program itself by having Exact 
a test in the program to sense when the changes in the flow-field variables become l.O 
smaller than some prescribed value (prescribed by you, depending on your desired 
accuracy of the final "steady-state" solution). Another option, and that preferred by 0.9 
the present author, is to simply stop the calculation after a prescribed number of time 0 200 400 600 800 1000 

steps, look at the results, and see if they have approached the stage where the flow- Number of time steps 
field variables are not materially changing any more. If such is not the case, simply 
resume the calculations, and carry them out for the requisite number of time steps 
until you do see that the steady-state results have been reached. 

FIG. 7.9 ( 'd 
Timewise variations of the density, temperature, pressure, and Mach number at the nozzle throat at gn 

What patterns do the timewise variations of the flow-field variables take? point i "' 15, where A "' l). 

Some feeling for the answer is provided by Fig. 7.9, which shows the variation of p, 315 
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T, p, and Mat the nozzle throat plotted versus the number of time steps. The abscissa 
starts at zero, ~hie~ represe_nts the _initial conditions, and ends at time step 1000. 
Hence, the abscissa 1s essentially a time axis, with time increasing to the right. Note 
that th~ largest changes take place at early times, after which the final, steady-state 
value 1s approached almost asymptotically. Here is the "rubber band effect" 
mentioned previously; at early times the rubber band is "stretched" tightly, and 
therefore the flow-field variables are driven by a stronger potential and hence 
change rapidly. At later times, as the steady state is approached, the rubber band is 
less stretched; it becomes more "relaxed", and the changes become much smaller 
with time. The dashed lines to the right of the curves shown in Fig. 7.9 represent the 
exact, analytical values as obtained from the equations discussed in Sec. 7.2. Note 
that the numerical time-marching procedure converges to the proper theoretical 
steady-state answer. We also note that no artificial viscosity has been explicitly 
added for these calculations; it is not needed. 

It is interesting to examine the variation of the time derivatives as a function of 
time (tself, or equivalently as a function of the number of time steps. Once again 
focus mg on the nozzle throat ( at grid point i = 16), Fig. 7 .1 O gives the variation of 
the time derivatives of nondimensional density and velocity as a function of the 
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FIG. 7.10 

Timewise variations of the absolute values of the time derivatives of nondimensional density and 
velocity at the nozzle throat (at gnd pomt i = 16). 
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number of time steps. These are the average time derivatives calculated from Eqs. 
(7.60) and (7.61), respectively. The absolute value of these time derivatives is shown 
in Fig. 7.10. From these results, note two important aspects: 

1. At early times, the time derivatives are large, and they oscillate in value. These 
oscillations are associated with various unsteady compression and expansion 
waves which propagate through the nozzle during the transient process. (See 
Chap. 7 of Ref. 21 for a discussion of unsteady wave motion in a duct.) 

2. At later times, the time derivatives rapidly grow small, changing by six orders of 
magnitude over a span of 1000 time steps. This is, of course, what we want to see 
happen. In the theoretical limit of the steady state (which is achieved at infinite 
time), the time derivatives should go to zero. However, numerically this will 
never happen over a finite number of time steps. In fact, the results shown in Fig. 
7 .10 indicate that the values of the time derivatives plateau after 1200 time steps. 
This seems to be a characteristic of MacCormack's technique. However, the 
values of the time derivatives at these plateaus are so small that, for all practical 
purposes, the numerical solution has arrived at the steady-state solution. Indeed, 
in terms of the values of the flow-field variables themselves, the results of Fig. 
7.9 indicate that the steady state is realistically achieved after 500 time steps, 
during which the time derivatives in Fig. 7 .10 have decreased only by two orders 
of magnitude. 

Return to Eqs. (7.46) and (7.48) for a moment; we might visualize that what is being 
plotted in Fig. 7 .10 are the numerical values of the right-hand side of these 
equations. As time progresses and as the steady-state is approached, the right-hand 
side of these equations should approach zero. Since the numerical values of the 
right-hand side are not precisely zero, they are called residuals. This is why the 
ordinate in Fig. 7 .10 is labeled as the residual. When CFD experts are comparing the 
relative merits of two or more different algorithms for a time-marching solution to 
the steady state, the magnitude of the residuals and their rate of decay are often usecl 
as figures of merit. That algorithm which gives the fastest decay of the residuals to 
the smallest value is usually looked upon most favorably. 

Another insight to the mechanics of the timewise variation of the flow and it~ 
approach to the steady state is provided by the mass flow variations shown in Fig. 
7 .11. Here, the nondimensional mass flow p VA (where p, V, and A are the 
nondimensional values) is plotted as a function of nondimensional distance 
through the nozzle. Six different curves are shown, each for a different time 
during the course of the time-marching procedure. The dashed curve is the variation 
of p V,4 which pertains to the initial conditions, and hence it is labeled Ollt. The 
strange-looking, distorted sinelike variation of this dashed curve is simply the 
product of the assumed initial values for p and V combined with the specified 
parabolic variation of the nozzle area ratio A. After 50 time steps, the mass flow 
distribution through the nozzle has changed considerably; this is given by the curve 
labeled 50Llt. After 100 time steps ( 1 OOL\t), the mass flow distribution has changed 
radically; the mass flow variation is simply flopping around inside the nozzle due to 
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the transient variation of the flow-field variables. However, after 200 time steps 
(200Lit), the mass flow distribution is beginning to settle down, and after 700 time 
steps (700Lit), the mass flow distribution is a straight, horizontal line across the 
graph. This says that the mass flow has converged to a constant, steady-state value 
throughout the nozzle. This agrees with our basic knowledge of steady-state nozzle 
flows, namely, that 

p VA = constant 

Moreover, it has converged to essentially the correct value of the steady mass flow, 
which in terms of the nondimensional variables evaluated at the nozzle throat is 
given by 

pVA = p*VT* (at throat) (7.77) 

where p* and T* are the nondimensional density and temperature at the throat, and 
where M = 1. [Derive Eq. (7.77) yourself-it is easy.] From the analytical equations 
discussed in Sec. 7.2, when M = 1 and y = 1.4, we have p* = 0.634 and 
T* = 0.833. With these numbers, Eq. (7.77) yields 

pVA =constant= 0.579 

This value is given by the dark square in Fig. 7. 11; the mass flow result for 700M 
agrees reasonably well with the dark square. 

Finally, let us examine the steady-state results. From the discussion above and 
from examining Fig. 7.9, the steady state is, for all practical purposes, reached after 
about 500 time steps. However, being very conservative, we will examine the results 
obtained after 1400 time steps; between 700 and 1400 time steps, there is no change 
in the results, at least to the three-decimal-place accuracy given in the tables herein. 

A feeling for the graphical accuracy of the numerically obtained steady state is 
given by Fig. 7. 12. Here, the steady-state nondimensional density and Mach number 
distributions through the nozzle are plotted as a function of nondimensional 
distance along the nozzle. The numerical results, obtained after 1400 time steps, 
are given by the solid curves, and the exact analytical results are given by the circles. 
The analytical results are obtained from the equations discussed in Sec. 7.2; they 
can readily be obtained from the tables at the back of most compressible flow texts, 
such as Ref. 21. They can also be obtained by writing your own short computer 
program to calculate numbers from the theoretically derived equations in Sec. 7.2. 
In any event, the comparison shown in Fig. 7. 12 clearly demonstrates that the 
numerical results agree very well with the exact analytical values, certainly to within 
graphical accuracy. 

The detailed numerical results, to three decimal places, are tabulated in Table 
7.3. These are the results obtained after 1400 time steps. They are given here for you 
to compare numbers from your own computer program. It is interesting to note that 
the elapsed nondimensional time, starting at zero with the initial conditions, is, after 
1400 time steps, a value of 28.952. Since time is nondimensionalized by the 
quantity Lla0 , let us assume a case where the length of the nozzle is 1 m and the 
reservoir temperature is the standard sea level value, T = 288 K. For this case, 
Lla0 = (1 m)/(340.2 mis) = 2.94 x 10-3 s. Hence, the total real time that has 
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FIG. 7.12 

Steady-state distributions of nondimensional density and Mach number as a function of nondimensional 
distance through the nozzle. Comparison between the exact analytical values (circles) and the numerical 
results (solid curves). 

elapsed over the 1400 time steps is (2.94 x 10-3)(28.952) = 0.0851 s. That is, the 
nozzle flow, starting from the assumed initial conditions, takes only 85~1\ms to 
reach steady-state conditions; in reality, since convergence is obtained for all 
practical purposes after about 500 time steps, the practical convergence time is more 
on the order of 30 ms. 

A comparison between some of the numerical results and the corresponding 
exact analytical values is given in Table 7.4; this provides you with a more detailed 
comparison than is given in Fig. 7.12. Compared are the numerical and analytical 
results for the density ratio and Mach number. Note that the numerical results, to 
three decimal places, are not in precise agreement with the analytical values; there is 
a small percentage disagreement between the two sets of results, ranging from 0. 3 to 
3 .29 percent. This amount of error is not discernable on the graphical display in Fig. 
7 .12. At first thought, there might be three reasons for these small numerical 
inaccuracies: (1) a small inflow boundary condition error, (2) truncation errors 
associated with the finite value of Ax, such as discussed in Sec. 4.3, and (3) possible 
effects of the Courant number being substantially less than unity (recall that in the 
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TABLE 7.3 

Flow-field variables after 1400 time steps (nonconservation form of the 
governing equations) 

X A p V T p 
M m I 

L A' Po ao To Po 

I 0.000 5.950 1.000 0.099 1.000 1.000 0.099 0.590 
2 0.100 5.312 0.998 0.112 0.999 0.997 0.112 0.594 
3 0.200 4.718 0.997 0.125 0.999 0.996 0.125 0.589 
4 0.300 4.168 0.994 0.143 0.998 0.992 0.143 0.591 
5 0.400 3.662 0.992 0.162 0.997 0.988 0.163 0.589 
6 0.500 3.200 0.987 0.187 0.995 0.982 0.187 0.589 
7 0.600 2.782 0.982 0.215 0.993 0.974 0.216 0.588 
8 0.700 2.408 0.974 0.251 0.989 0.963 0.252 0.588 
9 0.800 2.078 0.963 0.294 0.985 0.948 0.296 0.587 

10 0.900 1.792 0.947 0.346 0.978 0.926 0.350 0.587 
II 1.000 1.550 0.924 0.409 0.969 0.895 0.416 0.586 
12 1.100 1.352 0.892 0.485 0.956 0.853 0.496 0.585 
13 1.200 1.198 0.849 0.575 0.937 0.795 0.594 0.585 
14 1.300 1.088 0.792 0.678 0.911 0.722 0.710 0.584 
15 1.400 1.022 0.721 0.793 0.878 0.633 0.846 0.584 
16 1.500 1.000 0.639 0.914 0.836 0.534 0.099 0.584 
17 1.600 1.022 0.551 1.037 0.789 0.434 1.167 0.584 
18 1.700 1.088 0.465 1.155 0.737 0.343 1.345 0.584 
19 1.800 1.198 0.386 1.263 0.684 0.264 1.528 0.585 
20 1.900 1.352 0.318 1.361 0.633 0.201 1.710 0.586 
21 2.000 1.550 0.262 1.446 0.585 0.153 1.890 0.587 
22 2.100 1.792 0.216 1.519 0.541 0.117 2.065 0.588 
23 2.200 2.078 0.179 1.582 0.502 0.090 2.233 0.589 
24 2.300 2.408 0.150 1.636 0.467 0.070 2.394 0.590 
25 2.400 2.782 0.126 1.683 0.436 0.055 2.549 0.590 
26 2.500 3.200 0.107 1.723 0.408 0.044 2.696 0.591 
27 2.600 3.662 0.092 1.759 0.384 0.035 2.839 0.591 
28 2.700 4.168 0.079 1.789 0.362 0.029 2.972 0.592 
29 2.800 4.718 0.069 1.817 0.342 0.024 3.105 0.592 
30 2.900 5.312 0.061 1.839 0.325 0.020 3.225 0.595 
31 3.000 5.950 0.053 1.862 0.308 0.016 3.353 0.585 

calculations discussed so far, the Courant number is chosen to be 0.5), such as 
discussed at the end of Sec. 4.5. Let us examine each of these reasons in turn. 

INFLOW BOUNDARY CONDITION ERROR. There is a "built-in" error at the 
inflow boundary. At the first grid point, at x = 0, we assume that the de~sity, 
pressure, and temperature are the reservoir propertie~ Po, Po'. and T?, respectl:ely. 
This is strictly true only if M = 0 at this point. In reahty, there 1s a fimte _area rat10 at 
x = O, namely, A/A* = 5.95, and hence a finite Mach number must exist at x = 0, 
both numerically and analytically (to allow a finite value of mass ~ow through the 
nozzle). Hence, in Table 7.4, the numerical value of pl p0 at x = 0 1s equal to 1.0-
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TABLE 7-4 

Density ratio and Mach number distributions through the nozzle 

p 
p 

Po M 
Po (exact M (exact 

X A (numerical analytical Difference, (numerical analytical Difference, 
L A' results) results) % results) results) •;. 
0.000 5.950 1.000 0.995 0.50 0.099 0.098 1.01 
0.100 5.312 0.998 0.994 0.40 0.112 0.110 1.79 
0.200 4.718 0.997 0.992 0.30 0.125 0.124 0.08 
0.300 4.168 0.994 0.990 0.40 0.143 0.140 2.10 
0.400 3.662 0.992 0.987 0.50 0.163 0.160 1.84 
0.500 3.200 0.987 0.983 0.40 0.187 0.185 1.07 
0.600 2.782 0.982 0.978 0.41 0.216 0.214 0.93 
0.700 2.408 0.974 0.970 0.41 0.252 0.249 1.19 
0.800 2.078 0.963 0.958 0.52 0.296 0.293 I.OJ 
0.900 1.792 0.947 0.942 0.53 0.350 0.347 0.86 
1.000 1.550 0.924 0.920 0.43 0.416 0.413 0.72 
1.100 1.352 0.892 0.888 0.45 0.496 0.494 0.40 
1.200 1.198 0.849 0.844 0.59 0.594 0.592 0.34 
1.300 1.088 0.792 0.787 0.63 0.710 0.709 0.14 
1.400 1.022 0.721 0.716 0.69 0.846 0.845 0.12 
1.500 1.000 0.639 0.634 0.78 0.999 1.000 0.10 
1.600 1.022 0.551 0.547 0.73 1.167 1.169 0.17 
1.700 1.088 0.465 0.461 0.87 1.345 1.348 0.22 
1.800 l.198 0.386 0.382 1.04 1.528 1.531 0.20 
1.900 1.352 0.318 0.315 0.94 1.710 1.715 0.29 
2.000 1.550 0.262 0.258 1.53 1.890 1.896 0.32 2.100 1.792 0.216 0.213 1.39 2.065 2.071 0.29 
2.200 2.078 0.179 0.176 1.68 2.233 2.240 0.31 
2.300 2.408 0.150 0.147 2.00 2.394 2.402 0.33 
2.400 2.782 0.126 0.124 2.38 2.549 2.557 0.31 2.500 3.200 0.107 0.105 1.87 2.696 2.706 0.37 
2.600 3.662 0.092 0.090 2.17 2.839 2.848 0.32 
2.700 4.168 0.079 0.078 1.28 2.972 2.983 0.37 
2.800 4.718 0.069 0.068 1.45 3.105 3.114 0.29 / 
2.900 5.312 0.061 0.059 3.29 3.225 3.239 0.43 3.000 5.950 0.053 0.052 1.89 3.353 3.359 0.18 

this is our prescribed ~oundary c_o~dition. On the other hand, the exact analytical 
v~lue of plpo ~t x = 0 is 0.995, g1vmg a 0.5 percent error. This built-in error is not 
viewed as senous, and we will not be concerned with it here. 

TRUNCATION ERROR: THE MATTER OF GRID INDEPENDENCE. The matter 
of gri1 i~dependence is a serious consideration in CFO, and this stage of our data 
analysis is ~ perfect time to introduce the concept. In general, when you solve a 
problem_ us~ng CFO, you are employing a finite number of grid points (or a finite 
mesh) ~1stnbuted over th_e flow field. Assume that you are using N grid points. If 
everythmg goes well dunng your solution, you will get some numbers out for the 
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flow-field variables at these N grid points, and these numbers may look qualitatively 
good to you. However, assume that you rerun your solution, this time using twice as 
many grid points, 2N, distributed over the same domain; i.e., you have decreased the 
value of the increment Lix (and also Liy in general, if you are dealing with a two
dimensional solution). You may find that the values of your flow-field variables are 
quite different for this second calculation. If this is the case, then your solution is a 
function of the number of grid points you are using-an untenable situation. You 
must, if at all practical, continue to increase the number of grid points until you 
reach a solution which is no longer sensitive to the number of points. When you 
reach this situation, then you have achieved grid independence. 

Question: Do we have grid independence for the present calculation? Recall 
that we have used 31 grid points distributed evenly through the nozzle. To address 
this question, let us double the number of grid points; i.e., let us halve the value of 
Lix by using 61 grid points. Table 7.5 compares the steady-state results for density, 
temperature, and pressure ratios, as well as for Mach numbers, at the throat for both 
the cases using 31 and 61 grid points. Also tabulated in Table 7 .5 are the exact 
analytical results. Note that although doubling the number of grid points did 
improve the numerical solution, it did so only marginally. The same is true for all 
locations within the nozzle. In other words, the two steady-state numerical solutions 
are essentially the same, and therefore we can conclude that our original calculations 
using 31 grid points is essentially grid-independent. This grid independent solution 
does not agree exactly with the analytical results, but it is certainly close enough for 
our purposes. The degree of grid independence that you need to achieve in a given 
problem depends on what you want out of the solution. Do you need extreme 
accuracy? If so, you need to press the matter of grid independence in a very detailed 
fashion. Can you tolerate answers that can be a little less precise numerically (such 
as the 1 or 2 percent accuracy shown in the present calculations)? If so, you can 
slightly relax the criterion for extreme grid independence and use fewer grid points, 
thus saving computer time (which frequently means saving money). The proper 
decision depends on the circumstances. However, you should always be conscious 
of the question of grid independence and resolve the matter to your satisfaction for 
any CFO problem you solve. For example, in the present problem, do you think you 
can drive the numerical results shown in Table 7.5 to agree exactly with the 
analytical results by using more and more grid points? If so, how many grid points 

TABLE 7.5 

Demonstration of grid independence 

Conditions at the nozzle throat 

p* T' P* M 
Po To Po 

Case 1: 31 points 0.639 0.836 0.534 0.999 
Case 2: 61 points 0.638 0.835 0.533 1.000 
Exact analytical solution 0.634 0.833 0.528 1.000 
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will you need? You m~ght want to experiment with this question by running your 
own program and seemg what happens. 

CO~~NT NU'."fBER EFFECTS. At the end of Sec. 4.5, we broached the 
poss1~1hty that_ 1f the. Cou~ant number were too small, and hence the analytical 
d~mam for a given _gnd pomt were much smaller than the numerical domain, there 
might be problems m regard to the accuracy of the solution, albeit the solution will 
be very stable. Do we have such a problem with the present calculations? We have 
emp_l~yed ~ =. 0.5 for t?e present calc~lations. Is this too small, considering that the 
stab1l~ty cn_tenon f?r lmear hyperbolic equations (see Sec. 4.5) is C < 1.0? To 
examme. this q_ueshon, we can simply repeat the previous calculation; but with 
progressively higher values of the Courant number. The resulting steady-state flow
field _valu_es at the nozzle throat are _tabulated in Table 7.6; the tabulations are given 
for ~1x d1ffere~t values of C, startmg at C = 0.5 and ranging to 1.2. For values 
rangmg to as ~1gh as _c = 1.1, the results were only marginally different, as seen in 
Table 7.~. By mcreasmg C to as high as 1.1., the numerical results do not agree any 
better with the exact analytical results (as shown in Table 7.6) than the results at 
lo:,ver values of C. Hence, all our previous results obtained by using C = 0.5 are not 
~amted ~y any noticea~le error due to the smaller-than-necessary value of C. Indeed, 
if anythmg, the ?umenca) results for C = 0.5 in Table 7.6 are marginally closer to 
the exact analyt1ca! solution than the results for higher Courant numbers. For the 
ste_ady-state nm_nencal results tabulated in Table 7.6, the number of time steps was 
adJusted each time C was changed so that the nondimensional time at the end of 
each run was essentially the same. This adjustment is necessary because the value of 
!it calculated from Eqs. (7.66) and (7.69) will obviously be different for different 
value~ of C. For_ example, when C = 0.5 as in our previous results, we carried out 
the t_1me-~archm? procedure to 1400 time steps, which corresponded to a 
nond1mens1onal time of 28.952. When C is increased to o 7 the n b f 
· · 5 . ., umero 

t~me steps earned out was 1400(,7) = 1000. This corresponded to a nondimensional 
time of 28.96_1--essentially the s~me as for the previous run. In the same manner, 
~11 the numencal data compared m Table 7.6 pertain to the same nondimensional 
time. 

TABLE 7.6 

Courant number effects 

Courant number p* T' P* 
M 

Po To Po 

0.5 0.639 0.836 0.534 0.999 
0.7 0.639 0.837 0.535 0.999 
0.9 0.639 0.837 0.535 0.999 
1.0 0.640 0.837 0.535 0.999 
I.I 0.640 0.837 0.535 0.999 
1.2 Program went unstable and blew up 
Exact analytical solution 0.634 0.833 0.528 1.000 
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It is interesting to note that for the present application, the CFL criterion as 
first introduced by Eq. (4.84), namely, that C::; 1, does not hold exactly. In Table 
7.6, we show results where C = 1.1; a stable solution is obtained in spite of the fact 
that the CFL criterion is violated. However, as noted in Table 7.6, when the Courant 
number is increased to 1.2, instabilities do occur, and the program blows up. 
Therefore, for the flow problem we have been discussing in this chapter, which is 
governed by nonlinear hyperbolic partial differential equations, the CFL criterion 
(which is based on linear equations) does not hold exactly. However, from the above 
results, we can see that the CFL criterion is certainly a good estimate for the value of 
!it; it is the most reliable estimate for !it that we can use, even though the governing 
equations are nonlinear. 

7.4 CFD SOLUTION OF PURELY 
SUBSONIC ISENTROPIC NOZZLE FLOW 

In this section we treat the case of purely subsonic flow through a duct. The physical 
aspects of such a flow are described in detail in Refs. 8 and 21. They differ from the 
subsonic-supersonic isentropic solution described in Sec. 7.2 in the following ways: 

1. For subsonic flow in the duct, there are an infinite number of possible isentropic 
flow solutions, each one corresponding to a specific pressure ratio pjp0 , between 
the exit and the reservoir. Two such solutions are sketched in Fig. 7.13. For one 
case, labeled case a, the exit pressure is (pe)a, where (pe)a is only slightly smaller 
than the reservoir pressure p 0 . This small pressure difference across the nozzle 
causes a "gentle wind" to blow through the duct, with the local Mach number 
increasing with distance in the convergent portion of the duct, reaching a peak 
value at the minimum area section (where this peak value of Mis considerably 
less than I), and then decreasing in the divergent section, resulting in the value of 
the Mach number at the exit (Me)a, being very small. If the exit pressure is 
reduced, hence creating a larger pressure difference across the nozzle, the flow 
through the nozzle will be faster. For example, for the case labeled bin Fig. 7.13, 
where (pe)b < (pe)a, the Mach number is larger through the nozzle, albeit still 
purely subsonic throughout. If the exit pressure is further reduced, there will be 
some value of p e, say (p e)c, which results in the Mach number at the throat just 
barely grazing unity, such as sketched in Fig. 7.13. At the same time, the pressure 
at the minimum area section will equal 0.528p0 , which corresponds to local 
sonic conditions. Examining Fig. 7.13 carefully, we note that for exit pressures Pe 
such that (pe)c < Pe < p 0 , the flow through the duct will be purely subsonic. 
There are an infinite number of such flows, corresponding to the infinite choice 
of p e in the range from p 0 to (p e)c. Therefore, when the flow is totally subsonic 
throughout the duct, the local flow properties are dictated by both the local area 
ratio A/At (where At is the minimum area~the throat area) and the pressure ratio 
across the nozzle pjp0 . This is in contrast to the subsonic-supersonic case 
described in Sec. 7.2, where the local Mach number is strictly a function of the 
area ratio only [from Eq. (7.6)]. 
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FIG. 7.13 

Schematic of purely subsonic flow in a convergent-divergent nozzle. 

2. In the subsonic case, the Mach number at the minimum area A
1 

is less than I. 
Hence, A1 is not the same as A*, which is defined in Sec. 7.2 as the sonic throat 
area; that is, A* is the throat area which corresponds to sonic flow. Hence, in the 
purely subsonic flow case, A* is simply a reference area; moreover, in this 
situation, A* < A1. 

The exac~ analytical ~olution of th_e purely subso~ic flQw~oceeds as 
follows. The ex1t-to-reservo1T pressure ratio must be specified; that 1s, p./pQ is given. 
Since the total pressure is constant through the nozzle, the value of p.)p

0 
defines Me 

through Eq. (7. 7), i.e., 

Pe 

Po 
1 +--M2 

( 
y - I )-y/(y- I) 

2 e (7.78) 

Once Me is known from a solution ofEq. (7.78), the value of A* can be calculated 
from Eq. (7.6) as 

Ae = _I [-2-(1 y - 1 2)] (r+ t)/(r- t) 

A* M; y + I + 2 Me (7.79) 
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where A* is simply a reference value in this case; A* is smaller than the throat area 
At. In tum, with A* known, the local area divided by A*, namely, Al A*, determines 
the local Mach number M via Eq. (7.6). Finally, this local value of M determines the 
local values of p/p0 , p/p0 , and TIT0 from Eqs. (7.7) to (7.9). 

7.4.1 The Setup: Boundary and Initial Conditions 

For this calculation, we will specify a nozzle with the following area distribution, 
where all symbols are in dimensional terms: 

X 
for O < - < 1.5 -r-

X 
for 1. 5 < - < 3. 0 -r-

(7.80a) 

(7.80b) 

In the above equations, At denotes the area of the nozzle throat. Keep in mind that as 
long as the flow is subsonic at the throat, At is not equal to A*; indeed, At > A*. A 
plot of the area distribution given by Eqs. (7.80a) and (7.80b) is shown in Fig. 7.14. 

The governing flow equations are the same as used for the subsonic-super
sonic solutions discussed in Sec. 7.3, namely, Eqs. (7.46), (7.48), and (7.50). 

The treatment of the boundary conditions for the present subsonic flow 
solution must reflect the need to specify the pressure ratio across the nozzle in order 
to have a unique solution, as discussed at the beginning of Sec. 7.4. Referring to 
Fig. 7.15, the subsonic inflow boundary, point 1, is treated exactly as discussed in 
the Boundary Conditions subsection to Sec. 7 .3. I. However, in the present problem, 
the outflow boundary is also subsonic. In the context of the discussion of the 
Boundary Conditions subsection, we have at the subsonic outflow boundary one 
characteristic line (the right-running characteristic) propagating to the right and the 
other characteristic line (the left-running characteristic) propagating to the left. 
Also, the streamline at point N is moving toward the right. Examining Fig. 7 .15, we 
see at point N one characteristic moving out of the domain, namely, the right
running characteristic, as well as the flow along the streamline moving out of the 
domain. Consistent with our discussion in the Boundary Condition subsection to 

Po I 
I 

FIG. 7.14 

IP, 
I 

Sketch of nozzle for the purely subsonic flow solution discussed in Sec. 7.4. 
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Sec. 7.3.1 this means that two flow variables should be allowed to float at the 
boundary point N. On the other hand, we also see at point N one characteristic 
moving into the ??main, name_ly, the !eft-running characteristic. As disc~use .{n the 
Boundary Cond1t10ns subsection, this means that the value of one flow variable 
must be specified at the boundary point N. Of course, this is consistt; t with our 
earlier physical discussion, namely, that to have a unique solution cif the purely 
subsonic flow in the duct, we need to specify the pressure ratio across the nozzle, 
pofpe; that is, for a fixed p 0 , we need to specify the exit pressure Pe· 

How do we implement the specification of Pe within the numerical solution? 
Returning to the governing equations, Eqs. (7.46), (7.48) and (7.50), we note that 
the dependent variables in these equations are density, velocity, and temperature
not pressure. However, through the equation of state, 

p=pRT (7.81) 

Hence, specifying the value of Pe is the same as specifying the product peRTe. In 
terms of the nondimensional variables in Eqs. (7.46), (7.48), and (7.50), we can 
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express Eq. (7.81) evaluated at the duct exit as 

I 'T' Pe = Pe e (7.82) 

The numerical implementation of the boundary conditions is carried out as 
follows. The subsonic inflow boundary is treated exactly as in the Boundary 
Conditions subsection to Sec. 7.3.l; that is, Eqs. (7.70) and (7.71) are used here. For 
the subsonic outflow boundary, we have 

p~ = specified value (7.83) 

Since p' and T' are the dependent variables appropriate to our governing 
N N . I d I h" h ·11 equations, we must make certam that both p N an TN, w 1c \\'.1. va1?' as a 

function of time, are strongly coupled to the pressure boundary cond1t10n given by 
Eq. (7.83); that is, no matter how p~ and T~ vary from one time step to the next, at 
each time step they must satisfy the constraint that 

p~T~ = p~ = specified value (7.84) 

One way to accomplish this strong coupling is as follows. Let us linearly extrapolate 

T~ obtaining 

T~ = 2T~_ 1 -T~_ 2 (7.85) 

From this value of T~ , calculate p~ from the equation of state such that Eq. (7 .83) 

is satisfied, i.e., 

, p~ specified value 
PN =-r, = T' 

N N 

(7.86) 

The values of T~ from Eq. _(7.85) along with ~~ from Eq. (7.86) ~ns~re th~t P~ 
remains constant at the specified value. Alternatzve/y, we could obtam PN by lmear 

extrapolation, 
I 2 I I 

PN = PN-1 - PN-2 
(7 .87) 

and calculate T~ from the equation of state, 

T' = p~ _ specified value 
N p~ p~ 

(7.88) 

The values of p' and T' obtained from Eqs. (7.87) and (7.88), respectively, also 
N N h h ' ensure that p~ remains constant at the specified value. (I~ has been t ~ a~t ors 

experience that either combination works equally as well, 1.e., the c~m~mation of 
Eqs. (7.85) and (7.86) where temperature is extrapolated or the combmation o~Eqs. 
(7.87) and (7.88) where density is extrapolated.) Finally, as before, the velocity at 
the downstream boundary is extrapolated: 

v~ = 2v~_ 1 - v~_ 2 (7.89) 

Note: There is more than meets the eye to the way we have set up the boundary 
conditions to this problem. We will return to this point in Sec. 7.4.2. 
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Finally, for the initial conditions, let us somewhat arbitrarily set up the 
following variations: 

p' = l .O - 0.023x' 

T' = l .O - 0.009333x' 

V' = 0.05 + O.l lx' 

These specify the initial flow field at time t = O. 

(7.90a) 

(7.90b) 

(7.90c) 

. We will carry out a time-marching solution of the purely subsonic flowfield 
us_1~g MacCormack's predictor-corrector explicit finite-difference method just as 
utilized for the previous subsonic-supersonic solution. The details are exactly the 
sam~. ln~eed,_ to treat the subsonic flow described in this section, only a slight 
modification IS needed to the computer program you might have written for the 
previous case-just the initial conditions, the nozzle shape, and the downstream 
boundary conditions need to be changed. Therefore, no further details are needed 
here. 

7.4.2 Final Numerical Results: MacCormack's 
Technique 

In Sec .. 7.3.2 we discussed some intermediate results pertaining to the detailed 
calculations on the first time step. Since exactly the same method is being used here 
there is no need to discuss the intermediate calculations. Let us proceed to the finai 
numerical results. 

A feeling for the timewise variation of the flow field as it marches toward the 
steady-state solution is provided by Fig. 7. l 6 and 7. l 7. These results pertain to a 
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FIG. 7.16 

Variation of mass flow through the nozzle at different times; purely subsonic flow case with 
p,)p0 = 0.93. 
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FIG. 7.17 
Variation of the pressure distribution through the nozzle at different times; purely subsonic flow case 
with p,Jp0 = 0.93. Circles indicate exact analytical values. 

specified pressure ratio across the nozzle of pjp0 = 0.93. The distribution of the 
nondimensional mass flow through the nozzle at three different times is shown in 
Fig. 7.16. The dashed curve labeled O.M corresponds to the initial condition. Note 
that after 500 time steps (the curve labeled 500~t) the mass flow is moving toward 
the steady-state value. After 5000 time steps, the mass flow has converged to a 
horizontal line; that is, pAV = constant. The dark circle is the exact analytical value; 
note that good agreement is achieved between the numerical and the analytical 
results. The timewise variation of the pressure distribution through the nozzle at four 
different times is shown in Fig. 7.17. Again, the dashed line is the initial 
distribution. Note that the initial condition for the pressure ratio at the exit is 
slightly below the specified value of 0.93; however, after the first time step, the 
boundary condition imposed by Eq. (7.84) is in effect, with pjp0 = 0.93. This is 
reflected in the fact that the pressure distributions for 500M, 1 OOOM, and 5000~t all 
meet at the same point at the nozzle exit. The dark circles in Fig. 7 .17 give the exact 
analytical values_ 

The final, steady-state values of the flow-field variables, including the mass 
flow, as a function of distance through the nozzle are tabulated in Table 7.7. For 
these calculations, 31 grid points are distributed through the nozzle, and the Courant 
number is 0.5. These results are for time step 5000. This is a conservative number of 
time steps; in reality, convergence is obtained for all practical purposes after 2500 
time steps. The convergence behavior of the solution is further indicated by the 
values of the residuals (the average nondimensional time derivatives), which are on 
the order of 10-2 after 500 time steps, 10-3 after 2500 time steps, and 10-5 after 
5000 time steps. 

A comparison of the numerical results after 5000 time steps with the exact 
analytical results is tabulated in Table 7.8. The accuracy of the numerical results for 
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TABLE 7.7 
TABLE 7.8 

Flow-field variables after 5000 time steps-subsonic flow Comparison between numerical and analytical values 

I 
X A p V T p p 
L A, Po To 

M in p M ao Po Po 
Po (exact M (exact 

I 0.000 5.950 1.000 0.079 1.000 1.000 0.079 0.469 X A (numerical analytical Difference, (numerical analytical Difference, 
2 0.100 5.312 0.998 0.089 0.999 0.997 0.089 0.472 L At results) results) O/o results) results) O/o 
3 0.200 4.718 0.998 0.099 0.999 0.997 0.099 0.467 4 0.300 4.168 0.996 0.113 0.998 0.995 0.113 0.468 0.000 5.950 1.000 0.997 0.30 0.079 0.077 2.50 
5 0.400 3.662 0.995 0.128 0.998 0.992 0.128 0.467 0.100 5.312 0.998 0.996 0.20 0.089 0.086 3.30 
6 0.500 3.200 0.992 0.147 0.997 0.989 0.147 0.467 0.200 4.718 0.998 0.995 0.30 0.099 0.097 2.00 
7 0.600 2.782 0.989 0.170 0.995 0.984 0.170 0.466 0.300 4.168 0.996 0.994 0.20 0.113 0.110 2.65 
8 0.700 2.408 0.984 0.197 0.993 0.977 0.197 0.466 0.400 3.662 0.995 0.992 0.30 0.128 0.126 1.56 
9 0.800 2.078 0.977 0.229 0.991 0.968 0.230 0.466 0.500 3.200 0.992 0.990 0.20 0.147 0.144 2.04 

10 0.900 1.792 0.968 0.268 0.987 0.955 0.270 0.465 0.600 2.782 0.989 0.986 0.30 0.170 0.167 1.76 
11 1.000 1.550 0.955 0.314 0.982 0.937 0.317 0.465 0.700 2.408 0.984 0.981 0.30 0.197 0.194 1.52 
12 1.100 1.352 0.938 0.367 0.975 0.914 0.371 0.465 0.800 2.078 0.977 0.975 0.20 0.230 0.226 1.74 
13 1.200 1.198 0.916 0.424 0.966 0.885 0.431 0.465 0.900 1.792 0.968 0.966 0.20 0.270 0.265 1.85 
14 1.300 1.088 0.892 0.480 0.955 0.853 0.491 0.466 1.000 1.550 0.955 0.953 0.21 0.317 0.312 1.58 
15 1.400 1.022 0.871 0.524 0.946 0.824 0.539 0.467 1.100 1.352 0.938 0.936 0.21 0.371 0.365 1.62 
16 1.500 1.000 0.862 0.542 0.942 0.812 0.559 0.467 1.200 1.198 0.916 0.916 0.00 0.431 0.423 1.86 
17 1.600 1.002 0.863 0.540 0.943 0.814 0.556 0.467 1.300 1.088 0.892 0.893 0.11 0.491 0.480 2.24 
18 1.700 1.009 0.865 0.535 0.944 0.816 0.551 0.467 1.400 1.022 0.871 0.875 0.46 0.539 0.524 2.78 
19 1.800 1.020 0.869 0.526 0.946 0.822 0.541 0.467 1.500 1.000 0.862 0.867 0.58 0.559 0.541 3.22 
20 1.900 1.036 0.875 0.516 0.948 0.829 0.530 0.467 1.600 1.002 0.863 0.868 0.58 0.556 0.539 3.06 
21 2.000 1.056 0.881 0.502 0.951 0.838 0.515 0.467 1.700 1.009 0.865 0.870 0.57 0.551 0.534 3.09 
22 2.100 1.080 0.888 0.487 0.954 0.847 0.499 0.467 1.800 1.020 0.869 0.874 0.58 0.541 0.526 2.77 
23 2.200 1.109 0.896 0.470 0.957 0.857 0.481 0.467 1.900 1.036 0.875 0.879 0.46 0.530 0.514 3.02 
24 2.300 1.142 0.903 0.453 0.960 0.867 0.462 0.467 2.000 1.056 0.881 0.885 0.45 0.515 0.500 2.91 
25 2.400 1.180 0.911 0.434 0.963 0.877 0.443 0.467 2.100 1.080 0.888 0.892 0.45 0.499 0.485 2.81 
26 2.500 1.222 0.918 0.416 0.966 0.887 0.423 0.467 2.200 1.109 0.896 0.898 0.33 0.481 0.468 2.91 
27 2.600 1.269 0.925 0.398 0.970 0.897 0.404 0.467 2.300 1.142 0.903 0.906 0.33 0.462 0.450 2.60 
28 2.700 1.320 0.932 0.379 0.972 0.906 0.385 0.467 2.400 1.180 0.911 0.913 0.22 0.443 0.431 2.71 
29 2.800 1.376 0.938 0.362 0.975 0.915 0.366 0.467 2.500 1.222 0.918 0.920 0.22 0.423 0.413 2.36 
30 2.900 1.436 0.944 0.344 0.977 0.923 0.348 0.467 2.600 1.269 0.925 0.926 0.11 0.404 0.394 2.48 
31 3.000 1.500 0.949 0.327 0.980 0.930 0.331 0.466 2.700 1.320 0.932 0.933 0.11 0.385 0.376 2.34 

2.800 1.376 0.938 0.939 0.11 0.366 0.358 2.19 
2.900 1.436 0.944 0.944 0.00 0.348 0.340 2.30 
3.000 1.500 0.949 0.949 0.00 0.331 0.324 2.11 

this purely subsonic case is about the same as that obtained for the subsonic-
supersonic isentropic flow case (see Table 7.4). 

It is interesting to note the values of time required to come to a reasonable lower than for the subsonic-supersonic case; hence the transit time for the subsonic 
steady st~te. F~r the ~resent case, t' = t!(L/a0) = 84.3. This is to be compared with case is much larger. For this reason, nature simply takes a longer time to establish a 
the nond1mens1onal time required for convergence in the subsonic-supersonic flow steady subsonic flow compared to that for a steady supersonic flow. Such a trend is 
case calculated earlier, which after 500 time steps was 10.3. For the same nozzle clearly evident in our results here. 
l~ngth L and reservoir speed of sound a0 , the subsonic flow takes a much longer 
time to converge to the steady state. That is, in part, a reflection of the time it takes 

The Anatomy of a Failed Solution for a fluid element to travel through the nozzle, which we will call th~ transit time. 7.4.3 
~or the st~a?y state to be reached, there should be a time lapse of s~ral transit 

In our discussion of the way we have set up the boundary conditions in Sec. 7.4.1, times-this 1s required for t~e history oft?e initial conditions to "flush t ough" the 
we noted that there was more to it than meets the eye. Let us examine this comment nozzle. For a purely subsomc flow, the flmd elements have an average velocity much 
further. 



334 NUMERICAL SOLUTIONS OF QUASI-ONE-DIMENSIONAL NOZZLE FLOWS 

Consider a case where Pel Po = 0.9; this is a stronger pressure ratio across the 
nozzle than the case discussed in Sec. 7.4.2, where p)p0 = 0.93. Therefore, the flow 
Mach number inside the nozzle will be larger. However, according to the exact 
analytical solution, the steady flow through our nozzle with pjp0 = 0.9 should still 
be subsonic everywhere; the highest Mach number, which occurs at the throat, is 
theoretically M 1 = 0. 721, and the theoretical Mach number at the exit is O .3 91. 
Nevertheless, under the same conditions as those used in Sec. 7.4.2 (same initial 
conditions, Courant number, and boundary condition treatment) the case with 
p,,lp0 = 0.9 goes unstable and blows up. It is instructional to investigate the behavior 
of the blowup and to surmise the reasons for this behavior. 

The distribution of pressure through the nozzle at four different times is shown 
in Fig. 7.18. The dashed line labeled OM is the initial distribution at time t = 0. 
After 400 time steps (the curve labeled 400Llt), the flow appears to be moving 
toward a qualitatively proper solution. After 800 time steps, for the most part, the 
solution appears to be approaching a proper steady-state result; for example, at 
800M, the numerical results show the Mach number at the throat M1 = 0.704, very 
close to the theoretical value of 0. 721. A further comparison is given by the solid 
circles in Fig. 7 .18, which represent the exact analytical results for p/p0 . Note that in 
the convergent section of the nozzle (x/L < 1.5), the proper steady state is almost 
achieved. However, tracing through the curve for 800Lit, we see a small but 
disturbing oscillation forming at the downstream boundary. Al l 200Llt, this 
oscillation has escalated enormously, and shortly thereafter the solution blows 
up. This behavior, which occurs when pjp0 = 0.9, is completely different than the 
behavior shown in Fig. 7.17 for the case of p)p0 = 0.93, where the steady state is 
successfully approached after about 2500 time steps. 

Why do the oscillations shown in Fig. 7 .18 develop? In short, they are due to 
finite waves that reflect off the downstream boundary, where the reflection is due to 
purely numerical reasons. Since we are holding the exit pressure Pe constant 
throughout the calculation, there is every reason to expect that finite, unsteady 
compression and expansion waves that are traveling to the right in the unsteady 
nozzle flow will reflect off this constant-pressure boundary. If these waves are strong 
enough, massive oscillations will occur near the downstream boundary. Given 
enough time, the oscillations eventually lead to a blowup of the calculations. 
Obviously, for a less severe pressure ratio across the nozzle, such as Pelp0 = 0.93, 
the weaker unsteady waves produced within the nozzle, when reflected from the 
downstream boundary, do not set up an oscillation. 

Let us reexamine the downstream boundary condition on a physical basis. Our 
stipulation of a fixed, constant pressure at the exit is physically valid only in the 
steady-state case. During· the unsteady flow, finite compression and expansion 
waves travel up and down the nozzle. As these waves travel out of the nozzle at the 
downstream boundary, all the flow variables, including the pressure,fiuctuate with 
time. This is the real physical situation. (See Chap. 7 of Ref. 21 for a discussion of 
unsteady, one-dimensional, finite-wave properties.) In the numerical calculation 
discussed above, we are not allowing the pressure at the downstream bounda

1

~0 

fluctuate; we are stipulating that it is fixed, independent of time. This is the pr er 
boundary condition as the flow approaches the steady state, but it is physica y 

E__ 
Po 
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~~th. ;t~~/!80~ th0e9p0re~~~:et!!s::~:~~~;~~~=~i::;;:~~O~t tf!e~;;;t~:~1!u;:%c:~::::~ ::iy~:: 
WI Pe Po · · values. 
im ro er during the unsteady flow variations that take place during t?e time
m!cJng process. As a result, with the numerically fixed pressure at the e~1t, we a~e 
in part "bottling up" the waves inside the nozzle. When the pressure ratio p)po 1s 



336 NUMERICAL SOLUTIONS OF QUASI-ONE-DIMENSIONAL NOZZLE FLOWS 

strong enough (such as in the case of p,!p0 = 0.9), the unsteady finite waves 
produced at early times in the nozzle are sufficiently strong, and the nonphysical 
reflections from the constant-pressure boundary eventually grow into the type of 
oscillations shown in Fig. 7 .18, with the result that the calculations blow up. On the 
other hand, if the pressure ratio p,!p0 is milder (such as in the case of p,!p0 = 0.93), 
the unsteady finite waves are weaker, and we are able to obtain a proper, steady 
state, as described earlier. 

There are several "fixes" that we could try in order to improve the behavior of 
the attempted solution for p,!p0 = 0.9. First, we could simply try different initial 
conditions, ones that are closer to the steady-state answers. In this fashion, the 
unsteady finite waves set up during the transient approach to the steady state will be 
weaker, therefore diminishing the tendency for the oscillation buildup as reflected in 
Fig. 7 .18. Second, we could add some artificial viscosity for the reasons discussed 
in Sec. 6.6. Note that so far in the our nozzle calculations, we have not explicitly 
added artificial viscosity. However, one of the purposes of artificial viscosity is to 
help damp the type of oscillations shown in Fig. 7.18. Such a ploy may be effective 
for the present case. 

We will not pursue either of these possible fixes here because we need to turn 
our attention to other, more pressing matters. We will have the opportunity to 
explore the matter of adding artificial viscosity to our nozzle calculation in Sec. 7.6, 
which deals with a shock-capturing case. 

7.5 THE SUBSONIC-SUPERSONIC 
ISENTROPIC NOZZLE SOLUTION 
REVISITED: THE USE OF THE GOVERNING 
EQUATIONS IN CONSERVATION FORM 

In Chap. 2 we made a distinction between the nonconservation form and the 
conservation form of the governing flow equations. We made the point that, 
theoretically, either form of the equations is a suitable representation of the 
fundamental physical principles of mass conservation, Newton's second law, and 
energy conservation. However, in CFD, there are some good numerical reasons to 
use one form or the other for the solution of certain flow problems. An important 
example is the case of shock capturing (see Sec. 2.10), where we noted that the 
conservation form of the equations is the proper form to employ; the nonconserva
tion form will lead to poor numerical results. 

In the present section, we take the opportunity to examine the differences 
between results obtained from the nonconservation form of the equations and those 
obtained from the conservation form. We will first cast the governing equations for 
quasi-one-dimensional flow in conservation form. Then we will set up the numerical 
solution of these equations using MacCormack's technique, as applied to the 
subsonic-supersonic isentropic flow case. The matter of shock capturing within the 
nozzle will be deferred until Sec. 7.6. Finally, we will compare the numerical results 
obtained from the conservation form of the equations to those obtained from the 
nonconservation form. 
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The Basic Equations in Conservation Form 7.5.1 
Returning to Eq. (7.15), repeated below. 
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a(pA) + a(pAV) = O (7.15) 
at ax 

. . . f, uasi-one-dimensional flow. It is already in 
This is ~e c~ntmuN1tyon~:::~:n~~zig the variables according to the forms given 
conservation 1orm. 
in Sec. 7.2, we have 

(
p A) a(£~~) * :t-:-) t'~"') + ~~:;~;o (Po~ ao) ~ o 

L/ao 

or 

a(p'A') a(p'A'V') 
at' + ax' 

(7.91) 

. . E (7 91) denote the nondimensional variables. 
As before, the pnmes m q. · 

Return to Eq. (7.23), repeated below. 

a(pAV) + a(pAV
2
) = -A ap (7.23) 

at ax ax 
. f, si-one-dimensional flow. It is already in 

This is the momentum equatlo~ or hqu~ derivatives in Eq. (7.23) as follows. 
conservation form. Let us combme t e o x 

Since 
a(pA)_ aA+Aap 
a;- -Pax ax 

we can add Eq. (7.92) to Eq. (7.23), obtaining 

a(pAV) + a(pAV2 +pA) =paA 
at ax ax 

Nondimensionalizing Eq. (7.93), we have 

(
p ~ ~) 8 [.!'_ ~ ~ (p,A'aj) + .!'_ ~ (p,A')] 

8 ~ ~) (p,A:al)+ p
0 A a0 aG)L Po 

L/ao 
_ E.._ a(A/A*) (po A*) 
- Po a(x/L) L 

or 

a(p'A'V') a[p'A'V'2 + p'A'(po/ Poa~)] = p,aA' ( p\) 
at' + ax' ax' Poao 

(7.92) 

(7.93) 

(7.94) 
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However, _l!!}___ _ PoRTo _ PoRTo 
2 - 2 ----=-

Poao Paao PoYRTo y 
Thus, Eq. (7.94) becomes 

r--~~~~~~~~~~-

a(p'A'V') a[p'A'V'2 + (l/y)p'A'J 1 'aA' 
f:l f + --p 
ut ax' - y ax' 

Returning to Eq. (7.33), repeated below. 

a[p(e + V2 /2)A] + a[p(e + V2 /2)AV] 
at ax 

a(pAV) 
ax 

(7.95) 

(7.33) 

This is t?e energy equa~i~n for quasi-one-dimensional flow. It is alread 
conservation form. Combmmg the x derivatives in Eq. (7.33), we have y in 

a[p(e+ V2/2)A] a[p(e+ V2/2)AV +pAV] 
& + fu =0 

Let us define a nondimensional internal energy as follows: 

' e e=-
eo 

RT. where e0 = cvTo = __ o 
y - 1 

(7.96) 

With this, the nondimensional form of Eq. (7.96) is obtained as follows. 

Since eo = RTol(y - 1 ), Eq. (7.97) becomes 

[ ( e' ) J a p' --+ I v12 A' 
Y - 1 2 (poA* aoRTo) 

at' L 

+ a[p'(~+j v'') V'At'a'1'RT,) + (p'A'V')(~)] 
ax' = o (7.98) 
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Divide Eq. (7.98) by poA*aoRTolL. 

a [p' (_:!___+I v'2)A'] a [p' (_:!___+I V'2) V'A' + p'A'V' (~)] 
y - 1 2 + y - 1 2 p0RTo = O 

at' ax' 
(7.99) 

However, in Eq. (7.99), 

Po _ PoRTo _ l ------
PoRTo PoRTo 

Thus, Eq. (7.99) becomes 

a [p' ( ~ + I V' 2)A'] a [p' ( ~ + I v12
) V'A' + p'A'V'] 

Y 1 2 + Y l 2 = 0 (7 .100) 
at' ax' 

Equations (7.91), (7.95), and (7.100) are the nondimensional conservation 
form of the continuity, momentum, and energy equations for quasi-one-dimensional 
flow, respectively. Return to Eq. (2.93), which is a generic form of the governing 
equations for unsteady, three-dimensional flow. The equations for quasi-one
dimensional flow can be expressed in a similar generic form. Let us define the 
elements of the solutions vector U, the flux vector F, and the source term J as 
follows. 

U1 =p'A' 
U2 = p'A'V' 

1/3 = p' (_:!___ + !_ V' 2)A' 
y-l 2 

F1 = p'A'V' 
1 

F2 = p'A'V'2 +- p'A' 
y 

F3 = p' (_!___+I V' 2) V'A' + p'A'V' 
y-l 2 

1 aA' 
J2 =-p'-

y ax' 

With these elements, Eqs. (7.91), (7.95), and (7.100) can be written, respectively, as 

aU1 aF1 
(7.101a) 

at' ax' 

aU2 __ aF2 J 
at' - ax' + 2 (7.101b) 

aU3 aF3 
(7.101c) 

at' ax' 
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We are now finished with the governing equations for quasi-one-dimensional flow. 
Equations (7.101 a) to (7.101 c) represent the continuity, momentum, and energy 
equations for quasi-one-dimensional flow, in conservation form. These are the 
equations we wish to numerically solve using MacCormack's technique. 

Before setting up this numerical solution, keep in mind from our discussions 
in Chap. 2 that in the conservation form of the equations the dependent variables 
(the variables for which we directly obtain numbers) are not the primitive variables. 
For example, in Eqs. (7.101a) to (7.101c), our numerical solution will give us 
numbers directly for U1 , U2 , and U3 in steps of time; this is why U is called the 
solutions vector. To obtain the primitive variables (p, V, T,p, etc.), we must decode 
the elements U1, U2 , and U3 as follows. From the definitions of U1 , U2 , and U3 
given above, we have 

I u, 
p =7 

V' = U2 
u, 

T' = e' = (y - 1) (U3 
- 2'_ V' 2

) 
U1 2 

p' =p'T' 

Note in Eq. (7.104) that we have recognized the fact that e' = T', or 

I - e CvT T I 
e =-=--=-= T 

eo cvTo To 

(7.102) 

(7.103) 

(7.104) 

(7.105) 

Therefore, after we obtain U1, U2, and U3 at each time step from the numerical 
solution of Eqs. (7.101a) to (7.101c), we can immediately calculate the corre
sponding primitive variables at each time step, p', V', T', andp', from Eqs. (7.102) 
to (7.105). 

7.5.2 The Setup 

Return to Eqs. (7.101a) to (7.101c) for a moment; we note that the flux vector 
elements F 1, F2, and F3 are couched in terms of the primitive variables [see the 
relations for F 1, F2 , and F3 immediately preceding Eqs. (7.101a) to (7.101c). It has 
been the author's experience that when the computer program is written with F 1 , F2 , 

and F3 expressed directly in terms of p', V', p', and e', instabilities develop during 
the course of the time-marching solution. For example, in the present example of 
quasi-one-dimensional, subsonic-supersonic, isentropic nozzle flow, instabilities 
develop in the subsonic section which finally cause the program to blow up after 
about 300 time steps. This behavior is an example of a lack of "purity" in the 
formulation of the governing equations in conservation form, a lack which 
eventually causes numerical problems. If we were to write a computer program 
to implement the equations exactly as written in Sec. 7.5.l, we would set up the 
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. ) (7 lOlc) for u1 u2 and U3 at each time step. 
?~~meric~~ ~~~:tl;;c~~;:~i :l~~en~: of the solution; ve~tor to obtain the p~m~t~ve 
vve wou . h ·n E s (7 l02) to (7.105). These pnm1t1ve 
v~ables a~ ea~~'tl:d st~~o~l~ i~':~, be t~ed ~o construct FI ' F 2' and F 3 for use 
~anhables ( / V ' f Eqs {:, 101 a) to (7.101 c) for the next time step, and so forth. As 
m t e so u wn_ o . . , erience when the primitive variables are used to 
stated above, m the a;th~:~:!al diffi~ulties occasionally arise. This is so~ehow 

construt:;, ~~~ ~~~t ttat the dependent variables which appear e~plicitly m Ehq~. 
connec e o d U ot the primitive vanables. For t is 
(7.101a) to (7.101c) are U1, U2, an .3~7 intermsofthedependentvariables 
reason, it is best to couch F1, F2, and F3 d1rec _Y. . . bl . Eqs (7 !Ola) to 

U 
U and U and avoid the use of the pnm1t1ve vai:ia e~ m . . 

1, 2, 3 ) (7 101 ) we will wnte 
(7.101c). That is, in Eqs. (7.101a to . c' 

F -F (U U U) (7.106a) I - J I, 2, 3 

F -F(U U U) (7.106b) 2 - 2 I, 2, 3 

F -F (U U U) (7.106c) 3 - 3 I, 2, 3 

J _ J(U U U) (7.106d) 
2 - !, 2, 3 

. . " 1 ,, in terms of the elements of the 
such that the g~ve~mg equattfonUs a~ P:JeJ only Let us proceed to obtain the 
solution vector, 1.e., m terms o 1, 2, a 3 · 

specific forms indicated by Eqs. (7.106a) to (7 · 1 °6d). 

"PURE" FORM OF THE FLUX TERMS. Consider the flux term F1, given in Sec. 

7.5.1 by 
(7.107) F1 = p'A'V' 

. . E (7 102) and (7 103) for p' and V', respectively, into Eq. (7.107), 
Substttutmg qs. · · 
we have 

(7.108) 

Consider the flux term F 2, given in Sec. 7 ·5 · 1 by 

F2 = p'A'V'2 +~p'A' (7.109) 
y 

. l09) b placed by the product p'T'. 
From Eq. (7.105), the pressure m Eq. (7_. can f ~re U and U via Eqs. (7.102) 
I tu , v, and T' can be expressed m terms o 1, 2, 3 n rn,p, , 
to (7.104). Hence, Eq. (7.109) becomes 

F, ~ ~/ + tu1(1- t) [~ -H~:)'] 

or 
u~ y - 1 ( _ 2'. u~) 

F2 =-+-- U3 2 U 
U1 Y I 

(7.110) 
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Consider the flux term F3 , given in Sec. 7.5.1 by 

F3 = p' (_.!!___ + 1:. V' 2
) V'A' + p'A'V' 

y - 1 2 

Substituting Eqs. (7.102) to (7.105) into Eq. (7.111), we have 

or 

F3 = U2 (U
3 

_ 1:. V' 2 + 1:. V'2) + U T' 
U1 2 2 2 

= U2U3 + (y _ l)U2 [U3 _ 1:. (U2)
2
] 

U1 U1 2 U1 

Finally, the source term J2 was given in Sec. 7.5.1 as 

J _ 1 ,oA' 
2 
-;; pox' 

From Eq. (7.105), this becomes 

J _ 1 'T'oA' 
2-;;P ox' 

Substituting Eqs. (7.102) and (7.104) into (7.114), we have 

J2 = ~ U: (y _ 1) [U3 _ 1:. (U2) 
2
] oA' 

YA U1 2 U1 ox' 

or 

(7.111) 

(7.112) 

(7.113) 

(7.114) 

(7.115) 

b E W\n~~ return to our gov~rning flow equations in conservation form as given 
Y qs. ( · a) to (7.101c). With F1, F2, F3, and J2 given by Eqs. (7 108) (7 110) 

(7.112), and (7.115), respectively, then Eqs. (7.101a) to (7101c) ar. ' · d ·' 
terms of u u d u 1 . . . · e expresse m 
. 1, 2, an 3 on y-the pnm1hve variables are nowhere to be c.ound Th" 
1s the "pure" fi f h · 11 

• 1s 
h. h .ll 0

~ 
0 t e governmg equations in conservation form; it is the form 

w ic we w1 u_se m _the ~ollowing sections. When a computer program is written to 
stolvde the eq~ations_ m this pure form, the solution is stable and convergence to a 
s ea y state 1s achieved. 

1 comment: The behavior discussed above, namely that instabilities are 
sometimes encountered when F F d F ' 

. . . . 1, 2, an 3 are constructed in terms of the 
pnm1tive va~ables, whereas a stable solution is obtained when p F d F 
constructed m terms f u u d U . I, 2, an 3 are 
CFD S h . f o I, 2, an 3: is o?e of those nonintuitive peculiarities of 

. ow at I F1, F2, and F3 are wntten Ill terms of p', V', T', and p' instead of 
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U1, U2, U3? On a theoretical basis, there is no difference. However, on a numerical 
basis, there is a big difference-the difference between instability and stability. This 
author has no simple mathematical explanation for this behavior. Let us simply 
consider it as part of the "art" ofCFD. On the other hand, we have here an example 
of the advantages to be obtained by writing our CFD programs using the most 
consistent, or pure, form of the equations and by treating all steps in the computer 
program in a consistent fashion, i.e., by not changing horses in midstream. 

BOUNDARY CONDITIONS. The boundary conditions for the subsonic-supersonic 
isentropic flow solution using the conservation form of the governing equations are 
theoretically the same as discussed in the Boundary Conditions subsection in Sec. 
7.3.1; i.e., at the subsonic inflow boundary two properties are held fixed and one is 
allowed to float, and at the supersonic outflow boundary all properties are allowed to 
float. In the present formulation, as before, we hold p' and T' fixed at the inflow 
boundary, both equal to 1.0, and allow V' to float. By holding p' fixed, then U1 at 
grid point i = 1 is fixed, independent of time, via U1 = p 'A'. That is, 

U1 (i= 1) = (p'A');= 1 = A;= 1 = fixed value 

The floating value of V' at the inflow boundary is calculated at the end of each time 
step by linearly extrapolating U2 from the known values at the internal grid points 
i = 2 and 3, that is, 

U2(i=I) = 2u2(i=2) - U2u=3) (7.116) 

and then obtaining V' at i = 1 from Eq. (7 .103 ). Since V' floats at the inflow 
boundary, so does the value of U3 , which is given by 

U3 = p' (_j__ + 1:. V' 2)A' 
y - 1 2 

Since p'A' = U1 and e' = T', Eq. (7.117) is written as 

U3 = U1 --+-V ( 
T' Y ,2) 

y-1 2 

(7.117) 

(7.118) 

The value of U3 (i = 1) is found by inserting the value of V' at i = 1, calculated 
above, as well as the fixed value T' = 1, into Eq. (7 .118). Note that the values of U1, 

U2, and U3 calculated at grid point i = 1 are used in tum to obtain the values of the 
flux terms F1 , F2, and F3 at grid point i = I. These values of the flux terms at the 
inflow boundary are needed to form the rearward differences that appear in Eqs. 
(7.101 a) to (7.101 c) during the corrector step of MacCormack 's technique. The 
values of F1 , F2, and F3 at the inflow boundary are calculated from Eqs. (7.108), 
(7 .110), and (7 .112), respectively, using U1, U2, and U3 at grid point i = I. 
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. The flo_w properties a! the downstream, supersonic outflow boundary are 
obtam~d by_ lmear extrapolation from the two adjacent internal points. If N denotes 
the gnd pomt at the outflow boundary, then 

(U1)N = 2(U1)N-1 - (U1)N_ 2 (7.ll9a) 

(U2)N = 2(U2)N-I - (U2)N-2 (7.ll9b) 

(U3)N = 2(U3)N-1 - (U3)N_ 2 (7.119c) 

The values of F1, F2, and F3 at grid point i = N are obtained from the values of U 
U2, and U3 at point i = N, using Eqs. (7.108), (7.110), and (7.l 12), respective!;'. 
These flux values are ne~ded to form the forward differences that appear in Eqs. 
(7.lOla) to (~.l?~c) dunng the predictor step of MacCormack's technique. Of 
course, the pnm1ttve variables at the downstream outflow boundary are obtained 
from Eqs. (7.102) to (7.105). 

INITIAL CONDITIONS. Since the dependent variables being solved in Eqs. 
(7.lOla) _to (7.101:) are U1, U2, and U3, we need initial conditions for these 
~a~e vana?l_es at time t = 0 in order to start the finite-difference solution. The 
m1tial conditions for U1, U2, and U3 also allow initial conditions for F F and F 
t b b . d fr I, z, 3 0 ~? tame om Eqs. (7.108), (7.110), and (7.112), respectively. Such initial 
c?nd1ttons for F1, F2, and F3 are needed to form the x derivatives on the right-hand 
sides of Eqs. (7.IOla) to (7.lOlc) at the first time step. 

Fort?~ ~resent ~~lculations the same nozzle shape as given by Eq. (7.73) is 
used. ~e m1t~al_ cond1ttons for U1 , U2, and U3 were synthesized by assuming the 
followmg vanat10ns of p' and T': 

p' = l.O } 
T' = l.O for O ::; x' ::; 0.5 

p' = l .O - 0.366(x' - 0.5) } 
T' = l.O - O.l67(x' - 0.5) for 0.5::; x'::; l.5 

p' = 0.634 - 0.3879(x' - 1.5) } 
T' = 0.833 - 0.3507(x' _ I.5) for l.5 ::; x' ::; 3.5 

(7.l20a) 
(7.l20b) 

(7.120c) 
(7. l20d) 

(7.l20e) 
(7.120/) 

These :~riations ~r~ slightly m~re realistic than those assumed in the Nozzle Shape 
and _l?1hal C~nd1tions su~sect~on of Sec. 7.3. l; this is in anticipation that the 
stability b~hav1or o~ the fimte-d1fference formulation using the conservation form of 
the gov_emmg eq~ahons might be slightly more sensitive, and therefore it is useful to 
start with more improve~ !~itial co~~itions than those given in Sec. 7.3.1 by Eqs. 
(7.'.4a) to (7.74c). The m1tial cond1t10n for the variation of V' is synthesized by 
takm~ advantage of the ~act tha! one of the dependent variables in our governing 
equations, namel~, -~2, 1s physically the local mass flow; that is, U

2 
= p'A'V'. 

Therefore,for the rmhal conditions only, let us assume a constant mass flow through 
the nozzle and calculate V' as 

V' = U2 = 0.59 
p'A' p'A' (7.121) 
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The value 0.59 is chosen for U2 because it is close to the exact analytical value of 
the steady-state mass flow (which for this case is 0.579). Therefore, the initial 
condition for V' as a function of x' is obtained by substituting the p' variation given 
by Eqs. (7.120a), (7.120c), and (7.120e) into Eq. (7.121). Finally, the initial 
conditions for U1 , U2, U3 are obtained by substituting the above variations for p', 
T', and V' into the definitions given in Sec. 7.5.1, namely, 

U1 =p'A' 

U2 = p1A1V1 

U3 = p' (___!____ + l'. V' 2)A' 
y - 1 2 

(7.122a) 

(122b) 

(7. l 22c) 

where e' = T'. Of course, for the initial conditions described above, V' is calculated 
such that U2 = p'A'V' = 0.59. 

TIME STEP CALCULATION. The governing equations for unsteady, quasi-one
dimensional flow in conservation form are hyperbolic partial differential equations, 
just as are the governing equations in nonconservation form which are employed in 
Sec. 7.3. Therefore, for an explicit finite-difference solution, the stability criterion 
for the time step increment lit is specified by the CFL criterion. In tum, for the 
calculations in the present section, the value of lit is obtained precisely as described 
in Sec. 7 .3. I and given by Eqs. (7 .67) to (7 .69). Hence, no further elaboration is 
given here. 

7.5.3 Intermediate Calculations: 
The First Time Step 

In the same spirit as Sec. 7.3.2, which gave some intermediate calculations using the 
nonconservation form of the governing equations, we carry out the same idea in the 
present section for the conservation form. Since the sequence of calculations is 
somewhat modified when the conservation form is used, it will be useful to go 
through some of the details of the computation for the first time step. As explained 
earlier, the presentation of these intermediate results will not only be instructional 
but they will also allow you to check the accuracy of your computer program, 
should you choose to write one for the solution of the present problem. 

The nozzle shape and initial conditions for the present calculations are given 
in Table 7.9. The nozzle shape is the same as used for the calculations in Sec. 7.3 
and is sketched in Fig. 7.8. The current initial conditions are different from those 
used in Sec. 7.3, principally to take advantage of the fact that U2 is the local mass 
flow, and following the adage that we should choose initial conditions as intelli
gently as possible, we assume an initial constant mass flow distribution through the 
nozzle. This is obvious from the column labeled m in Table 7.9. Here, m is 
nondimensional, denoted by m = pA V / p0A * ao. The values of p', T', and V' in 
Table 7. 9 are obtained from Eqs. (7. l 20a) to (7 .120.f) and (7 .121 ), respectively. Also 
shown in Table 7. 9 are the corresponding initial conditions for U1, U2, and U3, 
obtained from Eqs. (7. l 22a) to (7 .122c ), respectively. 
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TABLE 7.9 
Initial conditions for the case using the conservation form 

X A p V T ,;, - U1 Uz U3 
L A* Po ao To 

0.000 5.950 1.000 0.099 1.000 0.590 5.950 0.590 14.916 
0.100 5.312 1.000 0.111 1.000 0.590 5.312 0.590 13.326 
0.200 4.718 1.000 0.125 1.000 0.590 4.718 0.590 11.847 
0.300 4.168 1.000 0.142 1.000 0.590 4.168 0.590 10.478 
0.400 3.662 1.000 0.161 1.000 0.590 3.662 0.590 9.222 
0.500 3.200 1.000 0.184 1.000 0.590 3.200 0.590 8.076 
0.600 2.782 0.963 0.220 0.983 0.590 2.680 0.590 6.679 
0.700 2.408 0.927 0.264 0.967 0.590 2.232 0.590 5.502 
0.800 2.078 0.890 0.319 0.950 0.590 1.850 0.590 4.525 
0.900 1.792 0.854 0.386 0.933 0.590 1.530 0.590 3.728 
1.000 1.550 0.817 0.466 0.916 0.590 1.266 0.590 3.094 
I.JOO 1.352 0.780 0.559 0.900 0.590 1.055 0.590 2.604 
1.200 1.198 0.744 0.662 0.883 0.590 0.891 0.590 2.241 
1.300 1.088 0.707 0.767 0.866 0.590 0.769 0.590 1.983 
1.400 1.022 0.671 0.861 0.850 0.590 0.685 0.590 1.811 
1.500 1.000 0.634 0.931 0.833 0.590 0.634 0.590 1.705 
1.600 1.022 0.595 0.970 0.798 0.590 0.608 0.590 1.614 
1.700 1.088 0.556 0.975 0.763 0.590 0.605 0.590 1.557 
1.800 1.198 0.518 0.951 0.728 0.590 0.620 0.590 1.521 
1.900 1.352 0.479 0.911 0.693 0.590 0.647 0.590 1.498 
2.000 1.550 0.440 0.865 0.658 0.590 0.682 0.590 1.479 
2.100 1.792 0.401 0.821 0.623 0.590 0.719 0.590 1.458 
2.200 2.078 0.362 0.783 0.588 0.590 0.753 0.590 1.430 
2.300 2.408 0.324 0.757 0.552 0.590 0.779 0.590 1.389 
2.400 2.782 0.285 0.744 0.517 0.590 0.793 0.590 1.333 
2.500 3.200 0.246 0.749 0.482 0.590 0.788 0.590 1.259 
2.600 3.662 0.207 0.777 0.477 0.590 0.759 0.590 1.170 
2.700 4.168 0.169 0.840 0.412 0.590 0.702 0.590 1.071 
2.800 4.718 0.130 0.964 0.377 0.590 0.612 0.590 0.975 
2.900 5.312 0.091 1.221 0.342 0.590 0.483 0.590 0.917 
3.000 5.950 0.052 1.901 0.307 0.590 0.310 0.590 1.023 

To illustrate the intermediate calculations, let us focus on grid point i = 16, 
which, as seen in Fig. 7.8, is at the throat of the nozzle. We will follow 
MacCormack's explicit predictor-corrector technique, described at length in pre
vious sections. 

Predictor step. To start the calculation, we use the initial conditions for U1, U2, 

and U3 to calculate the initial values of F1, F2, and F3 at grid points i = 16 and 17. 
From Table 7.9, the initial values for the U's are 

(U1);= 16 = 0.634 

(U1);= 17 = 0.608 

(U2);= 16 = 0.590 

(U2);= 17 = 0.590 

(U3);= 16 = 1.705 

(U3);= 17 = 1.614 
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From Eq. (7.108) 

(Fi)i=l6 = (U2)i=l6 = I 0.590 I 
(F1);= 17 = (U2);= 17 = \o.590 I 

From Eq. (7.110) 

[u~ y - 1 ( y u~)] 
(F2);=l6 = U1 +-y- U3 - 2 U1 i=l6 

= (0.590)
2 

0.4 [1.705 _ 0.7 (0.590)
2

] 

0.634 + 1.4 0.634 

= 1 o.926 I 

_ (0.590)2 0.4 [1 614 _ 0.7 (0.590)2] 
(F2);= 17 - 0.608 + 1.4 . 0.608 

=~ 

From Eq. (7.112) 

_ [yU2U3 _ y(y - 1) U!] 
(F3);=16 - u 2 u2 I I i=16 

1.4(0.590) ( 1. 705) 1.4(0.4) (0.590)3 

= 0.634 2(0.634)2 

=12.078 \ 

1.4(0.590) ( 1.614) 1.4(0.4) (0.590)3 
(F3);=17 = 0.608 - 2(0.608)2 

= 12.0361 

From Eq. (7.113) we have 

Hence 
1 (l.022 - 1.0) = 0.083 

(J2);=)6 = 1.4 (0.634)(0.833) 0.1 

Note that by using Eq. (7.113) for J2 rather than the expressi~n given ?Y Eq. 
(7 .115), we are breaking slightly with the puri~. of t~e govemmg. equ~t:°ns Ea~ 
described in the first subsection of Sec. 7.5.2. This 1s bemg done for simpl~c d ~: 
(7.113) is much shorter than Eq. (7.115)]. The results are not comprorruse · e 
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value of Llx' is LIN, where L is the length of the nozzle and N is the number of 
increments along the nozzle, which for the present case is 30. Hence 

Lh' = L = 3.0 = 0.1 
N 30 

From Eq. (7.1 Ola), using forward differences for the x derivatives, we have 

(
8U1)

1
' = _ (F1);= 17 - (F1);= 16 = _ 0.590 - 0.590 = [I] 

or' i= 16 Lh' 0.1 

From Eq. (7.101b), we have 

(
8U2) 

11 

= _ (F2);= 11 - (F2);= 16 + J2 or' i= 16 Lh' 

= _ 0.919- 0.926 + 0.083 = ~ 
0.1 

(Please note: Once again, remember that since we are giving the numbers in the 
present section to three decimal places, if you are following along with a hand 
calculator using these three-place figures, some small numerical errors may result in 
your hand calculations. In the above, and throughout this section, the numbers that 
appear in boxes are the exact numbers that came from the author's Macintosh 
computer.) Finally, from Eq. (7. IO 1 c ), we have 

(
0U3)

1
' = _ (F3);= 17 - (F3);= 16 = _ 2.036 - 2.078 = ~ 

or' i= 16 Lh' 0.1 

To obtain the predicted values of the flow quantities, we must first obtain the value 
of the time step !it'. This is carried out as mentioned in the last subsection of Sec. 
7.5.2 and as given by Eqs. (7.67) to (7.69) in Sec. 7.3.1. After scanning all the grid 
points from i = 1 to i = 31, the minimum value of !it' is found to be, using a 
Courant number of C = 0.5, 

tit' = 0.0267 

We proceed to find the predicted values of U1 , U2, and U3, denoted by the barred 
quantities. 

- 1'+M' t' (8U1)
1
' I 

(U1);=16 =(U1);=16+ ot' . !it 
1=16 

= 0.634 + O!it' = I 0.634 I 
- t'+!;.t' t' (aU2) t' 1 

(U2);=16 =(U2);=16+ at' . !it 
1=16 

= o.590 + 0.156(0.0261) = 1 o.5941 

- 1'+!;.1' 1' (aU3)
1
' , 

(U3);=16 = (U3);=16 + ~ !it 
ut i=16 

= 1.105 + o.416(0.0261) =I~ 1-.1-16~! 
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At this stage, the predicted values of the primitive variables can be decoded from 
[!

1
, [!

2
, and [!

3
, using Eqs. (7.102) to (7.105). For example, from Eq. (7.102), 

- t'+!;.1' 
-/ t'+M' - (U1);=l6 = 0.634 =I 0.634 \ 

(p );=16 - (A');=I6 1.0 

and from Eqs. (7.103) and (7.104), 

(-,)1'+M' _ ( _ I) (U3)1=I6 _ 2'._ 2 1=16 
{ 

- 1'+M' [(U )1'+t;.1'] 2} 
T i= 16 - y (U- )t'+M' 2 (U )1'+!;.1' 

I i= 16 I 1= 16 

= [1.116 - o.1(0.594)2] = I o.837 [ 
0.4 0.634 0.634 

The above numbers for the predicted p' and T' will be needed on the corrector step. 
Before we move on to the corrector step, we need to find the predicted values of F1, 
F

2
, and F

3 
at grid points i = 15 and 16; these values for i = 16 are based on the 

predicted values of U1, U2, and U3 found above, and for i = 15 _are based on the 
predicted values of U1, U2, and U3 for i = 15 (not r~corded above m ?rder to not let 
the length of this section get out ofha~d). ~he pred1c~ed fluxes, obtamed from Eqs. 
(7.108), (7.110), and (7.112) using U1 , U2, and U3, are 

(F- ) - O 594 (F-2),·= 16 = 0.936 (F'3)1-__ 16 = 2.105 I i=l6 - · 
(F- ) - o 585 (F-2 )

1
.= 15 = 0.915 (F3)1. __ 15 = 2.037 

I i=15 - · 

Corrector step. The predicted time derivatives of U1, U2 , and _u3 are obtained from 
Eqs. (7.101a) to (7.101c), respectively, using rearward differences for the x 

derivatives. From Eq. (7.101a) 

From Eq. (7.101b) 

(Fi)i=l6 - (Fi);=1s 
Lh' 

= - 0.594 - 0.585 = I -0.0918 
0.1 

(
8U2)

1
'+M' (F'z);= 16 - (F2);= 1s + ~ p' T' 8A' 

at' i= 16 Llx' y ox' 
= - 0.936 - 0.915 _I (0.634)(0.837) (1.0 - 1.022) 

0.1 + 1.4 0.1 

= ~, --0-.2-90--,! 
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From Eq. (7.101c) 

~ 1'+!'.1' -

(
DU3) = _ (F3);= 16 - (F'J);= 1s 

at' i=l6 Ax' 
=-2.105-2.037 _, _ 

0.1 - _ 0.679 

The average time derivatives are formed as follows. 

( 0U1) = ! [([)~1
)

1

' + (0 ~ 1)

1

'+!'.i'] 
at av 2 at i = 16 at i = 16 

= o.5(o - 0.0918) = J -0.0459 1 

( 0U2) = ! [(8~2
)

1

' + (0~2
)

1

'+!'.I'] 
at av 2 at i=l6 at i=l6 

= o.5(0.156 - 0.290) = / -o.0668 I 

( aU3) = ! [(8~3
) 

1

' + ( 0~ 3 ) 

1

'+!'.i'] 
at av 2 at i = 16 at i = 16 

= o.5(0.416 - o.679) = J-0.131 I 
The final ~orrected values of U1 , U2 , and U3 at time step t' + !1t' (here, since t' = O 
to start with, we are calculating the final corrected values at time t' = M') are 
obtained from 

(U1)~ift = (U1):~ 16 + (~~1
) M 

t av 

= o.634 + (-0.0459)(0.0261) = I o.633 1 

(U2)/ift = (U2):~l6 + (~~2)av !1t 

= o.59o + (-0.0668)(0.0261) = 1 o.588 1 

(U3):ift = (U3)/~ 16 + (~~3
) av 11t 

= 1.105 + (-o.131)(0.0261) = J 1.101 I 
Finally, the corre~ted values of_the primitive variables are obtained by decoding U

1
, 

U2, and U3, obtamed above, via Eqs. (7.102) to (7.105). That is, from Eq. (7.102), 

( p')1'+!'.1' = (U )1'+!'.t' = 0.633 -1 I 
1=16 1 l=16 l - _ 0.633 _ 
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From Eq. (7.103) 

1'+!'.1' 

( V'):itt = (U2) = 0.588 = I 0.930 I 
U1 i= 16 0.633 

From Eq. (7.104) 

1'+!'.1' 

( T')1'+!'.1' = ( - 1) (U3 _ l'. v'z) 
1=16 'Y u 2 

I i= 16 

= o.4 [~:~~~ - o. 1(0.930)
2

] = I o.833 I 

This brings to an end the calculations of the flow properties at grid point i = 16 at 
time t' = !1t'. This process is repeated for all the interior grid points distributed 
along the nozzle. The properties at the inflow and outflow boundaries are calculated 
as described in the Boundary Conditions subsection of Sec. 7.5.2. By this stage, 
since you are most likely saturated with numbers, we will spare you the details. 

For the sake of reference and so that you can check the numbers from you own 
computer program, the flow-field variables, including U1, U2, and U3, obtained after 
the first time step at all the grid points are tabulated in Table 7 .10. Comparing the 
numbers in Table 7.10 with the initial conditions given in Table 7.9, we see that the 
largest changes over the first time step have taken place near the exit of the nozzle 
and that the mass flow distribution, originally choosen as constant at t' = 0, is no 
longer constant after the first time step. 

7.5.4 Final Numerical Results: 
The Steady-State Solution 

The steady-state results obtained from the time-marching solution of the governing 
equations in conservation form are essentially the same as those obtained using the 
nonconservation form (described in Sec. 7.3.3), with a few slight, but notable 
differences. The present converged solution is tabulated in Table 7 .11, which are the 
results obtained after 1400 time steps. A quick comparison of the numbers given in 
Tables 7.11 (for conservation form) and 7.3 (for nonconservation form) show little 
material difference. We conclude that, for all practical purposes, both forms of the 
governing equations give the same results. This is as it should be; the flow problem 
studied in both tables is the isentropic, subsonic-supersonic flow through a nozzle, 
and for such a flow the choice of the form of equations is not important. However, as 
described in Sec. 2.10, an important numerical distinction between the noncon
servation and conservation forms of the equations is related to problems dealing 
with shock capturing, and we are not capturing any shocks in the present problem. 

Let us highlight some of the slight but notable differences mentioned above. 
The most dramatic difference is in the mass flow distribution. First of all, with the 
initial conditions assuming a constant mass flow, it is interesting to examine the 
variation of m with xi L at a few different times during the convergence toward the 
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TABLE 7-10 
TABLE 7.11 

Flow-field variables at the end of the first time step Steady-state results, using the conservation form 

X A p V T p X A p V T p ~ 

M in U1 M in U1 U2 U3 L A* To U2 U3 ~ 

Po ao Po L A* Po ao To Po 
0.000 5.950 1.000 0.099 1.000 1.000 0.099 0.588 5.950 0.588 14.916 0.000 5.950 1.000 0.098 1.000 1.000 0.098 0.583 5.950 0.583 14.915 
0.100 5.312 1.000 0.111 1.000 1.000 0.111 0.588 5.312 0.588 13.326 0.100 5.312 0.999 0.110 0.999 0.998 0.110 0.583 5.306 0.583 13.301 
0.200 4.718 1.000 0.125 1.000 1.000 0.125 0.588 4.718 0.588 11.846 0.200 4.718 0.997 0.124 0.999 0.996 0.124 0.583 4.704 0.583 11.798 
0.300 4.168 1.000 0.141 1.000 1.000 0.141 0.587 4.168 0.587 10.478 0.300 4.168 0.995 0.141 0.998 0.993 0.141 0.583 4.147 0.583 10.404 
0.400 3.662 1.000 0.160 1.000 1.000 0.160 0.587 3.662 0.587 9.221 0.400 3.662 0.992 0.161 0.997 0.989 0.161 0.583 3.633 0.583 9.118 
0.500 3.200 0.999 0.187 1.000 0.999 0.187 0.598 3.197 0.598 8.067 0.500 3.200 0.988 0.184 0.995 0.983 0.185 0.583 3.161 0.583 7.941 
0.600 2.782 0.963 0.228 0.983 0.947 0.230 0.611 2.679 0.611 6.682 0.600 2.782 0.982 0.213 0.993 0.975 0.214 0.583 2.732 0.583 6.869 
0.700 2.408 0.927 0.271 0.967 0.897 0.276 0.606 2.233 0.606 5.513 0.700 2.408 0.974 0.249 0.989 0.964 0.250 0.584 2.345 0.584 5.903 
0.800 2.078 0.891 0.325 0.950 0.846 0.333 0.601 1.851 0.601 4.534 0.800 2.078 0.962 0.292 0.985 0.948 0.294 0.584 2.000 0.584 5.043 
0.900 1.792 0.854 0.389 0.934 0.798 0.403 0.596 1.531 0.596 3.735 0.900 1.792 0.946 0.344 0.978 0.926 0.348 0.584 1.696 0.584 4.287 
1.000 1.550 0.818 0.467 0.917 0.750 0.487 0.592 1.268 0.592 3.098 1.000 1.550 0.923 0.408 0.969 0.894 0.415 0.584 1.431 0.584 3.632 
1.100 1.352 0.781 0.557 0.900 0.703 0.587 0.588 1.056 0.588 2.605 1.100 1.352 0.891 0.485 0.955 0.851 0.496 0.585 1.205 0.585 3.075 
l.200 1.198 0.744 0.656 0.883 0.657 0.698 0.585 0.892 0.585 2.238 1.200 1.198 0.847 0.577 0.935 0.792 0.596 0.585 1.015 0.585 2.609 
1.300 1.088 0.707 0.759 0.866 0.613 0.815 0.584 0.770 0.584 1.977 1.300 1.088 0.789 0.682 0.909 0.718 0.715 0.585 0.859 0.585 2.231 
1.400 1.022 0.670 0.854 0.849 0.569 0.927 0.585 0.685 0.585 1.804 1.400 1.022 0.718 0.798 0.874 0.628 0.854 0.586 0.734 0.586 1.932 
1.500 1.000 0.633 0.930 0.833 0.527 1.018 0.588 0.633 0.588 1.701 1.500 1.000 0.648 0.904 0.839 0.544 0.987 0.586 0.648 0.586 1.730 
1.600 1.022 0.594 0.979 0.800 0.475 1.094 0.594 0.607 0.594 1.621 1.600 1.022 0.548 1.046 0.783 0.429 1.182 0.586 0.560 0.586 1.525 
1.700 1.088 0.555 0.992 0.766 0.425 1.134 0.599 0.604 0.599 1.572 1.700 1.088 0.462 1.164 0.731 0.338 1.361 0.585 0.503 0.585 1.396 
1.800 1.198 0.517 0.975 0.731 0.377 1.141 0.604 0.619 0.604 1.542 1.800 1.198 0.384 1.272 0.679 0.261 1.544 0.585 0.460 0.585 1.301 
1.900 1.352 0.478 0.939 0.695 0.333 1.126 0.607 0.647 0.607 1.523 1.900 1.352 0.316 1.368 0.628 0.198 1.726 0.585 0.427 0.585 1.231 
2.000 1.550 0.440 0.893 0.660 0.290 1.099 0.609 0.682 0.609 1.506 2.000 1.550 0.260 1.452 0.581 0.151 1.905 0.584 0.402 0.584 1.178 
2.100 1.792 0.401 0.848 0.625 0.251 1.073 0.610 0.719 0.610 1.485 2.100 1.792 0.214 1.524 0.538 0.115 2.077 0.584 0.383 0.584 1.138 
2.200 2.078 0.362 0.809 0.590 0.214 1.054 0.610 0.753 0.610 1.456 2.200 2.078 0.177 1.586 0.500 0.088 2.243 0.583 0.368 0.583 1.107 
2.300 2.408 0.324 0.781 0.554 0.179 1.049 0.609 0.780 0.609 1.413 2.300 2.408 0.148 1.639 0.466 0.069 2.402 0.583 0.356 0.583 1.083 
2.400 2.782 0.285 0.766 0.519 0.148 1.063 0.607 0.793 0.607 1.354 2.400 2.782 0.124 1.685 0.436 0.054 2.554 0.583 0.346 0.583 1.064 
2.500 3.200 0.246 0.768 0.484 0.119 1.104 0.605 0.788 0.605 1.278 2.500 3.200 0.106 1.725 0.409 0.043 2.698 0.583 0.338 0.583 1.048 
2.600 3.662 0.208 0.791 0.448 0.093 1.182 0.601 0.760 0.601 1.184 2.600 3.662 0.090 1.760 0.384 0.035 2.838 0.582 0.331 0.582 1.035 
2.700 4.168 0.169 0.846 0.412 0.070 1.318 0.595 0.704 0.595 1.078 2.700 4.168 0.078 1.790 0.363 0.028 2.969 0.582 0.325 0.582 l.025 
2.800 4.718 0.131 0.949 0.375 0.049 1.551 0.584 0.616 0.584 0.965 2.800 4.718 0.068 1.817 0.344 0.023 3.100 0.582 0.320 0.582 1.015 2.900 5.312 0.093 1.133 0.324 0.030 1.990 0.560 0.494 0.560 0.846 2.900 5.312 0.060 1.840 0.327 0.019 3.216 0.582 0.316 0.582 1.008 
3.000 5.950 0.063 1.438 0.200 0.013 3.217 0.536 0.373 0.536 0.726 3.000 5.950 0.052 1.863 0.310 0.016 3.345 0.582 0.312 0.582 1.001 

steady state. This is shown in Fig. 7.19, where the nondimensional mass flow is illustrated in Fig. 7 .19 is due predominantly to our assumed initial condition 01 

plotted verus xi L for several different values of time. The dashed line labeled O~t constant mass flow. 
represents the assumed initial conditions. Note that the transient mass flow deviates Let us compare the steady-state variations of mass flow obtained with the 
away from the initial conditions; the result after 100 time steps (labeled 1 OO~t) nonconservation and conservation forms of the governing equations (both after 
shows a somewhat "humped" distribution. After 200 time steps (labeled 200~t), the 1400 time steps-well beyond the time required to converge to the steady state). 
mass flow distribution is becoming more constant, and after 700 time steps (labeled This comparison is shown in Fig. 7 .20, in which the scale of the ordinate for mass 
700~t), it is almost (but not quite) equal to a constant value. Moreover, it is quite flow is greatly magnified. Here we see that the steady-state mass flow distribution 
close to the exact analytical value of 0.579. Comparing Fig. 7.19 with the predicted by the conservation form of the equations is much more satisfactory than 
correspon~ing_ results obtained with the nonconservation form of the equations that obtained from the nonconservation form, on two accounts: 
as plotted m Fig. 7.11, we see that the present variations in mass flow are much less 
severe. Of course, this is comparing apples and oranges, because Figs. 7 .11 and 7 .19 1. The conservation form gives a distribution that is much closer to being a 
correspond to different initial conditions. We can suppose that the milder behavior constant. In contrast, the nonconservation results have (on the magnified scale) a 
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Variation of mass flow distributi?n through the nozzle at different times during the time-marching 
process, solut10n of the conservat10n form of the governing equations. Circle indicates exact analvt;cal 
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A detailed comparison of the steady-state mass flow variations (on a magnified scale) obtained with the 
nonconservat10n and conservation forms of the governing flow equations. 

sizeable _variation, with some spurious oscillations at both the inflow and outflow 
b?undanes. Of course, on a practical basis, when plotted on the scale shown in 
Fig. 7.11, these variations are not apparent, and the mass flow essentially appears 
to be a constant. 
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2. The steady-state mass flow results obtained with the conservation form are, on 
the whole, much closer to the exact analytical solution of p'A'V' = 0.579, shown 
in Fig. 7 .20 by the dashed line. 

The comparison shown in Fig. 7 .20 illustrates a general advantage of the con
servation form of the equations. The conservation form does a better job of 
preserving mass throughout the flow field, mainly because the mass flow itself is 
one of the dependent variables in the equations~the mass flow is a primary result 
from these equations. In contrast, the dependent variables in the nonconservation 
form of the equations are the primitive variables, and the mass flow is obtained only 
as a secondary result. Because the conservation form of the equations does a better 
job of conserving mass throughout the flow field, we can begin to understand why 
they are labeled the conservation form. 

Caution: The above discussion does not necessarily establish a definite 
superiority of the conservation form results over the nonconservation form results. 
Quite the contrary, let us take a look at the primitive variables; in particular, 
temperature, pressure, and Mach number at the nozzle throat, as tabulated in Table 
7 .12. The first row gives the exact, analytical results. The second and third rows give 
the numerical results for the nonconservation and the conservation forms, respec
tively. Note that the nonconservation form results are distinctly closer to the exact 
values. The last row in Table 7 .12 gives conservation form results for a grid with 
twice as many grid points (61 in comparison to 31 points). A comparison of the last 
two rows are an indication of grid independence for the conservation form results. 
Note that, by doubling the number of grid points, the steady-state numerical results 
are slightly closer to the exact, analytical values (but still not as close as the 
nonconservation form results with half as many grid points). For all practical 
purposes, we have grid independence with 31 grid points. 

TABLE 7.12 

Comparison of steady-state results; conservation 
versus nonconservation form 

p' T' P* M 
Po To Po 

Exact analytical 
solution 0.634 0.833 0.528 1.000 

Nonconservation 
form, numerical 
results (31 points) 0.639 0.836 0.534 0.999 

Conservation 
form, numerical 
results (31 points) 0.648 0.839 0.544 0.987 

Conservation 
form, numerical 
results ( 61 points) 0.644 0.838 0.540 0.989 
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The behavior of the residuals for the conservation form is not as good as that 
for the nonconservation form of the equations. For the nonconservation form, recall 
from Fig. 7. IO that at early times the residuals are on the order of 10- 1

, but they 
decay to about IO - 6 after 1400 time steps. In contrast, for the conservation form of 
the equations, the residuals at early times are on the order of I 0- 1 but decay only to 
about 10-3 after 1400 time steps. However, this is sufficient to produce the steady
state results, for all practical purposes. 

In summary, for the given flow problem, we cannot establish a clear 
superiority of the conservation form of the governing equations over the non
conservation form. In essence, from all our previous discussions, we can only make 
the following observations: 

l. The conservation form yields a better mass flow distribution. The conservation 
form simply does a better job of conserving mass. 

2. The nonconservation form leads to smaller residuals. The amount by which the 
residuals decay is often used as an index of "quality" of the numerical algorithm. 
In this sense, the nonconservation form does a better job. 

3. There is no clear superiority of either form in terms of accuracy of the results. 
The nonconservation form seems to produce slightly more accurate results for 
the primitive variables, and the conservation form seems to produce slightly 
more accurate results for the flux variables. The results in either case are certainly 
satisfactory. 

4. Comparing the amount of calculational effort to achieve a solution, as reflected 
in our extended discussions in Sec. 7.3 (nonconservation form) and Sec. 7.5 
(conservation form), we note that the solution of the conservation form requires 
marginally more work. Most of this is due to the need to decode the primitive 
variables from the flux variables; such decoding is not necessary when you are 
solving the nonconservation form. 

7.6 A CASE WITH SHOCK CAPTURING 

In Sec. 7 .2 we discussed the physical aspects of subsonic-supersonic isentropic flow. 
We emphasized that for a given nozzle shape there exists only one unique solution; 
the qualitative aspects of that solution are sketched in Fig. 7.2. Return to Fig. 7.2, 
and in particular focus on the pressure distribution shown in Fig. 7.2c. The pressure 
ratio across the nozzle, p,)p0 , comes out as part of the solution; i.e., we do not have 
to specify it to obtain the solution. (On the other hand, in the laboratory we would 
have to make certain that this particular pressure ratio somehow is maintained 
across the nozzle, or else the subsonic-supersonic isentropic solution may not 
occur.) In contrast, in Sec. 7.4 we discussed the physical aspects of purely subsonic 
flow through the nozzle and emphasized the fact that there are an infinite number of 
possible isentropic flow solutions to this problem, each one corresponding to a 
specific value of the pressure ratio p,)p0 . In this case, we have to specify p,)p0 to 
obtain a unique solution. The qualitative behavior of such subsonic flow solutions is 
sketched in Fig. 7 .13. 
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Return to Fig. 7.13, and let us ask the question: What happ~ns when the exit 
pressure is reduced slightly below the value (pe)c? The answer is that the nozzle 
becomes "choked;" i.e., the flow remains sonic at the throat, and the mass flow 
becomes a fixed value, no matter how much Pe is re~uced bel~w the value <I!e)c· The 
flow downstream of the nozzle throat goes supersomc, followmg for a c_ertam lengt? 
the isentropic flow solution described in Fig. 7 .2. Assu~e that the exit pressure ~s 
denoted by (pe)d, where (pe)d is less than (pe)c by a ~elativel~ small amo~t. In this 
case, a normal shock wave must form somewhere m the divergent port10n of ~e 
nozzle, as sketched in Fig. 7.21. Upstreai:n of th~ normal shock ':av~, the flow ~s 
given by the subsonic-supersonic isentropic solution. The fl~w, which_ is supersomc 
immediately in front of the shock, becomes subson~c i_mmedia~ely behmd the s~ock. 
Further downstream, this subsonic flow slows withm the diverg~nt ~uct, with a 
corresponding increase in pressure. These variations ~re ~ketch~d m Fig. 7.21. The 
pressure at the exit of the nozzle is equal to (pe)d, which is the rmpos_ed p~essure at 
the exit. The location of the normal shock wave within the nozzle is JUSt _nght such 
that the static pressure increase across the shock wave plus the further static pressure 
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FIG. 7.21 
Schematic of a nozzle flow with an internal normal shock wave. 
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increase downstream of the shock results in precisely (pe)d at the exit. (In contrast, 
the full subsonic-supersonic isentropic solution is shown by the dashed line in Fig. 
7 .21.) As in the case of the purely subsonic flow case, the present solution depends 
on the value of (pe)d- To have a unique solution, (pe)d must be specified. For more 
details on the physical nature of this type of flow, see the extensive discussion in 
Refs. 8 and 21. 

In the present section, we will numerically solve a nozzle flow with Pe 
specified such that a normal shock wave will form within the nozzle. In terms of our 
overall development of the basics of CFO in this book, this case is important 
because it will illustrate the aspect of shock capturing within a numerical solution of 
the flow. The nature of shock capturing was described in Sec. 2.10. Make certain to 
review that section before progressing further; it is important for you to have clearly 
in mind the idea of shock capturing and why it is necessary to use the conservation 
form of the governing equations to numerically capture shock waves within a flow 
field. Also, reexamine Fig. 1.32c, which itemizes those various ideas that feed into 
this application. 

7.6.1 The Setup 

Consider the nomenclature shown in Fig. 7.22. The normal shock wave is located at 
area A 1• Conditions immediately upstream of the shock are denoted with a subscript 
I, and those immediately downstream of the shock are denoted with a subscript 
2. The flow from the reservoir, where the pressure is p0 , to station I is isentropic 
(with constant entropy s 1). Hence, the total pressure is constant in this flow; that is, 
Po1 = p 0 . The total pressure decreases across the shock (due to the entropy increase 
across the shock). The flow from station 2 downstream of the shock to the nozzle 
exit is also isentropic (with constant entropy s2 , where s2 > s 1). Hence the total 
pressure is constant in this portion of the flow, with (p0)e = po2 • Keep in mind 
that po2 < Po, . For the flow in front of the shock, Ai is a constant value, equal 
to the area of the sonic throat, Ai = A 1• However, due to the entropy increase 
across the shock, the value of A* in the subsonic flow downstream of the shock, 
denoted by A2 , takes on the role of a reference value (just as in the purely subsonic 
case discussed in Sec. 7.4 ). Indeed, A2 > Aj . 

In this section, we will numerically calculate the flow through a convergent
divergent nozzle under the condition where a normal shock wave exists in the 
divergent portion. The nozzle shape will be the same as used in Sec. 7.3, namely, 
that given by Eq. (7.73). We will use the governing equations in conservation form 
and will employ the philosophy of shock capturing. However, before jumping into 
the numerical solution, let us examine the exact analytical results. 

EXACT ANALYTICAL RESULTS. For the nozzle shape specified by Eq. (7. 73), the 
area of the exit is A.)A1 = 5.95. Let us calculate the flow where Pe is specified as 
follows: 

Pe = 0.6784 
Poi 

(specified) (7.123) 
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FIG. 7.22 
Nomenclature for the normal shock case. 

Note that this value is considerably below the values specified in Sec. 7.4 for the 
purely subsonic case; there, we specified, for example, that p.Jpo = 0.93 and 
calculated the corresponding subsonic flow through the nozzle. ~lso note that the 

I 1 = o 6784 is considerably higher than that which came out of 
va ue Pe1Po1 · . . . . . S 7 2 h e found that 
the subsonic-supersomc isentropic solution m ec. . , w ere w . 
p.Jpo = 0.016. Hence, the value of pjp01 = 0.6784 specified in the curre?t ~ection 
should be about right to force a normal shock wave to stand s~mewhe~e m~ide the 
divergent portion of the nozzle. Let us first calculate the precise loc~tion, 1.e., the 
precise area ratio inside the nozzle, where th~ no~al shock wave wi_ll be locat_ed, 
compatible with the specified exit pressure given m Eq. (7.123). This calculation 
can be done in a direct fashion as follows. 

The mass flow through the nozzle can be expressed as 

. Po,Aj 
m=--

vfo 

l'.. (-2-)(y+l)/(y-1) 

R y + 1 
(7.124) 

See, for example, Refs. 8 and 21 for further discussion. That is, for a given To, 

m cxpoA* 

Since the mass flow is constant across the normal shock wave in Fig. 7 .22, we have 

A* A* (7 .125) 
P01 I = P02 2 

(Keep in mind from our previous conversations that A* is always defined as the 
sonic throat area; in the supersonic flow ahead of the shock, Aj is equal to the actual 
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~hroat area Ai, because ~he flow is actually sonic at Ai, whereas behind the shock Ai 
is the area t?e fl~w behmd the shock would have to be reduced to in order to make it 
locally some. Smee the flow behind the shock is always subsonic then A* never 
eq~als th_e a~tual physi_cal t~oat area in the nozzle itself, because' the eniopy in 
reg10n 2 1s higher than m region 1.) Forming the ratio p,,A.)p0 A* where A* = A* 
and invoking Eq. (7 .125), we have ' 2 ' e 2 ' 

PeAe _ PeAe = Pe Ae 
P0iAi Po,Aj Po, A1 (7.126a) 

The right-hand side ofEq. (7.126a) is known, because p.)p0, is specified as 0.6784 
and A.)Ai = 5.95. Thus, from Eq. (7.126a) 

PeAe 
~ = 0.6784(5.95) = 4.03648 
Po, e 

(7.126b) 

From the isentropic relations given by Eqs. (7.6) and (7.7), we have, respectively, 

Ae=_l [-2-(l y-1 2)](y+I)/2(y-I) 
A; Me y + 1 + 2 Me (7.127) 

p ( y-1 )-y/(y-1) 
__!__ = 1 +--M2 

Po, 2 e 
and 

(7.128) 

Substituting Eqs. (7.127) and (7.128) in (7.126b), we have 

_1_(_2_)(y+l)/2(y-l)[ y-1 2]-1/2 
Me y + 1 1 + -2-Me = 4.03648 (7.129) 

Solving Eq. (7.129) for Me, we have 

Me= 0.1431 (7.130) 
From Eq. (7.128), we have 

p [ y 1 ]-3.5 
__!__= l+y(0.1431)2 =0.9858 
Po, (7.131) 

The total pressure ratio across the normal shock can be written as 

Po, Pe 
(7.132) 

Substituting the numbers from Eqs. (7.123) and (7.131) into Eq. (7.132), we have 

Po2 0.6784 
Po, = 0. 9858 = 0·6882 (7 .133) 
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The total pressure ratio across a normal shock is a function of M 1 in front of the 
shock, given by (see Ref. 45) 

Po2 = [ (y+l)~f ],/(;·-!)[ /+1 ]l/(;·-l) 

po, (y - 1 )M1 + 2 2yM1 - (y - 1) 
(7.134) 

Combining Eqs. (7.133) and (7.134) and solving for M 1, we have 

M1 = 2.07 (7.135) 

Substituting Eq. (7.135) into (7.6), we have 

(7.136) 

The exact, analytical location of the normal shock wave is now known~it stands at 
a location in the nozzle where the area ratio is 1.79. From Eq. (7.73) for our nozzle 
shape, this corresponds to a station of x!L = 2.1. All other properties across the 
shock wave now fall out from the result that M1 = 2.07. For example, from Ref. 21, 
the static pressure ratio across the shock and the Mach number immediately behind 
the shock are obtained from 

P2 
= 1 +l(Mf-1) = 1 + 1.167[(2.07)2 -1] =4.83 

P1 y + 1 
(7.137) 

and 

M = {1 + [(y- 1)/2]Mf}
112 

= 1 + 0.2(2.07)2 = 0 _566 [ l 
l/2 

2 
yMf - (y - 1)/2 1.4(2.07)2 

- 0.2 
(7.138) 

The exact, analytical solution obtained above will be compared with the 
numerical solution in subsequent sections. 

BOUNDARY CONDITIONS. The subsonic inflow boundary conditions are treated 
exactly as described in Sec. 7 .5 .2 and given by Eqs. (7 .116) and (7 .118); hence, no 
elaboration will be given here. 

The outflow boundary condition for the present problem is also subsonic. A 
generic discussion of a subsonic outflow boundary was given in Sec. 7.4.1, where 
we emphasized that the exit pressure Pe must be specified, but all other properties 
are allowed to float. The same applies to the present calculation. However, in Sec. 
7.4.1 we proceeded to couch the details of the numerical implementation of the 
subsonic outflow boundary condition in terms of the solution of the nonconserva
tion form of the governing equations. In contrast, in the present calculation we are 
using the conservation form of the equations; hence the numerical implementation 



362 NUMERICAL SOLUTIONS OF QUASI-ONE-DIMENSIONAL NOZZLE FLOWS 

is slightly different, as follows. Keep in mind that U u and u th · 
d d · bl . 1, 2, 3 are e pnmary 

epen ent vana es m the ~oveming equations. Hence, we obtain u
1 

and u
2 

at the 
downstream boundary by lmear extrapolation from the adjacent two interior points. 

(U1)N = 2(U1)N-1 - (U1)N_ 2 (7.139a) 

(U2)N = 2(U2)N-I - (U2)N-2 (7.139b) 

Next, we decode V~ from (U1)N and (U2 )N using Eq. (7.103). 

V~ = (U2)N 
(U1)N (7.140) 

T~e _value of U3 at grid point i = N is determined from the specified value of 
PN - 0.6784 as follows. From the definition of U

3
, 

U3 = p'(~+2'.v'2)A' 
y - I 2 (7.141) 

However, e' = T', and from the equation of state, p' = p'T'. Hence Eq. (7 141) 
becomes ' · 

'A' 
U3 = }!____ + 2'. p'A'V'2 

y - I 2 (7.142) 

Since U2 = p'A'V', Eq. (7.142) becomes 

p'A' 
U3 =--+2'.U2V' 

y - I 2 (7.143) 

Evaluating Eq. (7.143) at the downstream boundary, we have 

p~A' y 
( U3) N = --+ - ( U2) V 1 

y-J 2 N N (7.144) 

Since p~ is specified as 0.6784, Eq. (7.144) becomes 

(U) _ 0.6784A' y , 
3 N - y - I + 2 ( U2) N V N (7.145) 

Equati?n (7 .145! is the manner in which the specified exit pressure is folded into the 
numencal solution. 

~1''.f!IAL c_~NDITIO_NS. For the present calculations, we choose the following 
1mtial cond1tions, which ~r~ ~ualitatively similar to the final solution. From x' = o 
to 1.5, we use ~he same m1t1al conditions as given by Eqs. (7.120a) to (7.120d). 
However, for x > 1.5, we use 

p' = 0.634 - 0. 702(x' - 1.5) 
T' = 0.833 - 0.4908(x' - 1.5) 

p' = 0.5892 + 0.10228(x' - 2.1) 
T' = 0.93968 + 0.0622(x' - 2.1) 

} for 1.5 :=:; x' :=:; 2.1 

} for2.l :=:; x' :=:; 3.0 

(7.146a) 
(7.146b) 

(7.146c) 
(7.146d) 
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As before, the initial condition for V' is determined by assuming a constant mass 
flow; it is calculated from Eq. (7.121). 

7.6.2 The Intermediate Time-Marching 
Procedure: The Need For Artificial Viscosity 

Perhaps the most dramatic distinction between the present shock-capturing case and 
our previous calculations in this chapter is the matter of artificial viscosity. Think 
back about our calculations so far; they have been carried out with no artificial 
viscosity explicitly added to the numerical calculations. The solutions of the 
subsonic-supersonic isentropic flow (Sec. 7.3) and the purely subsonic flow (Sec. 
7.4) did not require additional numerical dissipation~there was enough dissipation 
inherent in the algorithm itself to yield stable and smooth solutions. Furthermore, it 
made no difference whether the governing equations were used in nonconservation 
form (Sec. 7.3 and 7.4) or in conservation form (Sec. 7.5). The requirement for 
artificial viscosity is essentially disconnected with which form of the equations is 
used. However, as we will see in the next section, when we practice the art of shock 
capturing, the smoothing and stabilization of the solution by the addition of some 
type of numerical dissipation is absolutely necessary. At this stage, return to Sec. 6.6 
where the matter of artificial viscosity is introduced. Read this section again before 
proceeding further so that you can more fully understand what we have to do to 
obtain a reasonable solution for the nozzle flow with a normal shock wave standing 
inside the nozzle. 

To proceed with this solution, we will add artificial viscosity in the manner 
described in Sec. 6.6. Specifically following Eq. (6.58), we form an expression 

si'i = Cxl(p'~'.~1 - 2(p'( + (p'(-11 (u1' - 2u1' + ur ) (7.147) 
(p')t + 2(p')t' + (p')t 1 + I 1 1 - I 

1+! 1 1-l 

Whereas beforehand we would calculate a predicted value (using MacCormack's 
technique) from 

[;t;+M = (U{ + (;~):' !i.t' 

we now replace this with 

(01)/' +M = (u1t + (8
8
~' )'.' ti.t' + (s,t 

( 02t + t,t' = ( u2)'.' + ( 8
8
~2 )'.' ti.1' + (s2)'.' 

( [J )t'+t..1' = (U )1' + (8U3)t' ti.t' + (S )t' 
3 l 3 l 8t' . 3 l 

l 

(7.148) 

(7.149) 

(7.150) 
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where U1, U2, ~nd U3 are our dependent variables in Eqs. (7.101a) to (7.101c) and 
S1, S2,_and S3 m Eqs. (7.148) to (7.150) are obtained from Eq. (7.147) by using; 
respectively, U1 , U2, and U3 on the right-hand side. Similarly, on the corrector step 
whereas beforehand we would calculate the corrected values from ' 

ui'+!'J.t' = u.' + (au) !it' , , at' 
av 

we now replace this with 

(U1( +/'J.t' = (U1( + (at]) av !it'+ (S\)'. 

(U2(+tit' = (U2( + (at2}v !it'+ (S2)'. 

(U3);' +t.t' = (U3( + (~~) av !it'+ (S3)'. 

(7.151) 

(7.152) 

(7.153) 

where S1, S2, and S3 are obtained from an equation patterned after Eq. (6.59), 
namely, 

_, , c 1r .. ,)1'+t.1' _ 2 r .. ,)1'+t.1' + r .. ,)1'+t.1'I st + f'i.t = x \J-' z + I \J-' i \J-' i - I 

z (p');~ I + 2(}5')'.' + (p')'.~ I 

X [(U);}/1
' - 2(U)/'+t.t' + (U)/~+/11

] 

(7.154) 

The values of S'_,, S2__, and S3 ~re obtained from Eq. (7.154) by using, respectively, 
the values of U 1, U 2 , and U 3 on the right-hand side. 

The rest of the shock-capturing solution proceeds in exactly the same manner 
as our previously described case in Sec. 7.5; hence no further elaboration will be 
given here. We will proceed directly to a discussion of the steady-state results. 

7.6.3 Numerical Results 

The following numerical results were obtained with 61 grid points distributed 
evenly through the nozzle rather than the 31-point grid used for most of our 
previous results. Since in the shock-capturing approach using MacCormack's finite
di~erence technique the captured shock wave is spread over several grid points, it is 
desirable to have a finer grid so as to more precisely define the location of the shock. 
Also, for_ the following results, a Courant number of 0.5 was employed. The 
conservatI~n form of the governing flow equations was used in exactly the same 
manner as m Sec. 7.5 (except for the numerical implementation of the downstream 
boundary conditions, which has already been described in Sec. 7.6.1 and for the 
addition of artificial viscosity as described in Sec. 7.6.2). The pressure ratio at the 
nozzle exit is specified asp: = p,!p0 = 0.6784 and is held fixed, invariant of time. 

. ~o ?egin with, it is instructional to examine what happens when no artificial 
v1scos1ty 1s added to the calculations. Figure 7.23 shows the numerical solution for 
the pressure distribution through the nozzle (the solid line) compared with the exact, 
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Shock-capturing numerical results (solid line) for the pressure distribution through the ~ozzle. No 
artificial viscosity. Results shown are for 1600 time steps. Companson with the exact analytical results 
(solid circles connected by dashed curve). 

analytical results (the solid circles connected by the dashed curve). The_ num~rical 
solution is that obtained after 1600 time steps, corresponding to a nond1mens1onal 
time of 17 .2. No artificial viscosity has been added to this calculation. At 1600 time 
steps, the numerical results are not steady-state results. Althou~h the nu~erical 
results are trying to capture the shock wave in about the right locat10n, the residuals 
are still fairly large-----on the order of 10-1. Moreover, as time progresses beyond 
1600 time steps, the residuals start to grow instead of decreasing as they should. By 
2800 time steps, the attempted solution has not blown up, but the oscillati?ns ~a~e 
grown much more pronounced, and some o~ the resi~uals h~ve grown to 10 . This is 
a totally unsatisfactory solution, and we will not discuss it further. It needs to be 
fixed by the addition of artificial viscosity, as discussed below. 

When artificial viscosity is added to the calculation via Eqs. (7.147) to (7._154) 
and the adjustable constant Cx is set equal to 0.2, the foll~wing res\llts ~re obtamed. 
The steady-state pressure distribution through the nozzle is shown m Fig. 7.24. The 
numerical results (the solid curve) are shown after 1400 time steps-the converged, 
steady state. The exact, analytical results are given by the s_olid circles c_onnected by 
the dashed curve. From Fig. 7.24, we make the followmg observations: 
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Shock-capturing numerical results (solid c ) r. h . . . artificial viscosity· C = 0 2 Result h urve c: or t e pressure distnbut10n through the nozzle. With 
, x · . s s own are ,or 1400 tI t C · · 

results (solid circles connected by dashed curve). mes eps. ompanson with exact, analytical 

1. The addition of art_ificial viscosity has just about eliminated the oscillations that 
were encountered m the case with no artificial . . 
the numerical results in Fig. 7.24 (with C = 0 ;1)scaosd1tyth. The. coF~trast betwe_en 
C = o O) · d · . . x · n ose m 1g. 7.23 (with 

x . is r~atlc. ~his is what artificial viscosity does~smooth the results 
and decrease (1f not virtually eliminate) the oscillations. 

2. Close examination of Fig 7 24 h h . . eliminated Th . . . ~ o".""s t at the osc11lat10ns are not completely 
stream of ~he s:e c1s_ a small os.c1~lat10n in the pressure distribution just down-

more art
.fi . 1 _o k,_however, it IS not that bothersome. Results obtained with 
1 cia v1scos1ty (C = o 3) h th . d. H x . s ow at even this small oscillation virtually 

ot:~~e:i~~tio::e~er~~~;d m::i~;~ificial viscosity can compromise other aspects 

3. ~;pe:ruemd enh· calkresults in Fig. 7.24 show that artificial viscosity tends to smear the 
s oc wave over more grid · t Th the shock that . pom s. e more extreme changes across 

diminished by t:re. prled~cted fby ~he . exa~t, a~alytical results are slightly 
e me us1on o art1fic1al v1scos1ty in th · 1 

!:;t :~c;;::~~me";,~g of the shock wave due to increased '.,:',:,:~~:se:::
1

/; 
es1ra e aspects of addmg extra numerical dissipation to the 
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solution. Some modem CFD methods (beyond the scope of this book) have 
successfully improved this situation; by using innovative ideas from applied 
mathematics, current researchers are able to reap the benefits of adding 
numerical dissipation when and where in the flow field it is really needed 
and still preserve the sharpness of the captured shock wave. Such matters are left 

to your future advanced studies of CFD. 

The steady-state Mach number distribution is shown in Fig. 7.25; these results 

simply reinforce the comments made above. 
The detailed steady-state numerical results, obtained after 1400 time steps, are 

tabulated in Table 7 .13 for comparison with numbers obtained with your own 
computer program. Just as a reminder, these results are obtained by using the 
conservation form of the governing equations, artificial viscosity where Cx = 0.2, a 
Courant number of O .5, and 61 points evenly distributed along the nozzle. The 
solution corresponds to a specified exit pressure ratio pjp0 = 0.6784. Scanning 
down the various columns for p', p', etc., in the vicinity of the shock wave (which is 
theoretically located at grid point i = 43, i.e., at x' = 2.1) we see just how small is 
the slight oscillation downstream of the shock. However, focus for a moment on the 
column for mass flow; here we see that m = p 'A I V' is essentially constant upstream 
of the shock wave at a value of p' A 'V' = 0.582. (Recall that the exact, analytical 
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FIG. 7.25 
Shock-capturing numerical results (solid curve) for the Mach number distribution through the nozzle. 
With artificial viscosity; Cx = 0.2. Results shown here are for 1400 time steps. Comparison with the 

exact, analytical results (solid circles connected by dashed curve). 
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TABLE 7.13 A CASE WITH SHOCK CAPTURING 369 

Shock capturing, steady-state numerical results 
X A p V T p 

X A I 
To 

M ,;, 
I p V L A* Po ao Po - T p L A• Po ao To M ,;, Po 31 1.500 1.000 0.633 0.921 0.832 0.527 1.009 0.583 

I 0.000 5.950 1.000 0.098 32 1.550 1.005 0.596 0.973 0.812 0.484 1.080 0.583 
2 0.050 5.626 

1.000 1.000 0.098 0.582 33 1.600 1.022 0.549 1.040 0.786 0.431 1.173 0.583 0.999 0.103 3 0.100 5.312 
1.000 0.999 0.103 0.582 34 1.650 1.049 0.507 1.096 0.761 0.386 1.256 0.584 0.999 0.1 IO 4 0.150 1.000 0.998 0.1 IO 0.582 35 1.700 1.088 0.462 1.159 0.734 0.339 1.353 0.583 5.010 0.998 0.116 5 0.200 0.999 0.997 0.116 0.582 36 1.750 1.137 0.424 1.210 0.709 0.301 1.437 0.584 4.718 0.997 0.124 6 0.250 0.999 0.996 0.124 0.582 37 1.800 1.198 0.383 1.268 0.680 0.261 1.538 0.582 4.438 0.996 0.132 7 0.300 4.168 

0.998 0.995 0.132 0.582 38 1.850 1.269 0.351 1.311 0.658 0.231 1.617 0.584 0.995 0.140 0.998 8 0.350 0.993 0.140 0.582 39 1.900 1.352 0.315 1.368 0.628 0.198 1.725 0.582 3.910 0.994 0.150 9 0.400 0.997 0.991 0.150 0.582 40 1.950 1.445 0.289 1.398 0.611 0.177 1.788 0.584 3.662 0.992 0.160 IO 0.450 3.425 
0.997 0.989 0.160 0.582 41 2.000 1.550 0.256 1.462 0.574 0.147 1.930 0.581 0.990 0.172 II 0.500 0.996 0.986 0.172 0.582 42 2.050 1.665 0.318 1.207 0.677 0.215 1.467 0.639 3.200 0.988 0.184 12 0.550 2.985 
0.995 0.983 0.184 0.582 43 2.100 1.792 0.524 0.697 0.872 0.457 0.747 0.655 0.985 0.198 13 0.600 0.994 0.979 0.198 0.582 44 2.150 1.929 0.619 0.521 0.925 0.573 0.542 0.622 2.782 0.982 0.213 14 0.650 0.993 0.975 0.214 0.582 45 2.200 2.078 0.613 0.501 0.926 0.567 0.521 0.638 2.589 0.979 

15 0.230 0.991 0.970 0.700 2.408 0.974 0.248 
0.231 0.582 46 2.250 2.237 0.643 0.436 0.939 0.604 0.450 0.627 

16 0.750 0.990 0.964 0.249 0.582 47 2.300 2.408 0.643 0.410 0.943 0.607 0.422 0.635 2.237 0.969 0.268 17 0.800 2.078 
0.987 0.957 0.270 0.582 48 2.350 2.589 0.660 0.368 0.950 0.627 0.378 0.629 

18 
0.963 0.291 0.985 0.948 0.293 0.850 1.929 0.956 0.316 0.982 

0.582 49 2.400 2.782 0.662 0.344 0.953 0.631 0.353 0.635 
19 0.900 0.938 0.319 0.582 50 2.450 2.985 0.671 0.314 0.959 0.643 0.321 0.629 1.792 0.947 0.343 20 0.950 0.978 0.926 0.347 0.582 51 2.500 3.200 0.675 0.294 0.958 0.647 0.300 0.634 1.665 0.936 0.373 21 1.000 0.974 0.912 0.378 0.582 52 2.550 3.425 0.680 0.271 0.964 0.655 0.276 0.630 1.550 0.924 0.407 22 1.050 0.969 0.895 0.413 0.582 53 2.600 3.662 0.682 0.253 0.965 0.658 0.258 0.633 1.445 0.909 0.443 0.963 23 I.JOO 0.875 0.452 0.582 54 2.650 3.909 0.687 0.235 0.965 0.663 0.239 0.632 1.352 0.892 0.483 24 1.150 0.955 0.852 0.494 0.583 55 2.700 4.168 0.687 0.221 0.969 0.666 0.224 0.632 1.270 0.872 0.526 0.946 25 1.200 0.825 0.541 0.583 56 2.750 4.437 0.690 0.206 0.970 0.669 0.209 0.631 1.198 0.848 0.573 26 1.250 0.936 0.794 0.593 0.583 57 2.800 4.718 0.692 0.194 0.970 0.671 0.197 0.633 I. 138 0.821 0.624 27 1.300 0.924 0.759 0.649 0.583 58 2.850 5.009 0.694 0.182 0.971 0.674 0.184 0.631 1.088 0.791 0.678 28 1.350 0.910 0.720 0.710 0.583 59 2.900 5.312 0.694 0.171 0.973 0.675 0.174 0.631 1.050 0.757 0.734 29 1.400 1.022 

0.894 0.677 0.776 0.583 60 2.950 5.625 0.697 0.161 0.972 0.677 0.164 0.632 0.719 0.793 0.876 30 1.450 1.006 0.630 0.847 0.583 61 3.000 5.950 0.698 0.152 0.972 0.678 0.154 0.632 0.679 0.854 0.856 0.581 0.923 0.583 

value is 0.579-the numerical result is ve 1 . . .. 
wave, m takes a substantial jum d ry c ose.) But m the v1cm1ty of the shock subsonic-supersonic isentropic flow solution shown in Fig. 7 .19 and tabulated in 
further downstream of the sho!. a;av:~ems to settle in to a value of about 0.632 Table 7 .11. However, in the vicinity of the shock wave, the case with artificial 

A further look at this spurious m fl b h . . viscosity takes an almost quantum jump in mass flow, leveling out at the nozzle exit 
Here, the nondimensional mass flow ,~s,s '?w e av1or is provided in Fig. 7.26. to a value about 8.6 percent higher than at the nozzle inlet. Clearly, the artificial 
nozzle. The scale of the graph is th P V ~ plotte~ ve~sus distance through the viscosity terms added to the numerical solution of the governing equations are . . e same as t at used m Fig 7 19 fi h . 

acting like a source of mass flow in the vicinity of the shock wave. This is not hard supersomc 1sentropic flow case Th l"d r · · or t e subsomc-
(obtained after 1600 time steps). for ;h so 

I 
m~ ~orresp?n~s to the numerical results to imagine when you again examine Eqs. (7 .14 7) to (7 .154 ). Note that the values of 

dashed line gives the numerical rees~~:e ;;: ~o artificial _viscos~ty ~ Cx =. O); t_he S)' obtained from Eq. (7 .14 7) and those for sf' +flt' obtained from Eq. (7 .154) are 
(Cx = 0.2). Note that with no art'fi . 1 . t e_ case with artificial v1scos1ty large in those regions of the flow where the change in pressure gradients are large; 
massive, vibratory behavior in the I crn 1 v1~cos1ty the mass flow exhibits a this is the role of the leading factor involving pressure in these expressions-it plays 
unacceptable as stated before In :enera vicinity of the shock wave-totally the role of a "sensor" which increases the amount of artificial viscosity in those ' · con rast the cas 'th 'fi · · . excellent mass flow behavior t , f e w1 art1 c1al v1scos1ty exhibits regions where the pressure gradients are changing rapidly (the second derivative of ups ream o the h k . 
accuracy every bit as good as th t fl . s oc wave, with a quality and the pressure), such as when the ~scillatc:,ry b~havior discussed earlier tries to occur. 

a re ected m the steady-state results for the Furthermore these values of st and st +flt are directly added to the calculated 
' l l 
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FIG. 7.26 

Co.mparison of mass flow distributions with artificial viscosi . . . 
artificial viscosity (solid line· e = O) S I'd . 

1 
. d. ty (dashed lme, ex = 0.2) and without 

' x · 0 1 circ e m 1cates exact analytical result. 

;ea~~~st:!tt: ::),~~~~is~h(7.148) ~o (7.150) and ~7._151) to (7.154). In particular, 
. . e mass ow. Therefore, it is no surprise that the artificial 

v1scos1ty governed by the scheme originally described in Sec 6 6 would le d t 
source terms for mass flow. · · a o 

Is_ this ma~s flow behavior for cases with artificial viscosity acceptable? Th 
answer 1s essentially yes when · d h . · e 
1 d you cons1 er t e alternative. Clearly shock capturin 
ea_ s _to ~nacceptable oscillations (and sometimes unstable beh . ) h g 

artificial viscosity is used in the calculati ~v1~r ":' en no 
at least for the explicit MacCormack te~:::.iq:~ ':e h:::e t~::: ~~~;:~! v1s~osi~, 
chhapkter. In g~neral, the results for the primitive variables that are obU:i:gedm _this 
s oc -captunng solution "th rt"fi . 1 . . via a w1 a I eta viscosity are acceptable Th. . h . 

~:b~~z:i! ~h::~/i~:~:: c~:!~e ~it~
4
c~:a:i~;1:~: ~t::t;sta: flow~~:td :va~:. ~~ 

the exact analytical values. The case with no artificial visc.os:tyn ~o:poareht emlrw1dth 
,x ,asaeay 

TABLE 7.14 

Shock-capturing solution; values at the nozzle throat 

p V T p 
Po ao To M ,;, 

Po 
Exact analytical values 0.634 0.913 0.833 0.528 1.0 Numerical values: 0.579 

ex= 0 0.735 0.784 0.879 0.646 ex= 0.1 0.629 0.926 
0.836 0.576 

ex= 0.2 
0.831 0.523 1.016 0.583 0.633 0.921 ex= 0.3 
0.832 0.527 1.009 0.583 0.640 0.911 0.836 0.535 0.997 0.583 
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TABLE 7.15 
Shock-capturing solution; values at the nozzle exit 

p V T p 
M ,;, 

Po ao To Po 

Exact analytical values 0.681 0.143 0.996 0.678 0.143 0.579 
Numerical values: 

ex= 0 0.672 0.148 1.009 0.678 0.147 0.591 
ex= 0.1 0.694 0.151 0.978 0.678 0.153 0.624 
ex= 0.2 0.698 0.152 0.972 0.678 0.154 0.632 
ex= 0.3 0.698 0.153 0.972 0.678 0.155 0.634 

been affected at the throat by the oscillations working their way upstream from the 
shock wave; the comparison with the exact analytical values shows that the 
numerical results with no artificial viscosity are totally unacceptable. In contrast, 
the results with artificial viscosity are quite good. Indeed, the results at the nozzle 
throat obtained for the case with ex = 0.2 are the most accurate of any case we have 
examined in this chapter! In Table 7.15, we tabulate the steady-state flow-field 
values at the nozzle exit, downstream of the captured normal shock wave. It is 
interesting to note (but not too surprising) that as the artificial viscosity is increased, 
the numerical results for the exit flow-field variables progressively move further 
away from the exact analytical values. Indeed, the results from the case with no 
artificial viscosity give the best comparison with the exact analytical results. On the 
other hand, the case for ex = 0 is tabulated after 1600 time steps; as we have 
mentioned earlier, this case further deviates away from the steady state as time 
progresses and may very well blow up after enough time steps are taken. Therefore, 
the comparison associated with ex = 0 in both Tables 7 .14 and 7 .15 is really moot. 

With this, we end our discussion of shock capturing in a convergent-divergent 
nozzle. This has been a particularly relevant section, because: 

1. It is an illustration of the shock-capturing philosophy as first discussed in Sec. 
2.10. This is one of the two basic approaches for handling shock waves in CFO, 
the other being shock fitting. The shock-capturing philosophy is, by far, the most 
prevalent in CFO today. 

2. It was our first application of artificial viscosity, which allowed us to examine 
some of the pros and cons of explicitly increasing the amount of numerical 
dissipation in the solution. 

3. It allowed us the opportunity to calculate yet another flow using the conservation 
form of the governing equations. This form of the equations is, by far, the most 
prevalent in CFO today. 

Also, let us wax philosophical for a moment. In this section, we have calculated a 
flow which contains a shock wave without doing anything special to account for the 
shock; that is, we have employed a form of the governing Euler equations for an 
inviscid flow and have imposed boundary conditions across the nozzle that, in 
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nature, calls for a shock wave to be present in the nozzle. The numerical solution of 
the Euler equations senses this need for a shock wave and establishes it within the 
flow. Of course, this is the essence of shock capturing. But isn't it rather awesome 
that a set of equations for an inviscid flow, namely, the Euler equations, will allow 
the solution of such a flow with shock waves without us adding some additional 
theoretical baggage to the equations to alert them to the existence of the shock? Of 
course, some of the awesomeness is diminished when we realize that the numerical 
solution is really not solving the exact Euler equations, but rather a set of modified 
differential equations in the spirit of our discussion in Sec. 6.6, and that these 
modified equations have viscouslike terms on the right-hand side. Moreover, during 
the numerical solution, we are adding even more numerical dissipation via the 
artificial viscosity terms. Therefore, what we think is the numerical solution of the 
Euler equations is really a solution of some "mildly viscouslike" equations, which 
in turn have the mechanism (through these viscouslike terms) to create a shock 
wave. In any event, it is still somewhat a marvel to this author that not only will 
shock waves form in such a numerical solution, but they will be the correct shock 
waves with (more or less) the correct jump conditions across the wave as well as 
standing at the correct location in the flow. 

7.7 SUMMARY 

This brings to a conclusion our application of CFD to the time-marching solution of 
quasi-one-dimensional nozzle flows. Such flows are particularly useful in this regard 
because, within the framework of a relatively familiar flow problem, many of the 
important facets of CFD as discussed in Chaps. I to 6 can be illustrated. The flow of 
ideas in the present chapter can be diagrammed on the road map shown in Fig. 7.27. 
Once again we put the road map at the end of the chapter because it has the most 
significance after we have labored through our various cases. Examining Fig. 7.27, 
we make the following observations about the content of Chap. 7: 

1. It has provided a nonstop illustration of the philosophy of time marching to 
obtain steady-state solutions in the limit oflarge times. The use of time-marching 
solutions in CFD is extensive. 

2. Reading across the top row of blocks in Fig. 7.27, we have four of the most 
important aspects of CFD, namely, the choice between the nonconservation form 
and the conservation form of the governing equations, the use of the con
servation form in conjunction with the shock-capturing philosophy, and the 
corresponding need for artificial viscosity. 

3. We applied both the nonconservation and the conservation forms for solutions of 
the subsonic-supersonic isentropic nozzle flow and compared the results. For all 
practical purposes, the results are the same, except that the conservation form 
yielded a slightly better mass flow distribution. Artificial viscosity is not needed 
to obtain solutions for this flow, and none was used. 

4. The solution of the purely subsonic flow provided an opportunity to explore the 
effect of the numerical implementation of boundary conditions-a vital aspect of 
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Time-marching solutions 

Conservation Shock Artificial 
Nonconservation 

form of the capturing viscosity 
form of the 
governing governing 

equations equations 

Subsonic-supersonic 1--- isentropic nozzle flow 

Purely subsonic 
~ 

isentropic nozzle flow 

Subsonic-supersonic 
nozzle flow with a normal 1--

shock standing inside 
the nozzle 

FIG. 7.27 
Road map for Chap. 7. 

CFD. Here, the subsonic flow case is driven by afi~ed pressure ratio betwe~n the 
exit and inlet, invariant with time. This case provided a_ fu~her oppo;umi ~ 
discuss the various aspects of subsonic and supersomc mflow an out. o 
boundary conditions. We chose to use the nonconservation form oft~e eci;at10ns 
for this solution-we could have just as well used the conservation orm. 

5 The case with a normal shock wave standing inside the_ nozzle was ~n 
. o ortuni for the confluence of four important streams m CF_D, name y, 

:pthe ne:ssary use of the conservation form of the governing equations, (~) t~e 
~}plication of the shock-capturing philosophy, (c) the _necessary use of ~fici~ 
viscosity to obtain a quality solution, ~d (d) once agam, the way that a su some 
outflow boundary condition can be implemented. 
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WAVE 

The error therefore /yeth neither in the abstract 
nor in geometry, nor in physicks, but in the 
calculator, that knoweth not how to adjust his 
accompts. 

Galileo Galilei, 1632 

8.1 INTRODUCTION 

!n the above. quote, Galileo was expressing a concern with the role of mathematics 
m the analysis of r~al ph~sical pr?blems. Prior to the seventeenth century, driven by 
the _concepts of Aristot~han physics, the prevailing method was to accept geometric 
pun~ as the explanation for ~uch physical phenomena. The concepts of the 
physical world were bent and ad3usted so as to be in harmony with perfect geometry. 
For example, a perfect sphere touches a plane at only one point, whereas a real ball 
(such as a ~asketball)_tou~hes the floor over a finite surface area-the basketball has 
a small fimte fl~t :eg1on m contact with the floor; hence it is not a perfect sphere. 
Early mathematicians would have assumed the basketball to be a perfect sphere 
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Expansion corner 

FIG. 8.1 
Centered Prandtl-Meyer expansion wave. 

touching the floor at only one point; they would not have considered an analysis of a 
ball with a flat spot to be of any value in mathematics, or in nature. In the early 
seventeenth century, Galileo was reacting to this altitude. In his Dialogue Con
cerning the Two Chief Sy.terns of the World, the Ptolemaic and the Copernican, 
from which the above quote is taken, Galileo argued that the role of mathematics is 
to adjust to the real physical world, and not vice versa. The mathematics for 
studying the basketball should be adjusted to account for the flat spot, not rule it 
away. The person making the calculation (the "calculator" in the above quote) must 
know how to adjust his or her mathematical analysis (the "accompts" in the above 
quote) to match the physics. Little did Galileo realize that he was estabilishing a 
basic tenet of CFD, namely, the effort to adjust numerical mathematics to the real 
physical problem. We will see a graphic example of such a philosophy in the present 
chapter. 

The type of flow highlighted in the present chapter is a two-dimensional, 
inviscid, supersonic flow moving over a surface. In this type of problem, it is 
particularly vital to couple the surface boundary condition into the flow-field 
calculation-to make certain that the inviscid flow readily sees the shape of the 
surface over which it is flowing. Here we will be seriously concerned with how to 
"adjust" the numerical mathematics to properly "see" the shape of the boundary. 

The discussion in the present chapter is an illustration of the downstream 
marching (or space marching) philosophy described in Sec. 6.4.3. This is in 
contrast to the time-marching technique illustrated in Chap. 7. Downstream 
marching is used in many standard CFD codes today, so this chapter has much 
relevance. Make certain to review Sec. 6.4.3 before proceeding further. MacCor
mack's space marching technique as described in Sec. 6.4.3 will be applied for the 
solution of the two-dimensional supersonic flow problem highlighted in the present 
chapter. 

Specifically, we choose to numerically solve the inviscid flow over an 
expansion comer, as sketched in Fig. 8.1. This problem is in keeping with our 
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philosophy of choosing flow problems for which an exact analytical solution exists 
in order to obtain a reasonable feeling for the accuracy of the numerical technique. 

Finally, the road map for this chapter is given as Fig. 8.9, near the end of the 
chapter. Make certain to examine this road map as you progress through the various 
sections. In addition, reexamine Fig. 1.32e, which illustrates the flow of various 
ideas that impact this application. 

8.2 INTRODUCTION TO THE PHYSICAL 
PROBLEM: PRANDTL-MEYER EXPANSION 
WAVE-EXACT ANALYTIC SOLUTION 

A centered, Prandtl-Meyer expansion wave is illustrated in Fig. 8.1. Here, a 
supersonic flow is expanded around a sharp expansion comer. An expansion wave, 
made up of an infinite number of infinitely weak Mach waves, fans out from the 
comer, as shown in Fig. 8.1. The leading edge of the expansion fan makes an angle 
µ 1 with respect to the upstream flow direction, and the trailing edge of the wave 
makes an angle µ2 with respect to the downstream flow direction. The angles µ 1 and 
µ 2 are Mach angles, defined by 

and 
. -I 1 

µ2 = sm -
M2 

where M 1 and M2 are the upstream and downstream Mach numbers, respectively. 
The flow through an expansion wave is isentropic. As the flow passes through the 
expansion wave, the Mach number increases and the pressure, temperature, and 
density decrease; these trends are noted in Fig. 8.1. The flow in front of the centered 
expansion wave is uniform at a Mach number M1 and is parallel to the wall in front 
of the wave. The flow behind the expansion wave is also uniform at a Mach number 
of M2 and is parallel to the wall behind the wave. Inside the wave itself, the flow 
properties change smoothly, and the streamlines are curved, as sketched in Fig. 8.1. 
Inside the wave, the flow is two-dimensional. The only exception to the above 
discussion is right at the comer itself; this is a singular point at which the streamline 
at the wall experiences a discontinuous change in direction and where the flow 
properties are discontinuous. This singularity has some impact on the numerical 
solution of the flow field, as you might suspect. Such matters will be addressed in a 
subsequent section. For given supersonic upstream conditions and a given flow 
deflection angle () at the comer, the downstream conditions ( denoted by a subscript 
2) are uniquely defined. For a calorically perfect gas, there is an exact, analytical 
solution for the conditions behind the expansion wave, as outlined below. Many 
more details associated with a Prandtl-Meyer expansion can be found in Refs. 8 and 
21. 

The analytical solution of the flow across a centered expansion wave hinges on 
the simple relation 

h.=Ji+() (8.1) 
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where J is the Prandtl-Meyer function and () is the flow defl~ction angle shown in 
Fig. 8.1. For a calorically perfect gas, the Prandtl-Meyer funct10n depends on Mand 
}' and is given by 

J = jY+l tan-' V0 1.__.=___!_ ( M2 - I ) - tan - 1 J M 2 - 1 
y + 1 

(8.2) 

The analytical solution proceeds as follows. For the given M1 , calculate !1 from 
Eq. (8.2). Then, for the given (), calculate fz from Eq .. (8.1 ). The Mach number 
in region 2 is then obtained by solving (implicitly, b~ tnal ~nd error) Eq. (8.2) for 
M

2
, using the value of fz obtained above. Once M2 1s obtamed, the~ the pr~ssure, 

temperature, and density behind the wave are calculated from the 1sentrop1c flow 

relations 

_ {1 + [(y - 1)12JMr}"1
(i·- I) 

P2 - Pt 1 + [(y - 1)/2]M} 

1 + [(y - 1)/2]Mf 
T2 = T1 1 + [(y - l)/2]M} 

and the equation of state 

P2 
P2 = RT2 

(8.3) 

(8.4) 

(8.5) 

With Eqs. (8.1) to (8.5), the flow behind the centered expansion wave is completely 

determined. 

8.3 THE NUMERICAL SOLUTION OF A 
PRANDTL-MEYER EXPANSION WAVE 
FLOW FIELD 

In this chapter we will carry out a downstream marchi~g solution for the supersoni~ 
flow over an expansion comer. The solution technique w~ll be ~acCormack s 
predictor-corrector explicit finite-difference method. The details of t?1s downstream 
(or space) marching approach are given in Sec. 6.4.3. Make ~ertam that you feel 
comfortable with the contents of Sec. 6.4.3 before progressmg further. 

8.3.1 The Governing Equations 

The governing Euler equations for a steady, two-dimensional flow in strong 
conservation form can be expressed in the generic form given by Eq. (6.24), 

repeated below: 

8F 8G 
-=J-ax ay 

(6.24) 
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where F and G are column vectors with elements defined by Eqs. (2.106) and 
(2.107), respectively, repeated below. 

pu 

pu2 +p 

F= puv (2.106) 

pu(e + :
2

) + pu 

pv 

puv 

G= pv2 +p (2.107) 

pv(e + :
2

) + pv 

We are considering isentropic (hence adiabatic) flow with no body forces; therefore, 
the source term denoted by Jin Eq. ( 6.24) is, from Eq. (2.109), equal to zero. For 
clarity in our subsequent calculations, we will denote each of the elements in the 
column vector expressed by Eq. (2.106) as follows: 

F1 =pu 

F2 = pu2 +p 

F3 = puv 

F4 = pu (e + u
2

; v2) + pu 

(8.6a) 

(8.6b) 

(8.6c) 

(8.6d) 

For a calorically perfect gas, it is convenient to eliminate e in Eq. (8.6d) in favor 
of p and p as follows. 

RT I p 
e = CvT = -- = -- -

y-1 y-Ip 

Hence, Eq. (8.6d) can be written as 

F4 = pu (-1- E + u2 + v2) + pu 
y- Ip 2 

I u2 + v2 
= y _ 1 pu + pu 

2 
+ pu 

Combining the terms involving pu, we have 

y u2 + v2 
F4 =--pu+pu---

y - I 2 (8.6e) 
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Also, the elements of the column vector expressed by Eq. (2.107) are denoted by 

G1 =pv 

G2 = puv 

G3 = pv2 + P 

G4 = pv(e + u
2

; v2) + pv 

(8.7a) 

(8.7b) 

(8.7c) 

(8.7d) 

In a fashion analogous to that carried out for Eq. (8.6e), we can express Eq. (8.7d) as 

y u2 + v2 
G4 = --pv + pv 

2 
(8.7e) 

y - I 

The essence of the downstream marching solution, to be discussed shortly, can 
be presaged by examining the above equations. Note that Eq. (6.24) is written with 
the x derivative on the left-hand side and the y derivative on the right-hand side. 
Examining Fig. 8.2, if the flow-field variables are given at location xo a~ a ~nction 
of y along an initial data line (the dashed line in Fig. 8.2), then they denvahve of G 
in Eq. (6.24) is known along this line. This allows the x derivative of _F to be 
calculated. With this known x derivative, we can advance the flow-field vanables to 
the next vertical line located at x0 + Ax. In this fashion, the solution can be carried 
out by marching in steps of Ax along the x direction in Fig. 8.2, starting with the 
specified flow field along the initial data line. . 

We recall from our discussion in Sec. 6.4.3 that, for a downstream marchmg 
solution, we have to employ the governing equations in the strong conservation 
form given by Eq. (6.24); this is the only form in which a single x derivative can be 
couched on the left-hand side of the equation. Therefore, as you might suspect from 
our experience with the strong conservation form of the equations in Chap. 7, there 

~I 
~I 
.g I 
]1 
]I 

1. 
I 

FIG. 8.2 

I 
I 
I 
I 
I 
I 
I 
I 

Ax ... 1 

I 

Model for the downstream marching solution. 

() X 
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is some extra baggage that goes along with the numerical solution of this form of 
the equations, namely, (I) the need to decode the primitive variables from the flux 
variables F 1 , F2 , F 3 , and F4 , and (2) the corresponding desirability of expressing 
the elements of the G vector, G1, G2 , G3, and G4 , in a "pure" form involving F1 , 

F 2 , F3 , and F4 rather than the primitive variables as originally defined in Eqs. (8.7a) 
to (8.7e). Let us proceed with a discussion of these two items. 

For decoding the primitive variables from the flux variables, we will simply 
write down the results because the derivation is assigned as Prob. 2.1; i.e., the 
answer to Prob. 2.1 is as follows: 

where 

-B+ JB2 -4AC 
p= 

2A 

F2 
A =-3 -F4 

2F1 
y 

B=--F1F2 
y - I 

C = - y + I F3 
2(y - 1) 1 

F1 
U=-

p 

F3 
v=-

F1 

p=F2-F1u 

and from the equation of state 

T = }!__ 
pR 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

Note that the solution for p involves a quadratic equation. Because of this, the 
decoding for the primitive variables for the present case of the steady flow equations 
in the form of Eq. (6.24) requires a more rigorous derivation than the rather 
straightforward decoding when the unsteady flow equations are used in the form of 
Eq. (2.99), where the decoding is given by Eqs. (2.100) to (2.104). We took 
advantage of this more straightforward decoding in Chap. 7 where in part we dealt 
with the unsteady equations in the form of Eqs. (7.101a) to (7.101c), with the 
decoding given by Eqs. (7 .102) to (7 .105). 

As we have noted before, when the strong conservation form of the governing 
equations is used for a numerical solution, specifically when Eq. (6.24) is used, 
numbers are directly obtained for the fluxes F1 , F2 , F3, and F4-not the primitive 
variables. The corresponding values of p, u, v, p, and Thave to be obtained after the 
fact from Eqs. (8.8) to (8.12). 

We now address a related matter, namely, the way in which the values of G in 
Eq. ( 6.24) are calculated. Since values of F1, F2 , F3, and F4 are directly calculated 
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at a given grid point from our numerical solution of Eq. (6.24), it makes sense to 
return these numbers back to the equation in the form of G1 , G2 , G3, and G 4 for the 
calculation at the next downstream-located grid point. That is, it makes sense to 
calculate numbers for G1 , G2 , G3, and G4 directly from the numbers obtained for 
F1 , F2 , F3, and F4 , rather than going through the intermediate step of extracting the 
primitive variables by using Eqs. (8.8) to (8.12) and then synthesizing G1 , G2 , G3, 
and G4 from these primitive variables as given in the definitions of the G's in Eqs. 
(8.7a) to (8.7e). Indeed, the G's are clearly functions of the F's; let us obtain these 
functions. 

To begin with, from Eqs_ (8.7a) and (8.10), we have 

(8.13) 

In Eq. (8.13), p can be expressed in terms of F1 , F2 , F3, and F4 via Eq. (8.8); since 
this is a quadratic relationship, we will not bother to substitute the complicated 
expression into Eq. (8.13). From Eqs. (8.6c) and (8.7b), we can write directly for 
G2, 

G2 =F3 

From Eqs. (8.7c) and (8.10), we can write 

G3 = pv2 + p = p(;~y + p 

(8.14) 

(8.15) 

We can eliminate p from Eq. (8.15) by combining Eqs. (8.6b) and (8.9) as follows: 

2 Ff p = F2 - pu = F2 - -
p 

Substituting Eq. (8.16) into (8.15), we have 

G3 = p(F3)2 +F2 - Ff 
F1 p 

(8.16) 

(8.17) 

Finally, an expression for G4 can be constructed as follows. From Eqs. (8.7e), 
(8.10), and (8.16), we have 

y u2 + v2 
G4 = --pv + pv ---

y - 1 2 

~ y ~ I (F, ~ 7) ii + i ~'. [ (;) 
2 

+ G:) '] (8.18) 

In summary, Eqs. (8.13), (8.14), (8.17), and (8.18) give expressions for G1 , 

G2 , G3, and G4 as functions of F 1, F2, F3, and F4 [keeping in mind that p in these 
equations is itself a function of F1 , F2, F3, and F4 via Eq. (8.8)]. When the values of 
G1 , G2 , G3, and G 4 are calculated from these equations [ rather than from the 
primitive variables by using Eqs. (8.7a) to (8.7e)], then we are using a "purer" 
formulation of the strong conservation form of the governing equations, in the same 
spirit as discussed in Sec. 7.5.2. 
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FIG. 8.3 

The (a) physical and (b) computational planes for the numerical solution of the centered expansion 
wave problem. 

THE . TRANSFORMATION. The present problem affords us an opportunity to 
exercise some of the aspects of grid generation and equation transformation that 
were discussed in Chap. 5. In particular, to set up a finite-difference solution for the 
flow over_an ~xpansion comer, we must use a boundary-fitted coordinate system, as 
sketche? m _Fig. 8.3. The physical plane using an xy cartesian coordinate system is 
shown m Fig. 8.3a. The surface including the expansion comer forms the lower 
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boundary in this physical space. The inflow boundary occurs at x = 0, and the 
outflow boundary is at x = L. The upper boundary is chosen as a horizontal line at a 
rather arbitrary value of y = H. Clearly, the physical space, due to the downward
sloping wall downstream of the expansion comer, does not lend itself to a 
completely rectangular grid. Therefore, we must transform the physical plane 
to a computational plane where the finite-difference grid is rectangular, as shown in 
Fig. 8.3b. The computational plane is couched in terms of ~ and r, as the 
independent variables. The bottom surface in the physical plane should correspond 
to a constant r, coordinate curve; i.e., we need to establish a boundary-fitted 
coordinate system. Boundary-fitted coordinate systems are discussed in some detail 
in Sec. 5.7. In the present application, we need only a simple boundary-fitted 
coordinate system, much along the lines given by Eqs. (5.65) and (5.66). Before 
continuing further, return to Sec. 5.7 and review the first part having to do with a 
simple boundary-fitted, algebraically generated grid. 

Examining Fig. 8.3a, we can readily construct a proper transformation as 
follows. Let h denote the local height from the lower to the upper boundary in the 
physical plane; clearly, h = h(x). Denote the y location of the solid surface (the 
lower boundary in the physical plane) by Ys, where Ys = ys(x). With this, we define 
the transformation as 

~=X 

y - Ys(x) 
Y/ = h(x) 

(8.19) 

(8.20) 

With this transformation, in the computational plane ~ varies from O to L and r, 
varies from O to 1.0; r, = 0 corresponds to the surface in the physical plane, and 
r, = 1.0 corresponds to the upper boundary. The lines of constant ~ and r, form a 
regular rectangular grid in the computational plane (Fig. 8.3b ). The lines of constant 
~ and r, are also sketched in the physical plane (Fig. 8.3a); they form a rectangular 
grid upstream of the comer and a network of divergent lines downstream of the 
comer. 

As discussed in Chap. 5, we carry out the finite-difference calculations on 
the rectangular grid in the ~Y/ plane. The partial differential equations for the 
flow are numerically solved in the transformed space and therefore must 
be appropriately transformed for use in the transformed, computational plane. 
That is, Eq. (6.24) must be transformed into terms dealing with ~ and r,. 
The derivative transformation is given by Eqs. (5.2) and (5.3), repeated 
below. 

(5.2) 

(5.3) 
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The metrics in Eqs. (5.2) and (5.3) are obtained from the transformation given by 
Eqs. (8.19) and (8.20), that is, 

8~ = 1 
ax 

8~ = 0 
8y 

ari 1 dys Y/ dh 
----- -

ax h dx h dx 

ari 1 
-

8y h 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

The metric 8r,!8x in Eq. (8.23) can be expressed in a simpler way, as follows. 
Examining Fig. 8.3a, and denoting the x location of the expansion comer by x = E, 
we have 

For x :SE: Ys = 0 

h = constant 

For x::::: E: Ys = -(x - E) tan e 
h = H + (x - E) tan e 

Differentiating these expressions, we have 

For x::; E: 

Forx::::: E: 

dys = O 
dx 

dh = O 
dx 

dys 
-= -tane 
dx 

dh = tane 
dx 

Hence, the metric Dr,!ax can be written as 

or, { 0 
- = tane 
ax (l - ri)-h-

for x::; E 

for x::::: E 

(8.25a) 

(8.25b) 

The complete derivative transformation is obtained by substituting Eqs. (8.21 ), 
(8.22), (8.24), and (8.25) into (5.2) and (5.3), obtaining 

~-~+ (ari) ~ 
ax 8~ ax or, (8.26) 
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and (8.27) 

where in Eq. (8.26), 8r,!8x is given by either one of Eqs. (8.25a) or (8.25b), as 
appropriate. 

Return to the governing flow equations in conservation form, given in the 
physical plane by Eq. (6.24). With J = 0, this equation becomes 

8F 

ax 

8G 

ay 

Transforming Eq. (8.28) via Eqs. (8.26) and (8.27), we have 

8F (or,) 8F _ 1 8G 
8~ + ax or, - - h an 

or 

(8.28) 

(8.29) 

where the metric term 8r,!8x is given by Eq. (8.25a) or (8.25b), as appropriate. 
Written in terms of the elements of the column vectors F and G, Eq. (8.29) 
represents the following system of equations, where the labels are added to remind 
you of the physical origin of each equation. 

Continuity : 8F1 = -[ (or,) 8F1 + ~ 8G1] 
8~ ax or, h or, 

(8.30) 

x momentum: 8F2 = -[ (Dr,) 8F2 + ~ 8G2] 
8~ ax or, h or, 

(8.31) 

y momentum: 8F3 = _ [ (or,) 8F3 + ~ 8G3] 
8~ ax or, h or, 

(3.32) 

Energy: 8F4 = -[ (Dr,) 8F4 + ~ 8G4] 
8~ ax or, h or, 

(8.33) 

Equations (8.30) to (8.33) are the governing flow equations which are to be solved 
numerically in the computational plane sketched in Fig. 8.3b. 

Note: Equations (8.30) to (8.33) are in dimensional form; we have not 
bothered to nondimensionalize the variables in the equations, in contrast to the 
approach taken in Chap. 7. Indeed, in the present solution, we will continue to treat 
all variables in their dimensional form-just to illustrate that a CFO solution can 
just as well be carried out using numbers with units attached to them and that the use 
of dimensionless variables is in no way necessary for the integrity of a CFO 
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solution. In fact, an advantage of using dimensional variables in a numerical 
solution is that you quickly obtain an engineering feeling for the magnitudes of the 
physical properties in a given flow problem. The choice of using nondimensional 
variables is simply up to you; for some problems it makes more sense than others
for example, the convenience of dealing with nondimensional variables for the 
quasi-one-dimensional flow problem was amply demonstrated in Chap. 7. However, 
when you use dimensional variables, it is vitally important that you keep the units 
straight. For this reason, it is strongly recommended that you use a consistent set of 
units throughout your calculation. Tl-ie equations discussed in this section hold in 
their precise form as long as consistent units are employed; i.e., there is no need to 
insert any "conversion factor" in the equations as would be the case when 
inconsistent units are employed. See, for example, Chap. 2 of Ref. 1 for a 
discussion of what is meant by consistent and inconsistent units. Two common 
sets of consistent units are the English engineering system (pound, slug, foot, 
second, degree Rankine) and the international, SI system (newton, kilogram, meter, 
second, kelvin). In this present solution, we will use SI units. Again, keep in mind 
that when you choose to use dimensional properties in your CFO calculation, you 
incur the necessity to handle the units correctly. 

This finishes our development of the general equations germane to the given 
problem. Let us now proceed with the solution. 

8.3.2 The Setup 

We need to establish some details of the particular problem to be solved. We 
consider the detailed physical plane drawn to scale in Fig. 8.4. The flow at the 

N 
p 1 = 1.01 X 105 m' 

~ p1 = 1.23 m3 

T1 = 286.1 K 

FIG. 8.4 

y 

y •• 

Physical plane, drawn to scale. 

65m 

• 
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upstream boundary is at Mach 2 with a pressure, density, and temperature equal to 
1.01 x 105 N/m2

, 1.23 kg/m3
, and 286 K, respectively. The supersonic flow is 

expanded through an angle of 5.352°, as shown in Fig. 8.4. This is a rather mild 
expansion angle; the reasons for this choice will be discussed later. The calculations 
will be made in the domain from x = 0 to x = 65 m and from the wall toy = 40 m, 
as shown in Fig. 8.4. The location of the expansion comer is at x = 10 m. For this 
geometry, the variation of h = h(x) is given by 

h- {
40m 

40 + (x - 10) tan 8 

0:Sx:SlOm 

10 :S X :S 65 m 

(8.34) 

(8.35) 

Equation (8.34) or (8.35), as appropriate, is needed to define the value of the 
metric 817/ox expressed by Eq. (8.25b). 

INITIAL DATA LINE. The initial data line is given by x = O; along this vertical 
line at each grid point, the initial data are fed in, equal to the uniform upstream 
flow conditions. The calculation starts at this initial data line and marches 
downstream in steps of Ax. For our application, we will divide the x = 0 initial 
data line into 40 increments by evenly spacing 41 grid points ( j = 1 to 41) 
along this line. To reinforce this picture, the initial data at x = 0 is tabulated in 
Table 8.1 versus j. 

FINITE-DIFFERENCE EQUATIONS. We are following the technique set forth in 
Sec. 6.4.3, which outlines MacCormack's predictor-corrector technique applied to 
space marching (note that space marching and downstream marching are synon
ymous terms). Hence, the finite-difference forms of Eq. (8.30) to (8.33) are as 
follows . 

Predictor step. Analogous to Eq. (6.26), Eqs. (8.30) to (8.33) are written in terms 
of forward differences. 

(8.36a) 

(8.36b) 

(8.36c) 

(8.36d) 
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TABLE 8.1 
The predicted values of Fare obtained as follows, analogous to Eq. (6.27). 

Initial conditions at x = 0 _ (8F1) (8.37a) (F1);+ 1,1 =(Fi);,1+ 0~ . _Li~ 
!,] 

j u, mis v, mis p, kg/m3 p, Nlm2 T, K M 
(A);+ 1,j = (F2);,J + (:2). . Li~ (8.37b) 

1 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol ,,; 

2 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol 
_ (0F3) 3 .678E+03 .OOOE+OO .l23E+Ol .101E+06 .286E+03 .200E+Ol (F3); + 1,1 = (F3 );,J + 0~ .. Li~ (8.37c) 

4 .678E+03 .OOOE+OO .123E+Ol .l01E+06 .286E+03 .200E+Ol ,,; 
5 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 .286E+03 .200E+Ol 

_ (8F4) 6 .678E+03 .OOOE+OO .123E+Ol . IOIE+06 .286E+03 .200E+Ol (F4)- I · = (F4) · + - Li~ (8.37d) 
7 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 . 200E+Ol z+ .] 1,J a~ .. 

,,; 
.123E+Ol .200E+Ol 8 .678E+03 .OOOE+OO .101E+06 .286E+03 

Before proceeding to the corrector step, we need to decode the values of F; + 1, J . 9 .678E+03 .OOOE+OO . 123E+Ol .IOIE+06 .286E+03 .200E+Ol 
10 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 .286E+03 .200E+Ol This is carried out using Eq. (8.8) . 
II .678E+03 .OOOE+OO .123E+Ol .IOIE+06 .286E+03 . 200E+Ol 
12 .678E+03 .OOOE+OO .123E+Ol .10IE+06 .286E+03 .200E+Ol -B+ JB2 -4AC 

(8.38) 13 .678E+03 .OOOE+OO .123E+OI .101E+06 .286E+03 .200E+Ol (P);+ 1, 1 = 2A 
14 .678E+03 .OOOE+OO .123E+OI . IOIE+06 .286E+03 .200E+Ol 
15 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 .286E+03 .200E+OI where 
16 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 .286E+03 .200E+Ol 
17 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 .286E+03 .200E+Ol - 2 

(F3)·+ I · 
18 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol A= ' ,1 - (F'4);+1,J 
19 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+OI 2(F1);+ 1,1 
20 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol y - -
21 .678E+03 .OOOE+OO .123E+Ol . IOIE+06 .286E+03 .200E+Ol B = --

1 
(F1);+ 1)F2);+l,J 

22 .678E+03 .OOOE+OO .123E+OI .IOIE+06 .286E+03 .200E+Ol 
y-

23 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol y + 1 - 3 
24 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol C = - 2(y- 1) (F1);+1,J 
25 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+OI 
26 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol With the predicted values of p obtained above, we can form the predicted values of 
27 .678E+03 .OOOE+OO .123E+OI .101E+06 .286E+03 .200E+Ol G which are needed for the corrector step. From Eqs. (8.13), (8.14), (8.17), and 
28 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol ' 
29 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol (8.18), we have, respectively, 

30 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol - (F'J)·+1 . 
31 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol (G ) - ' ,; (8.39) 

32 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol I i+l,j = Pi+l,j (F ). . 
I z+ I,; 

33 .678E+03 .OOOE+OO .123E+Ol . IOIE+06 .286E+03 .200E+Ol 
(G2);+ 1,1 = (F'J);+ 1.1 (8.40) 

34 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol 
35 .678E+03 .OOOE+OO .123E+OI .101E+06 .286E+03 .200E+Ol 
36 .678E+03 .OOOE+OO .123E+OI .101E+06 .286E+03 .200E+OI - - (AY - - 2 

37 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol 
(Fi);+ 1,J 

(8.41) (G3\+1, 1 =P;+1,J F . +(F2);+1,1 -
38 .678E+03 .OOOE+OO .123E+Ol .101E+06 .286E+03 .200E+Ol I z+ !,; P;+r,1 
39 .678E+03 .OOOE+OO .123E+OI .IOIE+06 .286E+03 .200E+OI 

[ - 2 l 40 .678E+03 .OOOE+OO .123E+OI .101E+06 .286E+03 .200E+OI _ y - (Fi);+ 1,J F'3 
41 .678E+03 .OOOE+OO .123E+OI .101E+06 .286E+03 .200E+OI (G4);+ 1,J = y - I (F2);+ 1,J - P;+ l,J (F'J;+ 1,J 

+ Pi+l,j ~3 ~I + ~3 - [-2 -21 
2 (FJ;+i,J (p }+,,J (FJ;+l,J 

(8.42) 

Corrector step. On the corrector step, we return to Eqs. (8.30) to (8.33), with 
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rearward differences used for the 17 derivatives. Analogous to Eq. (6.29), we have 

(
aF,) = (a,,,) (F\);+ 1,j-1 - (Fi);+ 1,j 
a~ i+ 1,j ax ~,,, 

+!(Gd;+ 1,1-1 - (G1);+ ,,1 
h ~,,, 

(8.43a) 

(
aF2) = (al'/) (F2);+ 1,J-1 - (F2);+ 1,J 
a~ i+l,j ax ~,,, 

1 (G2)+ I ·-1 - (G2)+ I · +- l ,J l ,J 

h ~,,, 
(8.43b) 

(
aF3) = (al'/) (E'J);+ 1,J-1 - (F3);+ 1,J 
a~ i+ l,j ax ~,,, 

1 (G3)+ 1 ._, - (G3)-+ 1 · +- l ,J l ,j 

h ~,,, (8.43c) 

(
aF4) = (al'/) (F4);+ 1,J-1 - (F4);+ 1,1 
a~ i+ 1,j ax ~,,, 

+ ! (G4);+ 1,1-1 - (G4);+ 1,1 
h ~,,, (8.43d) 

Forming the average derivatives analogous to Eq. (6.30), we have 

( aF,) l [(aF,) (aF,) l 
a~ av= 2 a~ i,j + a~ i+l,j 

(8.44a) 

( aF2) l [(aF2) (aF2) l 
a~ av =2 a~ i,j + a~ i+l,j 

(8.44b) 

( aF3) 1 [(aF3) (aF3) l 
a~ av= 2 a~ i,j + a~ i+l,j 

(8.44c) 

( aF4) 1 [(aF4) (aF4) l 
a~ av =2 a~ i,j + a~ i+l,j 

(8.44d) 

where the derivatives on the right-hand side of Eqs. (8.44a) to (8.44d) are known 
numbers, known from Eqs. (8.36a) to (8.36d) and Eqs. (8.43a) to (8.43d). Finally, 
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analogous to Eq. (6.25), we have 

(F,). I . = (F1) . + (aF,) ~~ 
1+ ,J l.j a~ av 

(F2);+1,J = (F2);,J + (:2)av ~~ 
(F3)i+l,j = (F3)i,j + (:3) av~~ 
(F4)i+l,j = (F4);,J + (:4)av ~~ 

(8.45a) 

(8.45b) 

(8.45c) 

(8.45d) 

Our calculation of the flow field (via the flux variables F1 to F4 ) at the next 
downstream location i + 1 is now complete, except for one remaining aspect
artificial viscosity. In the present problem, the sharp expansion comer located at 
x = 10 m (see Fig. 8.4) is a singular point; it introduces a discontinuous change in 
the surface flow properties at that point. The system of finite-difference equations 
developed above sees this discontinuity through a discontinuous change in the 
metric term a111ax, which from Eqs. (8.25a) and (8.25b) is zero just ahead of the 
corner and (1 - 17)(tan fJ)/h just behind the comer. Such a discontinuous change 
always has the potential to introduce oscillations in the numerical solution. Indeed, 
this author's experience in solving the present problem has shown that such 
oscillations do indeed develop in the flow field-oscillations which are virtually 
eliminated by including some artificial viscosity in the solution. The formulation of 
the artificial viscosity term for the present case follows the discussion given in Sec. 
6.6 and is patterned after Eqs. (6.58) to (6.61). For the present case, we formulate 
the artificial viscosity term as follows. On the predictor step, 

(SFI) . = CylPi,J+ 1 - 2p;,J + Pi,J-1 I 
l,j Pi,}+ I+ 2p;,J + Pi,j-1 

X [(F1\J+ 1 - 2(F1);,J + (F,)i,j-1] 

(SF
2
) . . = CylPi,J+ 1 - 2p;,J + Pi,J-1 I 
l,J Pi,J+ I+ 2p;,J + Pi,j-1 

X [(F2);,J+ 1 - 2(F2);,J + (F2);,J-1l 

(8.46a) 

(8.46b) 

Similar expressions are obtained for (SF3);,J and (SF4 );,1; we do not need to take the 
space to write the corresponding equations. The values of (SF1);,J, (SF2);,1 , etc., are 
added to Eqs. (8.37a) to (8.37d) as follows: 

(8.47a) 

(8.47b) 
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and similarly for [F3];+i,J and [F4 ];+1,1 . Artificial viscosity is also added on the 
corrector step as follows. 

(SF). . = Cyl.Pi+ I,)+ I - 2Pi+ 1,j + Pi+ 1,J-11 
I 1+!,; - + 2- +-Pi+ 1,J+ I Pi+ 1,j Pi+ l,j-1 

X [(Fi);+ 1,J+ I - 2(F1);+ 1,j + (F,);+ l,J-ll (8.48a) 

(SF). . = Cy I.Pi+ 1,J+ I - 2p;+ 1,j + Pi+ 1,J-11 
2 1+1,; - +2- +-Pi+ I,)+ I Pi+ 1,j Pi+ 1,j-1 

X [(F2)i+ 1,J+ I - 2(F2)i+ 1,j + (Fz)i+ 1,)-1] (8.48b) 

Similar expressions are obtained for (SF3)i+l,J and (SF4)i+l,J· Finally, these values 
of artificial viscosity are added to Eqs. (8.45a) to (8.45d) as follows: 

(
8F1) --

(F1);+ l,J = (Fi)i,J + 8~ av~~+ (SF1);+ l,J (8.49a) 

(
8F2) - -

(F2)i+l,J = (F2);,J + 0~ av~~+ (SF2)i+l,J (8.49b) 

and similarly for (F3);+i,J and (F4);+1,1. This completes the addition of artificial 
viscosity to the above algorithm. 

Finally, the primitive variables at grid point (i + 1, j) can be decoded from the 
values of(F1);+1,1 , (F2);+i,J, (F3);+1,1, and (F4);+J,J using Eqs. (8.8) to (8.12). This 
totally completes the calculation of the flow field at the next downstream location 
i + I at all the vertically arranged grid points in the internal part of the flow, from 
grid point j = 2 to j = 40. We have one remaining item to discuss, namely, the flow 
solution for the grid points at the boundaries, i.e., at j = I and 41. 

BOUNDARY CONDITIONS. At the wall, the physically proper boundary condition 
for an inviscid flow is that the flow be tangent to the wall. This is the only boundary 
condition at the wall; all other flow properties at the wall must be obtained as part of 
the solution. As innocent as this may sound, in terms of the CFD calculation the 
proper numerical treatment of this wall boundary condition is not always straight
forward; indeed, it has been the subject of much research in CFD. In the present 
case, we will employ a treatment of the wall boundary condition patterned after that 
suggested by Abbett (Ref. 46). For a steady flow, the steps in Abbett's boundary 
condition treatment are as follows. 

1. Consider point I on the wall, as sketched in Fig. 8.5. Calculate trial values of u1 

and v1 at point I using one-sided differences in the internal flow algorithm, i.e., 
using Eqs. (8.36a) to (8.49b), except modifying the corrector step to use forward 
differences just as on the predictor step. At the wall, this is the only choice, 
because we have no grid points below the wall and hence no way of forming the 
rearward differences called for on the corrector step. This use of forward-forward 
differences on the predictor-corrector sequence at the wall compromises slightly 
the second-order accuracy of the algorithm at the wall. 
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8 

FIG. 8.5 
Abbett's boundary condition for a steady flow. 

2. The direction of the resultant velocity at the wall calculated in step 1 will not 
necessarily be tangent to the wall due to numerical inaccuracy. Usually, the 
calculated value of the velocity vector at the wall (V1)ca1 in Fig. 8.5, will make an 
angle rp 1 at the wall, where 

-1 VJ rp 1 = tan -
UJ 

Also, the calculated Mach number at the wall will be 

(ui)~at + (vi)~at 
(Mi)cal = --'------( -) ---

a1 cal 

(8.50) 

(8.51) 

Along with this value of (M1)cal is a corresponding value of the Prandtl-Meyer 
function feat, obtained by substituting (M1)cal into the right-hand side of Eq. 
(8.2). 

3. Assume that the supersonic flow calculated at point I in step 2 is rotated through 
a local centered Prandtl-Meyer expansion wave so that the velocity vector is 
tangent to the wall. That is, (V 1)cal in Fig. 8.5 is rotated through a Prandtl-Meyer 
expansion wave where the deflection angle through the wave is <PI· This yields a 
new velocity vector (V 1)act, which is assumed to be the actual velocity tangent to 
the wall. The Mach number associated with (V1)act is (M1)act, obtained as 
follows. First, calculate fact which corresponds to (M1)act from the Prandtl-Meyer 
relationship given by Eq. (8.1 ), namely 

fact = fcal + <PI (8.52) 
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In Eq. (8.52),.fca1 is known from step 2, and </J 1 is the deflection angle shown in 
Fig. 8.5 and known from Eq. (8.50). The value of fact calculated from Eq. (8.52) 
is that value corresponding to (M1)act, namely, the Mach number which exists 
after the flow is rotated to be parallel to the wall. The value of (M1)act must be 
backed out ofEq. (8.2) by substitutingfact into the left-hand side and solving Eq. 
(8.2) by trial and error for (Mdcal. 

4. Let the values of pressure, temperature, and density as originally calculated in 
step 1 (using one-sided differences) be denoted by Peal, Teal, and Peal, 
respectively. These values must be changed to correspond to the new, 
"actual" conditions after the calculated velocity vector is rotated through the 
expansion wave to be parallel to the wall. These new values, denoted by Pact, 
Tact, and Pact, are obtained from Eqs. (8.3) to (8.5), respectively, using Meal and 
Mact as follows: 

- {l + [(y- 1)/2]Mza1}Y!(,-1J 
Pact - Peal l + [(y _ l)/2]Mfct 

T - T, 1 + [(y - 1)/2]Mza1 
act - cal 1 + [(y - l)/2]Mfct 

Pact 
Pact= RT act 

(8.53) 

(8.54) 

(8.55) 

The values of Pact, Tact, and Pact calculated from Eqs. (8.53) to (8.55), 
respectively, are interpreted to be the final values of p, T, and p at grid point 
1 at the wall. 

Interpretation: What are we really doing by imposing the above boundary 
condition calculation? Returning to Fig. 8.5, we recall that the velocity at the wall as 
calculated from the internal flow algorithm using one-sided, forward differences on 
both the predictor and corrector steps will, in general, not be tangent to the wall. 
That is, there will be a finite normal component of velocity at the wall, v 1. The 
function of Abbett's boundary condition as described above is to simply cancel this 
calculated finite vertical velocity component by means of an imaginary, local, 
Prandtl-Meyer expansion wave at the wall. This local expansion wave is just an 
artifice which we use in the numerical calculation; it does not say that nature is 
actually doing this in the real flow. (Indeed, nature always does the right thing and 
never requires such an artifice.) However, consistent with this artifice of a local 
expansion wave, we must slightly modify the values of p, T, and p originally 
calculated at point 1 to be somewhat compatible with the cancellation of the finite v1 
at the wall by the expansion wave. Hence, at the flow boundary, namely, at point 1, 
when the calculation is finished, not only is the velocity now tangent to the wall but 
the pressure, temperature, and density at the wall are taken to be Pact, Tact, and Pact 
as calculated from Eqs. (8.53) to (8.55). 

Note that, in the above procedure, if (V deal turns out to point into the wall, 
rather than out of the wall as sketched in Fig. 8.5, then a local Prandtl-Meyer 
isentropic compression wave is assumed. This implies only that </J 1 is now 
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considered to be a negative value in Eq. (8.52); all other steps in the calculation 
remain the same. 

For that portion of the wall behind the expansion comer, the above technique 
is still the same. Focusing on point 2 in Fig. 8.5, (V 2)cal is rotated through the angle 
</J2 to be tangent to the wall. Equation (8.52) now becomes 

fact = fcal + </J2 (8.56) 

All aspects of the calculation at point 2 are carried out exactly as described above 
for point 1, with the exception that <p2 is not given by Eq. (8.50). Instead, from the 
geometry shown at point 2 in Fig. 8.5, we have 

ljJ = tan- 1 ~ (8.57) 
U2 

and (8.58) 

CALCULATION OF DOWNSTREAM MARCHING STEP SIZE. As discussed in 
Sec. 3.4.1, the governing flow equations for steady, inviscid, supersonic flow are 
hyperbolic; this is why a downstream-marching solution is well-posed. Moreover, in 
Sec. 4.5 we indicated that the proper stability criterion for linear hyperbolic 
equations is the CFL (Courant-Friedrichs-Lewy) criterion. An equation for the 
maximum allowable marching step according to the CFL criterion was developed in 
Sec. 4.5 for the case of time marching. We have stated that, on a physical basis, the 
maximum allowable time step for an explicit time-marching solution (based on the 
CFL criterion) should be less than, or at best equal to, the time required for a sound 
wave to move from one grid point to the next, adjacent grid point. 

With this interpretation involving the propagation of sound waves, we can 
intuitively develop the CFL criterion for steady flow. Consider the sketch shown in 
Fig. 8.6, which shows a vertical array of grid points at a given x station. A small 
disturbance (e.g., a sound wave) introduced at point 1 will propagate along the two 
characteristic lines through point 1 (recall our discussion in the Steady, Inviscid 
Supersonic Flow subsection of Sec. 3.4.1); the characteristic lines are Mach lines in 
the flow, which are at the Mach angle µ relative to the streamline direction. If the 
angle made by the streamline at point 1 is () relative to the x axis, then the angles 
made by the left- and right-running Mach waves relative to the x axis are() + µ and 
() - µ, respectively. In Fig. 8.6, only the left-running Mach line is shown at point 1. 
Consider a horizontal line through point 2; the left-running characteristic from point 
1 intersects this horizontal line at point a. Point a is therefore located a distance 
(Llx)1 from point 2, where 

Llx1 = L1y 
tan(()+ µ)1 

(8.59) 

Based on the CFL criterion applied locally at point 2, the downstream value chosen 
for Ax should be no more than (Llx)1 for stability; in this fashion the distance 
between points 2 and a is less than, or at most equal to, the distance required for a 
sound wave from point 1 to reach the level defined by they location of point 2. A 
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X 

FIG. 8.6 
Sketch in the physical plane for the calculation of the marching step size. 

similar argument regarding. the right-running Mach wave through point 3 shows 
that it intersects the horizontal line through point 2 at point b. Point b is therefore 
located a distance (&h from point 2, where 

(8.60) 

For stability of the downstream marching calculations locally at point 2, the chosen 
value of the step size & should be no more than the minimum of(&)1 and (&)3. 
Expanding this argument to all the grid points arrayed along the vertical line at x0 , 

we can express the value of & to be chosen for the next downstream marching step 
at x0 to be given by 

&= ~y 
I tan(8 ± µ)lmax 

(8.61) 

where I tan (8 + µ) lmax is the maximum of the absolute values of tan (8 ± µ) 
evaluated for all the grid points arrayed along the vertical line at x = x0 . Since the 
transformation defined by Eqs. (8.19) and (8.20) states that i; = x, then the proper 
step size for downstream marching in the computational plane shown in Fig. 8.3b is 

(8.62) 
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where & is given by Eq. (8.61). Combining Eq. (8.62) with Eq. (8.61) and 
introducing the Courant number C, we have as our stability criterion for the value 
of~<;, 

~i; = C ~y 
I tan(8 ± µ)lmax 

(8.63) 

where the CFL criterion states that C ~ I. The value of ~<; obtained from 
Eq. (8.63) is the value that goes into Eqs. (8.37a) to (8.37d) and Eqs. (8.45a) 

to (8.45d). 

8.3.3 Intermediate Results 

Once again, we will follow our philosophy of g1vmg some interm~diate 
results during the course of a calculation so that you can check some 1~~er
mediate numbers from your own computer program; if you are not wntmg 
your own program for this application, the present section still provides educati~nal 
value for you-it is essentially a glorified flow diagram for the numencal 

solution. 
Starting from the initial conditions given in Table 8.1 . at x = 0 an~ using a 

Courant number C = 0.5 in Eq. (8.63), we find that after takmg 16 marchmg steps 
downstream, we are located at x = 12.928 m. Examining Fig. 8.4, this station is 
located 2.928 m downstream of the expansion comer. Let us focus on the 
calculations associated with the second grid point at this station, i.e., the grid 
point labeled} = 2 in Fig. 8.7, which shows the local grid in the vicinity of the ~all 
in the region around i; = 12.928 m. In the finite-difference procedure, the station 
i; = 12.928 m represents the location at which the flow is to be calculated from !he 
known values at the previous station. Hence, i; = 12. 928 m corresponds_ to locat~on 
i + I in the finite-difference equations given in Sec. 8.3.2, and the previous station 
corresponds to location i. 

Using the stability criterion given by Eq. (8.63), with C = 0.5, the value ?f ~~ 
between stations i and i + 1 in Fig. 8. 7 is ~<; = 0.818 m. Hence, at station z, 
i; = 12.928 - 0.818 = 12.11 m. At this station i, we have from Eq. (8.35), 

h = 40 + (12.11 - 10) tan 5.352° = 40.20 m 

Also, the metric or,lox evaluated at grid point} = 2 at station i is, from Eq. (8.25b), 

or,= (1 - ri) tan8 = (1 - 0.025) tan5.352 = 2.272 X 10-3 m-1 
ax h 40.20 

At station i the values of F 1 at points j = 1, 2, and 3 are known from the 
' . 3 kg 

calculations at the previous step. These values are (Fi);, 1 = 0.696 x IO ,;;r,, 
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Local grid adjacent to the wall at station x = .; = 12.928 m. 

(F1);,2 = 0.744 x 103 (:rs), and (Fi)i,3 = 0.798 x 103 (:fs). From eq. (8.36a), we 
have 

(
8F1) = (8'7) (F1);,2 -(Fi);, 3 +_!_ (G1);, 2 -(G1);, 3 
a~ i, 2 ax i, 2 t..,., h; t..,., 

= (2.272 X 10_3) [(0.744 - 0.798) X 103
] 

0.025 

+-l-[(-0.435+0.193) X 103
] 

40.20 0.025 

= -4.908 - 24.080 = / -28.99 kg/(m3 . s) 
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From Eq. (8.37a), we have 

(F'i);+ 1, 2 = (F1);_ 2 + (:1
). t,.~ 

,, 2 

= 0.744 X 103 + (-28.99)(0.818) 

= 0.720 x 103 kg/(m2 
· s) 

At this stage, we add some artificial viscosity. From Eq. (8.46a) we have, where 
Cy= 0.6, 

(SF) _CylP;+1,3-2P;+1,2+P;+1,1I 
I i+l 2 - 2 + ' p; + I, 3 + Pi+ I, 2 Pi+ I. I 

x [(F1);+1,3 -2(F1);+1,2 + (Fi)1+1, iJ 
= 0.001 X 103 

From Eq. (8.47a), we have 

(F1);+ 1, 2 = (F1);, 2 + (;;) t..~ + (SF1);+ 1, 2 
,, 2 

= 0.720 X 103 + 0.001 X 103 

= I 0.721 x 103 kg/(m2 
· s) I 

Note how small is the value of the artificial viscosity compared to the magnitude of 
the variable to which it is being added. This is as it should be, since the calculations 
are being made in a region where only small gradients of the flow-field variables 
exist, and hence artificial viscosity is not a strong player here. From the same 
calculations applied at grid points (i, 1) and (i, 3), we have 

(F1);+ 1, 1 = 0.703 x 103 kg/(m2 
· s) 

- 3 2 ) (F1 );+ 1,3 = 0.783 x 10 kg/(m · s 

Also, from the sequential application ofEqs. (8.36b) to (8.36d) and Eqs. (8.37b) to 
(8.37d) we find that 

- 6 2 
(F2);+ 1, 2 = 0.585 x 10 N/m 
- 5 2) (F3);+ 1,2 = -0.388 X 10 kg/(m · s 

(F4)1+1,2 = 0.372 x 109 N/(m · s) 
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The predicted density at point (i + 1, 2) is obtained from Eq. (8.38), where 
- 2 

A= (F3);+ 1,2 -
2(Fi);+ 1,2 - (F4);+ 1,2 

= ( -0.388 X 105)2 
9 

2(0.721 X 103) - 0.372 X 10 

= -0.37095 X lQ9~ 
ID· S 

B=-y- - -
y- 1 (F1);+1,2(F2);+1,2 

1.4 
= 0.4 (0.721 X 103)(0.585 X 106) 

= 1.476 x 109 N
2 

• s 
m5 

- 3 
C = _ Y + l(Fi);+l,J 

2(y - 1) 

2.4 k 
= - 2(0.4) (0.721 X 10

3
)
3 = 1.124 X 109 m

2 
~ S 

and 

- -B+ VB2 - 4AC 
P;+ 1,2 = 

2
A 

= -1.476 x 10
9 + V(l.476 x 109)2 

- 4(0.372 x 109)(1.124 x 109) 

= J 1.02 kg/m3 
I 

2(-0.37095 X }09) 

With this, we can form the predicted values for G, for example, from Eq. (8.39): 

(G1)- = p- (A)i+l,2 - 1 02(-0.388 X 105) 1+1,2 1+1,2() - . 
F1 i+ 1,2 0.721 X 103 

= / -0.552 x 102 kg/(m2 . s) / 

In a sin:1ilar manner,_ we find that [Gi]i+l,l = -0.658 x 102 kg/(m2. s) 
With the above mformation, we move to the corrector step. From Eq .. (8.43a), 

( 8F1) = (811) (F1\+1,1 - (F);+1,2 +! (G1\+1,1 - (G1);+1,2 
at, i+ 1,2 ax ~1} h ~1} 

:t;~s :tafe.we ?ave_ a choice _to make; in the above equation, do we evaluate 81]!8x 
n a s atJon l or z + 1? It IS not immediately obvious which choice to make. It 
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appears that we are evaluating the left-hand side of the equation at station i + 1 . On 
the other hand, this equation is simply one element of a calculation that seeks to 
represent an average value of the flow-field derivatives between locations i and 
i + 1, and hence it might be appropriate to treat 817/ox and h consistently as those 
values at station i on both the predictor and corrector step. Faced with this choice, 
we make the latter. Hence, in the above equation we will use the value of the metric 
and the value of h as those existing at station i. With this, we obtain 

(
8F1) = (2.272 x 10-3) [(0.703 - 0.721) x 10

3
] 

at, i+ 1, 2 0.025 

+ _l_ [(-0.658 + 0.552) X 10
2

] 

40.2 0.025 

= 1-0.122 x 102 kg/(m3 · s) 

From Eq. (8.44a), we have 

( 8F1) 1 [(8F1) (8F) l 
at, av= 2 at, i,2 + at, i+ 1,2 

From Eq. (8.45a) 

= !(-28.99 -12.2) = j -20.5 kg/(m3 . s) 

(F1\+1,2 = (F1);,2 +(~;)av~(, 
= 0.744 X 103 + (-20.5)(0.818) 

= 0.727 x 103 kg/(m2 . s) 

At this stage, we add some artificial viscosity. From Eq. (8.48a), we find that 

(SF1);+ 1,2 = -0.8 

Hence, from Eq. (8.49a) 

(
8F1) --

(Fi);+ 1,2 = (F1);,2 + a[ av~(,+ (SF1);+ 1,2 

= j 0.728 x 103 kg/(m2 · s) I 

In a similar manner, we obtain 

6 N 
(F2 );+ 1,2 = 0.590 x 10 m2 

( ) 
5 kg 

F3 i+l 2 = -0.36 X 10 --2 
' m·s 

( 
9 N F4);+ 1 2 = 0.375 x 10 --

, m·s 
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Decoding the primitive variables as described earlier, we have from Eq. (8.8) 

A_ (F3):+ 1,2 
- 2(F )2 - (F4)i+ 1,2 

I i+ 1,2 

= (-0.36 X 105 )
2 

9 
2(0.728 X 103) - 0.375 X IO 

= -0.374 X 109 ~ 
m·s 

y 
B = y _ 1 (Fi),+1,2(F2),+1,2 

= G::}0.728 x 10
3
)(0.590 x 106

) = l.503 x 109N / 
m 

C - -(y + I) 3 

- 2(y - I) (F,),+ 1,2 

= -~~/) (0.728 x 10
3)3 = l.152 x 109 (m~~ s) 

3 

Thus, 

-B+ VB2 -4AC 
Pi+1,2 = 

2
A 

= -l.503 X 10
9 + V(-l.50 x 109)2 

- 4(-0.374 x l09)(l.152 x 109) 

2(-0.374 X 109) 

l.04 kg/m3 

From Eq. (8.9) 

Ui+ 1 2 
= (Fi)i+ 1,2 = 0.728 X 103 _ 

, Pi+1,2 l.04 -

From Eq. (8.10) 

V
. _ (F3)i+ 1,2 -0.36 x 105 

1+12-( = -
, F1t+1,2 0.728 x 103 -

From Eq. (8.11) 

Pi+l,2 = (F2)i+l,2 - (F1);+1,2Ui+l,2 

701 m/s 

-49.4 m/s 

= 0.590 X 106 
- (0.728 X 103)(701) 

/ 0.795 x 105 N/m2 
/ 
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Finally, from Eq. (8.11) we have 

Pi+ 1,2 0.795 X 10
5 I I 

T,+ 1,2 = RP;+ 1,2 = 287(1.04) = 267 K 

Return to Fig. 8.7. In the above calculations, we have illustrated how the flow
field values at grid point} = 2 located at station i + 1 are computed from the known 
flow field at station i. Let us now concentrate on the calculation of the flow field at 
the boundary, i.e., at grid point j = 1 at station i + 1 in Fig. 8.7. To avoid 
repetitiveness, we will examine the calculation on the corrector step; the treatment 
of the boundary condition on the predictor step follows the same approach. 

We first need to calculate the values of F 1 , F2 , etc., at the boundary using one
sided, forward differences on both the predictor and corrector steps. We will pick up 
the calculation on the corrector step. From Eq. (8.43a), but with forward differ
ences, we have 

From the predictor step, we have values for the quantities on the right-hand side of 
the above equations; they are 

- 3 kg 
(Fi)i+l 1 = 0.703 x 10 -2 -

' m ·S 

- 3 kg 
(F1);+J 2 = 0.721 X 10 - 2 -

' m ·S 

- 2 kg 
(G1);+1 I= -0.658 X 10 -2 -

' m ·S 

- 2 kg 
(G1)i+l 2 = -0.552 X 10 -2 -

' m ·S 

Thus, 

(
8F1) = (2_272 X 10_3) [(0.703 - 0.721) X 10

3
] 

0~ i+ I, I 0.025 

_l _ [(-0.658 + 0.552) X 102
] 

+ 40.20 0.025 

= - l.64 - 10.55 = -12.18 kg/(m3 
· s) 

Also from the predictor step, we have 

( :;). = -26.1 kg/(m3 . s) 
,,I 

From Eq. (8.44a), 

(~D .. ~H c:1. +(:L,J 
= H(-26.1) + (-12.18)] = -19.14 kg/(m3 . s) 
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From Eq. (8.45a) 

(F1);+ !, 1 = (Fi);, 1 + (~;)av Li~ 

= 0.696 X 103 + (-19.14)(0.818) 

= 0.680 x 103 kg/(m2 . s) 

This _is the value of F 1 at th~ bounda1?' as obtained from the algorithm designed for 
the internal flow-field pomts, modified for one-sided differences at the wall 
Analogous results are ?btained ~or_ F2 , F3 , and F4 at the boundary. These values ar~ 
then decoded to obtam the pnm1tive variables at the wall. The results are 

Meal= 2.22 

Peal = 0.705 X 105 N/m2 

Teal= 255 K 

Peal = 0.963 kg/m3 

Veal = - 74.6 m/s 

Ucal = 707 m/s 

~ote that the calculated values of veal and Ucal yield a velocity vector in the direction 
efined by the angle lj; in Fig. 8.5. From Eq. (8.57), 

,/, t -1 IVcall I 74.6 'I'= an - = tan- -- = 6.02° 
Ucal 707 

Howe"'.er, the wall downstream of the expansion comer is at an angle () = 5_353° 
(see ~ig. 8.5). Thus, after the use of the one-sided differences at the wall as 
d_escnbed above, we see that the calculated velocity vector is pointing into the waII 
smce i/1 > () (again, see Fig. 8.5). From Eq. (8.58), we have ' 

<P2 = () - i/1 = 5.352 - 6.02 = -0.668° 

Hence, we need to imagine that the calculated supersonic flow at the waII must be 
rotated through ~n angl~ <P2 = -0.668° (an upward rotation) in order to be tangent 
to the w~II; this ro~at10n is carried out by means of a local Prandtl-Meyer 
compresswn wave, smce the calculated flow is into the wall. From Eq. (8.56) 

fact = fcal + <P2 

Since fca1 = 32.24° for Meal = 2.22, we have 

fact = 32.24 - 0.668 = 31.57° 

From Eq. (8.2), this yields 

Mact = 2.19 
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The actual values of pressure, temperature, and density at the wall are obtained from 
Eqs. (8.53) to (8.55), respectively. 

{
1 + [(y - 1)/2]M;a,}y/(y-l) 

Pi+ I, I =Pact= Peal l + [(y _ l)/2]Mict 

= (0.705 X 105) [l + 0.4(2.22)2] 3.5 
1 + 0.4(2.19)2 

= I 0.734 x 105 N/m2 

T -T -T. l+[(y-l)/2]M;a1 
1+1,1- act- call+[(y-l)/2]Mfct 

= 255 [l + 0.4(2.22)2] = I 258 K 
1+0.4(2.19)2 . 

Pact 0.734 X 105 

P;+ I, 1 =Pact= RTact = 287(258) 0.992 kg/m3 

The use of the local Prandtl-Meyer wave at the wall to rotate the calculated velocity 
vector so that it becomes tangent to the waII is purely a conceptual matter; it is 
simply a way to imagine that the component of the calculated velocity perpendi
cular to the wall, which is usually a finite value when the one-sided differences are 
used, is canceled by means of the local Prandtl-Meyer wave. (Keep in mind that the 
proper flow tangency boundary condition can be expressed by stating that the 
component of velocity normal to the wall must be zero.) The actual values of p, T, 
and p obtained above represent a smaII adjustment to the originally calculated 
values to be consistent with this cancellation of the normal velocity component. 

Finally, since the local Prandtl-Meyer wave is functioning to simply cancel 
the normal component of velocity, and this canceIIation involves only a smaII 
velocity change, we choose to leave the x-component velocity, as calculated from 
one-sided differences, alone. That is, we wiII stipulate that 

U;+ 1, 1 = Ucal = 707 m/s 

From this, the corresponding y component of velocity at the wall must be the 
foilowing value, after the normal component is effectively canceled and the flow is 
therefore tangent to the wall. 

V;+ 1, 1 = -u;+ 1, 1 tan()= - 707 tan 5.352° = I -66_2 m/s 

Note that this value of v is slightly smaller than Veal = - 74.6 mis as listed above, 
calculated from one-sided differences. The value v,-+ 1, 1 = -66.2 mis is compatible 
with the flow tangency boundary condition. 

This ends our sample, intermediate calculations. For completeness, the results 
obtained at all the grid points from j = 1 to j = 41 at the station located at 



406 NUMERICAL SOLUTION OF A TWO-DIMENSIONAL SUPERSONIC FLOW 
THE NUMERICAL SOLUTION OF A PRANDTL-MEYER EXPANSION WAVE FLOW FIELD 407 

x = ~ = 12.928 mare tabulated in Tables 8.2 and 8.3. The numbers tabulated here TABLE 8.3 
are the ~nal flow-field values obtained from the downstream-marching technique at Flux values at x = 12.928 m 
the station~ = 1_2?28 m; t~i~ corresponds to the sixteenth marching step starting 

Fi, Fi, F3, F4, from the given m1ttal cond1t10ns at x = 0. We will return to Tables 8.2 and 8.3 
during our final analysis of the results as discussed in the next section. j T, K M kg/(m2 

· s) N/m2 kg/(m · s2
) N/(m · s) 

I .258E+03 .220E+Ol .701E+03 .569E+06 -.464E+05 .358E+09 
TABLE 8.2 2 .267E+03 .215E+Ol .728E+03 .590E+06 -.360E+05 .375E+09 
Results at x = 12.928 m 3 .277E+03 .208E+Ol .776E+03 .626E+06 -.207E+05 .402E+09 

4 .283E+03 .203E+Ol .815E+03 .654E+06 -.708E+04 .422E+09 
5 .286E+03 .200E+Ol .83!E+03 .665E+06 -.109E+04 .430E+09 j Y, m r, u, mis v, mis p, kg/m3 

p, N/m3 6 .286E+03 .200E+Ol .834E+03 .667E+06 -.123E+02 .431E+09 
7 .286E+03 .200E+Ol .834E+03 .667E+06 .272E-02 .43 IE+09 -0.274 0.000 .707E+03 -.662E+02 .992E+OO .734E+05 8 .286E+03 .200E+Ol .834E+03 .667E+06 -.140E+OO .431E+09 2 0.733 0.025 .70!E+03 -.494E+02 .104E+Ol .795E+05 9 .286E+03 .200E+Ol .834E+03 .667E+06 .394E-Ol .431E+09 3 1.739 0.050 .691E+03 -.266E+02 .112E+Ol .891E+05 10 .286E+03 .200E+Ol .834E+03 .667E+06 -.586E-Ol .43 IE+09 4 2.746 0.075 .683E+03 -.869E+Ol .119E+Ol .969E+05 II .286E+03 .200E+Ol .834E+03 .667E+06 -.162E-01 .431E+09 5 3.753 0.100 .679E+03 -.131E+Ol .122E+Ol .IOOE+06 12 .286E+03 .200E+Ol .834E+03 .667E+06 .150E-Ol .431E+09 6 4.760 0.125 .678E+03 -.148E-O! .123E+Ol .IOIE+06 13 .286E+03 .200E+Ol .834E+03 .667E+06 -.499E-Ol .431E+09 7 5.767 0.150 .678E+03 .326E-05 .123E+Ol .IOIE+06 14 .286E+03 .200E+Ol .834E+03 .667E+06 -.535E-Ol .431E+09 8 6.774 0.175 .678E+03 -.167E-03 .123E+Ol .IOIE+06 15 .286E+03 .200E+Ol .834E+03 .667E+06 -.271E-10 .431E+09 9 7.781 0.200 .678E+03 .472E-04 .123E+Ol .IOIE+06 16 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .431E+09 10 8.787 0.225 .678E+03 -.702E-04 .123E+Ol .IOIE+06 17 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .431E+09 11 9.794 0.250 .678E+03 -.195E-04 .123E+Ol .101E+06 18 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .431E+09 12 10.801 0.275 .678E+03 .180E-04 .123E+Ol .101E+06 19 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .431E+09 13 11.808 0.300 .678E+03 -.598E-04 .123E+Ol .101E+06 20 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .431E+09 14 12.815 0.325 .678E+03 -.642E-04 .123E+Ol .IOIE+06 21 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .431E+09 15 13.822 0.350 .678E+03 -.325E-!3 .123E+Ol .IOIE+06 22 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .43 IE+09 16 14.829 0.375 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 23 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .43 IE+09 17 15.835 0.400 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 24 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .431E+09 18 16.842 0.425 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 25 .286E+03 .200E+Ol .834E+03 .667E+06 .181E-07 .431E+09 19 17.849 0.450 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 26 .286E+03 .200E+Ol .834E+03 .667E+06 .988E-Ol .431E+09 20 18.856 0.475 .678E+03 .OOOE+OO .!23E+Ol .101E+06 27 .286E+03 .200E+Ol .834E+03 .667E+06 .IOOE+OO .43 IE+09 21 19.863 0.500 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 28 .286E+03 .200E+Ol .834E+03 .667E+06 .295E-02 .431E+09 22 20.870 0.525 .678E+03 .OOOE+OO .123E+Ol .I 01E+06 29 .286E+03 .200E+Ol .834E+03 .667E+06 .104E+OO .431E+09 23 21.877 0.550 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 30 .286E+03 .200E+Ol .834E+03 .667E+06 -.161E-01 .431E+09 24 22.883 0.575 .678E+03 .OOOE+OO .123E+O! .IOIE+06 31 .286E+03 .200E+Ol .834E+03 .667E+06 -.506E-Ol .431E+09 25 23.890 0.600 .678E+03 .217E-10 .123E+Ol .IOIE+06 32 .286E+03 .200E+Ol .834E+03 .667E+06 .201E+OO .431E+09 26 24.897 0.625 .678E+03 .l 18E-03 .123E+Ol .IOIE+06 33 .286E+03 .200E+Ol .834E+03 .667E+06 .133E+OO .431E+09 27 25.904 0.650 .678E+03 .120E-03 .123E+O! .IOIE+06 34 .286E+03 .200E+Ol .834E+03 .667E+06 .134E+OO .431E+09 28 26.911 0.675 .678E+03 .354E-05 .123E+O! .IOIE+06 35 .286E+03 .200E+Ol .834E+03 .667E+06 .335E-Ol .43 IE+09 29 27.918 0.700 .678E+03 .125E-03 .123E+Ol .IOIE+06 36 .286E+03 .200E+Ol .834E+03 .667E+06 -.707E-Ol .431E+09 30 28.925 0.725 .678E+03 -.193E-04 .123E+O! .IOIE+06 37 .286E+03 .200E+Ol .834E+03 .667E+06 -.106E+OO .43 IE+09 31 29.931 0.750 .678E+03 -.607E-04 .123E+Ol .IOIE+06 38 .286E+03 .200E+Ol .834E+03 .667E+06 -.285E-Ol .431E+09 32 30.938 0.775 .678E+03 .242E-03 .123E+O! .IOIE+06 39 .286E+03 .200E+Ol .834E+03 .667E+06 -.891E-Ol .431E+09 33 31.945 0.800 .678E+03 .160E-03 .123E+O! .IOIE+06 40 .286E+03 .200E+Ol .834E+03 .667E+06 -.530E-Ol .431E+09 34 32.952 0.825 .678E+03 .161E-03 .123E+Ol .IOIE+06 41 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .431E+09 35 33.959 0.850 .678E+03 .401E-04 .123E+Ol .IOIE+06 36 34.966 0.875 .678E+03 -.848E-04 .123E+O! .IOIE+06 37 35.973 0.900 .678E+03 -.128E-03 .123E+Ol .IOIE+06 8.3.4 Final Results 38 36.979 0.925 .678E+03 -.342E-04 .123E+Ol .IOIE+06 Let us examine the results of the present downstream marching calculations in a 39 37.986 0.950 .678E+03 -.107E-03 .123E+O! .101E+06 

more global fashion. Such a global picture is shown in Fig. 8.8. Here the x 40 38.993 0.975 .678E+03 -.636E-04 .123E+Ol .IOIE+06 41 40.000 1.000 .678E+03 .OOOE+OO .123E+Ol .IOIE+06 component of the velocity, u, is plotted versus the vertical distance y at five different 
stations in the x direction, namely, x = 0, 16.17, 32.31, 48.99, and 66.23 m. The 
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~ 8 "' (IJ 

~ r-- :.§ geometry of the wall, with the expansion comer at x = 10 m, is also plotted to scale. 
" '1:) Moreover, the leading and trailing edges of the centered expansion wave ( exact 

"' ~ 00 Cll solution) are drawn to scale and superimposed on the figure. For each of the five 'D 
.; 

8 ~ velocity profiles shown, a comparison between the exact analytical results (the dark 
<') ~ circles) and the numerical downstream marching, finite-difference results (the solid N C: 0 -a . sa line) is given. Make certain to orient yourself with regard to what is shown in Fig . ..,. 

"'t 'D 
"' § 8.8 before progressing further. 

"' i - In Fig. 8.8, the velocity profile at x = 0 shows the uniform inflow conditions r--

~ 
'1:) 

where u = 678 mis. The velocity profile at x = 16.17 mis just slightly downstream "' e a 8 E of the expansion comer, which is located at x = l O m. The station at x = 16.17 m ~ r-- (IJ 

" u 
corresponds to 20 marching steps downstream of the inlet. It is intuitively obvious Ol 

"' -§i that the most severe demands on the numerical solution are in the vicinity of the 00 
'D ;::1 

8 ~ expansion comer, which analytically is a singular point. Reflecting back to the 

°' ~ governing flow equations expressed by Eqs. (8.30) to (8.33), note that the metric 
-°' 0 'Cl N 00 oci 0 817/ox experiences a discontinuous change at the expansion comer, as is clearly seen ..,. <') <') N ..,. q:: 

u in Eqs. (8.25a) and (8.25b). Also, just behind the expansion comer, there are only a 
"' 

·a 
0 ;:: ~ few vertically arrayed grid points between the wall and the trailing edge of the wave, 
(IJ 

--;;, fr and fewer points yet inside the wave itself As a result, not only is the numerical 
a 8 "' ... solution in this region effectively hit over the head with a sledgehammer (i.e., in the 
~ r-- c.8 
" ""' form of the singular point and the discontinuity in the metric), there are also very 

"' 
"' 

(IJ 

few grid points available in that region to absorb the blow. The net result is the 00 ] 'D 
u partial Jack of definition of the wave at the x = 16.17 m station; the agreement 

8 ~ between the numerical calculation and the exact, analytical results inside and behind 
~ 

~ 'D N 
--N 

C: the wave is not very good. This behavior is one of the reasons why a relatively mild 00 <'i <') <') N 0 <') ·s expansion comer with a deflection angle of 5.352° is chosen for the present test 
~ 0 case. For a larger deflection angle, the problems discussed above are exacerbated. r-- "' -; Consider the case for a comer deflection angle of 23.38° with the same Mach 2 --;;, u 

a 8 ! upstream flow in the present example. This flow deflection will expand the flow to 
~ r--

§ Mach 3 downstream of the comer. However, when e = 23.38° is fed into the current " - setup, the calculations develop some strong oscillations and eventually ( about 6 or "' u 
00 Ol 
'D >< 8 m downstream of the comer) blow up. Presumably there is some combination of (IJ 

"' 8 -B number of grid points with an appropriately heavy numerical damping (via large 
!::: '1:) artificial viscosity) that might result in a successful solution downstream of the 0 'Cl N 00 -a § ..,. <') <') N expansion comer for this large deflection case. This matter is left for you to - ll = "' examine. ... e 

"' At this stage, we recall that Tables 8.2 and 8.3 give the flow-field variables 
~ E Cl 
"' 8 8 ""' even closer to the expansion comer, namely, at x = 12.928 m. The numbers 

}~ 

u 
C: 0 o- "' tabulated in those tables simply reinforce the above discussion. ·~ II -B 
a " C: As the numerical solution progressively marches further downstream, where c.. "' >< ! ti "" the expansion wave is wider and the distance between the wall and the trailing edge 

~~ of the wave is larger, the agreement between the exact, analytical results and the c: e 
0 o_ numerical computations improves considerably. Concentrating on the velocity 

0 'D N 00 
II ~ ·E 8 ..,. 0 ~ N ..,. <') (") N N N 00 ..,. 0 >< QC) Ol ·i:: profile at the x = 66.23 m station, we see good agreement; the numerical solution 

• ~ (IJ 

Ill:),( c., 0 8 is capturing the wave in the right location, the variation of the computed velocity ~us 
inside the wave nicely follows the exact, analytical solution, and the velocity 

408 downstream of the wave is uniform at the correct value. 
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There is a slightly disturbing phenomenon occurring right at the wall as the TABLE 8.4 
numerical calculations progress downstream. The exact, analytical value for u

2 
Results at x = 66.278 m 

downstream of the wave is 710.2 mis. At x = 16.17 m, the numerical value of u
2 

j '1 u, mis v, mis p, kg/m3 p, N/m3 right at the wall is 711 mis-very close to the exact result. However, as we march y, m 
downstream, the value of u2 at the wall begins to deviate; at the subsequent three 

l -5.272 0.000 .705E+03 -.661E+02 .109E+Ol .731E+05 
downstream stations (x = 32.3, 48.99, and 66.23 m), the respective values of u

2 
at 2 -4.140 0.025 .710E+03 -.682E+02 .107E+Ol .730E+05 

-3.009 0.050 .711E+03 -.690E+02 .969E+OO .732E+05 the wall are 708, 707, and 705 mis. This can be seen in Fig. 8.8 as a small "velocity 3 
4 -1.877 0.075 .711E+03 -.688E+02 .977E+OO .731E+05 layer" right at the wall, which departs from the exact solution. The thickness of this 
5 -0.745 0.100 .711E+03 -.689E+02 .976E+OO .731E+05 layer is only one grid increment, i.e., the thickness is only Liy. At the first grid point 
6 0.387 0.125 .711E+03 -.688E+02 .976E+OO .731E+05 above the wall, the flow velocity comes into very good agreement with exact results. 
7 1.519 0.150 .711E+03 -.689E+02 .976E+OO .731E+05 

This small velocity layer, which is certainly a numerically induced phenomenon and 8 2.650 0.175 .711E+03 -.690E+02 .976E+OO .731E+05 
3.782 0.200 .711E+03 -.690E+02 .976E+OO .731E+05 not a physical result, may be due to the history of the expansion comer singularity 9 

10 4.914 0.225 .711E+03 -.688E+02 .977E+OO .731E+05 being propagated downstream by the numerical computations. It also may be due to 
11 6.046 0.250 .711E+03 -.686E+02 .977E+OO .732E+05 a progressive accumulation of numerical error owing to the numerical implementa-
12 7.178 0.275 .711E+03 -.688E+02 .977E+OO .731E+05 tion of the boundary condition. Since the solution uses a downstream marching 
13 8.309 0.300 .711E+03 -.694E+02 .975E+OO .729E+05 

philosophy, numerical errors that occur upstream are simply carried along as the 14 9.441 0.325 .711E+03 -.696E+02 .974E+OO .729E+05 
10.573 0.350 .711E+03 -.690E+02 .976E+OO .731E+05 solution marches downstream. If a certain type of numerical error, no matter how 15 

16 11.705 0.375 .711E+03 -.678E+02 .980E+OO .735E+05 slight, is repeatedly generated at the wall, it will have a tendency to accumulate as 
17 12.837 0.400 .711E+03 -.672E+02 .982E+OO .737E+05 we march downstream. Perhaps a slight improvement in our numerical imple-
18 13.968 0.425 .711E+03 -.683E+02 .978E+OO .733E+05 mentation of the flow tangency boundary condition is in order. This would be an 
19 15.100 0.450 .712E+03 -.708E+02 .970E+OO .725E+05 interesting matter for you to examine. 
20 16.232 0.475 .713E+03 -.732E+02 .963E+OO .717E+05 

0.500 .713E+03 -.740E+02 .960E+OO .714E+05 Note from Fig. 8.8 that the leading edge of the exact expansion wave exits the 21 17.364 
22 18.496 0.525 .713E+03 -.726E+02 .964E+OO .719E+05 computational domain through the downstream boundary, i.e., at about a height 
23 19.627 0.550 .711E+03 -.693E+02 .975E+OO .730E+05 y = 32.5 m. The geometry of our computational space is chosen intentionally to 
24 20.759 0.575 .709E+03 -.647E+02 .990E+OO .746E+05 allow this to happen. Recall that the boundary condition we are imposing at the 
25 21.891 o.600 .707E+03 -.591E+02 .lOlE+Ol .765E+05 

upper boundary ( at Yf = 1.0) is simply the specification of uniform conditions equal 26 23.023 0.625 .705E+03 -.531E+02 .103E+Ol .787E+05 
0.650 .702E+03 -.468E+02 .105E+Ol .810E+05 to those in the uniform flow upstream of the expansion wave. This is appropriate as 27 24.155 

28 25.287 0.675 .699E+03 -.405E+02 .107E+Ol .834E+05 long as the expansion wave completely exits the computational space along the 
29 26.418 0.700 .696E+03 -.343E+02 .llOE+Ol .859E+05 vertical, downstream boundary at x = 66.23 m. Imagine what would happen if we 
30 27.550 0.725 .693E+03 -.283E+02 .112E+Ol .883E+05 were to continue marching downstream, say to a station x = 100 m. By examining 
31 28.682 0.750 .690E+03 -.227E+02 .ll4E+Ol .907E+05 

Fig. 8.8, we can easily see that the leading edge and part of the internal portion of 32 29.814 0.775 .688E+03 -.l75E+02 .116E+Ol .930E+05 
0.800 .685E+03 -.129E+02 .l 18E+Ol .950E+05 the expansion wave will exit through the upper boundary. If and when such a 33 30.946 

34 32.077 0.825 .683E+03 -.901E+Ol .l 19E+Ol .968E+05 situation exits, we must use a different boundary condition along the upper 
35 33.209 0.850 .681E+03 -.591E+Ol .121E+Ol .982E+05 boundary-different from that which we have used so far. In this case, what 
36 34.341 0.875 .680E+03 -.361E+Ol .121E+Ol .993E+05 changes would you make along the upper boundary? A simple thought is the 
37 35.473 0.900 .679E+03 -.203E+Ol .122E+Ol .100E+06 

calculation of the flow properties along the upper boundary from the flow equations 38 36.605 0.925 .679E+03 -.105E+Ol .123E+Ol .100E+06 
0.950 .678E+03 -.499E+OO .123E+Ol .l01E+06 using one-sided differences (in this case requiring one-sided rearward differences on 39 37.736 

40 38.868 0.975 .678E+03 -.229E+OO .l23E+Ol .l01E+06 both the predictor and corrector steps). Another possibility is to extrapolate the 
41 40.000 1.000 .678E+03 .OOOE+OO .123E+Ol .101E+06 values to the upper boundary from information at the internal grid points; however, 

in this case, rather than using a linear extrapolation in the vertical direction, it would 
be more appropriate to extrapolate along characteristic lines from the internal grid 
points. This is something else with which you might want to experiment. 

Return to the results shown in Fig. 8.8. For the sake of completeness, all the 
computed flow-field variables at the x = 66.23 station (which corresponds to 80 
marching steps from the inlet) are tabulated in Tables 8.4 and 8.5. When examining 
these tabulated results, it is useful to note that the exact, analytical values 
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TABLE 8.5 downstream of the expansion wave are 
Flux values at x = 66.278 m Mz = 2.20 

Fi, F2, F3, F4, pz = 0.739 x 105 N/m
2 

j T, K M kg/(m2 
· s) N/m2 kg/(m · s2

) N/(m · s) p2 = 0.984 kg/m3 

.233E+03 .231E+Ol .769E+03 .616E+06 -.508E+05 .374E+09 
2 .237E+03 .231E+Ol .760E+03 .612E+06 -.519E+05 .374E+09 

Tz = 262 K 

3 .263E+03 .220E+Ol .689E+03 .563E+06 -.475E+05 .358E+09 Uz = 710 m/s 
4 .26lE+03 .22lE+Ol .694E+03 .567E+06 -.478E+05 .359E+09 
5 .261E+03 .221E+Ol .694E+03 .567E+06 -.478E+05 .359E+09 

vz = -66.5 m/s 

6 .261E+03 .221E+Ol .694E+03 .567E+06 -.478E+05 .359E+09 
7 .26lE+03 .22lE+Ol .694E+03 .567E+06 -.478E+05 .359E+09 

In Tables 8.4 and 8.5, if we compare the numerical results in the uniform region 

8 .261E+03 .221E+Ol .694E+03 .567E+06 -.479E+05 .359E+09 
downstream of the wave (say between) = 2 and 23) with the exact analytical results 

9 .26lE+03 .221E+Ol . 694E+03 .567E+06 -.479E+05 .359E+09 listed above, we find the following percentage errors . 
10 .26lE+03 .221E+Ol .694E+03 .567E+06 -.478E+05 .359E+09 
11 .261E+03 .221E+Ol .695E+03 .567E+06 -.477E+05 .359E+09 
12 .261E+03 .221E+Ol .695E+03 .567E+06 -.478E+05 .359E+09 Quantity % error 
13 .261E+03 .221E+Ol .693E+03 .566E+06 -.481E+05 .359E+09 
14 .261E+03 .22lE+Ol .693E+03 .566E+06 -.483E+05 .358E+09 M2 0.45 

15 .261E+03 .22lE+Ol .694E+03 .567E+06 -.479E+05 .359E+09 P2 1.08 

16 .26lE+03 .220E+Ol .697E+03 .569E+06 -.472E+05 .360E+09 P2 0.813 

17 .261E+03 .220E+Ol .698E+03 .569E+06 -.469E+05 .361E+09 T2 0.038 

18 .261E+03 .221E+Ol .696E+03 .568E+06 -.475E+05 .360E+09 U2 0.141 

19 .260E+03 .22lE+Ol .691E+03 .564E+06 -.489E+05 .357E+09 V2 3.76 

20 .259E+03 .222E+Ol .686E+03 .561E+06 -.502E+05 .355E+09 
21 .259E+03 .222E+Ol .685E+03 .560E+06 -.506E+05 .354E+09 
22 .260E+03 .222E+Ol .687E+03 .562E+06 -.499E+05 .356E+09 This agreement between the exact analytical solution for the flow behind an 
23 .261E+03 .221E+Ol .694E+03 .566E+06 -.481E+05 .359E+09 expansion wave and the corresponding numerical results is reasonable; indeed, the 
24 .262E+03 .219E+Ol .703E+03 .573E+06 -.454E+05 .363E+09 
25 .264E+03 .218E+Ol .7!3E+03 .581E+06 -.422E+05 .369E+09 

percentage errors listed above are on par with those obtained in Chap. 7 for our 

26 .266E+03 .216E+Ol .725E+03 .590E+06 -.385E+05 .375E+09 
time-marching solutions of nozzle flows. The only disturbing feature shown in 

27 .269E+03 .214E+Ol .737E+03 .599E+06 -.345E+05 .382E+09 Tables 8.4 and 8.5 are the values at the wall (j = 0). Here we see the presence of 

28 .271E+03 .212E+Ol .750E+03 .608E+06 -.304E+05 .388E+09 some type of "error layer" at the wall, as discussed earlier in regard to the velocity 
29 .273E+03 .210E+Ol .763E+03 .617E+06 -.262E+05 .394E+09 profiles in Fig. 8.8. The velocity is not the only variable affected by this phenomena; 
30 .275E+03 .209E+Ol .775E+03 .625E+06 -.220E+05 .401E+09 
31 .277E+03 .207E+Ol .786E+03 .634E+06 -.178E+05 .407E+09 

the other flow variables exhibit a slight change at the wall compared to the values 

32 .279E+03 .205E+Ol .797E+03 .641E+06 -.139E+05 .412E+09 
immediately above it ( except for the pressure, which is virtually constant in the 

33 .281E+03 .204E+Ol .807E+03 .648E+06 -.104E+05 .417E+09 region of the wall, including the wall point.) Our earlier discussion on this matter is 

34 .283E+03 .203E+Ol .815E+03 .654E+06 -.734E+04 .422E+09 sufficient; we will not repeat it here. Suffice it to say that such behavior is an 

35 .284E+03 .202E+Ol .822E+03 .658E+06 -.485E+04 .425E+09 example that CFD is not perfect-a fact which is important for you to appreciate. 
36 .285E+03 .201E+Ol .826E+03 .661E+06 -.298E+04 .428E+09 
37 .285E+03 .201E+Ol .830E+03 .664E+06 -.169E+04 .429E+09 

In regard to the matter of grid independence, a solution was carried out where 

38 .286E+03 .200E+Ol .832E+03 .665E+06 -.877E+03 .430E+09 
the number of grid points in they direction was doubled; i.e., the value of Lly (hence 

39 .286E+03 .200E+Ol .833E+03 .666E+06 -.416E+03 .431E+09 Ll17) was halved. This led to 81 points being distributed in they direction. Also, since 

40 .286E+03 .200E+Ol .834E+03 .666E+06 -.191E+03 .431E+09 the marching step i:l~ is related to Ll17 through the stability criterion (see Eq. 8.63), 
41 .286E+03 .200E+Ol .834E+03 .667E+06 .OOOE+OO .43 IE+09 this also doubled the number of grid points in the ~ direction. The net result was an 

increase in the number of grid points by a factor of 4. The calculated results for the 
flow field in this case were not materially different from those discussed earlier. 
Therefore, the earlier results basically reflect grid independence. 

As a final comment in this section, note that the geometric units chosen to 
describe the size of the computational space for the above calculations, namely, a 
height of about 40 m and a length of about 65 m, is irrelevant to the answer. Instead 
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of using meters, we could just as well as chosen millimeters, with a computational 
space of 40 mm by 65 mm, or any other length units for that matter. The flow 
problem of the supersonic flow through an expansion wave does not depend on any 
particular length scale. Since in the present calculations we chose to solve the 
governing equations in dimensional variables, we had to stipulate some geometric 
length; to maintain consistent units, we chose the unit of meters. So if a length of 
65 m sounds very large to you, do not worry; it is totally irrelevant to the solution of 
the problem. 

8.4 SUMMARY 

The major items discussed and illustrated in this chapter are diagrammed in the road 
map shown in Fig. 8.9. The main thrust of this chapter is to highlight the philosophy 
of space marching in contrast to that of time marching discussed in Chap. 7. Such 
space marching required us to use the conservation form of the steady flow 
equations. The geometry of the problem requires a boundary-fitted coordinate 
system, so this gave us a chance to work with some aspects of grid generation and to 
use the governing equations in the transformed space. Moreover, we used the 
technique of wave capturing, albeit here we captured an expansion wave rather than 
a shock wave as done in Chap. 7; with wave capturing, we already appreciate the 
need to use the conservation form of the governing equations. We also applied some 
artificial viscosity to smooth the results; this is mainly needed in the vicinity of the 
expansion comer, which itself is a mathematical singularity. For the rest of the 
expansion wave, we most likely could do without the artificial viscosity. Finally, for 
the inviscid flow at the boundary, we utilized Abbett's numerical treatment of the 
boundary condition, which involved the use of a local, imaginary, Prandtl-Meyer 
wave at the wall to rotate the calculated velocity vector to be parallel to the wall. All 

Space-marching solution 

Conservation Grid generation: Wave Artificial 
form of the boundary-fitted capturing viscosity 
governing coordinate 
equations system 

I I I I 
I 

Solution of the flow Abbett's wall 
through a Prandtl-Meyer boundary 

expansion wave condition 

FIG. 8.9 
Road map for Chap. 8. 

SUMMARY 415 

these elements went into the calculation of the supersonic flow through a ce~tere?, 
Prandtl-Meyer expansion wave, which was the featured flow problem m this 

chapter. · d · b th Ch 7 
At this stage, we are reminded that the CFD techmques use_ m ~ . . aps. 

and 8 are explicit finite-difference techniques. To exp~d our honzons, it is t~me for 
us to explore an implicit solution applied to an appropnate flow problem. This leads 

us directly to the next chapter. 



CHAPTER 

9 
INCOMPRESSIBLE 
COUETTE 
FLOW: 
NUMERICAL 
SOLUTIONS 
BY MEANS 
OF AN 
IMPLICIT METHOD 
AND THE 
PRESSURE 
CORRECTION 
METHOD 

The most dangerous of our calculations are those 
we call illusions. 

George Bernanos, from Dialogue des Carmelites, 1949 

9.1 INTRODUCTION 

The numerical techniques illustrated in Chaps. 7 and 8 are explicit finite-difference 
methods. Moreove~, the mathematical nature of the governing equations for the 
problem~ treate_d m_ both ~hapters is hyperbolic. For an explicit solution of 
h~pe~bohc part~al d1f!e~ent1al e~uations, we have seen that the CFL stability 
cnt~non essentially hm1ts the size of the marching step (M in Chap. 7 and 
Ax m Chap. 8). Furthermore, the flows studied in Chaps. 7 and 8 have been inviscid 
flows. 

416 

THE PHYSICAL PROBLEM AND ITS EXACT ANALYTICAL SOLUTION 417 

The present chapter provides a contrast to the previous two chapters in the 
following respects: 

1. It deals with an implicit finite-difference solution to the governing equations. 

2. The governing equations for the present problem are parabolic partial differ
ential equations. 

3. The present problem is a viscous flow. 

In particular, we will deal with incompressible Couette flow, which represents an 
exact analytical solution of the Navier-Stokes equations. Couette flow is perhaps the 
simplest of all viscous flows, while at the same time retaining much of the same 
physical characteristics of a more complicated boundary-layer flow. The numerical 
technique that we will employ for the solution of the Couette flow is the Crank
Nicolson implicit method discussed in Sec. 4.4. As discussed in Chap. 3, parabolic 
partial differential equations lend themselves to a marching solution; in addition, the 
use of an implicit technique allows a much larger marching step size than would be 
the case for an explicit solution. Hence, in the present chapter we will have the 
opportunity to explore some aspects of CFO different from those discussed in the 
previous two chapters. 

Near the end of this chapter, we will carry out a second solution of Couette 
flow, this time using the pressure correction technique described in Sec. 6.8. We will 
deal with the two-dimensional Navier-Stokes equations for incompressible flow and 
set up a solution of these equations for the incompressible flow between two parallel 
plates in relative motion to each other using the pressure correction method. This 
method is an iterative approach, and we will set up the initial conditions to be a two
dimensional flow field. This will give us the opportunity to examine the behavior of 
the pressure correction method to an incompressible flow problem which is treated 
as two-dimensional during the iterative solution but which converges to an answer 
that is a function of only the vertical coordinate across the flow-it converges to the 
Couette flow solution. 

9.2 THE PHYSICAL PROBLEM AND ITS 
EXACT ANALYTICAL SOLUTION 

Couette flow is defined as follows. Consider the viscous flow between two parallel 
plates separated by the vertical distance D, as sketched in Fig. 9 .1. The upper plate is 
moving at the velocity ue, and the lower plate is stationary; i.e., its velocity is u = 0. 
The flow in the .zy plane is sketched in Fig. 9.1. The flow field between the two 
plates is driven exclusively by the shear stress exerted on the fluid by the moving 
upper plate, resulting in a velocity profile across the flow, u = u(y), as sketched in 
Fig. 9.1. 

The governing equation for this flow is the x-momentum equation, given by 
Eq. (2.50a), repeated below. 

Du ap arxx aryx arzx " p-=--+-+-+-+PJ., 
Dt ax ax ay az · (2.50a) 
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u, 

-oo.__ D 
---. 00 

u = u(y) 

FIG. 9.1 
Schematic of Couette flow. 

When applied to Couette flow, this equation is greatly simplified, as follows. 
E~ami~ing _Fig: 9 .1, we note that the model for Couette flow stretches to plus and 
mmus mfimty m the x direction. Since there is no beginning or end of this flow the 
flow-field variables must be independent of x; that is, o!ax = O for all quantities. 
Moreover, from the continuity equation, Eq. (2.25), written for steady flow, 

a(pu) + a(pv) = 
0 

ax {)y (9.1) 

Since a(pu)lax = 0 for Couette flow, Eq. (9.1) becomes 

a(pv) av op 
~=p{)y+v{)y=O (9.2) 

Evaluated at the lower wall, where v = 0 at y = 0, Eq. (9.2) yields 

( av) p- -o oy y=O-

(
av) _ 0 
ay y=O -

or 
(9.3) 

If we expand v in a Taylor series about the point y = O, we have 

v(y) = v(O) + (;v) y + (a2v) y2 + ... 
Y y=O {)y2 y=O 2 

(9.4) 

Evaluated at the upper wall, Eq. (9.4) becomes 

v(D) = v(O) + - D + - - + ... (
av) (a2v) n2 
ay y=O oy2 y=O 2 

(9.5) 
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Since both v(D) = 0 and v(O) = 0, as well as [avlay]ro = 0 from Eq. (9.3), the 
only result that makes sense in Eq. (9.5) is that [a'vlayn]y = 0 = 0 for all n, and hence 

v=O (9.6) 

everywhere. This is a physical characteristic of Couette flow, namely, that there is no 
vertical component of velocity anywhere. This states that the streamlines for 
Couette flow are straight, parallel streamlines-a result which is almost intuitively 
obvious simply by inspecting Fig. 9.1. Finally, from they-momentum equation, Eq. 
(2.50b ), repeated below, 

Dv _ op {hxy [h}y arzy ,r 
p-- --8 +-8 +-[) +~+P1_v 

Dt y X y uz 

we have, for Couette flow with no body forces, 

where, from Eq. (2.57b), 

ap OTyy 
0=--+-

ay ay 

r = Jc - + - + 2µ - = 0 (
au av) av 

}Y ax ay ay 

Hence, with r>Y = 0, Eq. (9.7) yields 

ap = 0 
{)y 

(2.50b) 

(9.7) 

(9.8) 

(9.9) 

Conclusion: For Couette flow, there are no pressure gradients in either the x or y 
direction. With all the above information, we return to the x-momentum equation, 
displayed earlier as Eq. (2.50a). From this equation, for steady, two-dimensional 
flow with no body forces, we have 

au au ap arxx aryx 
pu ax + pv {)y = - ax + ax + Dy (9.10) 

From Eqs. (2.57a) and (2.57d), applied for the case of Couette flow, we have 

(9.11) 

(
av au) au 

Tyx = µ ax + {)y = µ ay (9.12) 

Substituting Eqs. (9 .11) and (9 .12) into (9 .10), we have, for Couette flow, 

0 =!!_(µau) 
ay ay 

(9.13) 
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At this stage, we will now assume an incompressible, constant-temperature flow for 
which µ = constant. With this, Eq. (9.13) becomes 

~ 
~ 

(9.14) 

Equation (9.14) is the governing equation for incompressible, constant-temperature, 
Couette flow. 

The exact analytic solution of Eq. (9 .14) is straightforward. Integrating twice 
with respect to y, we have 

(9.15) 

where c 1 and c2 are constants of integration; their values are found by applying the 
boundary conditions. Specifically, at the lower plate (see Fig. 9.1 ), we know that 
u = 0 for y = 0. From Eq. (9.15), this yields c2 = 0. At the upper plate, we know 
that u = Ue for y = D. From Eq. (9.15), this yields c1 = u,JD. With these values for 
c1 and c2 , Eq. (9.15) becomes 

(9.16) 

Equation (9 .16) is the exact, analytical solution for the velocity profile for 
incompressible Couette flow. Note from Eq. (9.16) that the exact result is a 
linear profile; u varies directly as y. Such a linear profile is sketched in Fig. 9.1. 

We now proceed to set up a numerical solution for this flow; the exact 
analytical result given by Eq. (9.16) will be used as a standard of comparison for the 
numerical results. 

9.3 THE NUMERICAL APPROACH: 
IMPLICIT, CRANK-NICOLSON 
TECHNIQUE 

We will pose the numerical solution as follows. Imagine that we assume a velocity 
profile which is not linear, i.e., a different velocity profile than the exact solution 
given by Eq. (9.16). Specifically, let us assume a velocity profile defined as 

u = { 0 
lie 

for O::::; y < D 
for y = D 

(9.17a) 
(9.17b) 

This will be identified as our initial profile; it is shown by the solid line in Fig. 9.2a. 
We will consider this to be the initial condition at time t = 0. We will set up a time
marching solution for the flow field, starting from this initial condition. We would 
expect to see the velocity profile change in steps of time, as reflected in Fig. 9.2b 
and c. Finally, after enough time steps are taken, the velocity profile will approach 
its steady-flow value, as sketched in Fig. 9.2d. 

y 

D 

0 

Time t=O 

(a) u, 
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D 

Time t=t, 

u 0 (b) u, 

D 
D 

0 (c) u, 0 

Time t=t3 

(steady flow) I 

(d) u, 

FIG. 9.2 . d C tt flow 
Schematic of the velocity profiles at various times m an unstea y oue e · 

The flow illustrated by the timewise-changing v~locity ~rofiles_ in Fig. 9.2 is 
unsteady Couette flow. The governing eq~ation for this flow 1s ob~med from 7;· 
(2.50a), making the Couette flow assumptions of ~lax = 0 ~d v - 0 but carry g 
along the time derivative. The re_sulting governmg ~quat1on, the x-momentum 
equation for unsteady, incompressible, Couette flow, ts 

OU a2u (9.18) 
P7ii = µ8y2 

Equation (9 .18) is a parabolic partial differential equation; hence a time-marching 

solution represents a well-posed problem. 

9.3.1 The Numerical Formulation 
. . . 1 fi fE (9 18) Defining the 

It will be convenient to deal with a nond1mens1ona orm o q. · · 
following nondimensional variables 

I 
u 

u 
y' 

y 

D 

I ( 
t =-

D/ue 
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Eq. (9.18) is nondimensionalized as follows. 

or 

However, in Eq. 

8(u/ue) (u;) 8
2
(u/ue) (ue) 

p a[t/(D/ue)] D = µ a(y/D)2 D2 

at' PUeD ay 12 

(9.19), we recognize the quantity 

µ I 

pueD Rev 

(9.19) 

where ReD is the Reynolds number based on the height D between the two plates. 
Thus, Eq. (9.19) becomes 

au' I a 2u' 

at' Reva/2 (9.20) 

Equation (9.20) is the equation for which we will obtain a numerical solution. 
We choose to use an implicit finite-difference technique for this numerical 

solution; specifically, we will employ the Crank-Nicolson method introduced in 
Sec. 4.4 (in conjunction with Eq. (4.40)). In the present calculation, we will find that 
the incompressible Couette flow solution illustrates all the pertinent features of an 
implicit solution using the Crank-Nicolson technique. Make certain to review Sec. 
4.4 before progressing further; it is important that you understand the basic ideas 
behind the Crank-Nicolson technique. 

As we have done several times in previous sections of this book, for simplicity 
of notation we will drop the primes in Eq. (9.20) and treat all subsequent variables 
in the remainder of this section as the nondimensional variables. That is, we will 
write Eq. (9.20) as 

au 

at Revay2 (9.21) 

where u, y, and t are identically the nondimensional variables u', y', and t' that 
appear in Eq. (9.20). 

Following the Crank-Nicolson technique, the finite-difference representation 
of Eq. (9.21) is 

u'.'+ 1 -un I l(u~+ 1 +un )+l(-2un+ 1 -2un)+l(un+l+un ) 
J J _ 2 ;+l ;+l 2 J J 2 ;-1 ;-1 

!it - Rev (11y) 2 

or 

(9.22) 
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Grouping all terms at time level n + I in Eq. (9.22) on the left-hand side and 
factoring both sides appropriately, Eq. (9.22) becomes 

[ 
!it ] n + 1 [} + /it ] n + 1 + [- !it ] Un + 1 - U- + 2 U- 2 ;+l 

2(11y)2 Rev ;- l (11y) Rev 1 2(11y) Rev 

~ [1 - (Ayf' Real uj + 2(L\.y~: ReD (uJ+ ' + uj _ ') (9.23) 

Equation (9.23) is of the form 

where 

!it 
A= - 2 

2(11y) Rev 

l1t 
B=l+ 2 (11y) Rev 

(9.24) 

(9.25a) 

(9.25b) 

10 ~ [1 - (Ayf
1 
ReJ,; + 2(Ay~: ReD ("f +' + "J- ') (9.25c) 

Equation (9.24) is solved on a grid such as that sketched in Fi~. 9.3. The 
vertical distance (they direction) across the duct is divided into N equal mcrements 
of length 11y by distributing N + I grid points over the height D, that is, 

D 11y = - (9.26) 
N 

FIG. 9.3 
Labeling of points for the grid. 
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From the boundary conditions, u1 and uN+I are known: 

UJ = 0 

UN+!= I 

(9.27a) 

(9,27b) 

(Keep in mind that in Eqs. (9 .21) to (9 .27), u denotes the nondimensional velocity.) 
Hence, the system of equations represented by Eq. (9.24) represents N - I 
equations with N - I unknowns, namely, u2, u3, , , . , u N. We can write this system 
in more detail as follows. The first equation is 

However, u1 = 0. Thus, Eq. (9.28) becomes 

Bu;+ 1 +Au3+ 1 = K2 

The last equation in the system represented by Eq. (9.24) is 

A Un+ I + Bun+ I + Aun+ I - K N-1 N N+I- N 

However, uN+I = I. Thus, Eq. (9.30) becomes 

A n+I +B n+I K A UN+ I UN = N - Ue 

(9.28) 

(9.29) 

(9.30) 

(9.31) 

With this, the system of equations represented by Eq. (9 .24) can be written, in 
matrix form, as 

B A 0 0 0 0 0 0 0 un+ I 
2 K2 

A B A 0 0 0 0 0 0 un+I 
3 K3 

0 A B A 0 0 0 0 0 un+I 
4 K4 

0 0 A B A 0 0 0 0 un+I 
5 Ks 

(9.32) 

0 0 0 0 0 0 A B A un+ I 
N-1 KN-I 

0 0 0 0 0 0 0 A B un+I 
N KN -Aue 

Clearly, the system represented by Eq. (9.32) is in tridiagonal form. It can be solved 
using Thomas' algorithm, derived in App. A. Thomas' algorithm has been 
mentioned in Chap. 4 in connection with the Crank-Nicolson method, but now 
is the first chance we have had to actually solve a specific problem using this 
algorithm. Therefore, stop where you are, tum to App. A, and study the derivation 
of Thomas' algorithm before proceeding further; it will make all the difference in 
the world in your mental comfort for the ensuing sections dealing with the 
numerical solution of Couette flow. 

After applying Thomas' algorithm to the system of equations represented by 
Eq. (9.32), we have the solution for u;+1, u3+1, ... , u~+ 1. These are the values of 
the velocities at the time step n + I. The whole process is then repeated for a 
number of time steps until the velocity profile converges to a steady state, as 
illustrated in Fig. 9.2. 
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9.3.2 The Setup 

For our specific solution, we choose to use 21 grid points across the flow; i.e., in 
Fig. 9.3, N + I = 21. Since y is nondimensional, it varies from O to I; hence 

Liy = J__ 
20 

For initial conditions, we will use Eqs. (9 .17 a) and (9 .17 b ), which yield 

u1, u2, u3, · ·,, u20 = 0 

U21 = 1 
at t = 0 

The calculation of the "proper" time step Lit for the present solution is not as 
stringent as that in our previous applications in Chap. 7 or for the spatially marching 
step in Chap. 8. Unlike the explicit methods used in Chaps, 7 and 8, our current 
application involves an implicit method. A stability analysis similar to our 
discussion in Sec. 4.5 shows that the Crank-Nicolson technique is unconditionally 
stable; i.e., it is stable for all values of Lit. This is the main advantage of an implicit 
method, as described in Sec. 4.4. That is, stability considerations tell us that we can 
use as large a value of Lit as we wish. On the other hand, if we would want to 
simulate with any accuracy the actual transient variation of the flow field starting 
from the given initial conditions, we should keep Lit small in order to minimize the 
truncation error with respect to time. Of course, when we are interested in the steady 
state only, timewise accuracy is not a major concern. So what shall we choose for 
Lit? For an answer, we will be guided by the stability criterion based on an explicit 
basis. For our .unsteady Couette flow, the governing equation, Eq. (9.20), is a 
parabolic partial differential equation in exactly the same form as one of the model 
equations used in Chap. 3, namely, Eq. (3.28). The corresponding finite-difference 
equation for an explicit method is given by Eq. (4.36). In tum, the stability criterion 
for Eq. (4.36) was found to be, from Eq. (4.77), repeated below, 

aLit I -<- (4.77) 
(Li.x)2 - 2 

By analogy with Eq. (9.20) and continuing with our modified notation that all 
variables in the following equation are nondimensional, we can write, for an explicit 
method, 

or 

I Lit I 
---<
ReD (Liy)2 - 2 

(9.33) 

(9.34) 

Taking a cue from Eq. (9.34), for our present implicit method, we will calculate Lit 
as 

Lit= E Re0 (Liy)2 (9.35) 

where E is a parameter. Since the Crank-Nicolson technique is unconditionally 
stable, we could choose E to be any value. Indeed, in the next section, we will 
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examine the results obtained from a numerical experiment where E is varied from 1 
to 4000. 

The definition of E given in Eq. (9.35), namely, 

11t 
E-----

- Ren(11y)2 
(9.36) 

and its subsequent use as a parameter simplify the coefficients that appear in Eq. 
(9.24). In particular, inserting Eq. (9.36) into Eqs. (9.25a) to (9.25c), we have 

A=-~ 
2 

B=I+E 

(9.37a) 

(9.37b) 

(9.37c) 

Another aspect of the definition of E from Eq. (9.36) is that it includes the Reynolds 
number Ren. The final steady-state velocity profile for Couette flow is independent 
of Ren; notice that the exact, analytical result given by Eq. (9 .16) does not contain 
Ren. On the other hand, the transient approach to the steady state does depend on 
Ren, and it is interesting to note that this Reynolds number effect is buried 
exclusively in the definition of E. 

9.3.3 Intermediate Results 

Let us examine the calculation of the velocity profile for the first time step n = 1. 
We choose E = I and Ren = 5000. Also, since we are using 21 grid points across 
the flow, 11y = fc5 = 0.05. With these values, we have for 11t from Eq. (9.35), 

11t = E Ren(11y)2 = 1(5000)(0.05)2 = 12.5 

From Eqs. (9.37a) and (9.37b), 

E 
A= -- = -0.5 

2 
B=2 

These are the values of A and B that appear in the system of equations represented 
by Eq. (9.32). 

We now invoke Thomas' algorithm as given in App. A. Using the notation of 
App. A and keeping Eq. (9.32) always in eyesight, the first line in Eq. (9.32) is 
unchanged, i.e., 

2u;+ 1 
- 0.5u~+ 1 = K2 (9.38) 

From Eq. (9.37c) and the fact that u'{ = u2 = u3 = 0, we have 

K2 = (1 - E)u; + ~ (u; + u7) = 0 
2 
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So Eq. (9.38) becomes 

2u;+ 1 
- 0.5u~+ 1 = 0 

The second line in Eq. (9.32) is 

-0.5u;+ 1 + 2u;+ 1 
- 0.5u4+ 1 

= K3 

where, since ~ = ~ = u4 = 0, 

K3 = (1 - E)u~ + ~ (u4 + u;) = 0 

and Eq. (9.40) becomes 

-0.5u;+ I+ 2u~+ l - 0.5U4+ I = 0 

(9.39) 

(9.40) 

(9.41) 

However, using the nomenclature of App. A, Eq. (A.21), repeated below, 

d' = d· - b;a;-1 
I I d' 

i-1 

when applied to Eq. (9.41) becomes 

d' - d - b3a2 
3 - 3 d' 

2 

From the coefficients in Eqs. (9.39) and (9.41), we have 
a2 = -0.5, and d; = 2. Thus, from Eq. (9.42), we have 

I - - -0.5(-0.5) - } 875 
d3-2 2 - . 

Also, Eq. (A.22) in App. A, repeated below, 

when applied to Eq. (9.41) becomes 

(A.21) 

(9.42) 

d3 = 2, b3 = -0.5, 

(A.22) 

I c;bz ( ) 
C3 = C3 - 7 9.43 

2 

From the coefficients in Eqs. (9.39) and (9.41), we have c3 = 0, c; = 0, b2 = 0, and 
d; = 2. Hence, from Eq. (9.43), 

c; = 0 

From the values of d;and c;obtained above, the new, bidiagonal form ofEq. (9.41) 
becomes 

l.875u~+ 1 - 0.5u4+ 1 = 0 

Let us proceed to the third line of Eq. (9.32), which is 

-0.5u~+ 1 + 2u4+ 1 
- 0.5u~+ 1 = K4 

(9.44) 

(9.45) 
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Since u'.j = u4 = u5 = 0, then K 4 = 0, and Eq. (9.45) becomes 

-0.5u~ + 1 + 2u~ + 1 - 0.5u; + 1 = 0 (9.46) 

Equation (9.46) is put in bidiagonal form as follows. From Eq. (A.21) applied to Eq. 
(9.46), 

d 1 _ d b4a3 
4 - 4 - d' (9.47) 

3 

The values in Eq. (9.47) are obtained from the coefficients in Eqs. (9.46) and (9.44) 
as follows: d4 = 2, b4 = -0.5, a3 = -0.5, and d; = 1.875. Hence 

di = 2 _ -0.5(-0.5) _ 
4 1.875 - 1.867 

Also, from Eq. (A.22) applied to Eq. (9.46), 

I c;b4 
C4 = C4 - d' (9.48) 

3 

where from Eqs. (9.46) and (9.44), we have c4 = O, c; = O, b
4 

= -0.5, and 
d; = 1.875. Thus, from Eq. (9.48), we have 

c~ = 0 

From the values of d~and ~ obtained above, the new, bidiagonal form ofEq. (9.46) 
becomes 

l.867u~+I - 0.5u;+I = 0 (9.49) 

F?r the remaining bidiagonalization of the system given by Eq. (9.32), the 
coefficients turn out to be exactly the same (to three significant figures) as 
calculated a~ove, except for the last line in Eq. (9.32). This last line corresponds 
to the equation 

05 n+I 2n+I ( - · U19 + uw = Kw - -0.5)ue (9.50) 
where, from Eq. (9.37c), 

(9.51) 

From the initial conditions, we have uj9 = O, un = O and un = I. Hence, from 
Eq. (9.51), 20 ' 21 

Kw= 0.5 

and Eq. (9.50) becomes 

-0.5uj9+ 1 + 2u~0+ 1 = 1.0 

Equation (A.21) applied to Eq. (9.52) is written as 

d1 _ d bwa19 
20 - 20--1-

d,9 

(9.52) 

(9.53) 
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where d20 = 2, b20 = -0.5, a 19 = -0.5, and d; 9 = 1.866. Thus 

d1 = 2 - -0,5(-0,5) = 1.866 
20 1.866 

From Eq. (A.22) applied to Eq. (9.52), we have 

I c;9b20 
c 20 = c20 - - 1-d,9 

(9.54) 

(9.55) 

where in Eq. (9.55) we have c20 = 1.0, c;9 = 0, b20 = -0.5, and d; 9 = 1.866. Thus, 
from Eq. (9.55), we have 

c;0 = 1.0 

With this, Eq. (9.52) becomes, in upper bidiagonal form, 

l.866u~0+ 1 = 1.0 (9.56) 

We are now ready to solve for the velocities uj + 1, j = 2 to 20. Obviously, 
~ii 1can be obtained directly from Eq. (9.56) as 

n+I 1.0 ~ 
u20 = 1.866 = ~ 

Note that this result is exactly the same that is obtained by using Eq. (A.25), 
repeated below. 

c'm 
Um= di 

m 
(A.25) 

This should be no surprise; the above calculation has essentially followed the same 
path as the derivation ofEq. (A.25) in App. A. The next (and final) step of Thomas' 
algorithm is to calculate the other unknown velocities using the recursion formula 
given by Eq. (A.27), repeated below. 

c; - a;U;+ I 
U; = di 

I 

(A.27) 

For example, from Eq. (A.27), 
I 

n+I _ C19 - a19U20 
U19 - di 

19 
(9.57) 

In Eq. (9.57), we have c;9 = 0, a19 = -0.5, u20 = 0.536, and d;9 = 1.866. Thus, 
from Eq. (9.57), 

n+I _ 0- (-0.5)(0.536) _ ~ 
U19 - 1.866 - ~ 

The remaining velocities, u18 , u11, ... , u2, are calculated in the same fashion. 
The numbers for bj, d1, aj, and c1 are tabulated versus grid point j in Table 9 .1, 

along with the corresponding calculated velocities uj. (Note that the subscript i was 
used in App. A, whereas the subscript j is used in our present calculation. This is 
done intentionally to reinforce the fact that i and j are simply running indices; what 
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TABLE 9.1 

Velocity profile after the first time step 

j y/D u/ue bi d'. ai c'. I I 

1 .OOOE+OO .OOOE+OO 
2 .SOOE-01 .252E-Ol .OOOE+OO .200E+Ol .500E+OO .OOOE+OO 3 .lOOE+OO .lOlE-09 -.500E+OO .188E+Ol -.500E+OO .OOOE+OO 4 .150E+OO .378E-09 -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 5 .200E+OO .141E+OO -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 6 .250E+OO .527E+08 -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 7 .300E+OO .197E-07 -.500E+OO .187E+OI -.500E+OO .OOOE+OO 8 .350E+OO .734E-07 -.500E+OO .187E+OI -.500E+OO .OOOE+OO 9 .400E+OO .274E-06 -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 10 .450E+OO .102E-05 -.500E+OO .187E+Ol -.500E+OO .OOOE+OO II .500E+OO .382E-05 -.500E+OO .187E+OI -.500E+OO .OOOE+OO 12 .550E+OO .142E-04 -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 13 .600E+OO .531E-OO -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 14 .650E+OO .198E-03 -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 15 .700E+OO .740E-03 -.500E+OO .187E+OI -.500E+OO .OOOE+OO 16 .750E+OO .276E-02 -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 17 .800E+OO .103E-Ol -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 18 .850E+OO .385E-Ol -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 19 .900E+OO .144E+OO -.500E+OO .187E+Ol -.500E+OO .OOOE+OO 20 .950E+OO .536E+OO -.500E+OO .187E+Ol .OOOE+OO .lOOE+Ol 21 .lOOE+Ol .lOOE+OI 

~ymbol is used for the running index is irrelevant.) Note that the answers obtained 
m the above .calculatio? appear in the table; for example, in Table 9 .1, reading 
across the !me for J = 20, we see entered that u = O 536 b = -0 5 
d

i 20 · , 20 . , 
20 = 1.866 ~ 1.87 (to th_ree significant figures), a20 = 0, and c;

0 
= 1.0--all 

as calculated above. Readmg across the line for j = 19 in Table 9.1, we see 
that U19 = 0.~44, b19 = -0.5, d; 9 = 1.87, a19 = -0.5, and c;

9 
= 0. And so forth, 

for the remamder of the grid points. 

The velocities tabulated in Table 9.1, calculated as shown above for 
i = 1, 2, : .. , 21 (in~luding the known boundary values at j = 1 and 21 ), represent 
the \eloc1~yrofile 1~ ~he unsteady Couette flow after time t = M, starting from the 
specified m1tJa! conditions. The above calculations are subsequently carried out for 
a number of time steps until the velocity profile reaches a steady state. 

9.3.4 Final Results 

Starti~g ~om the assu~ed initial conditions given by Eqs. (9.27a) and (9.27b), the 
velocity 1s calculated m steps of time, using the approach described in Secs. 9.3.1 
and 9._3.2. Some results for the velocity profiles are various stages in the time
marchmg process are shown in Fig. 9.4. The initial conditions at time t = O are 
given in Fig. 9.4 and labeled ~s ~Lit. The velocity profile after two time steps is 
labeled 2M; note that the velocity 1s changing most rapidly near the upper plate, as 
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0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1.0 

ulu, 

FIG. 9.4 
Velocity profiles for unsteady Couette flow at various stages in the time-stepping process. Solid circles 
are exact analytical solution (steady state); solid lines are numerical solutions. 

to be expected. Other profiles are shown in Fig. 9.4 after 12, 36, 60, and 240 time 
steps, labeled 12!'!.!, 36Lit, 60Lit, and 240!'!.!, respectively. The driving influence of 
the shear stress exerted by the upper plate is gradually communicated to the rest of 
the fluid, resulting in a final, steady-state profile after 240 time steps. This steady
state profile is linear, as to be expected; it agrees perfectly with the exact, analytical 
solution. To provide a more direct comparison of your computations with the 
present calculations. Table 9.2 gives a tabulation of the velocity profiles at a number 
of different times throughout the time-marching solution. 

All the above calculations were carried out with E = 1. Question: What is the 
effect of using a larger time step; i.e., reflecting on Eq. (9.35), what is the effect of 
using a larger value of E! In terms of stability, there should be no difference in the 
behavior of the solutions-the Crank-Nicolson technique is unconditionally stable. 
However, when E is increased, the accuracy of the transients may be compromised, 
and the number of marching steps required to obtain a steady state may change, for 
better or for worse. To address these matters, a numerical experiment is carried out 
wherein a number of different cases are calculated, each with a different value of E, 
with E ranging as high as 4000. From Eq. (9.35), we can interpret the effect of 
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TABLE 9.2 
Velocity profiles at later time steps 

Velocity profiles u/u. 

y/D 12~t 3Mt 6Mt 12Mt 24Mt 36Mt 

I .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 
2 .SOOE-01 .124E-03 .119E-01 .276E-01 .448E-OI .497E-OI .SOOE-01 
3 .IOOE+OO .313E-03 .245E-OI .557E-OI .898E-OI .995E-OI .IOOE+OO 
4 .ISOE+OO .661E-03 .386E-OI .849E-Ol .135E+OO .149E+OO .150E+OO 
5 .200E+OO .132E-02 .549E-Ol .116E+OO .181E+OO .199E+OO .200E+OO 
6 .250E+OO .254E-02 .741E-OI .!48E+OO .227E+OO .249E+OO .250E+OO 
7 .300E+OO .474E-02 .970E-Ol .184E+OO .273E+OO .299E+OO .300E+OO 
8 .350E+OO .859E-02 .124E+OO .222E+OO .321E+OO .348E+OO .350E+OO 
9 .400E+OO .ISIE-01 .157E+OO .263E+OO .369E+OO .398E+OO .400E+OO 

10 .450E+OO .256E-OI .194E+OO .307E+OO .417E+OO .448E+OO .450E+OO 
II .SOOE+OO .422E-Ol .238E+OO .355E+OO .467E+OO .498E+OO .SOOE+OO 
12 .550E+OO .672E-OI .289E+OO .407E+OO .517E+OO .548E+OO .550E+OO 
13 .600E+OO .103E+OO .346E+OO .462E+OO .569E+OO .598E+OO .600E+OO 
14 .650E+OO .154E+OO .409E+OO .520E+OO .621E+OO .648E+OO .650E+OO 
15 .700E+OO .22!E+OO .479E+OO .582E+OO .673E+OO .699E+OO .700E+OO 
16 .750E+OO .308E+OO .556E+OO .647E+OO .727E+OO .749E+OO .750E+OO 
17 .800E+OO .414E+OO .637E+OO .714E+OO .781E+OO .799E+OO .800E+OO 
18 .850E+OO .540E+OO .724E+OO .783E+OO .835E+OO .849E+OO .850E+OO 
19 .900E+OO .683E+OO .8!4E+OO .855E+OO .890E+OO .899E+OO .900E+OO 
20 .950E+OO .838E+OO .906E+OO .927E+OO .945E+OO .950E+OO .950E+OO 
21 .IOOE+Ol .IOOE+OI .IOOE+Ol .IOOE+Ol .IOOE+Ol .IOOE+OI .IOOE+OI 

!ncreasing_ E the same as increasing 11! for fixed ~y and ReD. We will use this 
int~rpretatlon; whenever we refer to our increase in £, it will be synonymous with 
taking a larger time step, i.e., a larger ~t. 

With this in mind, consider the velocity profiles tabulated in Table 9.3. Three 
profiles are_ given, one each for E = I, 5, and I 0. These are transient profiles, all 
corresponding to the same nondimensional time t = 1.5 x 103

· this is an inter
mediate time-the steady-state profile corresponds to a nondimen~ional time on the 
o~der of t = 4.5 x 103

. Of course, since different values of E correspond to 
different values of ~t, then the three velocity profiles given in Table 9.3, which 
~orrespond to th~ same value oft, consequently correspond to a different number of 
time steps. ~pec1fically, in Table 9.3 the column labeled E = I corresponds to the 
results. obtained after 120 time-marching steps, E = 5 corresponds to 24 time
marching steps, and E = IO corresponds to 12 steps. Examine these three columns 
carefully. The columns labeled E = I and E = 5 are exactly the same. Since E = I 
corresponds to a relatively small time step-one that is only twice the value allowed 
for an explicit solution [see Eq. (9.34)]-we can readily construe the results for 
E = I as being relatively time-accurate. This is reinforced by the comparison in 
Table 9.3 for E = I and E = 5, which give identical transient results at 
t_ = l.~ x 103

. We can feel comfortable that a value as high as E = 5 provides 
timew1se accuracy for the present implicit calculations. However, examine the last 
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TABLE 9.3 
Comparison of transient velocity profiles 

u/u. 

y/D E=l E=S E = 10 

I .OOOE+OO .OOOE+OO .OOOE+OO .OOOE+OO 

2 .SOOE-01 .448E-01 .448E-01 .449E-OI 

3 .!OOE+OO .898E-OI .898E-01 .899E-01 

4 .!SOE+OO .135E+OO .!35E+00 .135E+OO 

5 .200E+OO .!81E+OO .!81E+OO .181E+OO 

6 .250E+00 .227E+OO .227E+OO .227E+OO 

7 .300E+OO .273E+OO .273E+00 .274E+OO 

8 .350E+OO .32!E+OO .321E+OO .32!E+OO 

9 .400E+OO .369E+OO .369E+OO .369E+OO 

10 .450E+OO .417E+OO .417E+00 .418E+OO 

II .SOOE+OO .467E+OO .467E+OO .467E+OO 

12 .550E+OO .517E+OO .517E+OO .5!8E+OO 

13 .600E+OO .569E+OO .569E+00 .569E+OO 

14 .650E+00 .621E+OO .621E+OO .622E+OO 

15 .700E+OO .673E+OO .673E+OO .674E+OO 

16 .750E+OO .727E+OO .727E+OO .725E+OO 

17 .800E+OO .781E+OO .78!E+OO .777E+OO 

18 .850E+OO .835E+OO .835E+OO .838E+OO 

19 .900E+OO .890E+OO .890E+OO .9!5E+OO 

20 .950E+OO .945E+OO .945E+OO .905E+OO 

21 .IOOE+Ol .IOOE+Ol .!OOE+OI .!OOE+OI 

column in Table 9.3 for E = IO. There are some differences between these results 
and those for E = I and 5, especially near the upper wall (e.g., for i = 19 and 20). 
Apparently E = 1 O corresponds to a large-enough value of M . to cause some 
noticeable inaccuracy for the transient results. This inaccuracy continues to grow as 

E is further increased. 
Let us examine an extreme case, namely, one for E = 4000. Here, the value of 

~t is so large that no timewise accuracy can be expected, and none is obtained. 
Some results are plotted in Fig. 9.5. Two intermediate, transient velocity profiles are 
shown, one after 40 time steps and the other after 200 time steps; both profiles 
exhibit totally nonphysical behavior, especially near the top ~la!e. Con~pare these 
results in Fig. 9.5, obtained for E = 4000, with the more reahst1c transient res~lts 
shown in Fig. 9.4, obtained for E = I-there is no real comparison. The transient 
results in Fig. 9.5 are clearly nonphysical. However, after a very large number of 
time steps-on the order of 1000-the implicit solutio~ wil~ finall_y co?verge to the 
proper steady-state velocity profile, given by the sohd c_Ifcle~ _in Fig._ 9.5. . 

This last statement highlights another aspect of the 1mphc1t solution as E is 
increased to large values, an aspect involving the number of marchi?g time steps 
required to obtain the steady-state solution. For E = 1, over 240 t1~e steps are 
required to obtain the steady state; this is reflected in the results shown in Table 9.2. 
For E = 5, only about 50 steps are necessary to obtain the steady state, a 
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FIG. 9.5 

Totally nonphysical transient velocity profiles obtained when E = 4000· compariso ·th t d 
state results ( dark circles). ' n w1 exac stea y-

tremend~us savings in calculation time. For E = 10, the steady state is obtained 
~fter 36 time ~teps, even better yet. Howev~r, for large values of E, the story reverses 
1tsel~. For E - ~O, about 60 steps are reqmred; for E = 40, more than 120 steps are 
reqmred. And 1t gets worse as E is further increased. 

_Fr?m the _above numerical experiment associated with increasing the value of 
M (vi~ mcreasmg £), w~ can make the following two conclusions regarding the 
behavior of the Crank-Nicolson implicit method as applied to the present problem: 

1. Time acc~racy is lost w~en l!:..t is made too large; for the present results, time 
accura~y 1s lost w~en E is about 10 or greater. This is no surprise, because the 
truncation error with res~ect to time is greatly increased when l!:..t is increased. 
We can conclude from this result that implicit methods with large values of l!:..t are 
not the I?ethods to use for problems wherein the transients are of interest. Of 
cour~~· time accuracy can be obtained for smaller values of l!:..t, but at the cost of 
~equ~n~g more st~ps to reach the steady state. Recall that the practical value of 
1mphc1t m~tho~s ts that a larg~ step size can be used and still maintain stability, 
thus resultmg m fewer marchmg steps to achieve the steady state. Therefore, 
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when using small values of l!:..t in an implicit solution, we are totally com
promising the very advantage that makes implicit methods attractive. Note: At 
the time of writing, there are major efforts being made to develop new implicit 
methods that are time-accurate and to modify existing implicit methods to obtain 
better time accuracy-all for the application of implicit methods to the study of 
transient fluid dynamic problems. This is currently a state-of-the-art research 
problem . 

2. By simply increasing the value of l!:..t (that is, increasing E), we first see a 
reduction in the number of time steps required to obtain a steady-state; this is 
consistent with the practical advantage of using an implicit method. However, for 
a large-enough value of lit (in the present results, for E > 20), the trend reverses 
itself, and as E increases further, more (not less) time steps are required to obtain 
the steady state. When we reach this condition, the practical value of using an 
implicit method is lost. In other words, there is some optimum value of E which 
leads to the most efficient implementation of the Crank-Nicolson method. For 
the present results, that optimum value of E is about 10. 

9.4 ANOTHER NUMERICAL APPROACH: 
THE PRESSURE CORRECTION METHOD 

The pressure correction technique is described in Sec. 6.8. It is recommended that 
you review Sec. 6.8 before progressing further. In the present section, we will apply 
this method to the solution of the incompressible, viscous flow between two parallel 
plates as sketched in Fig. 9.6. The upper plate is located a distance D above the 
lower plate and is in motion with velocity Ue relative to the lower plate. Although the 
plates are theoretically infinite in extent, the computational domain is finite, with 
length Land height D, as shown by the shaded region in Fig. 9.6. We will treat the 
boundary conditions around this finite computational domain in the same fashion as 
described in Sec. 6.8.6, with p and v fixed and u allowed to float at the inflow 
boundary, and with only p fixed at the outflow boundary. 

The pressure correction method is an iterative method, starting from arbitrarily 
assumed initial conditions. We will induce a two-dimensional flow within the 

Computational domain 
(shaded region) 

Inflow ~undary ~ u, .. Outflow boundary~ --+ 1 Y L 
._oo :.'.Ei .. :; ... ::: .... ::::::.}i •.• ·.·· .. · .. :c'..· .... ES .. :::: J'::'::'t ·\};/.//;.')'\ ;.:\·:/+ ••• :·: .......... ·•·•·· ···t#.Y.W.'V} .. \}:· .... )·:.·::;.···,,) .. !:{.·'·:· .. :·.= •.. :/t·+ i X 

u=O 
0=0.0lft ,.___ ________ L = 0.5ft _________ ...,. 

FIG. 9.6 
The finite computational domain for the application of the pressure correction method for the solution 
of the incompressible flow between two plates in relative motion. 
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c?mput_ational domain by setting . the init~al conditions to be an arbitrary two
d1~~ns1onal flo~ fie!~. Then, dunng the iterative procedure, we will watch this 
ongmally two-d1mens10nal flow field converge to the exact solution for Couette 
flow. 

9.4.1 The Setup 

!heyhysi~al problem is sketched in Fig. 9.6. We will carry out the present solution 
m d1_mens~onal terni_s, rat~er than nondimensionalizing the governing equations and 
dealing with a ~ond1mens10nal space. We offer this calculation in part as an example 
that CFD s?luhons are frequently carried out using dimensional terms throughout 
the_cal~ulatton. Hen~e, as sho_wn in Fig. 9.6, we will treat a computational domain 
wh1c~ ts 0.5_ ft lo~g m the~ direction and 0.01 ft high in they direction. The upper 
plate ts movmg with vel_o_c1ty ue,_ and the lower plate is stationary. The fluid is air at 
standard sea level cond~hons, with a density p = 0.002377 slug/ft3. Since we will 
employ a ~ery coarse gnd for the examp~e, we treat the case of a low velocity; e.g., 
we set Ue - 1 ft/s for the pr~sent calculation. At this low velocity, there is absolutely 
no_ dou~t about the assumptt~n that the flow is incompressible. Also, nothing is to be 
gamed m terms of the obJecttve of this example by considering higher values of u 
Based on the heig~t D of_ O.?I ft, the Reynolds number for this case is 63.6~· 
. The computat10nal gnd ts shown in Fig. 9.7. Based on the reasons discussed 
m Sec. _6.8.~, we choose ~ stag~ered grid. There are three systems of grid points 
shown 1~ Fig. 9. 7; the solid pomts are where p is calculated, the open points are 
where u ts calculated, and the points denoted by x are where v is calculated. The use 

x.Y.:. - - X _ _ _ -X- _ _ _ X _ _ _ .X _ _ _ -X- / 

t ~r r ~~ l ~i ~t ! l t ~f: 
' 

' 

FIG. 9.7 

I - - -X--- ___ X -X 23.12 \/qq-I 1,;i-()2~111 
r -,----r-:k 

- -0 I 

-+-- --1- --f--~ 

I I - -{) I 
I 

/ 

Staggered computational grid. p points, solid circles; u points, open circles; v points, x. 
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of a staggered grid requires careful attention to the indexing system that identifies 
each set of points, and somewhat complicates the coding of the computer program. 
There are various ways of setting up the logic dealing with the proper bookkeeping 
for a staggered grid. In Fig. 9.7, each set of points has its own independent indexing. 
For example, the "p points" run from 1 to 21 in the x direction and from 1 to 11 in 
they direction, the "u points" run from 1 to 22 in the x direction and from 1 to 11 in 
they direction, and the "v points" run from 1 to 23 in the x direction and from 1 to 
12 in the y direction. 

The pressure correction method is an iterative solution for the flow field. 
Hence, we need to set the initial conditions for the flow variables in order to start the 
iterative process. The choice is arbitrary. For the present calculation, we set the 
following initial conditions on all interior points, except for point (i, j) = (15, 5), 
which will be addressed later: 

u=v=O 
p* = p' = 0 

The specification of the initial conditions for the pressure correctionp' equal to zero 
seems reasonable. But why is the pressure itself, p*, set equal to zero? The answer 
is-simply for convenience. An examination of the x- and y-momentum equations, 
Eqs. (6.94) and (6.95), respectively, shows that only the pressure difference between 
adjacent grid points appears. Therefore, the individual values of p* are not so 
important-it is the pressure difference that counts. Therefore, it is totally appro
priate to set p* = 0 for the initial conditions, because the pressure difference will be 
dictated by the values of the pressure correction calculated for subsequent iterations. 

The boundary values are as follows: 

U = Ue} 
v=O 

at the upper wall 

U=V=O at the lower wall 

p' =0} 
v=O 

at the inflow boundary 

p' =0 at the outflow boundary 

These boundary values are constants, held fixed during the iteration process. In the 
present example, we make a slight modification to the pressure boundary condition 
at the upper and lower walls. Instead of employing the zero-pressure gradient 
condition as expressed by Eq. ( 6.108), we simply assume p' = 0 at the wall. This is 
done for mathematical convenience; in this fashion, p' is specified over the 
complete boundary of the domain, as opposed to a mixed boundary condition 
of pressure specified on the outflow and inflow boundaries and the pressure gradient 
specified at the walls. A constant-pressure boundary condition is allowable in the 
present example because the final steady-state flow is one where the pressure is 
uniform. It is not appropriate, however, for a more general flow, where the pressure 
at the wall varies with distance along the wall and is one of the unknowns to be 
numerically obtained. 
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To complete our discussion of the initial conditions for the present calculation, 
we note that v is set equal to zero at all interior grid points except at the point 
(i, j) = (15, 5). Here, we initially set v = 0.5 ft/s, one-half the magnitude of the 
upper plate velocity. This "velocity spike" is inserted at point (15, 5) to produce a 
two-dimensional flow during the iterative process. The location and magnitude of 
the vertical velocity spike are arbitrarily chosen. We are interested in examining the 
behavior of the pressure correction method for a two-dimensional flow; hence the 
insertion of the velocity spike in the initial conditions guarantees the existence of 
such a two-dimensional flow. Moreover, the subsequent dampening and eventual 
total decay of this velocity spike is an excellent demonstration that the pressure 
correction philosophy is working as intended. We also want to apply the pressure 
correction method to a problem for which we have an exact analytical solution
hence the choice of Couette flow. This is in keeping with the philosophy throughout 
all the applications chapters in this book. 

Combining the above initial and boundary conditions, we see that the iterative 
process begins from a state of zero velocity everywhere, except at the upper 
boundary where the velocity is Ue = I ft/s and except for the v velocity spike at 
(i,j) = (15, 5). Also, the pressure field is uniform throughout the domain and is set 
equal to zero. Hence, the iterative process starts with the picture of an impulsively 
started upper plate at velocity ue, with no flow everywhere else except for the v 
velocity spike at point (15, 5). Keep in mind that, although we identify the starting 
values at the beginning of the first iteration as "initial conditions," the pressure 
correction method is not a time-accurate method. The calculation of the flow field at 
each subsequent iteration is analogous to a time-marching procedure, but the 
calculated flow values are not accurate representations of the actual flow transients. 
You are reminded that the pressure correction method is simply an iterative 
approach to obtain the steady flow field. 

We now follow the steps outlined in Sec. 6.8.5. 

Step 1. Guess at values of p* at all interior grid points. Also, arbitrarily set values 
of (pu*t and (pv*t at all the appropriate grid points. As stated above, p*, pu*, 
and pv* are all set to zero for the beginning of the iterative process, except for 
ue = 1 ft/s at the upper wall and for vi5 5 = 0.5 ft/s at the velocity spike. 

Step 2. Solve for (pu*t+i from Eq. (6.94) and (pv*t+ 1 from Eq. (6.95) at all 
interior grid points. Let us set up this calculation by first repeating Eqs. (6.94) and 
(6.95) below: 

( *)n+I ( *)n A* ,1 lit (p* * ) pu ;+ 1;2,J = pu ;+ 1/2,J + t - LU ;+ 1,J - P;,J (6.94) 

and 

( *)n+I ( *)n B*,1 llt(p* *) pv i,J+l/2 = pv i,J+l/2 + t - !iy i,J+I - Pi,J (6.95) 
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where 

A - - 2LU 2!iy 
* _ [(pu2)7+ 3/2,j - (pu

2
)7-1/2,j + (puv)7+ 1/2,J+I - (pv)7+ 1/2,j-1] 

+ µ [u;+J/l,j - 2u[:;;,) + U:-1/1,) + U:+ 1/2,J+I -
27~;;;,/ + U:+ 1/2,J-•] 

and 

v = ! (11,1+1/2 + 11+ 1,J+l/2) 

v = ! (1,1-1;2 + 11 t-1,1-1;2) 

B = - 2LU 2!iy 
• [(pvu)7+ ,,1+1;2 - (pvu)7-1,1+1;2 + (pv2)7.1+3/2 - (pv2)7.1-112] 

[ 

n 2-n - Un Vn . - 2vn . /2 + Vn . 1/2] 
+ µ vi+ l,J+l/2 - ~~i2 i-1,J+l/2 + ,,;+3/2 ('t;~ 1

,1-

U = !(ui+l/2,j + Ui+l/2,J+I) 
= I ( n ) U=z Ui-1/2,j+ui-1/2,j+I 

Return to Fig. 9. 7, and let us write the above eq~ati?ns ~sing the ~ressu~e g~d po~nt 
(3, 3) as a focus. This grid point is drawn oversize_ m F~g. 9.7_. Usmg this ~nd pomt 
to represent the pressure point (i,J), Eq. (6.94) is wntten m the follo~mg fo~, 
keeping in mind the three different indexing systems for the staggered gnd shown m 

Fig. 9.7. 

A*=-

M 
( *)n+I ( *)n +A* At--(p* -p*) pu 4,3 = pu 4,3 u LU 4,3 3,3 

v = ! ( v'.l,4 + l's,4) 

v = !(v4,3 + vs,3) 

(9.58) 
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Using the same pressure point (i, j) = (3, 3) as the focus, Eq. (6.95) is written in the 
following form. 

( *)n+I ( *)n B*A ~t(p* *) pv 4,4 = pv 4,4 + o.t - ~y 3,4 - P3,3 

B* = -[(pvu);,4 - (pvu);,4 + (pv2);,s - (pv2);,3] 
2Ax 2~y 

u = ! (u4,3 + u4,4 ) 

U = ! ( U33 + U34) 

(9.59) 

Keep in mind when examining the above equations in light of Fig. 9.7 that the 
indexing on p* corresponds to the solid points, the indexing on u corresponds to the 
open points, and the indexing on v corresponds to the x points. The points that 
appear in the above equations are explicitly numbered in Fig. 9.7. (Although 
straightforward, you can already sense the extra bookkeeping necessary to deal with 
a staggered grid in comparison to a conventional single grid.) 

After pu* and pv* are obtained at all interior grid points, values for u* and v* 
are obtained by dividing these values by p. Then, the values of u* at the inflow 
boundary (which are being allowed to float) are obtained by zeroth-order extra
polation from the interior; 1.e., 

* * U1, j = u2,j for all j 

Similarly, the values of u* and v* at the outflow boundary (which are being allowed 
to float) are obtained by zeroth-order extrapolation; i.e., 

* * 
for allj 

* * U22,j = U21,j 

v23,J = v22,J 

In the above equations, the values of Ax, ~y, and ~t for the present 
calculations are 

Ax = 0·
5 

= 0.025 ft 
20 
0.01 

~Y = 10 = 0.001 ft 

~t = 0.001 s 

The value of M was chosen somewhat arbitrarily. However, if ~t is chosen to be too 
large, experience with the present calculation shows that the calculation becomes 
unstable. Examining Eqs. (6.94) and (6.95), we see that ~t plays the role of a 
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"relaxation factor"; the larger ~t, the larger is the change in pu* and pv* from one 
iteration to the next. It seems reasonable that if this change becomes too large, 
instabilities could arise. The value ~t = 0.001 s was found to be acceptable for the 
present calculation; no effort was made to optimize this value. 

Step 3. Using the values for pu* and pv* obtained from step 2, solve for p' from 
the pressure correction formula, Eq. ( 6.104 ), repeated below, 

where 

I b I b I I I d 0 ap · + 'P 1 + 'P 1 · + cp ·+1 + cp · 1 + = l,J l + ,j l - .J l,J l.J-

a ~ 2 [ (::)' + (:;),] 

M 
b=--

(Ax)2 
~t 

c=---
(~y)2 

( 6.104) 

d = ~ [(pu*);+ 1/2,J - (pu*);-1;2) + ~y [(pv*)i,J+l/2 - (pv*);_J-1/2] 

Again, we illustrate the above equation by focusing on the pressure grid point (3, 3) 
shown in Fig. 9.7. At this point, Eq. (6.104) becomes, after solving for P;, 1, 

/ 1 (b / b I I I d) P3,3 = - ; 'P4.3 + 'P2,3 + cp3.4 + CP3,2 + (9.60) 

where 

(9.61) 

Equations like (9.60) are solved for p' . at every interior grid point by means l,J 
of a relaxation approach, as described in Sec. 6.5. This, too, is an iterative process, 
one that takes place nested within the main iterative sequence being described here. 
Experience with the present problem shows that after approximately 200 relaxation 
steps, the values of Pi,J have converged. 

Step 4. Calculate pn+I at all internal grid points from Eq. (6.106), 

n+I (p*)n + I P·. = . . app I,J 11 ) 

(6.106) 

where aP is an underrelaxation factor. In the present calculations, the value of aP was 
set as 0.1, which is conservatively lower than that suggested in Sec. 6.8.5. For the 
present calculations, no effort was made to optimize aP. 
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Step 5. Designate the values of p7 + 1 obtained from step 4 as the new values of 
~*)~ to b_e ins~rted into the equijalents of Eq. (9.58) and (9.59) written at all 
mte~or gnd pomts. Return to step 2, and repeat steps 2 to 5 until convergence is 
ach~eved. For the present calculation, convergence of this primary iteration loop was 
achieved after approximately 300 iterations. Again, no effort was made to optimize 
the calculation so as to obtain the smallest number of iterations necessary for 
convergence. 

9.4.2 Results 

Because of the insertion of the v velocity spike at point (i, j) = (15, 5) in the initial 
conditions, the flow field is two-dimensional during the ensuing iterations. This is 
illustrated in Fig. 9.8, which shows v profiles as a function of distance y across the 
duct at the axial station where i = 15. Hence, these profiles include the grid point 
(15, 5) where the initial value of the velocity spike, v15, 5 = 0.5 ft/s, was inserted. 
Indee~ this velocity spike is shown in Fig. 9.8 by the dashed line at y = 0.004 ft 
extendmg to a value of v = 0.5 ft/s. In Fig. 9.8, K denotes the iteration number 
hence the velocity spike at the zeroth iteration (the initial conditions) is denoted b; 
K = 0. Three other velocity profiles are shown in Fig. 9.8, each one corresponding 
to the results obtained after K iterations. Note that the peak value of v has already 
been reduced to 0.343 ft/s after only one iteration, as seen in the profile labeled 
K = 1. The profile labeled K = 4 shows that the peak value of v continues to be 
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FIG. 9.8 
Profiles of they component of velocity v across the duct at the axial station denoted by i = 15. Profiles 
are shown at vanous stages during the iterative process. The iteration number is denoted by K. 
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reduced and that finite values of v are spreading both upward and downward away 
from grid point (15, 5); indeed, the region of two-dimensional flow introduced by 
the velocity spike is spreading throughout the flow field in both the x and y 
directions, although the magnitude of v progressively gets smaller as the iterations 
progress. Note in Fig. 9.8 that the profile labeled K = 50 shows a major reduction in 
v by the end of the fiftieth iteration. Finally, after 300 iterations, when convergence 
is obtained throughout the entire flow field, v has essentially gone to zero at all grid 
points. Reflecting on the results shown in Fig. 9.8, the pressure correction formula, 
Eq. (9.60) and its equivalent at each grid point, is certainly doing its intendedjob
it is setting up a pressure field that pushes the velocity field in the correct direction, 
in this case in the direction of v going toward zero. 

In Sec. 6.8.5, the mass source term d was identified as a valuable diagnostic to 
determine when the pressure correction method has converged to the correct 
velocity field. As introduced in Eq. (6.104), and as expressed in Eq. (9.61) for grid 
point (3, 3), d acts as a mass source term in the continuity equation when a velocity 
field is present that does not satisfy the continuity equation. The object of the 
pressure correction method is to modify the velocity field through a series of 
iterations which, when converged, will satisfy the continuity equation. When this 
occurs, the mass source term goes to zero; that is d = 0. Hence, examining the 
variation of d at each grid point throughout the iterative process is a reasonable way 
of ascertaining when convergence is achieved. An example from the present 
calculation is shown in Fig. 9.9. Here, the mass source term at grid point (15, 5}-
the point at which the initial velocity spike was introduced-is shown as a function 
of iteration number. Three different sets of iteration numbers are shown in Fig. 9.9. 
The first set pertains to the early part of the iterative process and gives the values of 
d15, 5 for the first five iterations. Note that d is relatively large for these early 
iterations, as would be expected, and that it exhibits a rather wide variation from one 
iteration to the next. The second set of iteration numbers covers the range from 
K = 8 to 20. Here we see a general reduction of d compared to the earlier iterations, 
but the values of d 15, 5 in this set are still relatively large. The third set of iteration 
numbers covers the range from K = 50 to 300 and shows d 15 , 5 converging to zero at 
K = 300. (In reality, d15 , 5 = -0.172 x 10-5 at K = 300, close enough to zero for 
our purposes.) Reflecting on Fig. 9.9, we again see that the pressure correction 
method is doing its job-driving the velocity field to a distribution which satisfies 
the continuity equation and hence resulting in the mass source term going to zero. 

Finally, let us examine some profiles of the x component of velocity, u, across 
the duct. Figure 9.10 illustrates such profiles at the axial location corresponding to 
i = 15. Note that as the iterations progress, the velocity profiles monotonically 
approach a linear variation across the duct; i.e., they approach the exact Couette 
flow solution. Indeed, the numerical iterative process has solidly converged to the 
Couette flow solution at K = 300. It is interesting to note that the numerical solution 
has also converged to the same Couette flow result at all axial stations along the 
duct, from i = 1 to 22, including at the inflow and outflow boundaries. Reflecting on 
the results shown in Fig. 9.10, we feel quite comfortable that the pressure correction 
method is working as intended-all aspects of the numerical solution have 
converged to the exact analytical solution for incompressible Couette flow. 
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FIG. 9.9 
Variation of the mass source term at grid point (i, j) = (15, 5) as a function of iteration number. 
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FIG. 9.10 
Velocity profiles for the x component of velocity as a function of vertical distance across the duct. 
Profiles are shown for various iteration numbers, ranging from 4 to 300. At K = 300, the velocity 
profile has converged to the Couette flow solution. 
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In summary, in the present section we have illustrated the use and behavior of 
the pressure correction method for the solution of an incompressible viscous flow. 
From our results, it is interesting to observe the relative roles played by pressure and 
viscosity in the formulation of the velocity field. In Fig. 9.8 we see the vertical 
velocity spike decaying fairly rapidly; the values of v throughout the whole flow 
field became small after about 50 iterations. The rapid decay of v is due to pressure 
gradients being set up in the flow and propagating via pressure waves that move 
rapidly throughout the flow field. Again, the calculated pressure corrections are 
acting to rapidly reduce v. In contrast, in Fig. 9 .10 we see the horizontal velocity 
profiles more slowly converging to the proper solution. Here, the values of u are 
dominated by viscosity (shear stress), the effects of which are propagated more 
slowly than those due to pressure waves. Indeed, the values of u do not converge to 
the proper solution until about 300 iterations, well after the values of v have become 
very small. This numerical behavior is directly analogous to actual physical 
behavior in real flows. Flow fields are driven under the impetus of pressure 
gradients and shear stress, and generally the influence of pressure propagates more 
rapidly throughout the flow field than that of viscosity. 

9.5 SUMMARY 

The primary purpose of this chapter was to illustrate the use of an implicit finite
difference method for the solution of a fluid flow problem; this is in contrast to the 
explicit methods demonstrated in Chaps. 7 and 9. In addition, the flow problem 
chosen in the present chapter was a viscous flow; this is in contrast to the inviscid 
flows calculated in Chaps. 7 and 8. The major results of the application of the 
Crank-Nicolson implicit method to the solution of incompressible Couette flow in 
the present chapter underscored the following trends: 

1. Theoretically, the method is unconditionally stable; this situation is clearly 
supported by the present calculations, wherein stable results were obtained even 
when lit was abnormally large ( equivalent to E = 4000). 

2. A general advantage of an implicit over an explicit method is that much larger 
marching steps can be used, hopefully resulting in fewer steps needed to reach 
the steady state. For the present calculations, an optimum value of lit which led 
to the shortest convergence time was found to be about equal to 20 times the 
maximum value of lit allowed by an explicit approach. The implicit method used 
here becomes less efficient (i.e., requiring more marching steps, hence more 
computer time, to reach a steady state) when lit is either made too small or too 
large. 

3. Timewise accuracy is a problem with implicit methods. This problem disappears 
when lit is made small enough. On the other hand, the calculations wherein lit 
was large produced some nonphysical transient results. If all that you are 
interested in is the final steady-state values, such nonphysical transients are not a 
problem. 
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This has been our first detailed calculation using an implicit method, with Thomas' 
algorithm employed for the solution of the governing equations. For simplicity, we 
intentionally chose to solve a simple flow problem: incompressible Couette flow. 
However, this simple problem illustrated the main aspects of implicit finite
difference calculations. You are reminded that many modem CFD calculations 
employ implicit methods, and therefore it is well worth your while to feel at home 
with the basic concept. 

Another primary purpose of this chapter was to illustrate the use of the 
pressure correction technique for the solution of the two-dimensional, incompres
sible, Navier-Stokes equations. We set up a solution of these equations for the 
incompressible flow between two parallel plates in relative motion to each other. 
The pressure correction method is an iterative solution. We set up the initial 
conditions to be a two-dimensional flow field, and hence the pressure correction 
method was carried out in this chapter for a two-dimensional flow during the 
iterative process. However, the physic~! problem was that of Couette flow, and the 
pressure correction method converged to the proper Couette flow solution. With this 
example, we have illustrated that the pressure correction method is a viable 
technique for the solution of incompressible, viscous flows. 

PROBLEM 

9.1 Solve the Couette flow problem using an explicit finite-difference approach. Compare 
the computer time required for both the implicit and explicit solutions. 

10.1 INTRODUCTION 

CHAPTER 

10 
SUPERSONIC 

FLOW 
OVER A FLAT 

PLATE: 
NUMERICAL 

SOLUTION BY 
SOLVING THE 

COMPLETE 
NAVIER-STOKES 

EQUATIONS* 

Capstone: The crowning or final stroke; 
culmination. 

From The American Heritage Dictionary of 
the English Language, 1969 

If you waded into the CFD solutions in the previous chapters, you are in?eed 
"dirty"--congratulations! You are now in a position to take the next step, that 1s, to 
apply your experience to solve the complete Navier-Stokes equations. 

* This chapter was written by Lt. Col. Wayne Hallgren, a professor in the department of aeronautics at 
the U.S. Air Force Academy. Colonel Hallgren field-tested the preliminary manuscript of this book at 
the Academy and kindly agreed to write this chapter in the spirit of the rest of the book. This c?apter i_s a 
capstone chapter for the applications in Part III; also, it contains some helpful programmmg hmts which 
are not mentioned in any of the previous chapters. The author is indebted to Colonel Hallgren for 
contributing this chapter to the present book. 

447 



448 SUPERSONIC FLOW OVER A FLAT PLATE 

In the present chapter a two-dimensional, laminar, viscous, supersonic flow 
over a flat plate, at zero incidence, is examined. In effect, this problem serves as a 
capstone to your understanding (at the level of this text), in the following ways: 

1. :ou just solved the classic incompressible Couette flow problem. That problem 
mtroduced the effect of viscosity. This problem also includes viscous effects but 
now accounted for in both the x and y directions (two-dimensional). Additionally, 
thermal conduction is included in the flow equations. 

2. By solving the conservative form of the governing equations, your solution will 
capture_ the lea~ing-edge shock wave. This is analogous to your capturing the 
expansion fan m the Prandtl-Meyer expansion wave problem presented in 
Chap. 8. 

3. Based on yo~r experience from Chaps. 7 and 8, you should feel relatively 
comfortable with MacCormack's explicit finite-difference technique. Because his 
technique is "student-friendly," it is used as well in this chapter. However, the 
complexity of considerably more terms is added. If not already, you will soon 
app:eciate th~s point. You have an understanding of numerical stability; once 
agam, you will be exposed to this key aspect of explicit numerical approaches. 

4. Recall that despite the mixed mathematical nature of the complete Navier-Stokes 
equations, a time-marching solution is well-posed; hence, this approach is again 
taken. 

The supersonic flow over a flat plate is a classic fluid dynamic problem. 
However, no exact analytical solution exists! A flat plate at zero incidence is a 
simple geometry. Isn't it surprising that no one has solved this problem without 
making limiting assumptions? Herein lies the real benefit of CFD. Traditionally, a 
boundary-layer-solution technique has been used to "solve" this problem (for 
example, see Ref. 8). Although results obtained from boundary-layer techniques are 
r~a~~nabl~ good for certain applications, their approximate nature is extremely 
hm1tmg m terms of flight condition and geometry. Navier-Stokes solutions 
overcome this inherent shortfall. 

. As you can see by now, we have slightly diverged from our philosophy of 
solvmg problems that have exact solutions. This serves two purposes: 

1. This is a capstone problem to tie in your previous learning. At the same time, it 
pushes you toward greater understanding. 

2. ~his chapter ~rovides a logical and clear link between Chaps. 7 to 9 (relatively 
s1~ple numencal schemes and physical problems) and the following chapter, 
which serves to summarize some of the latest, more sophisticated computational 
techniques and challenges. 

:A,s a fi_nal note, due to the relative complexity of this problem, this chapter is 
orgamzed differently from the preceding. A section of "intermediate results" is 
sim~ly not practical considering the number of equations and steps involved in 
solvmg the complete Navier-Stokes equations. That's not to say you are on your 
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own ... indeed, detail is provided when discussing the more challenging aspects 
of the solution process. Additionally, flowcharts, containing a considerable 
amount of detail, are provided to help you structure your code. Recognizing that 
you are experienced in applying MacCormack's technique, the emphasis 
here is to highlight the more difficult facets of the problem and give you 
sufficient direction to ensure your success. You have come to a crossroad-simply 
read the chapter to get a sense of understanding of what a complete 
Navier-Stokes solution entails (remember, this is arguably the easiest applica
tion), or start wading! 

10.2 THE PHYSICAL PROBLEM 

Consider the supersonic flow over a thin sharp flat plate at zero incidence and of 
length L, as sketched in Fig. l 0.1. A laminar boundry layer develops at the leading 
edge of the flat plate and remains laminar for the case of relatively low Reynolds 
number. The oncoming freestream no longer "sees" a sharp flat plate. Rather, due to 
the presence of the viscous boundary layer, the plate possesses a fictitious curvature. 
Consequently, a curved induced shock wave, as shown in Fig. 10.1, is generated at 
the leading edge (Ref. 2). 

The region between the surface and the shock is called the shock layer. 
Depending on (for example) Mach number, Reynolds number, and surface 
temperature, the shock layer can be characterized by a region of viscous flow 
and inviscid flow (refer to Fig. 10.2a), or the entire layer can be fully viscous, 
a so-called merged shock layer (Fig. 10.2b). Furthermore, dissipation of 
kinetic energy within the boundary layer (viscous dissipation) can cause high 
flow-field temperatures and thus high heat-transfer rates. Bottom line: Although 
we are dealing with a simple geometry, capturing and understanding the 
physics of this problem is indeed a significant challenge. So, let us get on 
with it! 

... 

FIG. 10.1 

Shock layer 

Shock 
wave 

Illustration of supersonic flow over a sharp leading-edged flat plate at zero incidence. 
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(a) 

M~>I 

(b) 

FIG. 10.2 
(a) Supersonic flow over a flat plate with a distinct boundary layer and region of inviscid flow. (b) 
Supersonic flow over a flat plate with a merged shock layer. 

10.3 THE NUMERICAL APPROACH: 
EXPLICIT FINITE-DIFFERENCE SOLUTION 
OF THE TWO-DIMENSIONAL COMPLETE 
NAVIER-STOKES EQUATIONS 

This problem is packed with interesting fluid phenomena. The advantage of using a 
time-dependent Navier-Stokes approach is its inherent ability to evolve to the 
correct steady-state solution. Of course, in the process the shock location 1s 
determined, as well as the physical characteristics of the shock layer. 

10.3.1 The Governing Flow Equations 

Neglecting body forces and volumetric heating, the two-dimensional forms of the 
Navier-Stokes equations are repeated below. (Note: It may be useful at this point to 
review Sec. 2.8.) 

Continuity : 
ap a a 
- + - (pu) + - (pv) = 0 at ax ay (2.33) 

x Momentum: 
a a 2 a at (pu) + ax (pu + p - rxx) + ay (puv - 'yx) = O (2.56a) 
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yMomentum: 
a a a 2 ) 
-(pv)+-a (puv-rxy)+~(pv +p-ryy =0 at X UY 

(2.56b) 

Energy: 

a a a 
-(E1) +-[(Et+ p)u + qx - urxx - vrxy] +:+.,[(Et+ p)v + qy - uryx - vryy] = 0 at ax vy 

(2.81) 

In the above equation, Et is physically the sum of the kinetic energy and internal 
energy e per unit volume; it is defined as 

Et= p(e+ :

2

) (10.l) 

The shear and normal stress, expressed in terms of velocity gradients, are repeated 
below for convenience: 

'xy = 'xy = µ(~; + ~:) 

au 
'xx = Jc(v' · V) + 2µ ax 

' ( ) av 'YY = A v' · V + 2µ ay 

(2.57d) 

(2.57a) 

(2.57b) 

Likewise, the components of the heat flux vector (from Fourier's law of heat 
conduction) are repeated below: 

aT 
qx = -kOX 

aT 
q =-k-

y ay 
Let us pause for a minute. At this point, the system consists of four equations: 

continuity, x and y momentum, and energy. Nine unknowns are embedded in the 
equations: p, u, v, IV I, p, T, e, µ, and k. To close the system, five additional 
equations are needed, as described below: 

1. A perfect gas is assumed. From Chap. 2, the equation of state is 

p=pRT 

2. Furthermore, if we assume the air is calorically perfect, then the following 
relation holds (also from Chap. 2): 

3. The x and y components of the velocity vector are u and v, respectively, such that 

(10.2) 
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4. To evaluate the viscosity, assuming a calorically perfect gas, Sutherland's law is 
typically used. µo and T0 are reference values at standard sea level conditions 
(Ref. 8). 

- (T)
312

To+110 
µ - µo To T + 110 (10.3) 

5. One additional equation is required. If the Prandtl number, defined below, is 
assumed constant (approximately equal to 0.71 for calorically perfect air), 
thermal conductivity can be calculated from the equation (Ref. 8) 

Pr= 0.71 = µcP 
k 

where cP is the specific heat at constant pressure (like cv, a constant as long as the air 
is assumed calorically perfect). 

The system of equations is now closed: nine equations with nine unknowns. As in 
Se~. 2.10, the governing equations, expressed in vector notation, are especially 
smted for numerical application. In a slightly different form, the equations are 
repeated below: 

au oE oF 
8t+8x+8y=O 

where U, E, and F are column vectors given by 

{ 

pv } puv - rxy 
F= 

pv2 + p - 'xy 

(E1 + p)v - urxy - vr>Y + qy 

10.3.2 The Setup 

(10.4a) 

( 10.4b) 

(10.4c) 

(10.4d) 

Now for the problem at hand. Consider the computational domain, in this case a 
rectangular structured grid, as shown in Fig. 10.3. The flow at the upstream 
boundary (x = 0.0 or i = 1 = IMIN) is at Mach 4 with pressure, temperature, and 
speed of sound equal to their respective sea level values. 
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(1, 70) or (IMIN, JMAX) 

Computational domain 

y 

X 

(I, I) or ( IMIN, JMIN) 

FIG. 10.3 
Computational domain. 

(i,j) 

(70, 70) or ( IMAX, JMAX ) 

(70, I) or ( IMAX, JMIN ) 

The length of the plate is 0.00001 m. This is extremely small, but large 
compared to the mean free path of the oncoming air molecules, and sufficient to 
capture the desired physics. The Reynolds number is about 1000. We want a low 
Reynolds number in order to keep computational running times relatively short 
compared to high Reynolds number applications requiring considerably finer 
grids (Ref. 13). 

10.3.3 The Finite-Difference Equations 

In Chap. 7, you applied MacCormack's time-marching technique in one spatial 
direction: down the length of a convergent-divergent nozzle. In Chap. 8, you used 
his technique to march downstream, effectively solving for flow properties in two 
spatial dimensions without any time dependency. This problem takes you one step 
further. As in the convergent-divergent nozzle problem, you will march in time to a 
steady-state solution but in the process solve the flow properties at every (i, j) 
spatial location. So, a third dimension is introduced. 

Following the presentation in Chap. 6, the key steps in applying MacCor
mack's technique are shown below. The governing equation [Eq. (10.4a)] is 
rewritten, in vector notation as 

au oE oF 
ot ax oy (10.4a) 

By means of a Taylor series expansion, the flow-field variables are advanced at each 
grid point (i, j) in steps of time, as shown below: 

u1+t..1 = u, . + (au) 11t 
1,J l,J ot av 

( 10.5) 
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where, once again, U is a flow-field variable (from the governing equations) 
assumed known at time t, either from initial conditions or as a result from the 
previous iteration in time. (aU/at)av is defined as 

( au) = ~ [ (au)
1 

+ (au)t+llt] 
at 2 at . . at .. av z,J 1,J 

(10.6) 

To obtain a value of (aU!at)av (above) so that the solution can be advanced, the 
following steps are taken: 

1. (aU!at);,1 is calculated using forward spatial differences on the right-hand side of 
the governing equations (refer to the vector form above) from the known flow 
field at time t. 

2. From step 1, PREDICTED values of the flow-field variables (denoted by a bar) 
can be obtained at time t + !J.t, as follows: 

or+llt = ui . + (au)
1 

!J.t 
,,1 ,,1 at .. 

I,) 

(10.7) 

Combining steps 1 and 2, predicted values are determined as follows: 

- t+llt I /J.t ( I I ) /J.t t I 
ui,j = ui,j - /J.x Ei+l,j - Ei,j - !J.y (Fi,J+I - F;) (10.8) 

3. Using rearward spatial differences, the predicted values (from step 2) are inserted 
into the governing equations such that a predicted time derivative (au1at{~/'>1 

can be obtained. 

4. Finally, substitute (au/at);~/11 (from step 3) into Eq. (10.6) to obtain COR
RECTED second-order-accurate values of U at time t + !J.t. As in Eq. (10.8), 
steps 3 and 4 are combined as follows: 

ur+tJ.1 = ~ [u1 . + [J1+""1 _ !J.t (E/+.""r _ t/+""1.) _ !J.t (F1+tJ.1 _ p1+tJ.1 )] 
l,J 2 l,J I,} /J.x I,) 1-1,J /J.y l,J 1,J-1 

(10.9) 

Steps 1 to 4 are repeated until the flow-field variables approach a steady-state value; 
this is the desired steady-state solution. 

To maintain second-order accuracy, the x-derivative terms appearing in E are 
differenced in the opposite direction to that used for aE!ax, while they-derivative 
terms are approximated with central differences. Likewise, the y-derivative terms 
appearing in Fare differenced in the opposite direction to that used for aFl{)y, while 
the x-derivative terms in Fare approximated with central differences (Ref. 13). For 
example, in the predictor step (see step 1 above), aE!ax is forward-differenced. 
However, E has terms like 'x.,, which includes derivatives of velocity in both the x 
and y directions [refer to Eq. (2.57d)]. Therefore, in the predictor step, 8v!ax is 
rearward-differenced and au/{)y is central-differenced. (Note: use first-order differ
encing in both cases.) 
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After each predictor or corrector step, the primitive variables are obtained by 
decoding the U vector, as shown below; U4 is reserved for a three-dimensional 
application (another challenge for you) and is therefore omitted. 

p= U1 

pu U2 
u=-=-

p U1 

pv U3 
v=-=-

p U1 

Us u2 + v2 
or e=-----

U1 2 

(10.lOa) 

(10. lOb) 

(10.lOc) 

(10.lOd) 

With p, u, v, and e determined, the remaining flow-field properties can be obtained 
by using the equations in Sec. 10.3.1 as follows: 

e 
T=

cv 
p=pRT 

µ and k are functions of temperature T. µ can be determined by applying 
Sutherland's law. Once µ is known, a constant Prandtl number assumption leads 
directly to k, as shown below. 

k = µ Cp 

Pr 

10.3.4 Calculation of Step Sizes in Space and 
Time* 

As shown in Fig. 10.3 the domain is 70 x 70. The following notation describes the 
grid size in the streamwise direction: 

IMIN = 1 (inflow x location) 

IMAX= 70 (outflow x location) 

With the length of the plate known (LHORI), the step size in the x direction (/J.x) is 
determined as follows: 

/J.x = LHORI 
IMAX-1 

(10.11) 

• Several of the suggestions in this section were provided by James Weber, a graduate fellow at the 
University of Maryland. 
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Likewise, JMIN = 1 and IMAX= 70 describe the grid normal to the plate's 
surface (JMIN = 1 is the surface and JMAX the upper boundary of the domain). 
Refer again to Fig. 10.3. To obtain an accurate solution, the shock wave must lie 
within the computational domain. It is reasonable to assume that a domain of at least 
five times the height of a boundary layer, as predicted by a Blasius calculation at the 
trailing edge, will satisfy this computational constraint (refer to Fig. 10.4). 
Therefore, the vertical height of the domain (LVERT) is determined as follows: 

LVERT = 5 x {J (10.12a) 

where {J is given by 

{J = 5(LHORI) 

vRer 
Therefore, the step size in the y direction is 

~ _ LVERT 
Y-JMAX-1 

(10.12b) 

(10.13) 

Using the grid size above (plate length of0.00001 m) results in a step size in the x 
and y directions of 0.145 x 10-6 and 0.119 x 10-6

, respectively. How do you 
know if your grid is sized correctly? Cell Reynolds numbers ( defined below) in the x 
and y directions are calculated at each point, for each time step. 

FIG. 10.4 

( IMIN, JMAX ) 

P· -U· -& Reih- = ,,1 ,,1 

µi,j 

P· ·V; J ~y 
Re = 1,J , 

L\y -
µi,j 

---

( IMAX, JMAX ) 

5.0 X 8 

--- t 
Laminar boundary layer ~----~--~----i ( IMIN, JMIN) ( IMAX, JMIN ) 

Illustration of how to size the computational domain. 

(10.14a) 

( 10.14b) 
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The magnitude of the cell Reynolds numbers provides insight into correctly sizing 
the computational grid; for this problem cell Reynolds numbers of the following 
order are used: 

Reih- :S 30-40 

Rel\y :S 3-4 

(10.15a) 

(10.15b) 

Note that the requirement in they direction is much smaller; this is a consequence of 
the stronger gradients in the direction normal to the plate. Thus, to capture the flow 
field, especially near the surface, typically more grid points are necessary per
pendicular to the surface-makes sense! 

Because this method is an explicit formulation, the time step is subject to a 
stability criterion. To determine the size of the time step, the following version of 
the Courant-Friedrichs-Lewy (CFL) criterion (Ref. 74) is used. a;,1 is the local 
speed of sound in meters per second, and K is the Courant number. K acts as a 
"fudge factor," if you will, to make sure the solution remains stable. 

where 

' [1 µ;,J(Yµ;jPr)l v . = max -----
'·J P· . 

l,J (10.16) 

~t = min[K(~tcFL);) 

for 0.5 :S K :S 0.8. 

10.3.5 Initial and Boundary Conditions 

We are solving a system of partial differential equations. They are first-order in time 
and second-order in space. Therefore, initial and boundary conditions ( on velocity 
and temperature) are necessary. 

Because our solution is marched from a set of initial conditions, we must 
specify the flow properties at each (i, j) location at time t = 0.0. Except as noted 
below, properties at each grid point are initialized at their respective freestream 
values. At the surface (JMIN = 1 ), the no-slip boundary condition is enforced and 
the wall temperature Tw is a given value. 

U = V = 0.0 

T= Tw 

(2.87) 

(2.88) 

Having specified the initial conditions (t = 0.0), our equations are marched in 
time to the steady-state solution. In that process, conditions must be enforced at the 
boundary of our computational domain. Referring to Fig. 10.5 ( cases 1-4, as noted 
below), the following boundary conditions are detailed: 
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Case 2 (inflow I upper boundary - not leading edge) 

u = urx 

v=O 
p=poo 
T= T00 

(IMIN, JMAX) 

y 

... 
X 

( (!MIN, JMIN) 

Case I (leading edge) 

u=v=O 
P = Px 
T= TX 

FIG. 10.5 

(IMAX, JMAX) 

Computational domain 

U U(IMAX,j) 
(IMAX-1,J] 

Pc;,2> 

\ (IMAX, JMIN) 

+- Case 4 ( outflow -

not surface or JMAX) 

u, v, p, T extrapolated 
from interior 

Case 3 (surface - not leading edge) 

u=v=O 
p = ( 2 X Pr,;2)- Po.JJ 
T= Tw 

Application of boundary conditions. 

Case 1. At the leading edge [(IMIN, JMIN) or (1, l)], no-slip is enforced 
(uo. 1) = vo, 1) = 0.0) and the temperature (T0 , 1i) and pressure (p( 1, 1i) are assumed 
to be their respective freestream values. 

Case 2. At the left-hand side (except the leading edge) and upper boundaries of the 
domain, the x component of velocity, u, temperature, and pressure are assumed to be 
their respective freestream values; the y component of velocity, v, is assumed to 
equal zero. 

Case 3. At the surface of the plate, no-slip is specified on velocity (u = v = 0.0). 
Temperature ( except at the leading edge: see case 1 above) is assumed to equal the 
wall temperature Tw value. Pressure, ( except at the leading edge: see step 1 above) is 
calculated at the wall by extrapolating from the values at the two points ( j = 2 and 
j = 3) above the surface, as shown below: 

P(i,1) = (2P(i,2)) - P(i,3) (10.17) 
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Case 4. Finally, all properties at the right-hand side of the domain (not including 
JMIN = 1 and JMAX = 70) are calculated based on an extrapolation from the 
two interior points, at the same j location. For example, u 1s determined as 
follows: 

U(JMAX,j) = (2u(IMAX-l,j)) - U(JMAX-2,j) (10.18) 

From these known values, the balance of the flow properties at the boundaries are 
calculated from the additional equations presented in Sec. 10.3.1. For example, 
density is calculated from the equation of state. 

In the above, a constant-temperature wall boundary condition is specified. As 
mentioned in Chap. 2, this is the easiest boundary condition to enforce on 
temperature. As an aside, one of the most significant advantages of CFO is the 
ability to make simple changes to, for example, freestream and boundary con
ditions, and then watch to see what happens. By conducting numerical experiments, 
you gain a better physical understanding of the implications of changing a flow 
parameter. Therefore, it makes sense to structure your code in such a fashion that 
simplifies your natural interest to pursue further numerical experiments. For 
example, a convenient and well-written subroutine to apply boundary conditions 
allows you to relatively easily make code changes to see the impact on, for example, 
an adiabatic wall (refer to Sec. 2.9) boundary condition. 

10.4 ORGANIZATION OF YOUR NAVIER
STOKES CODE 

10.4.1 Overview 

At this point, you have a much better appreciation for what is behind a complete 
Navier-Stokes numerical solution. With the finite-difference equations in place, 
as well as step-size constraints and initial and boundary conditions, we are in a 
position to discuss how you might proceed with organizing your code. As 
mentioned in Sec. 10.1, flowcharts are used to guide you. By the way, if you 
typically approach coding without flowcharting, or at least using some form of 
pseudocode, now is the time to reconsider your process. Codes involving this much 
detail, with the extensive passing of values between subprograms, require thorough 
organization up front. 

In terms of the "big picture," you may want to structure your code as shown 
in Fig. 10.6. Let us proceed by highlighting key components of the code. Keep 
in mind that a considerable amount of effort is involved in writing each 
subprogram. 

1. The MAIN program drives the entire code. Its primary functions are: 
a. Establishing flow conditions, sizing the computational domain, and 

initializing the flow properties at each (i, 1) spatial location following the 
presentation in Sec. 10.3.5. 

b. Marching the code in time and calling the following subroutines: 
i. TSTEP to determine the proper time step (as described in Sec. 10.3.4) 
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TAUXX 
(Tu) 

TS TEP 

BC 

Main program 

MAC 

DYNVIS 
(function) 

THERMC 
(function) 

QX 
( qx) 

CONVER 

MOOT 

OUTPUT 

+------------ Functions-----------~ 

FIG. 10.6 
An approach to structuring your code. 

ii. MAC (for Maccormack) to update the flow properties at each (i, j) 
location by using the predictor-corrector technique, as detailed in Sec. 
10.3.3 

m. CONVER to check for flow-field convergence 

2. OYNVIS and THERMC are function subprograms; they are called to solve for 
dynamic viscosity and thermal conductivity at each (i, j) location following the 
discussion in Sec. 10.3.3. The MAIN program calls these functions only during 
the flow-field initialization process. As shown, MAC uses these functions each 
time it is called. 

3. Viscous effects are accounted for in the five functions TAUXX, TAUXY, 
TAUYY, QX, and QY. Each time one of these stress or heat conduction terms 
needs to be evaluated, the respective function is called. For example, in 
determining £ 3 [the third component of the E vector: refer to Eq. (10.4c)], 
TAUXY is called. Remember from our discussion in Sec. 10.3.3 that the 
derivatives in these equations are differenced either forward, central, or backward 
depending on your position within MacCormack's scheme (e.g., in the predictor 
step); more later. 

4. Once the internal flow-field properties are determined (either through the 
predictor or the corrector step), boundary conditions are applied by calling 
subroutine BC, which implements the boundary conditions as described in Sec. 
10.3.5. 
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5. After each time step, CONVER is called to check for a converged solution. The 
solution is considered converged when the density, at each (i, j) grid point, 
changes no more than 1.0 x 10-8 between time steps. Subroutine CONVER 
also "asks" if the main program has reached a specified number of maximum 
iterations. If it has, even though the solution has not converged, the subroutine 
calls MOOT and OUTPUT to assess how the solution is progressing. 

6. MOOT provides a check of the validity of the numerical solution. An integration 
scheme (trapezoidal rule) is used to confirm conservation of mass. The rate of 
mass inflow across the entrance to the computational domain is compared to the 
rate of mass outflow across the exit plane. For this case, the deviation between 
mass flow rate at the entrance and exit is less than 1 percent. 

7. Finally, subroutine OUTPUT generates data files for plotting results. 

10.4.2 The Main Program 

A recommended approach to organizing your main program is provided in Fig. 
10.7. IMAX and JMAX size the computational grid. MAXIT is a maximum number 
of iterations you want the code to execute prior to "kicking out" and stopping; this 
technique is convenient for testing your code through a couple of iterations prior to 
extended running times. To begin code execution, freestream conditions, as well as 
several thermodynamic constants, must be specified (or calculated). For the results 
presented in the next section (as "set up" in Sec. 10.3.3), the following values were 
used (SI units): 

Mach number= 4.0 
Plate length (LHORI) = 0.00001 m 
Sea level values for the freestream speed of sound, pressure, and temperature, 

respectively= 340.28 mis, 101325.0 N/m2
, 288.16 K 

The ratio of wall temperature to freestream temperature (TJT
0
,J was set equal 

to 1.0; this ratio is convenient for investigating the impact of changing wall
temperature boundary conditions. 

The ratio of specific heats (y) = 1.4 
The Prandtl number (Pr)= 0.71 
Reference values (sea level) for dynamic viscosity and temperature, respec

tively= 1.7894 x 10-5 kg/(m · s), 288.16 K) 
Specific gas constant (R) = 287 J/(kg · K) 

Once the above values are specified, the remaining constants are determined by 
using the equations as shown in Fig. 10.7. 

As seen in the flowchart, TSTEP is called prior to executing MacCormack's 
algorithm. For this code, K [the fudge factor in Eq. (10.16)] is set equal to 0.6. Only 
internal points are used to determine the appropriate time step in applying 
Maccormack 's technique. 
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FIG. 10.7 
Flowchart for the main program (MAIN). 
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Subroutine to 
calculate l1t 

Subroutine to 
execute MacCormack's 

technique 

Subroutine to 
check for 

convergence 

Subroutine 
to verify 

continuity 

----
Subroutine to 

generate 
data files 

for plotting 

Stop 

10.4.3 The Maccormack Subroutine 

You are well-versed in applying MacCormack's technique but not to the extent 
required to perform a full Navier-Stokes solution. So, Fig. 10.8 may help you 
organize your subroutine. If you follow the structure, as presented in Fig. 10.6, you 
will find this is, quite naturally, your longest subroutine; it is on the order of 150 
lines of executable code, not including the subprograms (e.g., TAUXX, BC, and 
DYNVIS) that are called in the process of executing the algorithm. 



464 

Forward 
difference 

q, 

qy 

FOR 
I = IMIN, IMAX 
J = JMIN, JMAX 

DO 

--1 

Fi F3 I 

Fz Fs 
1--
I 

__ J 

FOR 
INTERIOR 

POINTS 
ONLY DO 

PREDICT 

Ul U3 

U2 US 

BC 

Arrays, (two-dimensional) in I out 
U, V, p, p, e, t, /L, k 

Change primitive variables 
to fluxes, for example: U2 = pu 

Calculate components of 
E I F vectors: for example: 

E3 = puv - Txy 

All properties are now 
predicted at each ( i, j ) 

Rearward 
difference 

q, 

FOR 
I = IMIN, IMAX 
J = JMIN, JMAX 

DO 

E, E3 

Ez Es 

F, F3 

Fi Fs 

END 

FIG. 10.8 
Flowchart for MacConnack's (MAC) subroutine. 
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The flowchart follows directly from the discussion in Sec. 10.3.3. U5, E2, and 
F 1, for example, correspond to terms found in the U, E, and F vectors [ refer to Eqs. 
(10.4a) to (10.4d)]. Recall that the fourth subscript is reserved for a three
dimensional application, consistent with Eqs. (10.lOa) to (10.lOd). Therefore, 
for example, Us is equal to E1• The flowchart is self-explanatory; however, a couple 
of pointers follow: 

1. In addition to the nine flow-field properties, you should dimension U1, 2, 3,s, 
E1,2, 3, 5 , and F1,2,3,s as (IMAX, JMAX). Additionally, predicted values of U 
(e.g., U1P) for all four (1, 2, 3, 5) components should be dimensioned as 
(IMAX, JMAX). 

2. Be careful to difference the derivatives found in the shear stress and heat 
conduction terms in accordance with Sec. I 0.3.3. This becomes rather messy! To 
help give you an idea of how to go about this, Fig. I 0.9 is an approach to 
organizing function TAUXY, the function most frequently called by MAC. Case 
I is executed when rxy is needed to evaluate £ 3 and Es in the predictor step (refer 
to the example in Sec. l 0.3.3 on how second-order accuracy is maintained-this 
is precisely the same). 

3. When you decode your flux terms to obtain primitive variables, follow the 
procedure outlined at the end of Sec. 10.3.3. 

10.4.4 Final Remarks 

Now you are really ready! For most, this is the longest code you have ever tackled. 
A few hints: (1) start (logically) by coding the main program, (2) use lots of 
comment statements, (3) put all the "call" statements in place and write short, 
dummy subprograms to simply return you to the main program, and (4) one by one 
begin building your subprograms. Flowchart ( or pseudocode) each subprogram in 
detail, code, and then test to make sure each one is doing precisely what you expect. 
Once you are confident that each specific piece of code is accurately in place, 
proceed with the next. For all practical purposes, there is no other way to take on 
this problem! 

10.5 FINAL NUMERICAL RESULTS: 
THE STEADY-STATE SOLUTION 

Before discussing the specific steady-state results, a few general comments are in 
order: 

1. The solution converged after 4339 times steps (6651 for the adiabatic wall case 
described below). Remember, this case is for a 70 x 70 grid. Reducing the 
number of grid points to, for example, 40 x 50, speeds up convergence while 
still adequately capturing the physics of the flow field. As an aside, to ensure 
your code is grid-independent, running it with different grid sizes is always 
appropriate. 

I= I 

CASE"' l 

----- For £ 3 andE5 

in predictor step 

J = l (surface) 

J=JMAX 

iJu - ui,j+I - u,,;-, 
ay - 2/iy 

---------

FIG. 10.9 
Flowchart for TAUXY function subprogram. 
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2: In plo~ing the profiles of various flow-field properties, a normalized y 
distance, 1s used. Suggested by Van Driest (Ref. 75), y is defined as 

ji=~~ (10.19) 

3. Thro~ghou!, pr~files of various flow-field properties are presented, frequently 
nond1mens10~ahzed by the freestream value (for example, plp,,J. This is in 
contrast to usmg boundary-layer edge conditions, as frequently done in bound
ary-layer-type analysis. Here, the entire shock layer is treated as fully viscous. 
Depending on flow conditions, a well-defined boundary layer is sometimes 
indistinguishable. Furthermore, even in the case of a distinct boundary layer, the 
definition of "edge conditions" is somewhat vague. 

4. Results are also presented for an adiabatic wall case. This serves two purposes: 
a. An adiabatic wall boundary condition causes significant changes in the flow 

field. When compared to the constant-temperature wall case, interesting 
physical insight is gained. 

b. Remember, CFD allows you to "throw switches." Once you have a code in 
place, numerical experiments are relatively easy to perform. These results are 
typical of the "next step" in expanding your code for further study. The 
boundary condition is applied precisely as explained in Sec. 2.9. 
Mathematically, an adiabatic wall is enforced as follows: 

(ar) - -o an w - (2.91) 

5. A Mach 25 flow at 200,000 ft (LHORI = 0.005 m) case is presented. Once 
again, a well-designed code allows you to take a look at other interesting cases. 

~epresentative results are presented in Figs. 10.1 Oa to 10.17. Certainly, you 
can thmk of other plots that are of specific interest to you. 

1. Figure 10.1 Oa: Nondimensional surface pressure distribution is plotted as a 
function of distance from the leading edge. A few notes about the figure: 
a. Oscillations are apparent in the leading-edge region; conventional rationa

lization is that this is a consequence of a continuum assumption in a 
noncontinuum region. Whether the oscillations are a real phenomenon or a 
numerical effect is not clear. Although this point is of academic interest, 
re~ults show the effect of these oscillations, aft of the leading edge, is 
ummportant. 

b. Note that the adiabatic wall tends to increase the overall pressure above (by 
about 30 percent) the constant-temperature wall case. Physically, an adiabatic 
wall increases the boundary-layer temperatures above the constant
temperature wall values. (Note: the usual assumption is made that the 
adiabatic wall temperature is much greater than the constant-temperature 
value). The result is a relatively lower density and hence thicker boundary 
layer. Therefore, the oncoming flow "sees" a blunter body, thus creating a 
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FIG. 10.10 
Mach 4 at sea level. (a) Normalized surface pressure distributions; (b) normalized pressure profiles. 

stronger leading-edge shock wave; this, in turn, increases the pressure within 
the shock layer. Furthermore, pressure is driven upward by higher flow 
temperatures. 

2. Figure 10.10b: This is a nondimensional pressure profile at the plate's trailing 
edge. Again, an adiabatic wall tends to increase overall pressure w~thi? th~ shock 
layer. The shock jump for the adiabatic case is about 35 percent, 1?d1catmg that 
the oncoming flow has passed through a stronger shock (as mentioned above). 
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The typical assumption of a zero pressure gradient through the boundary layer is 
questionable (about a 15 percent change) under these conditions. 

3. Viscous interaction is a name given to a flow field in which considerable 
interaction takes place between a growing boundary layer and the outer inviscid 
flow (for detail, refer to Ref. 2). Figure 10.11 (from Ref. 76) shows good 
agreement between this solution for both the constant-temperature wall case 
(solid triangle) and the adiabatic wall case (solid square). 

4. Figure l 0.12a, b: These are the temperature profiles at the trailing edge. Figure 
10.12a has an expanded ordinate; note that the profiles capture the leading-edge 
shock wave, as well as show classic boundary-layer behavior near the wall (for 
more detail, refer to Ref. 8). As expected, the temperature gradient is zero at the 
wall for the adiabatic case; also, temperatures within the thermal boundary layer 
are about three times higher! Figure 10.12b is presented for comparison to Van 
Driest's results, as shown in Fig. 10.13a, b. Qualitatively, the agreement is 
excellent. An interesting point-Van Driest's solution, based on classic super
sonic boundary-layer theory, stops short (perpendicular to plate) of the leading
edge shock. This is a direct consequence of the "self-similar" boundary-layer 
techniques typical of the 1950s and 1960s. In direct contrast to this Navier
Stokes solution, these approximate methods typically required coupling an 
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FIG. 10.12 . 
Mach 4 at sea level. (a) Normalized temperature profiles through the entire flow field; (b) normahzed 

temperature profiles near the surface. 

inviscid solution to a boundary layer-solution (note that the temperatures are 
normalized by the edge conditions in Fig. 10.13a, b. 

5. Figure 10.14a, b: Similarly, the u component of velocity is plotted. The boundary 
layer is indeed thicker for the adiabatic case. 

6. Figure 10.15: Mach number profiles graphically illustrate the relative strength of 
the two leading-edge shock waves. 
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Mach 4 at sea level. (a) Normalized velocity profiles through the entire flow field; (b) normalized 
velocity profiles near the surface. 

7. Figure 10.16a, b: The temperature profiles for the Mach 25 case show a distinct 
and important difference from those at Mach 4. The shock layer is now fully 
viscous, a consequence of the combined conditions of high Mach number and 
low Reynolds number. There is no longer a distinct boundary layer near the wall. 
Van Driest's results, based on a boundary layer patched to an inviscid flow, is 
simply inadequate for this problem. The solution evolves naturally when the 
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FIG. 10.15 
Mach 4 at sea level: local Mach number profiles at the trailing edge. 

complete Navier-Stokes equations are used. Mach number profiles are shown 
(Fig. 10.17) for this case as well. The leading-edge shock is well-defined. Again, 
the adiabatic wall case results in a considerably stronger shock wave. 

10.6 SUMMARY 

The primary goal of this chapter was to introduce you to a complete Navier-Stokes 
solution for the supersonic flow over a flat plate. A flat plate, at zero incidence, is a 
simple geometry, yet the solution unveils an enormous amount of interesting 
physics. Building on your previous work, MacCormack's explicit time-marching 
technique was used to march the flow field to the steady-state solution. All viscous 
terms were included, and the flow was allowed to vary in both the x and y directions. 

Even if you do not go on to code this problem, you have benefited immensely. 
You certainly have an idea of the magnitude of effort behind planning and 
implementing a full Navier-Stokes numerical solution. And remember, this is 
a relatively easy problem! 

Sufficient guidance is in place to ensure your success in solving this problem. 
If you have made the decision to, one more time, go wading: (1) be very deliberate 
in your approach, and (2) good luck! 
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(a) 

(b) 

FIG. 10.16 
Mach 25 at 200,000 ft. (a) Normalized temperature profiles; (b) normalized velocity profiles. 
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PART 

IV 
OTHER 
TOPICS 

T he main purpose of this book is to introduce the reader to the basic 
philosophy and some of the elementary concepts of CFD. In a study of 

CFD, this book is just a beginning. Indeed, it represents a launching platform from 
which the reader can now progress to more advanced concepts in the form of more 
sophisticated courses in CFD and/or the computational realities of the workplace. 
The purpose of Part IV is to enhance this launching process. In particular, Chap. 11 
deals with some topics which are more advanced than those discussed previously in 
this book but which constitute the essence of modern algorithms in CFD. It is well 
beyond the scope of this book to present in detail such advanced topics-they await 
your attention in your future studies. Instead, such aspects are simply discussed in 
Chap. 11 just to give you a preview of coming attractions and to acquaint you with 
some of the ideas and vocabulary of the most modern CFD techniques being 
developed today. Finally, Chap. 12 examines the future of CFD and somewhat 
closes the loop of the book by extending some of the motivational ideas first 
discussed in Chap. 1. Chapter 12 is intended to focus your thoughts on the 
expanding future of CFD, with its impact on all aspects of fluid dyanmics. The 
application of CFD is a growth industry, and you are encouraged to grow with it. 
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11.1 INTRODUCTION 

CHAPTER 

11 
SOME 

ADVANCED 
TOPICS 

IN MODERN 
CFD: 

A DISCUSSION 

Over the last twenty to thirty years considerable 
progress has been achieved, and the field of 

Computational Fluid Dynamics (CFD) is reaching 
a mature stage, where most of the basic 

methodology is, and will remain, well established. 

Charles Hirsch, Professor of Fluid Mechanics, 
Vrije Universiteit Brussel, Belgium, 1990 

In Chaps. 1 through 10, you were introduced to the basic philosophy and some of 
the elementary concepts of CFD. To repeat some of the thoughts given in Sec. 6.1, 
where we began to introduce some simple CFO techniques, our purpose has been to 
develop some CFO tools that are not overly sophisticated-tools which can be 
appreciated and understood at the introductory level adopted for this book but 
which are utilitarian enough to allow the solution of a variety of flow problems 
typified by those presented in detail in Part III. 

In comparison to those techniques discussed earlier, we find that the modem 
world of CFO is awash with relatively new and exciting algorithms which we have 
not highlighted in this book, until now. For the most part, these modem techniques 
have been the product of advanced applications of applied mathematics in order to 
correct some of the deficiencies of the older methods and to greatly increase the 
speed at which a given problem can be solved on a given computer. Because these 
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modem algorithms are steeped in the principles of applied mathematics-much 
mor~ so th_an the ~ethods we have discussed so far-they are properly the subject of 
cons1derat1ons which are more advanced than the scope of this book. On the other 
hand, we would be remiss not to introduce some of the ideas associated with these 
modem techniques, just to give you some clue as to what you may encounter in your 
future studies and work in CFD. 

Therefore, the purpose of this chapter is to provide a window into your future 
exposure t~ CFD. We cannot go into anything like the detail we have presented in 
the precedmg chapters; rather, the present chapter simply discusses some of the 
more modem ideas. _We hope to give you some of the essential thoughts and the 
nomen~lature-that 1s all. The details await you in your future studies. 

F1~ally: w~ note that the modem CFD techniques of today are all a product of 
the ?as1c pn?c1ples which we have covered in the present book. This chapter 
provides a wmdow for you to look into your future studies in CFD but all the 
previo~s chapters provide the solid footing for you to stand on as you leap through 
that wmdow. 

11.2 THE CONSERVATION FORM OF THE 
GOVERNING FLOW EQUATIONS 
REVISITED: THE JACOBIANS OF THE 
SYSTEM 

M?~t of the CFD state-of-the-art numerical algorithms in use today have their 
ong1~s deeply embedded in the mathematical properties of the governing flow 
equ~hons. We hav~ to~ched on these mathematical properties in Chap. 3. In 
part1c~lar, we descnbed _m Sec. 3.3 how a system of quasi-linear partial differential 
e~uahons can be descnbed by examining the eigenvalues of the system. If the 
eigenvalues are all real and distinct, the equations are hyperbolic; if the eigenvalues 
are real a?d equal, t~e ~quations are parabolic; if the eigenvalues are all imaginary, 
the equations are elhpttc. If the eigenvalues are a mixed set of the above then the 
system of partial differential equations is of a mixed nature. Moreover, w~ gave an 
example at the end of Sec. 3.3 which showed that the eigenvalues themselves are the 
slopes o! _the _cha~acteristic lines; i.e., the eigenvalues themselves give the 
~haractensbc d1rect1ons for the system of partial differential equations. It is 
important for you to review Sec. 3.3 before proceeding further, because we 
need to expand this line of thought to the actual governing flow equations as 
derived in Chap. 2. 

We will concentrate on the conservation form of the governing equations; 
because of the prevalence of CFD applications to high-speed flows with shock 
waves, and t?e pre1:erence of most investigators to calculate such flows using the 
shoc~-cap~nng ph1lo~ophy, which virtually mandates the use of the governing 
equations m conse~atl~n form ( see the discussion at the end of Sec. 2.1 O), we find 
that most CFD applications today use the conservation form of the equations. This 
s~ems to_ be freq_uently the case even when shock waves are not part of the flow 
picture; 1t has simply become more or less a habit, and many standard finite-
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difference codes today are based on the conservation form of either the Euler or the 
Navier-Stokes equations. 

Therefore, let us consider the conservation form of the governing equations 
represented by the generic form given by Eq. (2.93), repeated below. 

au+ &F + &G + &H = J (2.93) 
at ax ay oz 

Recall that U, F, G, H, and J are column vectors involving the flux variables, as 
displayed in Eqs. (2. 94) to (2.98) for the Navier-Stokes equations and Eqs. (2.105) 
to (2.109) for the Euler equations. Also recall that the dependent variables for the 
system are those contained in the solutions vector U, namely, p, pu, pv, pw, and 
p[e + (u2 + v2 + w2)/2]. The flux vectors F, G, and Hare obviously not equal to U, 
but the elements of F, G, and H can be expressed as functions of the elements U, that 
is, as functions of p, pu, pv, pw, and p[e + (u2 + v2 + w2)/2]. You can easily see this 
by inspection of the elements of F, G, and Has displayed in Eqs. (2.106) to (2.108) 
for the Euler equations. Hence, we can write F = F( U), G = G( U), and H = H( U). 
These are generally nonlinear functions, and for this reason the form of Eq. (2.93) 
shown above is not that ofa quasi-linear equation, in the spirit described in Chap. 3. 
To examine the mathematical characteristics of Eq. (2.93), we must first cast it in 
quasi-linear form, as follows. 

Since F, G, and H are functions of U, then Eq. (2.93) can be written as 

au &F au &Gau &Hau_ J (I I I) 
at + &U ax + &U ay + &U oz - . 

In Eq. (11.1), the terms aF/aU, &Gl&U, and &H!&U are called thejacobian matrices 
of the flux vectors F, G, and H, respectively. As shorthand notation, we will 
designate the following: 

A = &F 
- au 

( 11.2) 

where A, B, and C designate the respective jacobian matrices identified in Eq. 
(11.2). [Note that these jacobians are totally different entities than those defined in 
Chap. 5 associated with the inverse transformation. For example, the jacobian 
determinant defined by Eq. (5.22a) is the jacobian of a given transformation, 
whereas the jacobian matrices defined by Eqs. (11.2) are the jacobians of the flux 
vectors-something totally different. When you are dealing with the CFD literature, 
be on the lookout for these two different uses of the word "jacobian".] With the 
definitions given in Eqs. (11.2), Eq. (11.1) can be written as 

( 11.3) 

where A, B, and C are the jacobian matrices. Recall that Eq. (11.3) represents five 
equations: continuity; x, y, and z components of the momentum equation; and the 
energy equation. Hence, U is a 1 x 5 column vector, and A, B, and C are 5 x 5 
matrices. For example, looking at the elements that appear in U and F given by Eqs. 
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(2.105) and (2.106), respectively, the 25 elements that appear in the 5 x 5 A matrix 
are obtained by taking each one of the given elements in F and differentiating them 
one by one by each of the five elements in U, leading to 25 separate elements 
making up the A matrix. We will not take the time or space to develop the A, B, and 
C jacobian matrices. They are displayed in detail for the Euler equations by Hirsch 
in Ref. 17. 

The advantage of Eq. (11.3) is that the derivatives of the dependent variables 
(the elements of U) appear linearly; hence, Eq. (11.3) is in quasi-linear form, similar 
to the form of the model equations treated in Chap. 3. As a result, following the 
argument given in Sec. 3.3, we can accept the fact that the mathematical nature of 
Eq. (11.3) is dictated by the values of the eigenvalues of the Jacobian matrices A, B, 
and C. In the development of many of the modern techniques in CFD, these 
eigenvalues play a vital role. 

11.2.1 Specialization to One-Dimensional Flow 

For a general unsteady, three-dimensional flow as treated above, the development of 
the jacobian matrices A, B, and C, and especially their eigenvalues, is labor
intensive; we will spare you the effort. Instead, we will illustrate the above thoughts 
by specializing to an unsteady, one-dimensional, inviscid flow with no body forces, 
for which the Euler equations in conservation form, from Eqs. (2.93), (2.105), and 
(2.106), are (with E denoting the total energy per unit mass = e + V 2!2) 

Continuity : op+ o(pu) = O 
ot ax 

(11.4) 

Momentum: o(pu) + 8(pu
2 + p) = 0 

at ax 
( 11.5) 

Energy: o(pE) + o(puE + pu) = O 
ot ax 

( 11.6) 

Equations (11.4) to (11.6), written in the form of Eq. (2.93), are 

( 11. 7) 

where 

( 11.8) 

and ( 11.9) 
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To help us remember that the elements of U, namely, p, pu_, and pE, are the 
dependent variables, let us introduce the more compact notation 

pu=m 

pE=e 

(11.lOa) 

(10.lOb) 

With this, the column vectors U and F defined by Eqs. (11.8) and (11.9), 
respectively, become 

and F= 

m 
m2 
-+p 
p 

m(i; + p) 

p 

(11.11) 

(11.12) 

We can eliminate p in the column vector Fin favor of p, m, and e, as follows. From 
the calorically perfect gas relations Cv = Rl(y - 1) and e = cJ, the perfect gas 
equation of state can be written as 

p = pRT = (y- 1)__.!!_pT = (y- I)pcvT = (y- l)pe (11.13) 
y - 1 

From the definitions of i; and E, we have 

( 
u2) pu2 

i; = pE = p e + 2 = pe + 2 
(11.14) 

Solving Eq. (11.14) for pe, we have 

pu2 m2 
pe=i;--=i;--

2 2p 
(11.15) 

Substituting Eq. (11.15) in (11.13), we have 

p = (y - 1) (/; - ;;) (11.16) 

This expression for p is substituted into the flux column vector, Eq. ( 11.12), yielding 

m 

F= (11.17) 
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The governing system of equations for unsteady, one-dimensional flow is now 
express_ed by Eq. (11. 7), with U and F given by Eqs. (11.11) and (11.17), 
respective_ly. A_nalogous to the general form of the equations given by Eq. 
(11.1) wntten m terms of the jacobian matrices, Eq. (11. 7) can be expressed as 

au au 
-+A-=0 at ax 

where, for completeness, we write 

and 

op 

at 
au om 

at at 

au 
OX 

Of, 

at 
op 

ax 
om 

ox 
Of, 

ox 

(11.18) 

(11.19) 

(11.20) 

The ja_cobian matrix A in Eq. (11.18) is obtained by differentiating each of the flux 
terms_ m _Eq. ( 11.17) one by one by each of the independent variables in Eq. ( 11.11 ). 
That 1s, if we use the following shorthand notation for two of the three elements in 
Eq. (11.17), 

(11.21a) 

(11.21b) 

then the jacobian matrix in Eq. (11.18) is 

( 11.22) 
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where the subscripts on the partial derivatives are added to remind you which 
independent variables are held constant for a given partial derivative. Each of these 

partial derivatives is evaluated as follows. 

(am) _ 0 
op m,e 

(am) _ 1 
om N 

(am) _ 0 
oe p,m 

From Eq. (11.21a) we have 

(8M) m2 m
2 (y 3) m2 

op m,e=-p2 +(y-l)2p2 = 2-2 p2 

(pu)2 u2 
= (y-3)- = (y-3)-

2p2 2 

- =--(y-1)-=-(y-3)-(8M) 2m m m 

om p,e p p p 
pu 

= (3 - y)- = (3 - y)u 
p 

(8M) l - =y-
Oe p,m 

From Eq. (11.21b) we have 

(11.23a) 

(11.23b) 

(11.23c) 

(11.23d) 

( 11.23e) 

(11.23/) 

m3 m 
= 2(y - 1)- - ye-= (y - l)u3 

- yuE (11.23g) 
2p3 p2 

(8N) = ~ [-( y - 1) ~] + [e + ( y - 1) (e - ;2)] _!. - ( y - 1) ~: + y ~ 
om p,e p p p p p p 

3(pu)2 pE 
= -(y- I)--+y-

2p2 p 

=-!(y-I)u2+yE (11.23h) 

(8N) m m m pu - = - + (y - 1 )- = y- = y- = yu 
oe p,m P P P P 

(l l.23i) 
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~i;aqt~o(nt/1;·)23th~ to (I tnl.~3i) give the nine ~lements of the jacobian matrix; in light 
· ' is ma x can now be displayed as 

(3 - y)u 
(11.24) 

- i (y - I )u2 + yE 

To close the loop on the above t' 1 equations in the form of Eq ( l I 18) ewqhua ioUns'. et_ us rebturn to the governing flow 
. · · , ere 1s given y Eq (11 8) d A b E 

(11.24). Fully displayed in terms of all its elements, Eq. ci l.18) i:n y q. 

0 0 

(3 - y)u y- I 

(y- I)u3-yuE -i(Y- l)u2+yE yu 

x!{;;}-o (1125) 

Using the rules for matrix multiplication, Eq. (11.25) becomes 

op+ o(pu) 
ot ax 

o(pu) u2 op 8( u) 
8 +(y-3)--+(3-y)u-p-+( -I)o(pE) =O 

t 2 ax ax Y -a-
o(pE) a x 
~ + [(y- I)u3 -yuE]:: + [yE- ~(y- I)u2] o~u) + yu o~xE) 

( 11.26) 

The ~~pressions in Eq. (11.26) can be simplified using Eq. 
defimtion pE = p(e + u2/2), that is, (1 l.13) and the 

Hence, p pu2 
pE=--+-

y- I 2 ( 11.27) 
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Inserting Eq. (11.27) into the expressions in Eq. (11.26) and simplifying, we obtain 
(the details are left to you as Prob. 11.l ): 

op o(pu) 
at+~ 
o(pu) o(pu2 + p) = 0 
~+ ox 
o(pE) o(puE + pu) 
~+ ax 

( 11.28) 

This column vector expression represents the following three scalar equations: 

op+ o(pu) = O 
at ax ( 11.29) 

o(pu) o(pu2 + p) 
~+ ax = 0 ( 11.30) 

o(pE) a(puE + pu) 
~+ ax = 0 (11.31) 

Compare Eqs. (11.29) to (11.31) with the original governing equations for unsteady, 
one-dimensional flow given by Eqs. (11.4) to (l l.6); they are identical, as they 
should be. We have just demonstrated that the writing of the governing equations in 
the quasi-linear form given by (Eq. 11.18) involving the jacobian matrix A, along 
with our explicit evaluation of the elements of A given by Eq. (11.24), is totally 
consistent with the original equations. By dealing with the forms of the equations in 
terms of the jacobian, we have lost nothing-the original equations are still 
preserved. 

Finally, let us examine the eigenvalues of the jacobian matrix. These are found 
from 

IA-.Ul=O (11.32) 

where I is the identity matrix and Jc is, by definition, an eigenvalue of the matrix A. 
The jacobian A is given by Eq. (11.24). Hence, Eq. (11.32) becomes 

-Jc l O 
u2 

(y-3) 2 (3-y)u-Jc y-1 =0 

(y-I)u3 -yuE -Hy-l)u2+yE yu-J.. 

Expanding the above determinant, we obtain 

-Jc{[(3 - y)u - Jc](yu - Jc) - (y - l)[- ~ (y - l)u2 + yE]} 

-{ (y- 3) ~ (yu - Jc) - (y - l)[(y - l)u3 -yuE]} = 0 (11.33) 
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Equation (11.33) is a cubic equation in terms of the unknown k hence th 
three solutions for ,t ' ere are 

A1 = u (11.34a) 

Az=u+c (11.34b) 

A3=u-c (11.34c) 

where c is the sp~ed of sound. _Th~t Eqs. (11.34a) to (11.34c) are solutions of Eq. 
(11.33) can b_e ven~ed by subsbtutmg these answers into Eq. (11.33) and noting that 
Eq. (11.33) is satisfied. 

The. eigenvalues ?f _the jacobian play an important role in understanding the 
mathemattcal_charactensbcs of the governing equations. As noted in Sec. 3.3, they 
serve ~o ~lass1fy the equations; in the present example, since Ai, Az, and A

3 
are real 

~n~ d_istmct, th~ system of governing equations for unsteady, one-dimensional 
mviscid flo"'. ~iven by Eqs. (11_.4) _to (11.6) are hyperbolic. This provides the 
statement ?n~m_ally made on faith m th~ subsection of Sec. 3.4.1 dealing with 
unst~a~y, ~nvis~id flow. Moreover, the eigenvalues give the slopes of the char-
actenshc Imes m the xt space as sketched in Fig 11 I At · · · h I ' . . . · · · a given pomt m t e xt 
Pane, there are thr=_e charactensbc lm~s with slopes dtldx = l!Ai = l!u, 1/iz = 

1'.(u + c),_and_ llA3_- 11(~ -. c), resp_ecb:ely. On a physical basis, the eigenvalues 
give the d1recbons m which mformatio~ is propagated in the physical plane. In the 
pres~nt exampl~, A1 ~ u _tells us that mformation is carried by a fluid element 
mov~ng at velocity u; m Fig. 11.1, the curve with local slope equal to l!u is called a 
partzcle path. Als?, A2 = u + c and A3 = u - c tell us that information is 
propagated to. the nght and _left, r~spectively, along the x axis at the local speed 
of sound relative to the movmg flmd element· in Fig 11 1 the cu ·th I 1 /( . , · · , rves wi s opes 

u + c) and 1/(u - c) are nght- and left-running Mach waves. It is important to 

I 
u-c 

I 
I 

~~ 

u+c 

FIG. 11.1 
Illustration of the characteristic 
lines for unsteady, one-dimen-

x sional flow. 
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recognize that the directions in which information travels in a flow field are given w 
us by the eigenvalues of the Jacobian. Because many of the modem CFD techniques 
have differencing schemes that are associated with the direction of propagation of 
information in the flow, then the eigenvalues become of primary importance in the 
development of such schemes. Your appreciation of this fact will grow as you 
extend your study and application of CFD. This is the primary reason wl1y we have 
chosen to discuss the jacobian and its eigenvalues at some length in this section. 

11.2.2 Interim Summary 

Because the jacobians and their eigenvalues play a strong role in the fundamental 
aspects of modem CFD algorithms, such matters have been discussed at some 
length in the present section. In particular, we have: 

1. Introduced the form of the governing equations in terms of the jacobian matrices. 
The advantage of this form is that it is quasi-linear, involving the derivatives of 
the dependent variables appearing linearly. In this form, the mathematical 
characteristics of the governing flow equations are directly revealed, in the 
spirit discussed in Chap. 3. 

2. Discussed the meaning and the structure of the jacobian matrix and illustrated 
the specific terms of the jacobian for unsteady, one-dimensional inviscid flow. 

3. Showed that the eigenvalues of the jacobian give the direction and velocities of 
the propagation of information throughout the flow. These eigenvalues play a 
strong role in the theoretical development of many of the modem CFD 
techniques in use today. 

11.3 ADDITIONAL CONSIDERATIONS FOR 
IMPLICIT METHODS 

The contrast between explicit and implicit methods was first introduced in Sec. 4.4, 
where the one-dimensional heat conduction equation, Eq. (3.28), was used as a 
model equation to illustrate both the explicit ar11f ir,1plicit approaches. With a 
constant value of thermal diffusivity rx, Eq. C.~ is a linear equation with one 
spatial dimension, namely, x; this equation can oe solved by means of a marching 
solution where the marching variable is time t. The implicit differencing applied to 
this linear equation in Sec. 4.4 was the Crank-Nicolson form, given by Eq. (4.40). 
Using this technique, we presented a detailed implicit solution to Couette flow in 
Chap. 9. We emphasize that in this solution we dealt with finite-difference equations 
which were linear, and when centered about a grid point (i, j), only three points 
were needed to support the finite-difference expression. Both of these aspects are 
necessary for the system of algebraic finite-difference equations to be in tridiagonal 
form. In tum, it is the ready solution of this tridiagonal form which makes such 
implicit solutions practical. 

What happens when the governing flow equations for a given problem are 
nonlinear? Also, what happens in a multidimensional problem where there is more 
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than just one spatial variable in addition to the marching variable? One or both of 
the above situations will destroy the convenient, linear, tridiagonal system described 
earlier, and the computational work required for an implicit solution will increase 
astronomically-unless something is done about it. Fortunately, several novel ideas 
have been used to "do something about it" and to preserve the tridiagonal nature of 
the implicit solution in spite of the nonlinearity and multidimensionality of a given 
problem. The purpose of this section is to discuss these ideas. 

11.3.1 Linearization of the Equations: The Beam 
and Warming Method 

For simplicity, let us consider an inviscid flow, where the governing flow equations 
are the Euler equations itemized in Sec. 2.8.2. First, consider the Euler equations in 
nonconservation form, as given by Eqs. (2.82), (2.83a) to (2.83c), and (2.85). Let us 
choose one of these equations for display, say Eq. (2.83a); any of the others would 
do. Repeating Eq. (2.83a), 

Du op 
p Dt = - ax + pfx (2.83a) 

and writing out the substantial derivative, we have 

au au au au op 
p-+pu-+pv-+pw-= --+pfx 

at ax ay {)z ax 
(11.35) 

Note in Eq. (11.35) that the dependent variables are the primitive variables and that 
they appear in a linear form inside the derivatives. This will be true for all the 
equations in nonconservation form; they can all be written such that the primitive 
variables appear linearly inside the derivatives. The same is true for the non
conservation form of the Navier-Stokes equations as well. In both cases, the 
governing equations are nonlinear, but with the primitive variables appearing 
linearly inside the derivatives, and with these derivatives multiplied by coefficients 
which are made up of the primitive variables ( or made up of functions of the 
primitive variables). As a result, when an implicit numerical solution of these 
equations is set up, the resulting algebraic difference equations can be made linear 
by evaluating the coefficients using known values at the previous step; this is called 
the "lagging coefficients" method. 

In stark contrast is the situation that results when the conservation form of the 
governing equations is used, which employs the flux variables as the dependent 
variables. For example, consider the momentum equation given by Eq. (11.5), 
which is in conservation form, repeated below. 

a(pu) + a(pu
2 + p) = 0 

at ax 
( 11.5) 

Since pu = m is one of the dependent variables, we choose to write Eq. (11.5) as 

am a(m2 /p+p) 
at+ ax = O (11.36) 
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. . r E . ( 11.36) would involve te~s such as 

An implicit finite-difference expres,s1on ~o lq 1 + 1 These terms mvolve the 
21 ]n+ at time eve n · 2 Th. 

[m2 Ip + p]'! + i' and [ m p + p ; + I . . n11· near fashion namely, m Ip. is 
,- d ppeanng ma no , . d·a-

dependent variables ':' an p ~ he resulting system of algebraic lu~ren~e 
will make the practical solution o! t Th c: e something must be done m this 

. . 11 t of the quest10n. ere1or ' 
equations v1rtua y ~u . d"ffi rence equations. 
situation to "lineanze" the fimte-h~ e_ this linearization was first suggeste~ by 

A widely used method for ac ievmg f discussion lei us consider 
. 6 (R f 77) For purposes o ' 

Beam and Wanning m 197_ e: . E (11.4) to (11.6) for unsteady, one-
f E 1 quations given by qs. 

the system o u er e d b Eq (11 7) repeated below. 
dimensional flow and represente y . . ' 

aU + aF = O 
at ax 

( 11. 7) 

U 
. th Crank-Nicolson differencing scheme (see Sec. 4.4), Eq. 

h F - F( U) smg e 7i t;; ca~ be ;ritten in finite-difference form as 

\ n ({)F)n+ 'l 
u; + 1 = u; - fl; l ( :} + ax ; J 

( 11.37) 

. between time 
. f the s atial derivatives as an average . 

(Sometimes the represent_ation o 3~ is called the trapezoidal rule.) Equation 
levels n and n + 1, ~s m Eq .. ( 11. difference equation. However, the ~earn a~d 

(11.3 7) as it stands, is a nonlinear . . t· as follows. Expand F m a sen es 
. ' ch leads to a local hneanza ion warmmg approa . 

expansion around time level n, that is, 

(
{)F)n (Un+ 1 _ un) + ... 

F?+ I = F? + {)U . ; , 
l 

( 11.38) 

1 t d The term {)F!aU is recognized as the 
where the higher-ord~r terms are neg ec e . 
jacobian as defined m Sec. 11.2. 

(
{)F)n = An = jacobian of F at time level n 
{)U . ' 

l 

Thus Eq. (11.38) becomes ( 11.39) 
' r+' = F? +A7(u;+

1 
- un 

. . (11 39) f~r Fn + I which appears in Eq. ( 11.3 7), we have 
Subst1tutmg Eq. · ' 

llt {({)F)n +!!__ [r + An(un+I - Ut))} 
Un+ I = Un _ - -{) {) , , ' 

i ' 2 X i X 

or 

flt { ({)F)n + !!__ [An(un+ 
1 

- un1} 
Un+ I = Un - - 2 -{) {) ' ' 

i , 2 X i X 

(11.40) 
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Replacing the x derivatives in Eq. (11.40) with central differences, we have 

un+I = un -lit(F;+I -F;_l) _ lit (A7+1Ut// -A7_1Ut_+/) 
I I 2/ix 2 2/ix 

+ ~t ( A7+ 1 U;''-t-1
2
~/7-1 Ut-1) (l 1.4!) 

Putting the unknowns at time level n + 1 on the left-hand, Eq. (11.41) becomes 

(11.41a) 

Note in Eq. (11.41a) that the right-hand side is a known value at time level n and the 
left-hand side contains three unknowns at time level n + I, namely, u7 :/, u7 + 1, 
and u7~/_ Of most importance is that Eq. (11.41a) is linear. Moreover, it is in the 
familiar tridiagonal form which, for example, can be solved by means of Thomas' 
algorithm. 

Therefore, we have achieved what we wanted. We have taken a nonlinear 
difference equation, namely, Eq. (11.3 7), and by means of a Taylor series expansion 
have linearized this equation, obtaining the linear difference equation given by Eq. 
(11.41a). This is one way of achieving the linearization; there are others. However, 
the purpose of this subsection is to emphasize that implicit finite-difference 
solutions of the conservation form of the governing flow equations lead to nonlinear 
difference equations which must in some fashion be linearized before a practical 
numerical solution can be obtained. 

It should be noted that a similar idea for linearization was carried out by Briley 
and McDonald (Ref. 78). In contrast to Beam and Warming, who treated the 
function, Briley and McDonald treated the time derivative; the results are effectively 
the same. 

11.3.2 The Multi-Dimensional Problem: 
Approximate Factorization 

The second question addressed in the present section is the following: For an 
implicit solution of a multidimensional problem involving more than one spatial 
variable in addition to the marching variable, how do we arrange the finite
difference algorithm to still be ofa tridiagonal nature? An illustration of the problem 
is given by considering unsteady, two-dimensional flow with the governing 
equations written in the conservation form given by Eq. (2.93), namely, 

fJU fJF fJG 
-+-+-=0 fJt ax fJy 

(11.42) 
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. . . . b averaging aF!fJx and [)Glay 
We can set up an imphc1t d1flil er~nceth:ci:::;~:oiial rule; i.e., from Eq. (11.42) we 
between time levels n and n + usmg 

have 

lit [([)F [)G)n (f)F f)G)n+ 
11 (11.43) 

Un+ I = Un - 2 OX + ay + f)x + f)y 

. . . b linearized using the procedure 
This is a nonlinear difference equation, it can e 
developed in Sec. 11.3.l as follows: 

(
[)F)n(un+ I - un) = r + An(un+ I - un) 

Fn+l = Fn + [)U 

and G - G + aU 

(11.44a) 

(11.44b) n+l - n (f)G)n (un+ I - un) =on+ Bn( un+ I - un) 

. . t f level n Substituting Eqs. 

h 
An and Bn are the corresponding Jacob1ans a ime . 

w ere 11 43) have 
(11.44a) and (11.44b) into ( . ' we 

M f(8F fJG)nl - lit f(oF)n +~ (Anun+I) 
Un+ I = Un - 2 l OX + [)y j 2 l f)x OX 

f) 
(

f)G)n a n n + 1 [) (Bn Un) l 
--(Anun)+ _ +-(BU -;),, j 

ax ay {)y uy 

( 11.45) 

un+I on the left side, Eq. (11.45) becomes 

(11.46) 

Introducing the identity matrix I, 

I~E 0 0 j I 0 ... 

0 0 1 



494 
SOME ADVANCED TOPICS IN MODERN CFD: A DISCUSSION 

Equation (11.47) is written in operator form· for example the . , , expressron 

[!(An) +; (Bn)] 

is an operator which, when acting on U" +, as on the left-hand side of Eq ( 11 47) 
represents · · , 

[: (An) +aa (Bn)Jun+I = !!_(Anun+I) + !!_ (Bnun+I) 
X y ax ay 

and similarly on the right-hand side of Eq (I I 47) E .. 
cloi:ly, we note that the right-hand side is~ kn~wn ·nu:~:;n~;~;;"ie~:1·!:)a;~~= 
un owns are _on the left-hand side. Question: How many unknowns do we have on 
the left-_hand side? The answer, of course, depends on what type of finite-difference 
;xp~~-ss1on we ch?ose to represent the derivatives. For example, if we use the 
am1 iar central difference form then because of both th d d . . 

a · h . ' e x an Y envatJves 
ppeanng on. t e left-hand side, a five-point difference module will be needed to 

support the difference scheme, as sketched in Fig 11 2 In tu ·11 h Ji kn · · · m we w1 ave ve 
un + 1owns on the left-hand side of Eq. (11.47), namely U'1 + '1 . U'1 + 1 U'1 + 1 

U/.J + 1,. and. U/.J l 1_-. Clearly, we have lost the tridiago~al 
I f~~; i~1 the ~b~J~ 

expressron, m addition to the terms involving the th d. I 
U'1 + 1 . U'1 + 1 + 1 ree 1agona s, namely, 

,-1.;'1 i,J , and U:+1,J, we also have terms off the three diagonals name-
ly, [!1+ and [!1+ 1 I d d, ' 

.,, 1 + 1 . id- 1· n ee these terms lead to a pentadiagonal matrix Th 
matnx mampulat1on associated with the solution of such a t · · e 
com t f I · · sys em 1s very 

pu ~ I?na -mtens1ve-we have lost the tremendous computational advanta e 
~f the tnd1agonal ~orm. The ~eason for this problem is simply the multidimension~l 
. ature of the equatrons: the simultaneous appearance of both the x and d . t· 
m Eq. (11.47). Y enva 1ves 

_A solution to _th!s problem involves the idea of approximate factorization 
descnbed below. This idea has its roots in the classic altemating-direction-implici~ 

y 

i,j+I 

i-1,j i,j i+l,j 

i,j-1 

FIG. I 1.2 
X Five-point difference module for Eq. (11.47). 
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(ADI) procedure developed in the middle 1950s by Peaceman, Rackford, and 
Douglas (Refs. 79 and 80). The ADI method is discussed in Sec. 6.7; this method 
essentially splits the unsteady two-dimensional problem described by Eq. ( 11.42) 
into two separate one-dimensional problems at each time step: the first stage deals 
with the unknowns associated with the x derivative evaluated at an intermediate time 
I I 1 1 ,,,,+ 112 ,,,,+ 112 d u'+ 112 h. h · Id ·1 1 d eve n + 2, name y, ui-1.J, ui.J , an ;+ I.J, w 1c y1e s an eas1 y so ve 
tridiagonal form; the second stage deals with the unknowns associated with the y 
derivatives evaluated at time level n + I, namely, U:.1 ~1, U:.J 1

, and U,'J ~ i, which 
also yields an easily solved tridiagonal form. In this process, the time marching from 
time level n to level n + 1 is achieved by two applications of the tridiagonal solution 
procedure. The concept of the ADI method is nicely described in Ref. 13, which 
should be consulted for more details. 

The ADI philosophy described above has been extended to the solution of the 
governing flow equations via the Beam and Warming scheme described in Sec. 
11.3.1, leading to a procedure called approximate factorization. In this procedure, 
we represent Eq. (11.47) in a somewhat "factored form," namely, 

[/ + 11t !!_ (An)] [1 + /i,.t !!_ (Bn)] un+ I 
2 ax 2 ay 

= [1 + 11t !!_ (An)] [1 + 11t !!_ (B" )] U" - 11t (aF + aG)" 
2 ax 2 ay ax ay 

( 11.48) 

If you mentally carry out the multiplication of the two factors on both the left and 
right sides of Eq. ( 11.48), you will see that Eq. ( 11.48) is not precisely the same as 
Eq. ( 11.47); indeed, Eq. (11.48) has some extra terms, namely, 

(11t)2 [!!_(A") .a (Bn)] un+I 
4 ax Uy 

and (11t)2 [!!_(A")!!_ (Bn)] U" 
4 ax ay 

which do not appear in Eq. (11.47). On the other hand, these terms involve (11t)2, 
and they do not affect the second-order accuracy which is originally embodied by 
Eq. (11.47). Therefore, we can replace Eq. (11.47) with Eq. (11.48). The factored 
form appearing in Eq. (11.48) is called approximate factorization (approximate 
because of the aforementioned leftover terms that we simply live with). 

Before we underscore the advantage of Eq. ( 11.48), let us introduce the 
notation 

( 11.49) 

The factors on the left and right sides of Eq. ( 11.48) are identical; hence, bringing 
the right-hand-side factors to the left-hand side, we can factor out the expression 
un+J - U 11

, and using the notation of Eq. (11.49), we can write (11.48) as 

I+- - A I+- - B 11U = -ot -+-[ 
/i,.t a ( n)] [ /i,.t a ( ")] n A (a£ aG)n 
2 ax 2 ay ax ay 

(11.50) 
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Equation (11.50) is in delta fonn so II 
longer U but rather the change /n ~ca ed ~ec~use the depe~dent variable is no 
(11.50) provides numbers for ~U'- . ' name Y, U A numencal solution of Eq 
b · , Ill tum the value of U'+' · · 

o tamed from Eq. ( 11.49), written as ' at each time step is 

un+I =Un+ ~Un 

The final step in this process is to wn·te E 
q. (11.50) as 

(11.51) 

(11.52) 

where 

(11.53) 

(It is noted that there are other possible factoriz . 
example.) Equations (11.52) and (I I 53) r atlons; the above is just one 
Eq. (11.50), as follows: · epresent a two-step process for solving 

I. So!v~ Eq_. (11.52) for ~U. Since the spatial o erator i 
a denvative with respect to x and .f th· P n Eq. (11.52) contains only 
th .d. ' I is were replaced by tr 1 d·~ e~ iagonal system in tenns of W . b . . a cen a Iuerence, 
for ~U. is O tamed, which can be readily solved 

2. Insert the above results for ~U into E (11 5 . . 
(11.53) contains only a derivative wit:~es ~ 3). Smee t~e s~attal operator in Eq. 
central difference then at .d. I p ~t toy, and if this were replaced by a 

b ' n rngona system Ill tenns f ~un . b 
can e readily solved for ~Un. o is o tained, which 

Hence, Eqs. (11.52) and (11.53) represent a tw 
~un, and therefore for un + I . E ( o-step process for the solution of 

· via q. 11 51) The d I · 
process is that only a tridiagonal fi . · · un er ymg advantage of this 
relatively straightforward solutio:r: It~ encouln_tde:ed at_each step, hence allowing a 

e mu ti 1mens1onal flow. 

11.3.3 Block Tridiagonal Matrices 

We ~eed to expand our concept of the t . d. . 
sect10ns. If Eq. (11.42) represents _n tgonal ~orm ~entioned in the previous 
purely tridiagonal matrix will result : smg e_ equ_a~10n with one unknown, then a 
for the Couette flow calculations mad:: ~~ imphc1t scheme. This wa~ the situation 
represents a system of equati·on h hap. 9. On the other hand, 1fEq (I I 42) 
h s, sue as t e contin ·ty th hr . . 

t e energy equations for fluid flow th U . . m , e t ee momentum, and 
given by Eq. (2.94). Each one ~f then is a so_lutions_vector with five elements as 
el t ·11 . ese equations with th . . I emen w1 give rise to a tridi I . elf part1cu ar solution 
th c I agona matnx and the wh I t 

ere10:e eads to a large matrix with three dia, o o e sys em of equations 
these diagonals is itself a tridiagonal t . g ~als, w~ere each of the elements of 
U S h . . ma nx associated with the rt· I 

. uc a matnx is called a block trid. I . . pa icu ar element of 
rngona matnx. This type of matrix is solved in 
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a standard manner, albeit requiring a much lengthier algorithm and calculation than 
Thomas' algorithm derived in App. A. When you continue your studies and work in 
CFD, you most likely will have to deal with such block tridiagonal matrices. A 
FORTRAN subroutine for solving block tridiagonal matrices is given in App. B of 
Ref. 13. 

11.3.4 Interim Summary 

This section has discussed two problems that arise from the attempt to set up an 
implicit finite-difference solution of the governing flow equations. The first 
problem, that of dealing with nonlinear difference equations, can be handled 
by a local linearization process such as the Beam and Warming method discussed in 
Sec. 11.3.1. The second problem, that of dealing with multidimensional flows and 
thus suffering the apparent loss of the tridiagonal structure of the algorithm, can be 
handled by the approximate factorization method discussed in Sec. 11.3.2, which 
recaptures the tridiagonal form via a splitting of the spatial operators and which 
requires a two-step process at each time level, sweeping first in the x direction and 
then in they direction. Also, it is important to note that Eqs. (11.52) and (11.53) are 
written in a somewhat generic form; the x and y derivatives are not written in any 
specific finite-difference form-you can choose whatever expression you want: 
central differences, one-sided differences, upwind differences (to be discussed in 
Sec. 11.4), etc. 

11.4 UPWIND SCHEMES 

Recall the discussion in Chap. 3 concerning the definition of characteristic curves 
and the emphasis in Sec. 11.2 that information concerning a flow field travels along 
these characteristic curves. Moreover, we have seen that the eigenvalues of the 
jacobian matrices give the slopes of the characteristic lines; for an unsteady flow, the 
values of these eigenvalues represent the velocity and direction of propagation of 
information. It would seem natural that a numerical scheme for solving the flow 
equations should be consistent with the velocity and direction with which informa
tion propagates throughout the flow field. Indeed, this is nothing more than obeying 
the physics of the flow. 

Strictly speaking, the central difference schemes which have been highlighted 
throughout this book do not always follow the proper flow of information 
throughout the flow field. In many cases, they draw numerical information from 
outside the domain of dependence of a given grid point; as discussed at the end of 
Sec. 4.5, this can compromise the accuracy of the solution. For flow fields which 
involve smooth, continuous variations of the flow-field variables, this does not 
appear to cause a major problem. We have seen some examples where a central 
difference scheme works quite well: the shock-free nozzle flows in Chap. 7, the 
continuous expansion wave in Chap. 8, and the smoothly varying Couette flow in 
Chap. 9. In all these cases, a central difference scheme (such as MacCormack's 
scheme in Chaps. 7 and 8) works reasonably well. In fact, there is a mathematical 
reason for this, dealing with the analytic continuation properties of smooth 
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functions which validates the Taylor series expansions upon which the central 
difference schemes are based. 

On the other hand, when discontinuities exist in the flow, such as shock waves 
treated in the context of a shock-capturing approach, central difference schemes do 
not work quite so well. Witness the undesirable severe oscillations around the shock 
wave as shown in Fig. 7.23, which result from shock capturing with a central 
difference scheme with no explicit artificial viscosity. Even with the addition of 
artificial viscosity, the results given in Figs. 7 .24 to 7 .26 still show some 
oscillations, albeit much smaller than in Fig. 7.23. 

It is this problem which has paced the development of upwind difference 
schemes in modem CFD. Upwind schemes ( or simply upwinding) are designed to 
numerically simulate more properly the direction of the propagation of information 
in a flow field along the characteristic curves. As a result, if the upwinding is carried 
out in a proper fashion, the calculation of very sharp discontinuities (spread over 
only two grid points) with no oscillations is possible. 

Perhaps the simplest illustration of the philosophy of upwind differencing can 
be given in conjunction with the first-order wave equation, Eq. (4.78), repeated 
below. 

8u OU 
-+c-=0 at ax (4.78) 

For a positive value of c, this equation describes the propagation of a wave in the 
positive direction along the x axis, as sketched in Fig. 11.3. There is a discontinuity 
in u across the wave, as also sketched in Fig. 11.3. On a physical basis, properties at 
grid point i in Fig. 11.3 should depend only on the upstream flow field, i.e., on 
properties at grid point i - 1. Grid point i - 1 is within the domain of dependence 
of point i. The properties at grid point i + 1 do not physically influence point i, and 
a proper numerical scheme should reflect this fact. However, if au/ox is replaced 
with a central difference, then the properties at point i + 1 are made to influence 
point i by virtue of the numerics. Such central differencing is shown by Eq. (4.80). 
However, as described in the text surrounding Eq. (4.80), the difference equation 
given by Eq. (4.80) leads to an unstable solution. Here, the improper propagation of 

Propagating wave \, 

) 

) 
i-1 

-----.c 
i+ I 

X 

FIG. 11.3 
Propagation of a wave in the positive x 
direction. Sketch shows the flow field at a 
given instant of time. 
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information forced by the central differencing causes the solution to blow up. In 
contrast, if in Eq. (4.78) a one-sided difference is used, i.e., if 

OU U; - U;-1 
(11.54) OX 

then the resulting difference equation 

( 11.55) 

is stable. The one-sided difference in Eq. (11.54) is an upwind difference-it 
contains points only within the domain of dependence of grid point i. Hence, Eq. 
(11.55) is a suitable difference equation for the original first-order wave equation, 
Eq. (4.78). 

The use of Eq. (11.55) will result in a numerical calculation with no 
oscillations in the vicinity of the discontinuity. However, Eq. (11.55) has some 
disadvantages. It is first-order-accurate and is also highly diffusive. This means that, 
as a function of time, the original discontinuity at time t = 0 will spread out, as 
sketched in Fig. 11.4. Although the numerical results show a monotone variation (no 
oscillations), the diffusive property is undesirable. 

To reduce or eliminate this undesirable property, while at the same time 
retaining the inherent advantages of an upwind scheme, some rather mathematically 
elegant algorithms have been developed over the past decade. These modem 
algorithms have introduced such terminology as total-variation-diminishing (TVD) 
schemes, flux splitting, flux limiters, Godunov schemes, and approximate Riemann 
solvers. These ideas are all broadly classified as upwind schemes since they attempt 
to properly account for the propagation of information throughout the flow. The 
mathematical rigor behind these schemes is well beyond this book; indeed, the 
mechanics of the schemes themselves are generally beyond our present scope
these matters are left to your more advanced studies of CFD. Instead, in the 

u 

u 
Uz 

1------~-1 

1 ---- Exact solution 

X 

FIG. 11.4 
Diffusive properties of the difference equa
tion given by Eq. (11.55). 
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following subsections, we will only discuss the general nature of these ideas so as to 
familiarize you with just the essence of each. The purpose of these discussions is to 
ease your transition to more advanced studies. 

11.4.1 Flux-Vector Splitting 

To introduce the idea of flux-vector splitting, we need to examine some additional 
matrix properties from linear algebra. The definition of the eigenvalues Ai of the 
matrix A is given by Eq. (11.32). We can further define the eigenvector associated 
with a specific eigenvalue }._i as the column vector Li which is a solution of the 
equation 

[Lif[A - AJI] = 0 ( 11.56) 

where [Lif is the transverse of the column vector U; hence [Lif is a row vector. 
Since A and Ai are known in Eq. (11.56), the elements of Li are obtained directly 
by solving Eq. (11.56). For each different eigenvalue of the matrix A, there will 
be a different eigenvector Li. To be more specific, since [Li( appears on the left of 
Eq. (11.56), then Li is called a left eigenvector of the matrix A, There are as many 
eigenvectors as there are eigenvalues, each one defined by Eq. (11.56). Let us now 
define a matrix Twhose inverse T- 1 has elements that are the elements of all the 
eigenvectors. Specifically, the jth row of T- 1 consists of the elements of the left 
eigenvector for l1. The matrix T has the property of "diagonalizing" the matrix A 
through the equation 

( 11.57) 

where [}.] is a diagonal matrix with the eigenvalues of A as the diagonal terms. For 
example, if there are three eigenvalues associated with A, then 

[ 

/q 

[l] = ~ 
0 Il ( 11.58) 

We will not prove Eq. (11.57); you will have to take it on faith or appeal to a 
study of linear algebra for its proof. Multiplying the matrix equation given by Eq. 
(11.57), first by Ton the left of both sides and then by T- 1 on the right of both sides, 
we have 

A= T[l]T- 1 ( 11.59) 

Hence, the matrix A can be recovered by taking the matrix of eigenvalues and 
multiplying on the left and right by T and T- 1

, respectively. 
Independent of the above formalism, we note an interesting property of the 

jacobian matrix A for the Euler equations. Consider the Euler equations for 
unsteady, one-dimensional flow written as Eq. (11.7), repeated below. 

au aF 
-+-=0 
at ax 

( 11. 7) 
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As described by Eq. (11.18), A is the Jacobian of F; A = aF!aU. For an inviscid 
flow, the flux vector F can be expressed directly in terms of its jacobian as 

F=AU ( 11.60) 

This relation can be proven by direct substitution ofEq. (11.24) for A and Eq. (11.8) 
for U into Eq. (11.60), obtaining an expression for F from Eq. (11.60) that is 
identical to that for F given by Eq. (11.9). (This is left for you as Prob. 11.2.) 

The two lines of thought expressed in the above two paragraphs can be 
combined as follows. Let us define two matrices [l+] and [l-] made up of the 
positive and negative eigenvalues of A, respectively. For example, if we have a 
subsonic flow, then from Eqs. (11.34a) to (11.34c), we have ).. 1 = u and )..2 = u + c, 
both positive values, and )..3 = u - c, a negative value. Therefore, in this case, by 
definition 

[A']~ [ ~ u;c gJ 

and 
[r] ~ rn ~ uu 

From Eq. (11.59), we can define A+ and A- as 

A+= T[l+]Y- 1 

and 

With this, we can split the flux vector F into two parts, F+ and F-: 

F =F+ +F

where F+ and F- are defined from Eq. (11.60) as 

Hence, Eq. (11.7) can now be written as 

au aF+ aF
-+-+- = o 
at ax ax 

(ll.61) 

(ll.62) 

(11.63) 

(l l.64) 

(11.65) 

(11.66) 

where F + and F - are defined by Eqs. (11.64) and (11.65), respectively. Equation 
(11.66) is an example of flux-vector splitting. 

In Eq. (11.66), F+ corresponds to a flux in the positive x direction, with 
information being propagated from left to right by the positive eigenvalues A. 1 = u 
and A2 = u + a. Hence, when aF+/8x is replaced by a difference expression, a 
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backward (rearward) difference should be used since F+ is associated only with 
information coming from upstream of grid point (i, j). Similarly, F - corresponds to 
a flux in the negative x direction, with information being propagated from right to 
left by the negative eigenvalue Jc 3 = u - a. Hence, when 8F - !8x is replaced by a 
difference expression, a forward difference should be used since F - is associated 
only with information coming from downstream of grid point (i, j). This is why the 
flux-vector-splitting scheme described by Eq. (11.66) is a type of upwind scheme; 
flux-vector splitting is a numerical algorithm which attempts to account for the 
physically proper transfer of information throughout the flow. 

There are various improvisations on flux-vector splitting in the modem CFD 
literature. One such example is Van Leer's flux splitting which imposes certain 
conditions on F+ and F- to improve the performance of the numerical scheme for 
local Mach numbers near 1. The details, which are beyond the scope of this book, 
can be found in Ref. I 7. 

11.4.2 The Godunov Approach 

In 1959, S. K. Godunov suggested an approach for the numerical solution of fluid 
flows (Ref. 81) which is philosophically completely different than the finite
difference solutions that we have discussed so far in this book. Instead of solving a 
general flow field by implementing directly a numerical solution of the Euler 
equations written in partial differential equation form (discretized by the finite
difference approach), Godunov suggested that exact solutions of the Euler equations 
for a local region of the flow be pieced together to synthesize the general flow field. 
Imagine that you "step into" a flow field at some local point; if you look around at a 
small region surrounding that point, you will see a localized exact solution for the 
flow, valid in just that local region. If you then patch together these localized exact 
solutions for all regions of the flow, a picture of the complete solution of the general 
flow field can be obtained. The operative concept here is that you are constructing a 
general flow field from elements that are themselves solutions of the Euler equations 
in a local region of the flow. To construct the general flow field, you are piecing 
together local solutions of a smaller problem, rather than visualizing a widely 
sweeping solution of the governing partial differential equations or integral 
equations over the whole space of the flow as we have considered in all other 
parts of this book. 

Question: What is the exact solution of the local region of the flow? As 
strange as it may seem, the answer is related to what is called the shock tube 
problem. Therefore, before we proceed further, let us examine the shock tube 
problem. 

THE SHOCK TUBE PROBLEM. The flow process in a shock tube is usually a 
subject of study in advanced courses in compressible flow. In this book, we assume 
that most readers are not familiar with shock tubes or their flow processes. 
Therefore, the purpose of this subsection is to provide a brief description of the 
salient aspects of shock tube flows. An extended discussion of the shock tube and its 
flow properties, starting from first principles, is given in Chap. 7 of Ref. 21. 
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A shock tube is a closed tube initially divided into a high-pressure section (the 
driver section with pressure p 4) and a low-pressure section (the driven section with 
pressure p 1), as sketched in Fig. 11.5a. A fixed diaphragm divides the high- and 
low-pressure sections. The pressure distribution in the tube for this case is sketched 
in Fig. 11.5b. There is no flow velocity anywhere; both the high- and low-pressure 
sections are initially at velocity u = 0. The situation sketched in Fig. 11.5a and b is 
the initial condition at time t = 0. 

Driver section Driven section ~~ 
~,.--~~---·'---~~----

High pressure, p 4 Low pressure, p 1 
(a) 

P• 

Expansion wave 
propagating to the left 
~ 

l@--111111 

P• 

>, 

1 
> 

/ ~ 
0 

u4 =0 ti: 

ii p4 

"---

FIG. 11.5 
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Imagine that the diaphragm is instantaneously removed. The initial pressure 
discontinuity will propagate to the right in the form of an unsteady normal shock 
wave traveling at a wave velocity W, as sketched in Fig. 11.5c. Simultaneously, an 
unsteady, isentropic expansion wave will propagate to the left, as also sketched in 
Fig. 11.5c. The gas in the tube is now divided into four regions as shown in Fig. 
11.5c: region 1, which is the undisturbed portion of the driven section at pressure p 1; 

region 2, which has been processed by the shock wave propagating through it and 
which is now at pressure p 2 , equal to the pressure behind the normal shock; region 
3, which has been processed by the expansion wave propagating through it and 
which is also now at pressure p 3 = p 2 since the gas in regions 2 and 3 cannot support 
any pressure discontinuities; and region 4, which is the undisturbed portion of the 
driver section at pressure p4 . Regions 2 and 3 are at the same velocity and pressure; 
however, since region 2 is processed by a shock, and region 3 by an isentropic 
expansion wave, the entropy, temperature, and density in regions 2 and 3 are 
different. Thus, regions 2 and 3 are divided by a contact surface as sketched in Fig. 
11.5c. The picture in Fig. 11.5c to f pertains to some value of time t = t1, where 
t1 > 0. The corresponding pressure distribution is sketched in Fig. 11.5d, and the 
flow velocity induced by the passage of the waves through the initially stagnant gas 
is sketched in Fig. l l.5e. Note that both p and u change discontinuously across the 
shock wave, but their variations are finite and continuous through the expansion 
wave. As the shock wave propagates to the right, it remains a discontinuity. As the 
expansion wave propagates to the left, it becomes wider (the expansion wave 
literally expands with time). The gas between the backs of the shock and expansion 
waves (regions 2 and 3) is set into motion toward the right by the passage of the 
waves, with an induced velocity equal to u2 = u3 • The velocity increases dis
continuously across the shock, whereas it increases continuously (indeed, linearly) 
across the expansion wave. Note that the density changes discontinuously across the 
contact surface; that is, p3 > p2 , as sketched in Fig. l l .5f 

In Fig. 11.5c, the instantaneous location of the shock wave, contact surface, 
and expansion wave at time t = t1 is shown. The paths which these waves and 
contact surface follow as a function of time are sketched in Fig. 11.6, which is called 
a wave diagram; it is sometimes called an xt diagram. The picture of the shock tube 
at time t = 0 is given in Fig. 11.6a, and the paths of the waves and contact surface 
for later time t > 0 are shown in the wave diagram sketched in Fig. 11.6b. 

The solution of the flow field in the shock tube as sketched in Figs. 11.5 and 
11.6 is frequently called the Riemann problem, named after the German math
ematician G. F. Bernhard Riemann who first attempted its solution in 1858. The 
Riemann problem lends itself to a direct analytic solution of the unsteady, one
dimensional Euler equations, as given in detail in many compressible flow texts 
such as Ref. 21. The precise aspects of this exact solution are left to your future 
studies. 

RELATION OF THE SHOCK TUBE PROBLEM TO THE GODUNOV 
APPROACH. Think about the nature of the numerically discretized solutions that 
we have discussed throughout this book. With finite-difference solutions, we have 
calculated the flow-field properties at discrete points in space. The numerical 
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solution is essentially a piecewise-constant distribution in space; i.e., the flow-field 
variables are treated essentially as step changes from the vicinity of one grid point to 
another. This variation is sketched in Fig. 11.7. Here we illustrate the piecewise 
distribution of the velocity u in the x direction through some arbitrary flow field; this 
is essentially the nature of the finite-difference and finite-volume numerical 
solutions that have been discussed previously. Figure 11. 7 is drawn in the spirit 
of a certain spatial variation at time level n, within the course of a time-marching 
solution of the flow field. 

Examine Fig. 11. 7 closely. If the distribution of u shown here were to actually 
exist in real life, it would trigger a series of mini-shock-tube flows, each one of the 
nature described in the previous Shock Tube Problem subsection. This is sketched 
in Fig. 11.8, which shows some miniwave diagrams superimposed on the piecewise 
variation of u. For example, across the interface a, we have a weak shock wave 
propagating to the right into the region centered about point i. Across the interface 
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b, we have an expansion wave propagating to the left into the same region. Hence, 
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Look at what is happening here! The numerical solution of the general flow 
field is being constructed by a local application of exact solutions of the Riemann 
problem (the shock tube problem), wherein the Riemann problem itself is an exact 
solution of the unsteady, one-dimensional Euler equations in a local region of the 
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flow. This is precisely the philosophy of the Godunov method described at the 
beginning of this section. And the answer to our question posed just prior to the 
previous subsection is now clear. What is the exact solution of the local region of the 
flow? Answer: The solution of the localized Riemann problem. 

INTERIM SUMMARY. This is as far as we will take this line of reasoning. The 
actual implementation of the Godunov approach requires attention to details beyond 
the scope of this book; only the general philosophy is discussed here. See Ref. 17 
for a good presentation of such details. However, it is important to note that the 
Godunov approach is a type of upwind method. By applying solutions of the 
Riemann problem in local regions of the general flow field, the physically proper 
propagation of information throughout the flow is being accounted for in the 
numerical solution. 

We should mention that the local solution of the Riemann problem involves 
the solution of the Euler equations, which are nonlinear. Such solutions take 
computer time. In efforts to reduce this computer time, several investigators have 
suggested that approximate solutions to the Riemann problem be applied within the 
Godunov approach, where these approximate solutions are computationally more 
efficient. Of particular note are the approximate Riemann solvers developed by 
Stanley Osher in 1980 and by Philip Roe, also in 1980. See Ref. 17 for details. 

11.4.3 General Comment 

The upwind schemes discussed in this section are all first-order methods. The 
advantage of these first-order methods is that a monotone variation is achieved for 
the numerical flow-field properties in the vicinity of discontinuities (shock waves 
and contact surfaces); i.e., no oscillations appear in the numerical solutions around 
these discontinuities. This is good! However, these first-order schemes are diffusive 
and tend to smear out the flow-field variables, particularly in the vicinity of contact 
surfaces. This is bad! (Hirsch presents some excellent examples of such diffusive 
results in Ref. 17.) An approach to mitigate this diffusive effect is to go to the 
second-order upwind schemes. This is discussed in the next section. 

11.5 SECOND-ORDER UPWIND SCHEMES 

In the upwind schemes discussed in Sec. 11.4, the first-order accuracy is due to the 
use ofjirst-order one-sided differences in the flux-vector-splitting method or to the 
assumption of a constant variation of flow properties across a grid cell in the 
Godunov approach. These constraints can be removed as follows. 

In the case of one-sided differences, we can simply employ second-order one
sided differences. For example, Eq. (4.29) is a second-order-accurate one-sided 
difference. Based on this result, when written in the x direction, we have 

-3u; + 4u;+ 1 - u7+ 2 

2Ax 
( 11.67) 
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which is appropriate for information propagated from right to left into point i, and 
similarly, 

3u; - 4u;-1 + u;-2 

2Ax 
(11.68) 

which is appropriate for information propagated from left to right into point i. For 
example, in place of Eq. (11.55) as a finite-difference representation of the first
order wave equation, we could instead write 

u7+ 1 - u7 3u7 - 4u7_ 1 + u7_ 1 
= -c 2Ax f..t 

( 11.69) 

Equation ( l l .69) is an example of a second-order upwind difference formula. 
In the case of the Godunov scheme, second-order accuracy can be obtained by 

assuming a linear variation of flow properties across a given grid cell. For example, 
the variation originally sketched in Fig. 11.7 can be replaced with the piecewise
linear variation shown in Fig. l l.10. The local Riemann solver is then applied to 
this variation in an appropriate fashion. 

There is a problem in regard to these second-order upwind schemes. 
Numerical results obtained with such schemes exhibit the oscillatory behavior 
in the vicinity of discontinuities similar to that encountered with second-order 
central difference schemes. Hence, the disappearance of oscillations when the first
order upwind schemes discussed in Sec. 11. 4 are employed is more due to the first
order accuracy than to the philosophy of upwinding. When second-order upwinding 
is employed as an effort to diminish the diffusive character of the solution, then 
oscillations reappear. (This just reinforces the old adage that in life, nothing is 
simple.) However, one should never give up. Indeed, the CFD community, when 
faced with this situation, did not give up. Instead, the resolution of this problem has 
led to a class of new algorithms called high-resolution schemes. The idea of these 
schemes is discussed in the next section. 

u 

i-1 i+ I 

FIG. 11.10 
Piecewise linear vanat10n at time level n 
(second-order Godunov method.) 
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11.6 HIGH-RESOLUTION SCHEMES: TVD 
AND FLUX LIMITERS 

For simplicity, consider a model equation somewhat like the Euler equations in 
conservation form, that is, 

au af 
-+-=0 
at ax 

(l 1.70) 

where f = f(u). Visualize the variation of u with x at a given time level n. At any 
given point along the x axis, both u and its derivative, au!&x, are known at time level 
n. An important and rather interesting property of physical solutions governing by 
Eq. (l l .70) is that I au/ax I integrated over the entire domain on the x axis does not 
increase with time. This integrated quantity is called the total variation, denoted by 
TV That is, 

(l l.71) 

Hence, for a physically proper solution, TV does not increase with time. In 
terms of a numerical solution of Eq. (l 1.70), where au/ax can be discretized by 
(u;+ 1 - u;)!Ax, then Eq. (l 1.71) can be written as 

(11.72) 

Indeed, Eq. (l l. 72) defines the total variation in x of a discrete numerical 
solution. If TV(un+l) and TV(un) represent Eq. (l 1.72) evaluated at time level 
n + 1 and n, respectively, and if 

I TV(un+l)::; TV(un) I (11.73) 

the numerical algorithm is said to be total-variation-diminishing (TVD). From the 
above discussion, if a numerical solution is to properly follow the physical behavior 
of a given flow field, then the scheme should be a TVD scheme. 

A physical flow field with discontinuities, such as shock waves, does not 
exhibit oscillations in the vicinity of the discontinuities. On the other hand, many 
numerical schemes, when used to solve such flow fields, do exhibit such oscilla
tions. These oscillations are of purely numerical origin. In light of the above 
discussion, any numerical scheme that gives rise to such oscillations does not satisfy 
the TVD condition. For example, the central difference schemes we have empha
sized in earlier chapters are not TVD schemes. The second-order upwind schemes 
referred to in Sec. 11.5 are not TVD schemes. On the other hand, the first-order 
upwind schemes discussed in Sec. 11.4, which do not result in oscillations in the 
vicinity of discontinuities, can readily be shown to obey the TVD condition. 

To enjoy the advantages of a second-order upwind scheme, while at the same 
time not generating any nonphysical oscillations, we need to modify the second
order approach such that it obeys the TVD condition. This has been the goal of 
many researchers in CFD over the past decade; their efforts have resulted in several 
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modem TVD schemes with second-order (and in a few cases, higher-than-second
order) accuracy. These schemes constitute the cutting edge of CFD algorithms 
today. Although the details of these state-of-the-art schemes are beyond the scope of 
this book, they remain a very inviting area for your future studies in CFD. 

In regard to the philosophy of TVD schemes, we note a distinct difference 
between their role and that of artificial viscosity (discussed in Sec. 6.6). When a 
scheme incorporates the TVD feature, numerically induced oscillations are simply 
prevented from happening; this is due to the nature in which the TVD feature is 
incorporated into the basic differencing procedure. This is in contrast to the role of 
artificial viscosity, such as discussed in Sec. 6.6. For example, central difference 
schemes, which do not reflect TVD behavior, result in oscillations no matter what, 
and the addition of artificial viscosity simply suppresses these oscillations but does 
not totally eliminate them. In this sense, artificial viscosity acts something like a 
"filter" after the oscillations are produced by the basic numerical scheme. 

Finally, we note that one way to take a second-order scheme and make it TVD 
is to simply multiply selected elements of the difference equation-those elements 
involving the flux terms-by a nonlinear function and then find appropriate forms 
for these functions by forcing the difference equation to satisfy the TVD condition 
described by Eq. (11.73). The purpose of these nonlinear functions is to restrict the 
amplitude of the gradients appearing in the original second-order difference 
equations so as to make certain that the TVD condition holds. Since these 
functions are intended to limit gradients by modifying the flux terms in the 
difference equations, they are called, quite naturally, flux limiters. The use of flux 
limiters in modem CFD algorithms is quite widespread; you will encounter them 
frequently in your future studies of CFD. 

11.7 SOME RESULTS 

Return to the flow process in a shock tube, as illustrated in Fig. 11.5. Assuming a 
one-dimensional flow, this flow field can be calculated by numerically solving the 
unsteady, one-dimensional Euler equations using the shock-capturing philosophy. 
(For a calorically perfect gas, there is also a closed-form analytical solution; see 
Chap. 7 of Ref. 21 for a development of this exact analytical solution.) Study Fig. 
11.5 carefully. Note that the flow includes a shock wave, a contact surface, and an 
expansion wave; hence, it makes a wonderful model problem on which to study the 
performance of various numerical schemes for the solution of the Euler equations. 

In light of our present discussion on first- and second-order upwind difference 
schemes, let us examine solutions of the shock tube problem using these schemes in 
order to assess their various attributes. These solutions are taken from Hirsch (Ref. 
17), which should be consulted for more details. Results obtained from the first
order upwind flux-vector-splitting scheme discussed in Sec. 11.4.1 are shown in 
Fig. 11.1 la to d, which compares the numerical results (the discrete data points) 
with exact analytical results (the solid lines) for the pressure, density, velocity, and 
Mach number distributions, respectively, as a function of x at a time equal to 6.2 ms 
after the removal of the diaphram. These numerical results exhibit the following 
behavior: 
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~~'.tion for the shock tube problem using flux-vector splitting. Solution at time = 6.2 ms. (After Ref 

1. There are no oscillations in the numerical results; in particular, the variations of 
the flow properties in the vicinity of the two discontinuities-the shock wave and 
the co~tact surface-are monotonic, with no oscillations. (Note that the shock 
wave 1s a discontinuity in all the flow properties, whereas across the contact 
surface pressure and velocity are ~nch_anged, but that discontinuities in density 
and Mach number occur.) The osc1llation-free numerical solution is a hallmark 
of the first-order upwind schemes, as discussed earlier. 

2. There is a slight smearing of the numerical results across the shock and a 
s~bs~ntial smearing across the contact surface. This smearing is due to the 
d1ffus1ve character of first-order solutions and is not a desirable quality of the 
scheme. 
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In contrast, results obtained from a second-order upwind scheme using flux limiters 
to achieve the TVD property are shown in Fig. 11.12a to d, which compares the 
numerical results (the discrete data points) with exact analytical results (the solid 
lines) for the pressure, density, velocity, and Mach number distributions, respec
tively, as a function of x at a time equal to 6.1 ms (the difference between 6.1 ms 
here and 6.2 ms for Fig. 11.11 is small and does not compromise the comparison of 
results between the two cases). These numerical results exhibit the following 
behavior: 

1. There are no oscillations in the numerical results; the oscillations which would 
ordinarily be produced in the second-order solution are completely prevented by 
the flux limiters. 

2. At the same time, the second-order scheme does not have the massive diffusive 
behavior exhibited by the first-order results shown in Fig. 11.11. As a result, the 

(a) 

1.00 X 

105 

0.00 

0.60 

0.40 

0.20 

0.00 2.00 4.00 6.00 8.00 10.00 
X 

(c) 

3.00X 102 

2.50 

2.00 

1.50 

1.00 

0.50 

0.00 

0.00 2.00 4.00 6.00 8.00 10.00 
X 

FIG. 11.12 

(b) 

1.00 

0.00 

0.60 

0.40 

0.20 

0.00 2.00 4.00 6.00 8.00 10.00 
X 

(d) 

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 

0.00 2.00 4.00 6.00 8.00 10.00 
X 

Solution for the shock tube problem using a TVD scheme. Solution at time = 6.1 ms. (After Ref 17.) 

MULTIGRID METHOD 513 

agreement between the numerical results and the exact analytical solution is 
excellent, as clearly seen in Fig. 11.12. 

By comparing the numerical results shown in Figs. 11.11 and 11.12, the second
order TVD results shown in Fig. 11.12 are clearly superior, especially in the vicinity 
of the contact surface. Indeed, the results shown in Fig. 11.12 are typical of the high
resolution TVD schemes that represent the cutting edge of CFD research at the time 
of this writing. These results are indicative of the best that CFD has to offer today. 

11.8 MULTIGRID METHOD 

The vast majority of CFD techniques utilize some type of iterative or time-stepping 
approach that requires multiple sweeps through the flow field. The time-marching 
methods described in Secs. 6.2 and 6.3 and applied in Chap. 7 are one such 
example. The relaxation method described in Sec. 6.5 is another example. The 
convergence of these techniques can be greatly enhanced by the use of a technique 
called multigridding. The multigrid method has been used in many different 
solutions of a vast array of flow fields; it has become a fixture in some areas 
of modem CFD, especially for the solution of transonic flow fields. 

The philosophy of the multi grid method is to carry out the early iterations on a 
fine grid and then to progressively transfer these results to a series of coarser grids. 
Since the coarser grids have fewer grid points, fewer calculations are needed for a 
given sweep of the flow field, and hence computer time is saved. Then the results on 
the coarsest grid are transfered back to the fine grid, and the process is repeated a 
sufficient number of times until satisfactory convergence on the fine grid is 
obtained. 

On a mathematical basis, the advantage of the multigrid method is associated 
with the exhanced damping of numerical errors through the flow field. Recall the 
discussion of numerical errors at the beginning of Sec. 4.5 and the fact that a whole 
spectrum of such errors can propagate through a numerical solution of a flow field; 
considering a one-dimensional problem in x, the wavelength of an error can vary 
from the smallest value of Amin = 2Ax to the largest value of Amax = L, where Ax is 
the increment in x between two grid points and L is the length of the whole domain 
along ihe x axis. Errors associated with wavelengths near },min are called high
frequency errors, and those associated with wavelengths near Amax are called low
frequency errors. For a stable solution, the errors of all frequencies-high, low, and 
in-between-are damped during the course of the iterative or stepping process. 
However, in most cases the high-frequency errors are reduced much faster than the 
low-frequency errors. Therefore, the speed of convergence would be enhanced if 
something could be done to increase the damping of the low-frequency errors. Now 
imagine that, after you carry out a few iterations on a fine grid you transfer the 
intermediate results to a coarser grid. The high-frequency errors are essentially lost, 
or hidden, in the coarse grid, and the low-frequency errors, because of the larger Ax 
and hence larger Amin = 2Ax, begin to be damped at a faster rate than would have 
taken place in the fine grid. Therefore, by going to progressively coarser grids, the 
low-frequency errors are more readily damped. Then, when the intermediate coarse 
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grid results are transfered back to the fine grid, the low-frequency errors are smaller 
than they would have been for an equal number of sweeps just on the fine grid itself. 

The details of just how you can transfer data properly between fine and coarse 
grids are beyond the scope of this book. See Ref 16 for such details. 

11.9 SUMMARY 

The purpose of this chapter was to introduce you to some of the concepts and 
nomenclature associated with the modern CFD of today. We have identified and 
discussed such matters as: 

Local linearization 

Jacobian matrices and their eigenvalues 
Approximate factorization 

Upwind schemes 
Flux-vector splitting 

Wave-based flux methods: The Riemann approach 
Total-variation-diminishing (TVD) schemes 

Flux limiters 
Multigrid method 

As you glance over this list, if the basic ideas behind each item do not easily come 
to mind, then return to the appropriate sections and review our discussion. 

The material in the first 10 chapters constitutes a basic foundation of concepts 
in CFD-an essential foundation on which to build the pillars of modern CFD. The 
present chapter provided some windows into the modern CFD. Our purpose in this 
chapter was not to give you every detail; in fact, you are not expected to run right 
out and implement these modern algorithms based on just the information provided 
in this chapter. Rather, our purpose was simply to give you some clue as to what to 
expect when you undertake more advanced studies and readings in CFD. The 
present chapter has been essentially a discussion chapter, an effort to introduce 
some of the modern CFD concepts with a minimum of detail. We encourage you 
with all vigor to pursue these more advanced concepts further. 

PROBLEMS 

11.1. Starting with the form given by Eq. (11.26), derive the form given by Eq. (11.28). 
11.2. Verify Eq. (11.60) using the expressions given by Eqs. (11.8), (11.9), and (11.24). 

CHAPTER 

12 
THE 

FUTURE 
OF 

CFD 

ITT? should all be concerned about the future 
because we will have to spend the rest of 

our lives there. 

Charles F. Kettering, 1949 

It is expected that the next decade will witness 
the emergence of CFD as the critical 

technology for aerodynamic design. There 
should be a dramatic change and shortening of the 
design process, which will enhance and enable 

concurrent engineering and the optimization of air 
vehicle systems in terms of overall economic 
performance. This will require a significant 

advance in CFD algorithm research and code 
development. 

From Aeronautical Technologies for the Twenty-First 
Century, National Research Council, 1992 

12.1 THE IMPORTANCE OF CFD 
REVISITED 

Now that you have reached a certain plateau in your understanding of and 
appreciation for CFD, let us reiterate some of the philosophy discussed right 
at the beginning of our studies, namely, Sec. 1.1. (Indeed, you are encouraged to 
read again all of Chap. 1 at this stage-it will mean so much more to you now than 
when you first read it.) In particular, we emphasize that CFD is without a doubt a 

515 
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new "third dimension" in fluid dynamics, equally sharing the stage with the other 
dimensions of pure theory and pure experiment. Computational fluid dynamics is 
with us to stay; it will only grow in importance with time. Your understanding of 
CFD at the level presented in this book should stand you in good stead, no matter 
what direction you take in the future. Whether you eventually work as an 
experimentalist, a theoretician, a manager, or a teacher, or in whatever capacity 
dealing in any aspect of fluid dynamics, your life will be impacted by CFD. If you 
choose to proceed further with your studies of CFD, and become a CFD specialist, 
the material in this book simply becomes a first steppingstone for you. In any event, 
this author feels strongly that all your efforts to learn CFD from this book will serve 
you well in your present or future professional career. The importance and massive 
proliferation of CFD virtually ensures the validity of this feeling. 

In the remaining sections of this chapter, we will reflect on the future of CFD. 
In a sense, this chapter is simply a continuation of Chap. 1, fleshed out by the 
material contained in the chapters in between. 

12.2 COMPUTER GRAPHICS IN CFD 

We interject a somewhat parenthetical thought at this stage, but an important one 
nonetheless. The types of flow fields calculated and discussed in Chaps. 7 to 10 are 
either one- or two-dimensional flows. Hence, the amount of data collected during 
the calculations is reasonably moderate, and the graphical and tabular displays of 
this data are relatively straightforward. However, the story is different for three
dimensional flows; the addition of the third dimension increases the amount of data 
by orders of magnitude, and the proper graphical displays of this data require much 
thought and effort (tabular displays of three-dimensional data are totally imprac
tical). This situation has driven much research and development in the discipline of 
computer graphics, the art of displaying quantitative data on a two-dimensional 
computer screen in a clear and meaningful fashion. Computer graphics is a subject 
by itself; whole books have been written on it. This subject is discussed in Sec. 6.9. 
However, we remind you of the importance of good computer graphics to the 
effective practice of CFD. As you progress further in your studies and work in CFD, 
you will quickly come to appreciate the value of good graphics packages (software) 
when you want to examine your CFD data. As you read through the remainder of 
this chapter, note the various styles in which data are presented in the figures; these 
are examples of modem computer graphics mated with CFD. Of particular note are 
contour plots, so frequently used in presenting CFD results. Keep in mind that 
contour plots are simply lines of constant properties drawn in two- or three
dimensional space; pressure contours are lines of constant pressure, density 
contours are lines of constant density, etc. Regions in which contour lines are 
bunched together are simply regions where the flow property is rapidly changing; 
i.e., dark regions in a contour plot are regions of high gradients in the flow. Hence, 
in addition to displaying quantitative data, contour plots are wonderful flow-field 
visualization pictures. You will see a lot of various contour plots in this chapter. 

Finally, we note that modem CFO is a great user of color graphics, the 
displaying of different magnitudes of flow-field properties by different colors. In 
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color contour plots, the contour lines are replaced by a continuous changing in color 
shades so that the entire flow-field picture becomes a continuous "painting." Some 
of these color graphic results can be absolutely spectacular-literally works of art. 

12.3 THE FUTURE OF CFD: ENHANCING 
THE DESIGN PROCESS 

Computational fluid dynamics has already had a major impact on airplane design, 
and a recent prediction from the National Research Council calls for CFD to 
become the critical technology for aerodynamic design over the next decade (see the 
second quotation at the beginning of this chapter). There is no doubt that a major 
focus of CFD is to enhance the design process for any machine that deals with fluid 
flow. The design role played by CFD was discussed in Sec. 1.3, which should be 
reviewed before progressing further. The purpose of the present section is to 
elaborate further on the design matters set forth in Sec. 1.3. 

Today, CFO is used to calculate complete three-dimensional flow fields over 
real airplanes. An excellent example is illustrated in Figs. 1.6 and l. 7, where the 
flow over a Northrop F-20 is shown as calculated from a solution of the unsteady, 
three-dimensional Euler equations by means of an explicit finite-volume scheme. 
Such complete flow-field calculations over entire airplane configurations is a major 
step in enhancing the overall airplane design process. In this fashion, the amount of 
experimental wind tunnel testing required for the development of a new airplane is 
greatly reduced; the burden of "testing" various design options and parameters is 
instead shouldered by CFD. 

The calculations shown in Figs. 1.6 and l. 7, albeit for a complete airplane, are 
for an inviscid flow (they are from an Euler solution). The next major step forward is 
the complete solution of an entire airplane flow field using the Navier-Stokes 
equations, i.e., a fully viscous flow solution. Such solutions have been carried out. 
Historically, the first complete Navier-Stokes solution for a complete airplane 
configuration was carried out by Shang and Scherr in 1986 (see Ref. 47). The 
airplane was the X-24C hypersonic test vehicle shown in Fig. 12.1. As a sample of 
the results obtained, the calculated surface streamlines are shown in Fig. 12.2; here, 
only half the airplane is shown since the other half is symmetrical. The calculations 
were made using the time-marching explicit Maccormack finite-difference tech
nique as described in Sec. 6.3 and as utilized throughout Chap. 7. An elliptically 
generated grid was used, as described in Sec. 5.7; over 500,000 grid points were 
employed in the calculation. The pioneering aspect of this calculation cannot be 
emphasized enough; it achieved a major goal sought by the CFD community-a 
complete Navier-Stokes solution of an entire airplane flow field. Today, a number 
of such calculations exist, but the results of Shang and Scherr were the first. (This 
author takes pride in having had Joe Shang as a valued classmate while we were 
both graduate students at The Ohio State University.) 

A recent example of a complete airplane Navier-Stokes solution is that by 
Schroder and Mergler from Messerschmett-Bolkow-Blohm in Germany (see Ref. 
48). This is indeed a "double plane calculation" in the sense that a multivehicle 
configuration was used based on the Sanger concept in Germany. Called generically 
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FIG. 12.1 
Three-dimensional view of the X-24C hypersonic test vehicle. 
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FIG. 12.2 
Computed surface streamlines over the X-24C. (After Ref 47.) 
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a space-transportation system (STS), a three-dimensional graphical rendition of this 
configuration is shown in Fig. 12.3. Here you see a large first-stage carrier vehicle, 
with a smaller second stage which is intended to go into orbit around the earth; the 
second stage is mounted above the first stage. This concept for a two-stage 
aerodynamic lifting vehicle designed to go into orbit was first advanced in 1929 by 
Eugen Sanger, an Austrian engineer who pursued the idea for more than a decade 
until World War II broke out. The idea has been revived in Germany in recent years. 
Recent CFD calculations of the hypersonic flow field over the configuration shown 
in Fig. 12.3 are illustrated in Fig. 12.4, taken from Ref. 48. Both inviscid (Euler 
solution) and viscous (Navier-Stokes solution) cases are compared in Fig. 12.4 for a 
freestream Mach number of 6. These calculations are made with a high-resolution 
second-order accurate TVD scheme using Roe averaging as discussed in Sec. 11.6. 
At the left of Fig. 12.4 is a side view of the STS, where the upper-stage vehicle is 
inclined at three different angles of attack relative to the lower stage vehicle, namely, 
~a = 0, 2, and 4°, respectively, top to bottom. The angle of attack of the lower stage 
relative to the freestream is zero. Figure 12.4 gives density contours in the flow 
field. The side view in Fig. 12.4a shows the shock wave pattern on the two stages, 
and illustrates how the bow shock from the lower stage impinges on the nose of the 
upper stage for ~a = 2 and 4° but passes above the upper stage where ~a = 0°. 
Moreover, the reflecting and interacting shock pattern in the gap between the two 
stages is clearly evident. The results shown in Fig. 12.4a are for inviscid flow; 
viscous flow results are also presented in Ref. 48 and show very little difference in 
the shock pattern from that shown in Fig. 12.4a. This is because the Reynolds 
number for these calculations is quite high, namely, Re = 2.98 x 10 7 based on a 
total vehicle length of 71.1 m. Now imagine that you take a plane perpendicular to 
the page of Fig. 12.4a and cut the flow field at a location x = 68.42 m downstream 
from the nose of the lower stage. The density contours you see in this perpendicular 

2nd stage Orbital Vehicle 

I st stage Carrier Vehicle 

FIG. 12.3 
A generic two-stage Space Transportation System. 
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plane, called a cross-flow plane, are shown in Fig. 12.4b for the same three cases of 
Lio: = 0, 2, and 4°. Also compared in Fig. 12.4b are the viscous results (right half of 
each picture) and the inviscid results (left half of each picture). The major difference 
between the inviscid and viscous results is the appearance of the viscous boundary 
layer on the body surface, as clearly seen in the right half of these pictures (the dark 
regions adjacent to the body surface). The type of CFD results illustrated in Fig. 
12.4 are vital to the proper design of the mating of the two stages, and they are 
simply another example of the role of CFD in the overall design process. 

Another example of three-dimensional flow-field calculations is that carried 
out by Turkel et al. in Ref. 49. Using an explicit Runge-Kutta scheme in 
combination with the multigrid technique (as discussed in Sec. 11.8), the 
three-dimensional Navier-Stokes equations were solved for the flow field over 
a blunt-nosed biconic shape at an angle of attack, as shown in Fig. 12.5. The 
freestream Mach number is 6, and the Reynolds number referred to the base 
diameter is 2.89 x 105

. Figure 12.5 is chosen for display because it represents a 
good example of computer graphics (see Sec. 12.2) as applied to CFD results. In 
Fig. 12.5 we see a three-dimensional perspective of the body shape with an overlay 
of constant-pressure contour lines in the flow field. Moreover, we also see in 
perspective two planes perpendicular to the body axis on which are drawn pressure 
contour lines. In this fashion, the pressure variation in three-dimensional space is 
clearly seen, although the figure is simply a picture in the two-dimensional plane of 
the page. In particular, the three-dimensional shape of the bow shock wave is clearly 
evident. Moreover, the calculations presented in Ref. 49, with Fig. 12.5 being just a 
sample of the results, is another example of modem CFD being applied to Navier
Stokes solutions over three-dimensional bodies. 

The airplane design process is aided not only by using CFD to calculate the 
flow field about a complete airplane configuration but also by concentrating on 
smaller elements of an airplane. For example, consider the two-dimensional 

Three-dimensional view of pressure contours over a blunt-nosed biconic configuration. Mach 
number= 6. Angle of attack is 5°. (From Ref 49. Copyright([) 1991 AlAA. Reprinted with permission.) 
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compressible flow over an airfoil with a flap, as shown in Fig. 12.6, taken from Ref. 
50. The results shown in Fig. 12.6 are from a Navier-Stokes solution by Vilsmeier 
and Hanel, employing an unstructured grid ( such as discussed in Sec. 5 .10) and 
using a finite-volume algorithm with Runge-Kutta time stepping. The freestream 
Mach number is 0.3. The unstructured grid is shown in Fig. 12.6a, and the Mach 
number contours are shown in Fig. 12.6b. Note the upward flow through the gap 
between the main wing and the flap; also note the vortices which are formed at the 
trailing edge of the flap. Details of the grid and the Mach number contours in the 
vicinity of the gap are shown in Fig. 12.6c and d, respectively. These calculations are 
for a low Reynolds number of 104, which puts them in the same category as the low 
Reynolds number airfoil Navier-Stokes calculations by Kothari and Anderson as 
described in Sec. 1.2. The usefulness of the detailed application of CPD over an 
element of an airplane, such as the flapped airfoil in Fig. 12.6, is that it can show 
flow imperfections in a localized region, which can then be sometimes corrected 
by proper modifications of the design. For example, Fig. 12.6b clearly shows 
flow separation from the top and bottom surface ahead of the midchord location 
of the airfoil. Moreover, Vilsmeier and Hanel make reference that "an almost 
steady flow establishes," indicating some degree of flow unsteadiness in the 
calculation. These phenomena are associated with the physical aspects of low 
Reynolds number laminar flow over an airfoil-they are very similar to the 
results obtained by Kothari and Anderson as discussed in Sec. 1.2 and described 
in detail in Ref. 6. 

Another application of CFD to a local element of an airplane is shown in Fig. 
12.7, which gives the pressure contours in the vicinity of the engine-pylon-wing 
region of the McDonnell Douglas Tri-Jet transport aircraft, from the calculations of 
Vassberg and Dailey (Ref. 51 ). An unstructured grid was used for the calculations. 
The mutual aerodynamic interaction between the engine nacelle, the pylon attaching 
it to the wing, and the wing itself is an important consideration in airplane design. 
The application ofCFD to this geometry, as shown in Fig. 12.7, is an invaluable aid 
to the design of the nacelle-pylon-wing configuration. 

Figure 12.7 shows an application of CFD to the outside of a jet engine. In 
contrast, Fig. 12.8 is an application of CFD to the inside of a jet engine. Indeed, the 
use of CPD in the calculation of internal flows through compressors, burners, and 
turbine blades is not as mature as that for external flows over airplane components 
and is just now receiving serious attention by the world's aircraft engine manu
facturers. Great strides are being made in this regard, and the three largest engine 
makers-Pratt and Whitney, General Electric, and Rolls-Royce-have very active 
CPD groups. The application of CFD to turbomachinery flows is particularly 
challenging; such flows are inherently unsteady, and viscous effects are particularly 
important. As an illustration of such turbomachinery flows, Fig. 12.8 shows the 
Mach number contours around two adjacent turbine blades. These calculations were 
made by Petot and Fourmaux (Ref. 52) and involved a solution of the Euler 
equations using a finite-volume scheme with explicit Lax-Wendrofftime marching 
(the Lax-Wendroffmethod is described in Sec. 6.2). The fishtail shock wave pattern 
at the trailing edge of each blade in Fig. 12.8 is a standard feature of such flows and 
is readily captured by the numerical technique. 
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(a) 

(b) 

(c) 

(d) 

FIG. 12.6 
Navier-Stokes solution for the flow over an airfoil with a flap. Re = 104 ; Moc = 0.3. (a) Unstructured 
gnd. (b) Mach number contours. (c) Details of grid in the vicinity of the flap-airfoil junction. (d) Mach 
number contours for the region shown in part (c). (From Ref 50. Reprinted with permission from 
Elsevier Science Publishers, Amsterdam.) 
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FIG. 12.7 
Pressure contours in the nacelle-pylon-wing region on the MDC tri-jet. 

FIG. 12.8 
Mach number contours around two adjacent turbine blades in an axial flow jet engine. (From Ref 52. 
Reprinted with permission from Elsevier Science Publishers, Amsterdam.) 

Let us consider another design application of CFO, namely, the design of 
experiments and experimental apparatus. An example is Fig. 12.9, which shows the 
configuration of a model supersonic engine inlet connected to a supersonic wind 
tunnel nozzle. In Fig. 12.9, flow is from left to right. The results in Fig. 12.9 were 
obtained by Enomoto and Arakawa (Ref. 53) using an implicit Beam-Warming 
scheme with approximate factorization (see Sec. 11.3) for the solution of the three-
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FIG. 12.9 
Density contours in a model supersonic engine inlet connected to a supersonic wind tunnel nozzle (the 
nozzle is out of sight to the left). (From Ref 53. Reprinted with permission from Elsevier Science 
Publishers, Amsterdam.) 

dimensional Navier-Stokes equations. Sections A, B, C, 0, and E in Fig. 12.9 
correspond to the laterally spaced planes sketched at the top of the figure. The 
density contours shown in these five planes are different and hence clearly show a 
three-dimensional effect of the flow in different lateral planes along the test facility. 
The mainstream Mach number at the entrance to the test section (the extreme left of 
the sections A-E) is 1.85. The wind tunnel nozzle is not shown in Fig. 12.9; only the 
test section with the model of the supersonic inlet is shown. The results obtained 
from this type of CFO application can be used to help design the physical test 
apparatus itself, to help establish proper running conditions for the test facility, and 
to help interpret the data when the experiments are run. 

We end this section with an example of how CFO is being coupled with other 
disciplines to enhance the design process on a broader base. When CFO is used to 
predict the pressure and shear stress distribution over an airplane wing, and thus to 
predict the aerodynamic loading on the wing, the actual design of the wing does not 
stop there. The wing is a physical structure which can bend and flap back and forth 
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under the influence of the aerodynamic loading. As the shape of the wing is 
distorted, the aerodynamic flow is affected, and the aerodynamic load changes. 
Hence, there is a mutual coupling and feedback mechanism between the structural 
and aerodynamic behavior of the wing-this is the essence of the discipline of 
aeroelasticity. An aspect of the modem CFD is its application to such problems 
which are coupled with other disciplines, i.e., multidisciplinary applications. An 
example of the aeroelastic wing problem described above is shown in Fig. 12.10, 
obtained from Ref. 54. The double image of a wing in Fig. 12.10 shows the wing's 
deflection away from its unloaded position when placed under an aerodynamic load. 
The picture shown in Fig. 12.10 is in reality only an intermediate result during the 
course of an iterative solution; it involves the application of a CFD calculation, then 
a structural analysis application, then a repeated CFD calculation, then a repeated 
structural analysis application, and so forth, until a converged solution is obtained. 
The whole design process is integrated with a computer-aided design (CAD) 
software package. 

In summary, the purpose of this section has been to illustrate the modem use 
of CFD in the design process and to use this to indicate the wide-open future of 
CFD in design. No matter how mature the techniques of CFD may become, the 
array of future and challenging applications of CFD is limitless. Applied CFD is 
clearly a growth industry. 

12.4 THE FUTURE OF CFD: ENHANCING 
UNDERSTANDING 

A major role of CFD is that of a research tool, a tool to enhance our understanding 
of the basic physical nature of fluid dynamics. This perspective is discussed in Sec. 
1.2 where the role of CFD in carrying out numerical experiments is emphasized. In 
the present section, we will elaborate on this aspect of CFD---enhancing our 
understanding. 

FIG. 12.10 
Deflected wing shape due to aerodynamic loads. A multidisciplinary calculation combining CFD with a 
structural analysis code. (From Ref 54. Reprinted with kind permission from Elsevier Science Ltd., The 
Boulevard, Langford Lane, Kidlington OX5 1GB, UK.) 
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For example, consider the flow through a convergent-divergent nozzle, where 
the pressure ratio across the nozzle is large enough to produce a region of 
supersonic flow downstream of the throat but small enough that shock waves 
appear somewhere in the divergent section-the case of the overexpanded nozzle 
flow as described in Sec. 7.6. Indeed, a calculation was made in Sec. 7.6 wherein a 
standing normal shock wave exists in the divergent section. A qualitative sketch of 
this flow field is given in Fig. 7 .21, which shows a straight, normal shock wave 
reaching from top to bottom across the nozzle. However, this picture is consistent 
only with our assumption of inviscid, quasi-one-dimensional flow, which was the 
case treated throughout Chap. 7. 

In reality, the real flow through a convergent-divergent nozzle is multi
dimensional, and for the overexpanded case viscous effects can be important. Let us 
expand our understanding of such nozzle flows by again using CFD, but this time 
assuming a two-dimensional viscous flow inside the nozzle. An example of such a 
calculation is shown in Fig. 12.11, taken from Ref. 55. Here we see Mach number 
contours from a Navier-Stokes solution calculated by means of a finite-volume 

(a) 

(b) 

FIG. 12.11 
Two-dimensional viscous flow in an overexpanded supersonic nozzle. Mach number contours. 
Conditions of the flow: pofpe = 50, A)A* = 7, )' = 1.2, T0 = 1800 K. (From Ref 55. Reprinted 
with permission from Elsevier Science Publishers, Amsterdam.) 
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scheme using second-order upwinding but which is reduced to first-order upwind
ing in the vicinity of the shock waves. Two solutions are shown in Fig. 12.11; the 
results in Fig. 12.1 la are for a fixed mesh, whereas the results in Fig. 12.1 lb are for 
an adaptive mesh (adaptive grids are described in Sec. 5.8). Examining Fig. 12.11, 
clearly the adaptive mesh results in a sharper definition of the flow structure. From 
this point of view, Fig. 12.11 simply augments our discussion in Sec. 5.8. However, 
for the purpose of the present section, we are interested in the physical flow 
structure shown in Fig. 12.11. It is completely different from that resulting from the 
simple quasi-one-dimensional flow assumption shown in Fig. 7.21. The flow shown 
in Fig. 12.11 is the real case that will actually occur in nature for the conditions 
listed in the figure caption. It is characterized by flow separation from the walls of 
the nozzle, curved oblique shocks that transit into a normal shock in the middle of 
the flow (a region called the Mach disk), and a pocket of subsonic flow downstream 
of the disk, The resulting flow that leaves the exit of the nozzle is simply a 
supersonic jet full of wave structure, where the diameter of the jet is much smaller 
than the exit of the nozzle. This is quite a complex flow. When you add questions as 
to the effect of turbulent flow versus laminar flow, the complexity is further 
increased. (The calculations shown in Fig. 12.11 are for a turbulent flow using a 
two-equation turbulence model.) Figure 12.11 is simply an example of how 
numerical experiments run with CFD can be used to enhance our understanding 
of the basic nature of flow fields. 

Another interesting flow is that associated with a vortex which passes through 
a shock wave, and the question as to whether the shock wave will cause breakdown 
of the vortex downstream of the shock. Some CFD calculations of this flow field are 
shown in Fig. 12.12, taken from Ref. 56. Shown in Fig. 12.12 are streamlines in a 
flow which is moving from left to right through a cylindrical duct, where the flow 
has a swirling component in the plane perpendicular to the page. Hence, this 
swirling, cylindrical flow field simulates a vortex. Immediately to the left of the duct 
is a shock wave which spans the inlet to the duct; this shock is not seen in Fig. 
12.12. The shock wave is bending and pulsing with time, and each frame shown in 
Fig. 12.12 is a "snapshot" of the flow at various times, with time increasing from 
top to bottom. The calculations were made by Kandi!, Kandi!, and Liu (Ref. 56) 
wherein the full compressible Navier-Stokes equations are solved using an implicit, 
upwind, finite-volume scheme based on the approximate Riemann solver of Roe 
(see the discussion in the Interim Summary subsection of Sec. 11.4.2). The 
interaction of the shock wave at the inlet with the swirling flow (the vortex) 
creates a vortex breakdown bubble which can be seen in the snapshot labeled t = 3. 
This bubble subsequently splits into multiple bubbles as it is convected downstream 
(snapshot t = 8). New bubbles are formed behind the shock, with the same type of 
behavior as they flow downstream (snapshots t = 10 to 36). Finally, the shock wave 
at the inlet becomes steady, and no new bubbles are formed (snapshot t = 45). 
These results once again show how CFD can be used to enhance our basic 
understanding of the physical nature of flows. See Ref. 56 for a detailed discussion 
of this very interesting problem. 

One of the greatest unsolved problems in fluid dynamics, indeed in all of 
classical physics, is the understanding and prediction of turbulence. Here is where 
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FIG. 12.12 
Streamlines for a swirling flow that has passed 
through a shock wave (which is out of sight to the 
left). Flow is from left to right. Results show 
multibubble breakdown (vortex breakdown). (From 
Ref 56. Copyright © 1991 A/AA. Reprinted with 
permission.) 
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CFD can make, perhaps, its greatest contribution in the future to our understanding 
of fluid dynamics. This hope rests upon the idea that turbulence, with all its 
complicated large- and small-scale structure, is nothing other than a viscous flow 
that locally obeys the Navier-Stokes equations, and that if a grid fine enough is 
used, all the details of this turbulent flow can be calculated directly from the Navier
Stokes equations with no artificial "modeling" of the effects of turbulence. This 
class of CFD calculation is called direct numerical simulation (DNS) of turbulent 
flows. An excellent recent example of DNS calculations can be found in Ref. 57. 
Here, Rai and Moin solve the three-dimensional Navier-Stokes equations for the 
flow over a flat plate using an upwind-biased finite-difference scheme. An 
exceptionally fine grid was used for the calculations in order to resolve the 
smallest scale of the turbulence structure. Some results are shown in Fig. 12.13. In 
this figure, we are looking at a side view of a flat plate, where the surface of the plate 
is the bottom horizontal line in each picture. Flow is from left to right, with a 
freestream Mach number of 0.1. The axial location along the plate, instead of being 
given in terms of distance x, is quoted in terms of the local Reynolds number, 
Rex ""'P,.Yc;.,xlµx,. Shown in Fig. 12.13 are the contours of local vorticity. (Recall 
that local vorticity, by definition, is equal to V x V, and what is given in Fig. 12.13 
are contours of the component of vorticity perpendicular to the page.) Each segment 
of Fig. 12.13 (parts a-d) corresponds to a later time. The Reynolds number range 
shown here corresponds to the region of the flat plate where transition from laminar 
to turbulent flow is taking place. These plots illustrate the rather random, transient 
nature of the flow process. Another perspective of this same flow is shown in Fig. 
12.14. Here we are looking down on the top of the plate. Flow is still from left to 
right. Contours of the same component of vorticity are plotted in the figure, except 
that we are looking down from the top. In actuality, the pictures shown in Fig. 12.14 
are in a plane parallel to the surface of the flat plate but elevated a small distance 
above the surface. Hence, the contours shown in Fig. 12.14 are in the flow and not 
right at the surface of the plate. Moreover, the data shown in Fig. 12.14 are all for 
the same time; they are simply plotted for regions of the flat plate that progressively 
are located downstream. For example, in Fig. 12.14a, the flow is still mainly of a 
laminar nature, with only isolated patches of vorticity. Further downstream, Fig. 
12.14b shows the transition process, where the flow at the right {the downstream 
side) of Fig. 12.14b is essentially all turbulent. Finally, Fig. 12.14c applies even 
further downstream, where the flow is clearly fully turbulent. Note a very important 
physical property of turbulence shown in Fig. 12.14; although the laminar viscous 
flow over a flat plate is theoretically two~dimensional (properties vary only in the 
directions along the flow and also perpendicular to the plate surface), turbulence is 
clearly three-dimensional, no matter what the geometry of the body and the external 
flow. Note particularly the span wise variations of vorticity across the plate shown in 
Fig. 12.14a and b, in spite of the flat surface geometry and a uniform freestream 
above the plate. 

The above results, wherein the transition from laminar to turbulent flow over a 
flat plate is calculated directly from a solution of the Navier-Stokes equations, look 
encouraging. But here is the problem: The number of grid points used by Rai and 
Moin for these calculations was 16,975,196, and the amount of computer execution 
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Direct numerical simulation (DNS) of turbulent flow. Vorticity contours at four different times during 
the calculation of flow over a flat plate: (a) t ~ 20.5; (b) t = 41; (c) t = 51.25; (d) t '° 61.5. Time is 
nondimensionalized by b*/V00 where b* is the displacement thickness of the boundary layer. Side view 
of the flat plate flow. (From Ref 57. Copyright ((') 1991 Al4A. Reprinted with permission.) 
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time was 400 hours on a CRAY-YMP! Clearly, these astronomical computer 
requirements currently prevent ONS calculations from becoming a practical 
technique for practical configurations. Clearly, the future is ripe for CFD break
throughs on this problem. 

12.5 CONCLUSION 

On the above note, we end our discussion of the future ofCFD. We repeat that CFD 
is a growth industry, with an unlimited number c,f new applications and new ideas 
just waiting in the future. 
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FIG. 12.14 
Direct numerical simulation (DNS) of turbulent flow. Vorticity contours looking down at the top of the 
plate. Parts (a) to (c) correspond to the same time but cover sequentially downstream portions of the 
plate. (a) Mostly laminar flow; (b) transition from laminar to turbulent flow (transition region); (c) 

turbulent flow. (From Ref 57. Copyright { 1991 A/AA. Reprinted with permission.) 

With this, we also end this book. We hope that this book has opened the horizons of 
CFO to you and that you have a deeper appreciation for the basic ideas than you had 
before we started. This author wishes you the best of success in your future contacts 
and interaction with CFO. In this modem world, you will most certainly have such 
interactions no matter what path your career takes. 



APPENDIX 

A 
THOMAS' 
ALGORITHM 
FOR THE 
SOLUTION 
OF A 
TRIDIAGONAL 
SYSTEM 
OF 
EQUATIONS 

Consider a system of M linear, simultaneous algebraic equations with M unknowns, 
u 1, u2, u3, ... , uM, given in the form below. 

d1u1 + a,u2 

b2u1 + d2u2 + a2u3 

b3u2 + d3u3 + a3u4 

bM-JUM-2 + dM-JUM-1 + GM-JUM = CM-I 

bMUM - I + dMUM = CM 

(A.I) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

This is a tridiagonal system, i.e., a system of equations with finite coefficients only 
on the main diagonal (the d;'s), the lower diagonal (the b;'s), and the upper diagonal 
(the a;'s). 

A standard method for solving a system of linear, algebraic equations is 
gaussian elimination. Thomas' algorithm is essentially the result of applying 
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gaussian elimination to the tridiagonal system of equations. Specifically, we 
wish to eliminate the lower-diagonal term (the b;'s), as follows. Multiply 
Eq. (A.l) by b2. 

Multiply Eq. (A.2) by d1• 

Subtract Eq. (A.6) from (A.7). 

(d1d2 - b2a1)u2 + d1a2u3 = c2d1 - c1b2 

Divide Eq. (A.8) by d1• 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

Note that Eq. (A.9) no longer has a lower-diagonal term-it has been eliminated by 
our multiplication and subtraction process above. Let us denote some of the 
coefficients in Eq. (A.9) as follows: 

and 

d ' - d b2a1 
2 - 2 ---

d1 

I CJb2 
C2 =C2 -

d1 

Then Eq. (A.9) is written in a simpler form as 

(A.IO) 

(A.11) 

(A.12) 

Let us continue with our elimination process by multiplying Eq. (A.12) by b
3

. 

Multiply Eq. (A.3) by d;. 

Subtract Eq. (A.13) from (A.14). 

(d;d3 - b3a2)u3 + d;a3u4 = d;c3 - b3c; 

Divide Eq. (A.15) by d;. 

( 
b3a2) b3c; 

d3 - d; U3 + G3U4 = C3 - d; 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

Note that Eq. (A.16) no longer has a lower-diagonal term; it has been eliminated in 
the same fashion as was the case for Eq. (A.9). 
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ti 
further notice the pattern that is developing here. Equation 

Be ore we go any . , dro in the first term (the term 
(A.9) can be viewed as obtamed fro~ Eq. (A.2) by . PP ~ 
involving u1), replacing the main-diagonal coefficient with 

biai 
d2---

d1 
(A.17) 

instead of d2, keeping the third term unchanged (a2u3), and replacing the term on 

the right-hand side of the equation by 
c1b2 

c2---
d1 

(A.18) 

. . s (A 16) and (A.3), we see exactly the same patten:, 
mstead of c2. Companng Eq · · . d d (b ) the diagonal coefficient 1s 
where in Eq. (A.3) the first term 1s roppe 3U2 , 

replaced by 
b3a2 

d3-7 
2 

(A.19) 

d ( ) d th right-hand side is replaced by 
the third term remains unchange a3u4 , an e 

c~b3 (A.20) 
c3-7 

2 

. 1 Com are the forms given by (A.17) and (A.19); they are the 
The pattern is c ear.ti p. b (A 18) and (A.20)· they are the same. Starting at 
same. Compare the orms given Y · ' h (A 5) we leave 
the to of our system of equations represented_ by Eqs. (A. l) throug · , he 
Eq. cX 1) alone, but in_ all ~he following equations we drop the first term, replace t 

coefficient of the roam-diagonal term by 

d' _ d _ b;a;-1 
i - l d'.-1 

i = 2, 3, ... , M 

and replace the term on the right-hand side of the equation by 

I c;_Jbi 
C; = C; --d-,

i-1 
i = 2, ... ' 3, 'M 

This will result in an upper bidiagonal form of equations given by 

d1u1 + a1u2 

d;u2 + a2u3 
d~u3 + a3u4 

=C1 

I 
= C3 

(A.21) 

(A.22) 

(A.23) 

(A.24) 
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Examining the above system of equations, we note that the last equation, Eq. 
(A.24), contains only one unknown, namely, uM; hence 

~ 
~ 

(A.25) 

The solution of the remaining unknowns is obtained by working upward in the 
above system. For example, after uM is obtained from Eq. (A.25), the value of uM- t 

can be found from Eq. (A.23) as 

c~ - l - aM - I UM 
UM-I= d' 

M-l 

(A.26) 

Indeed, by inspection we can see that Eq. (A.26) can be replaced by the general 
recursion formula 

c; - a;U;+ l 
U; = d' 

I 

(A.27) 

for the calculation of u;, where U;+i has already been calculated from the previous 
application of Eq. (A.27). 

In summary, Thomas' algorithm is as follows. Given a system of linear, 
simultaneous, algebraic equations in tridiagonal form represented by Eqs. ( A. l) to 
(A.5), we first change this system into an upper bidiagonal form by dropping the 
first term in each equation (involving the b;'s), replacing the coefficient of the main
diagonal term by Eq. (A.21 ), and replacing the right-hand side with Eq. (A.22). This 
will result in the last equation in the system in having only one unknown, namely, 
uM. Solve for uM from Eq. (A.25). Then, all other unknowns are found in sequence 
from Eq. (A.27), starting with u; = UM-I and ending with u; = u1• 

For your reference, the computer listing used to solve the Couette flow 
problem described in Sec. 9.3 is listed below. This computer program is essentially a 
program for Thomas' algorithm and can be used as a guide to construct your own 
computer program for Thomas' algorithm. 

FORTRAN Computer Listing: solution of Couette flow by means of Thomas' 
algorithm 

C 

REAL U(41),A(41),B(41), 0(41), Y(41), C(41) 

N=2¢ 
NN=N+l 

Y(l)=¢.¢ 
DEL=l.¢/FLOAT(N) 
RE=5.¢E+03 

EE=l.¢ 
TIME=¢.¢ 
DELTIM=EE*RE*DEL**2 

BOUNDARY CONDITIONS 
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C 

1 

C 

2 
C 

3 

C 

4 

5 

1¢¢ 

U(1)=¢.¢ 
U(NN)=l.¢ 
AA=-¢.S*EE 
BB=l. ¢+EE 
KKEND=2 
KKMOD=l 
INITIAL CONDITIONS 
DOl J=2,N 
U(J)=¢.¢ 
CONTINUE 
A(l)=l.¢ 
B(l)=l.¢ 
C(l)=l.¢ 
D(l)=l.¢ 
DOS KK= 1, KKEND 
SET ORIGINAL COEFFICIENTS 

D02 J=2,N 
Y(J)=Y(J-l)+DEL 
A(J)=AA 
IF(J.EQ.N) A(J)=¢.¢ 
D(J)=BB 
B(J)=AA 
IF(J.EQ.2) B(J)=¢.¢ 
C(J)=(l.¢-EE)*U(J)+¢.5*EE*(U(J+l)+U(J-1)) 
IF(J.EQ.N) C(J)=C(J)-AA*U(NN) 

CONTINUE 
UPPER BIDIAGONAL FORM 
D03 J=3,N 
D(J)=D(J)-B(J)*A(J-1)/D(J-1) 
C(J)=C(J)-C(J-l)*B(J)/D(J-1) 

CONTINUE 
CALCULATION OF U(J) 
D04 K=2,N 
M=N-(K-2) 
U(M)=(C(M)-A(M)*U(M+l))/D(M) 

CONTINUE 
Y=(U=¢.¢ 
Y(NN)=Y(N)+DEL 
TIME=TIME+DELTIM 
TEST=MOD(KK,KKMOD) 
IF(TEST.GT.¢.¢1) GO TO 5 
WRITE(6,1¢¢) KK, TIME,DELTIM 
WRITE(*,1¢¢) KK,TIME,DELTIM 
WRITE (6, 1¢1) 
WRITE(*,1¢1) 
WRITE (6, 1¢2) (J, Y (J), U (J) ,B (J), D (J) ,A(J) ,C (J), J=l,NN) 
WRITE(*,1¢2) (J,Y(J),U(J),B(J),D(J),A(J),C(J),J=l,NN) 

CONTINUE , S 'TIME=' E1¢.3 SX 
FORMAT(SX//SX, 'SOLUTION AT' ,SX, 'KK= ,13, X, , ' 

+ 'DELTIM=' ,El"'.3//) 
I' ' 9X 'A', 9X, 'C') FORMAT (3X, 'J', 6X, 'Y', 9X, 'U', 9X, 'B', 9X, 'D , , 

FORMAT(2X,I3,6El¢.3) 
END--N 

REFERENCES 

I. Anderson, John D., Jr.: Introduction to Flight, 3d ed., McGraw-Hill, New York, 1989. 
2. Anderson, John D., Jr.: Hypersonic and High Temperature Gas Dynamics, McGraw-Hill, New 

York, 1989. 
3. Rouse, Hunter, and Simon Ince: History of Hydraulics, Iowa Institute of Hydraulic Research, 

Ames, Iowa 1957. 
4. Tokaty, G. A.: A History and Philosophy of Fluid Mechanics, G. T. Foulis, Henly-on-Thames, 

England, 1971. 
5. Anderson, John D., Jr.: The History of Aerodynamics, and Its Impact on Flying Machines, 

Cambridge University Press, New York (in preparation). 
6. Kothari, A. P., and J. D. Anderson, Jr.: "Flows Over Low Reynolds Number Airfoils--Com

pressible Navier-Stokes Numerical Solutions," AIAA paper 85-0107, presented at AIAA 23rd 
Aerospace Sciences Meeting, Reno, Nev., Jan. 14-17, 1985. 

7. Pohlen, L. J., and T. J. Mueller: "Boundary Layer Characteristics of the Miley Airfoil at Low 
Reynolds Numbers," J. Airer., vol. 21, no. 9, pp. 658--664, September 1984. 

8. Anderson, John D., Jr.: Fundamentals of Aerodynamics, 2d ed., McGraw-Hill, New York, 1991. 
9. Bush, Richard J., Jr., Merle Jager, and Brad Bergman: "The Application of Computational Fluid 

Dynamics to Aircraft Design," AIAA paper 86-2651, 1986. 
10. Jameson, A., W. Schmidt, and E. Turkel: "Numerical Solutions of the Euler Equations by Finite 

Volume Methods Using Runge-Kutta Time Stepping Schemes," AIAA paper 81-1259, 1981. 
11. Chapman, Dean R.: "Computational Aerodynamics Development and Outlook," A/AA J., vol. 17, 

no. 12, pp. 1293-1313, December 1979. 
12. Moretti, G., and M. Abbett: "A Time-Dependent Computational Method for Blunt Body Flows," 

A/AA J., vol. 4, no. 12, pp. 2136--2141, December 1966. 
13. Anderson, Dale A., John C. Tannehill, and Richard H. Pletcher: Computational Fluid Mechanics 

and Heat Transfer, McGraw-Hill, New York, 1984. 
14. Fletcher, C. A.: Computational Techniques for Fluid Dynamics, vol. I: Fundamental and General 

Techniques, Springer-Verlag, Berlin, 1988. 
15. Fletcher, C. A.: Computational Techniques for Fluid Dynamics, vol. II: Specific Techniques for 

Different Flow Categories, Springer-Verlag, Berlin, 1988. 
16. Hirsch, Charles: Numerical Computation of Internal and External Flows, vol. I: Fundamentals of 

Numerical Discretization, Wiley, New York, 1988. 
17. Hirsch, Charles: Numerical Computation of Internal and External Flows, vol. II: Computational 

Methods for Inviscid and Viscous Flows, Wiley, New York, 1990. 
18. Hoffinann, K. A.: Computational Fluid Dynamics for Engineers, Engineering Education System, 

Austin, Tex., 1989. 
19. Hildebrand, Francis B.: Advanced Calculus for Applications, 2d ed., Prentice-Hall, Englewood 

Cliffs, N.J., 1976. 
20. Schlichting, H.: Boundary Layer Theory, 7th ed., McGraw-Hill, New York, 1979. 
21. Anderson, John D., Jr.: Modern Compressible Flow: With Historical Perspective, 2d ed., McGraw-

Hill, New York, 1990. 
22. Kreyszig, E.: Advanced Engineering Mathematics, Wiley, New York, 1962. 
23. Whitham, G. B.: Linear and Nonlinear Waves, Wiley, New York, 1974. 
24. Ames, W. F.: Nonlinear Partial Differential Equations in Engineering, Academic, New York, 1965. 
25. Courant, R., K. 0. Friedrichs, and H. Lewy: "Uber die Differenzengleichungen der Mathema

tischen Physik," Math. Ann, vol. 100, p. 32, 1928. 
26. Thompson, Joe F. (ed.): Numerical Grid Generation, North-Holland, New York, 1982. 

539 



540 REFERENCES 

27. Thompson, Joe F., Z. VA. Warsi, and C. Wayne Mastin: Numerical Grid Generation: Foundations 

and Applications, North-Holland, New York, 1985. 
28. Viviand, H.: "Conservative Forms of Gas Dynamic Equations," Rech. Aerosp., no. 1971-1, pp. 

65-68, 1974. 
29. Vinokur, M.: "Conservation Equations of Gas Dynamics in Curvilinear Coordinate Systems," J 

Comput. Phys., vol. 14, pp. 105-125, 1974. . . . . 
30. Sullins, G. A., J. D. Anderson, Jr., and J. P. Drummond: "Numencal Invest1gat1on of Supersomc 

Base Flow with Parallel Injection," AIAA paper 82-1002, 1982. 
31. Sullins, G. A.: "Numerical Investigation of Supersonic Base Flow with Tangential Injection," M.S. 

thesis Department of Aerospace Engineering, University of Maryland, College Park, 1981. 
32. Holst: T. L.: "Numerical Solution of Axisymmetric Boattail Fields with Plume Simulators," AIAA 

paper 77-224, 1977. ,, . . 
33. Roberts, B. 0.: "Computational Meshes for Boundary Layer Problems, Lecture Notes m Physics, 

Springer-Verlag, New York, pp. 171-177, 1971. . 
34. Thompson, J. F., F. C. Thames, and C. W. Mastin: "Automatic Numerical Generat10n of Body-

Fitted Curvilinear Coordinate Systems for Fields Containing Any Number of Arbitrary Two
Dimensional Bodies," J Comput. Phys., vol. 15, pp. 299-319, 1974. 

35. Corda, Stephen: "Numerical Investigation of the Laminar. Supersonic Flow over a Rearward
Facing Step Using an Adaptive Grid Scheme," M.S. thesis, Department of Aerospace Engmeenng, 

University of Maryland, College Park, 1982. . . 
36. Dwyer, H. A., R. J. Kee, and 8. R. Sanders: "An Adaptive Grid Method for Problems m Flmd 

Mechanics and Heat Transfer," AIAA paper 79-1464, 1979. 
37. Steinbrenner John P., and Dale A. Anderson: "Grid-Generation Methodology in Applied 

Aerodynami~s," in P. A. Henne (ed.), Applied Computational Aerodynamics, Progress in Astro
nautics and Aeronautics Series, vol. 125, AIAA, Washington, D.C., chap. 4, pp. 91-130, 1990. 

38. Karman, S. L., Jr., J.P. Steinbrenner, and K. M. Kisielewski: "Analysis of the F-16 Flow Field by a 

Block Grid Euler Approach," AGARD Conf Proc. 412, 1986. 
39. Venkatakrishnan, V, and D. J. Mavriplis: "Implicit Solvers for Unstructured Meshes," AIAA 

paper 91-1537-CP, Proc. AIAA 10th Comput. Fluid Dyn. Conf, pp. 115-124, June 24--27, 

1991. 
40. Hassan, O., K. Morgan, J. Peraire, E. J. Probert, and R. R. Thareja: "Adaptive Unstructured Mesh 

Methods for Steady Viscous Flow," AIAA paper 91-1538-CP, Proc. AIAA 10th Comput. Fluid Dyn. 

Conf, pp. 125-133, June 24--27, 1991. . 
41. Dezeeuw, Darren, and Kenneth G. Powell: "An Adaptively-Refined Cartesian Mesh Solver for 

the Euler Equations," AIAA paper 91-1542-CP, Proc. AIAA 10th Comput. Fluid Dyn. Conf, PP· 

166-180, June 24--27, 1991. 
42. Rubbert, Paul, and Dockan Kwak (eds): AIAA 10th Computational Fluid Dynamics Conference, 

June 24-27, 1991. 
43. Maccormack, R. W.: "The Effect of Viscosity in Hypervelocity Impact Cratering," AIAA paper 

69-354, 1969. 
44. Kuruvila, G., and J. D. Anderson, Jr.: "A Study of the Effects of Numerical Dissipation on the 

Calculation of Supersonic Separated Flows," AIAA paper 85-0301, 1985. 
45. Ames Research Staff: "Equations, Tables, and Charts for Compressible Flow," NACA Rep. 1135, 

1953. 
46. Abbett, M. J.: "Boundary Condition Calculation Procedures for Inviscid Supersonic Flow Fields," 

Proc. 1st AIAA Comput. Fluid Dyn. Conf, pp. 153-172, 1973. 
47. Shang, J. S., and S. J. Scherr: "Navier-Stokes Solutions for a Complete Re-Entry Configuration," 

J Airer., vol. 23, no. 12, pp. 881-888, December 19~6.. . ,, . 
48. Schroder, W., and F. Mergler: "Comparative Study oflnv1sc1d and Viscous Flows Over an STS, . m 

C. Hirsch, J. Periaux, and W. Kordulla (eds.), Computational Fluid Dynamics '92, vol. I, Elsevier, 

Amsterdam, 1992, pp. 323-330. 
49. Turkel, E., R. C. Swanson, V N. Vatsa, and J. A. White: "Multigrid for Hypersonic Viscous Two-

and Three-Dimensional Flows," AIAA paper 91-1572-CP, Proc. AIAA 10th Comput. Fluid Dyn. 

Con(, 1991. 
50. Vilsmeier, R., and D. Hanel: "Adaptive Solutions for Compressible Flows on Unstructured, 

REFERENCES 54 J 

Strongly A~isotropic Grids," in C. Hirsch, J. Periaux, and W. Kordulla (eds.), Computational Fluid 
Dynamics 92, vol. 2, Elsevier, Amsterdam, 1992, pp. 945-951. 

51. Vassberg, J. C., and K. R. Dailey: "AIRPLANE: Experiences, Benchmarks and Improvements " 
AIAA paper 90-2998, 1990. ' 

52. Petot, B., and A. Fourmaux: "Validation of Viscous and Inviscid Computational Methods Around 
Axial Flow.Turbine Blades," in C. Hirsch, J. Periaux, and W. Kordulla (eds.), Computational Fluid 
Dynamics 92, vol. 2, Elsevier, Amsterdam, 1992, pp. 611-618. 

53. Enomoto, ,,s_., and .c. Arakawa: "2-D and 3-D Numerical Simulation of a Supersonic Inlet 
Flowfield, m C. HJrsch, J. Periaux, and W. Kordulla (eds.), Computational Fluid Dynamics '92 
vol. 2, Elsevier, Amsterdam, 1992, pp. 781-788. ' 

54. Borland, C. J: "A Multidisciplinary Approach to Aeroelastic Analysis," in A. K. Noor and 
S. L. Vennen (eds.), Computing Systems in Engineering, vol. I Pergamon New York 1990 pp 
197-209. ' ' ' ' . 

55. Vandromme, D., and A. Saouab: "Implicit Solution of Reynolds-Averaged Navier-Stokes 
Equations for Supersomc Jets on Adaptive Mesh," in C. Hirsch, J. Periaux, and W. Kordulla 
(eds.)'. Computational Fluid Dynamics. '92, vol. 2, Elsevier, New York, 1992, pp. 727-731. 

56. Kandi!, 0. A., H. A. Kandi!, and C. H. Lm: "Supersonic Quasi-Axisymmetric Vortex Breakdown " 
AIAA paper 91-3311-CP, Proc. AIAA 9th Appl. Aerodyn. Conf, pp. 851-863, J 991. ' 

57. Rai, M. M., and P. Moin: "Direct Numerical Simulation of Transition and Turbulence in a Spatially 
Evolvmg Boundary Layer," AIAA paper 91-1607-CP, Proc. AIAA 10th Comput. Fluid Dyn Con{ 
pp. 890--914, 1991. . . , 

58. Shaw, CT.: "Predicting Vehicle Aerodynamics Using Computational Fluid Dynamics-A User's 
Perspective," Research in Automotive Aerodynamics, SAE Special Publication 747 pp. 119-132 
February 1988. ' ' 

59. Matsunaga, K., H. Mijata, K. Aoki, and M. Zhu: "Finite-Difference Simulation of 30 Vortical 
Flows Past Road Vehicles," Vehicle Aerodynamics, SAE Special Publication 908, pp. 65-84 
February 1992. ' 

60. Griffin, M .. E., R. Diwaker, J. D. Anderson, and E. Jones: "Computational Fluid Dynamics Applied 
to Flows m an Internal Combust10n Engine," AIAA paper 78-57, presented at AIAA 16th 
Aerospace Sciences Meeting, January 1978. 

61. M.ampaey, F., and Z. A. Xu: "An Experimental and Simulation Study of a Mould Filling Combined 
with Heat ,Transfer," in C. Hirsch, J. Periaux, and W. Kordulla (eds.), Computational Fluid 
Dynamics 92, vol. l, Elsevier, Amsterdam, 1992, pp. 421-428. 

62. Steijsiger, C., A. M. Lankhorst, and Y. R. Roman: "Influence of Gas Phase Reactions on the 
Deposition Rate of Silicon Carbide from the Precursors Methyltrichlorosilane and Hydrogen," in 
C. HJrsch, 0. C. Z1enk1ew1cz, and E. Onate (eds.), Numerical Methods in Engineering '9) 
Elsevier, Amsterdam, 1992, pp. 857-864. -, 

63. Toorma~, E;,A., and J. E. Berlamont: "Free Surface Flow of a Dense, Natural Cohesive Sediment 
Suspension, m C. Hirsch, J. Periaux, and W. Kordulla (eds.), Computational Fluid Dynamics '92 
vol. 2, Elsevier, Amsterdam, pp. 1005-1011, 1992. ' 

64. Bai, X. S., and L Fuchs: "Numerical Model for Turbulent Diffusion Flames with Applications," in 
C. Hirsch, J. Penaux and W. Kordulla (eds.), Computational Fluid Dynamics '92, vol. I, Elsevier, 
Amsterdam, 1992, pp. 169-176. 

65. McGuirk, J. !·, and G. E. Whittle: "Calculation of Buoyant Air Movement in Buildings-Proposals 
for a Numencal Benchmark Test Case, Computational Fluid Dynamics for the Environmental and 
Building Services Engineer-Tool or Toy? The Institution of Mechanical Engineers London pp 
13-32, November 1991. ' ' · 

66. Alamdari,E,. S. C. Edwards, and S. P. Hammond: "Microclimate Performance ofan Open Atrium 
Office Bmldmg: A Case Study in Thermo-Fluid Modeling," Computational Fluid Dynamics for 
the Environmental and Building Services Engineer-Tool or Toy? The Institution of Mechanical 
Engmeers, London, pp. 81-92, November 1991. 

67. Patankar,. S. V, and D. B. Spalding: "A Calculation Procedure for Heat, Mass and Momentum 
Transfer m Three-Dimensional Parabolic Flows," Int. J Heat Mass Transfer vol. 15 pp. 1787-
1806, 1972. ' ' 

68. Patankar, S. V: Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980. 



542 REFERENCES 

69. Oran, Elaine S., and Jay P. Boris: Numerical Simulation of Reactive Flow, Elsevier, New York, 
1987. 

70. Jacquotte, 0. P., and G. Coussement: "Structural Grid Variation Adaption: Reaching the Limit?" in 
C. Hirsch, J. Periaux, and W Kordulla (eds.), Computational Fluid Dynamics '92, vol. 2, Elsevier, 
Amsterdam, 1992, pp. 1077-1087. 

71. Degani, D. and Y. Levy: "Asymmetric Turbulent Vortical Flows over Slender Bodies," Proc. AIAA 
9th Appl. Aerodyn. Conj, pp. 756-765, September 1991. 

72. TECPLOT Users Manual, version 5, Amtec Engineering, Inc., Bellevue, Wash., 1992. 
73. Selmin, V., E. Hettena, and L. Formaggia: "An Unstructured Node Centered Scheme for the 

Simulation of3-D Inviscid Flows," in C. Hirsch, J. Periaux, and W. Kordulla (eds.), Computational 
Fluid Dynamics '92, vol. 2, Elsevier, Amsterdam, 1992, pp. 823-828. 

74. Maccormack, R. W.: "Current Status of Numerical Solutions of the Navier-Stokes Equations," 
AIAA paper 88-0513, 1988. 

75. Van Driest, E. R.: "Investigation of Laminar Boundary Layer in Compressible Fluids Using the 
Crocco Method," NACA Tech. Note 2579, January 1952. 

76. Stollery, J. L.: "Viscous Interaction Effects and Re-entry Aerothermodynamics: Theory and 
Experimental Results," Aerodynamic Problems of Hypersonic Vehicles, vol. I, AGARD Lecture 
Series 42, pp. 10-1-10-28, July 1972. 

77. Beam, R. M., and R. F. Warming: "An Implicit Finite-Difference Algorithm for Hyperbolic 
Systems in Conservation Law Form," J Comput. Phys., vol. 22, pp. 87-110, 1976. 

78. Briley, W.R., and H. McDonald: "Solution of the Three-Dimensional Navier-Stokes Equations by 
an Implicit Technique," Proceedings of the Fourth International Conference on Numerical 
Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 35, Springer-Verlag, Berlin, 1975. 

79. Peaceman, D. W., and H. H. Rackford: "The Numerical Solution of Parabolic and Elliptic 
Differential Equations," J Soc. Ind. Appl. Math., vol. 3, pp. 28-41, 1955. 

80. Douglas, J., and H. H. Rackford: "On the Numerical Solution of Heat Conduction Problems in Two 
and Three Space Variables," Trans. Am. Math. Soc., vol. 82, pp. 4231-4239, 1956. 

81. Godunov, S. K.: "A Difference Scheme for Numerical Computation of Discontinuous Solution of 
Hydrodynamic Equations," Math. Sb., vol. 4 7, pp. 271-306, 1959, in Russian; translated U.S. Joint 
Publications Research Service, JPRS 7226, 1969. 

Adaptive grid (see Grids) 
ADI (see Alternating-direction-implicit 

technique) 
Adiabatic wall condition, 81, 468 
Adiabatic wall temperature, 81 
Aeroelasticity, 526 
Aircraft flowfields: 

generic fighter, 279 
hypersonic body, 274, 278 
Northrop F-20, 10--13, 209 
space transportation system, 519, 520 
X-24C, 517, 518 

Alternating-direction-implicit (ADI) technique, 
243-247, 494-495 

Amplification factor, 160, 165 
Analytical domain, 163, 164 
Approximate factorization, 247, 492-496 
Approximate Riemann solver, 499, 507, 528 
Artificial viscosity, 236, 238-243 

for MacCormack's technique, 238, 363-364, 
366-370 

Automobile flowfields, 14-17 

Backward difference (see Finite differences) 
Base flow, 191 

(See also rearward-facing step) 
Beam-Warming method (see Implicit methods) 
Block tridiagonal matrices, 496-497 
Blunt body, supersonic, 29, 30, 119, 120 
Body forces, 61 
Boundary conditions: 

Abbett's condition (inviscid flow over walls), 
392-395 

for conservation form, 343 
no-slip, 80, 457 
physical, 90--92, 392 
for pressure correction method, 262, 263, 437 
reflection, 13 8 
for subsonic inflow, 303-306 
for subsonic outflow, 327-328 
for supersonic outflow, 305-307 

Boundary-fitted grid (see Grids) 
Boundary layer flows, 113, 114, 450, 472 

INDEX 

Caloric equation of state, 79 
Cartesian grid (see Grids) 
Cell Reynolds number, 456-457 
Central difference (see Finite differences) 
CFD (see Computational fluid dynamics) 
CFO-generated schlieren, 270, 271 
CFL condition (see Courant-Friedrichs-Levy 

condition) 
Characteristic lines, 97, 99, 162, 488 
Civil engineering applications, 19, 20, 22 
Compatibility equation, 10 I 
Composite plots, 274, 278 
Computational costs, 27 
Computational fluid dynamics: 

definition of, 23, 25, 26 
as design tool, 9-13 
new approach in, 2-3 
as research tool, 6-9 

Computational plane, definition of, 170, 171 
Computer graphic techniques, 264-279, 516-517 
Computer programming (see Programming 

procedures) 
Conservation form: 

of continuity equations, 51, 55 
of energy equation, 74 
general discussion of, 42, 90, 225, 480-482 
generic form of, 83, 481 
of momentum equation, 65, 66 
for quasi-one-dimensional nozzle flow, 336-

356 
strong form of, 88, 183, 185, 377, 452 
transformed form of, 185 
weak form of, 88 

Consistent equation (see Finite differences) 
Continuity equation, 49-60 

differential form, 55, 56 
integral form, 51, 53 
one-dimensional flow, 482 
quasi-one-dimensional flow, 286, 291 

Contour plots: 
density, 272, 520, 525 
flooded, 266, 268 
general discussion of, 265-270, 516 
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Contour plots (Cont.): 
gray-scale color, 266 
Mach number, 523, 524, 527 
pressure, 11, 241, 272, 279, 521, 524 
velocity, 267, 268 
vorticity, 15, 530-533 

Control surface, 41 
Control volume, 41 
Convective derivative, 45 
Couette flow, 416-445 
Courant-Friedrichs-Levy (CFL) condition, 162, 

302, 395, 457 
Courant number, 162, 324-325 
Cramer's rule, 98, 178, 230 
Crank-Nicolson method (see Implicit methods) 
CRAY computers, 28, 533 

Delta form, 496 
Detonation wave, 266-268 
Diagonalization, 500 
Difference equation (see Finite differences) 
Direct metrics (see Metrics) 
Direct numerical simulation, 530-533 
Dirichlet condition, 118 
Discretization, 125, 165 
Dispersion, 237 

(See also Numerical dissipation) 
Dissipation (see Numerical dissipation) 
Divergence form, 79 
Divergence of velocity, 4 7, 48 
Domain of dependence, 106, I 07 

Eigenvalues, I 02, 482, 487-489 
Eigenvector, 500 
Elliptic nature: 

definition of, 100, 103 
equations, 30, I 04, 105 
general discussion of, 117-119 
of pressure correction formula, 160 
regions in flow, 29, 277 

Energy equation, 66-74 
differential form, 70, 71 
one-dimensional flow, 482 
quasi-one-dimensional flow, 286, 295, 296 

Engine calculations, 14, 16, 17 
Engineering Research Center for Computational 

Field Simulation, 276 
Environmental engineering applications, 20-23, 

25, 26 
Errors: 

boundary condition, 321-322 
discretization, 154, 155 
general discussion of, 153-165 

Errors (Cont.): 
high-frequency, 513 
low-frequency, 513 
round-off, 155 

Euler equations, 77-79, 154 
Euler explicit form, 162 
Explicit methods, general discussion of, 145-153 

(See also Lax-Wendroff technique; 
MacCormack's technique) 

Finite differences: 
based on Taylor's series, 128 
consistent difference equation, 144 
difference equations, 142-145 
first-order forward, 130 
first-order rearward, 13 I 
fourth-order central, 13 5 
general concept, 123, 127 
modules, 134-136, 147, 149, 494 
one-sided, 139 
second-order central, 132 
second-order second central, 132-134 
upwind, 499 

Finite volumes: 
discretized equations, 16 7 
general concept, 123 

Flat plate flow, 447-476 
Flowcharts, 459-466 

(See also Programming procedures) 
Fluid element model, 41, 42 
Flux-corrected transport (FCT) method, 266 
Flux limiters, 509,510,512 
Flux terms, 84, 185, 339, 341, 380 
Flux variables, 85 
Flux-vector splitting, 500-502, 510, 511 
Forward difference (see Finite differences) 
Furnace applications, 21 

Gauss-Seidel method, 231 
Godunov schemes, 499, 502-508 
Governing flow equations: 

generic form, 83 
introduction to, 38-40 
for quasi-one-dimensional flow, 296 
summary of, 75-80 
transformed generic flow, 185 

Grid independence, 322-324, 355 
Grid points, 126, 137, 299, 423 
Grids: 

adaptive, 200-208 
boundary-fitted, 15, 18, 170, 192-200, 269 
C-type, 194 
compressed, 15, 186-192 

Grids (Cont.): 
elliptically generated, 194-200 
finite volume, 20 
generation of, 124, 168, 171 
0-type, 194 
rectangular (cartesian), 16, 169, 212-214, 240 
staggered, 250-253, 436 
structured, 126, 210 
unstructured, 126, 210-212, 523 

Heat conduction equation, 116, 121, 142, 145 
High-resolution schemes, 508-510 
Hyperbolic nature: 

definition of, 100, 103 
from eigenvalues, 488 
equations, 30, 104, 105 
general discussion of, I 06-111, 416 
regions in flow, 29, 277 

Implicit methods: 
Beam-Warming method, 490-492, 497 
Crank-Nicolson method, 148-151, 244, 420-

425, 489, 491 
general discussion of, 145-153, 489 
lagging coefficients method, 490 
linearization, 490-492 

Initial conditions, 307-308, 344, 362, 420 
Initial data lines, 108, 226, 227, 379, 386, 387 
Inverse metrics, 183 
Inverse transformation (see Transformations) 

Jacobi method, 231 
Jacobian: 

determinant of the transformation, 179, 180, 
206 

of the flux vector, 481, 493 
for one-dimensional flow, 486 

Laminar flow, 7-9 
Laplace's equation, 121, I 76 
Lax-Wendroff technique, 217-221 
Local time stepping, 302-303 

MacCormack's technique, 222-229, 238, 288, 
330,336, 375,387,448,449,453-455,460, 
461, 463-465, 474,497,517 

Mach angle, 376 
Mach disk, 528 
Mach number profiles, flat plate flow, 474, 476 
Mach wave, 376 
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Manufacturing applications, 17-19 
Marching solutions: 

general, 146, 153 
space marching, 225-232, 375 
time marching, 30, 85, 119, 146, 221 

Marching variables, 143 
Mass source term in pressure correction method, 

260,443,444 
Mathematical behavior of equations, 95-121, 277 
Mesh (see Grids) 
Mesh plots, 273, 275-277 

(See also Computer graphic techniques) 
Method of characteristics, I 02 
Metrics, 173, 178-183, 206,207 
Miley airfoil, 198, 199 
Models of the flow, 40-42 
Modified equation, 235 
Momentum equation: 

differential form, 64 
general discussion of, 60-66 
one-dimensional flow, 482 
quasi-one-dimensional flow, 286, 294 

Monotone variation, 499 
Multigrid method, 513-514, 521 

Naval architecture applications, 22, 23, 26 
Navier-Stokes equations, 64, 66, 75-77, 79, 154, 

225,236,239,249,250,266,417,450,451, 
490 

Neumann condition, 118 
Nonconservation form: 

of continuity equation, 53, 56 
of energy equation, 70, 72 
general discussion of, 42 
of momentum equation, 64 

Normal shock wave, 91, 357, 359 
Nozzle flow (see Quasi-one-dimensional nozzle 

flows) 
Numerical dispersion, 237 
Numerical dissipation, 232-243 
Numerical domain, 163, 164 

One-dimensional flow, 482-489 

Parabolic equations: 
boundary-layer equations, 113 
for Couette flow, 417, 421 
definition of, I 00 
general discussion of, 111-11 7 
heat conduction equation, 116 
parabolized Navier-Stokes equations, 115 
regions in flow, 277 
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Parabolized Navier-Stokes equations (see 
Parabolic equations) 

Parallel processors (see Processors J 
Particle paths, 15 
Physical plane, definition of, 170, 171 
Point-iterative method, 229 
Poisson equation, 260 
Prandtl-Meyer expansion wave, 374--415 
Prandtl-Meyer function, 377 
Pressure contours (see Contour plots) 
Pressure correction formula, 260, 441 
Pressure correction technique, 247-264, 435--445 
Pressure profiles, 469, 475 
Primitive variables, 85, 340, 380, 490 
Processors: 

parallel, 28, 153 
vector, 28 

Programming procedures, 459--467 

Quasi-one-dimensional nozzle flows: 
general discussion of, 283-372 
with shock wave, 356---3 72 
subsonic isentropic flow, 325-336 
subsonic-supersonic isentropic flow, 285-325, 

336---356 

Rearward-facing step, 240---243 
(See also Base flow) 

Rectangular grid (see Grids) 
Region of influence, 106, 107, 110 
Relaxation technique, 229-232 
Residual, 316, 317 
Riemann problem, 504 
Runge-Kutta scheme, 521 

Scatter plots, 273, 275 
(See also Computer graphic techniques) 

Schlieren (see CFD-generated schlieren) 
Shock-capturing method, 89-92, 356---372 
Shock-fitting method, 89 
Shock interaction, 268-270 
Shock layer, 449 
Shock tube problem, 502-504, 511, 512 
SIMPLE algorithms, 248, 261-262 

(See also Pressure correction technique) 
Solutions vector, 84, 87, 340 
Source term, 84 
Space marching (see Marching solutions) 
Stability criterion, 151 
Stability of solutions, 153-165 
Staggered grid (see Grids) 

Step size: 
spatial, 395-397 
time, 301-303, 455--457 

Streamlines, 21, 271-274 
Structured grid (see Grids) 
Submarine flow field, 27 
Substantial derivative, 43--46 
Successive overrelaxation, 231 
Supersonic nozzle flow, two-dimensional, 527 

Taylor's series, 128 
TECPLOT, 264 
Temperature profiles, 471, 472 
Thermal diffusivity, 116 
Thermal equation of state, 79 
Thomas' algorithm, 150, 243, 245, 246, 424, 

426--429, 534--538 
Time marching (see Marching solutions) 
Time step calculation, 301-303, 455--457 

(See also Courant-Friedrichs-Levy condition) 
Total-variation-diminishing schemes, 499, 509-

510, 512 
Transformations: 

of first derivatives, 173 
general discussion of, 124, 171-178 
inverse, 178 
of second derivative, 175, 176 

Trapezoidal rule, 491, 493 
Tridiagonal matrix, 150, 424, 496 
Truncation error: 

of difference equation, 144 
of finite difference, 130 
for grid independence, 322 

Turbulent flow, 7-9 
TVD schemes (see Total-variation-diminishing 

schemes) 

Unconditional instability, 162 
Unconditional stability, 151, 425 
Underrelaxation, 233 
Unstructured grid (see Grids) 
Upwind schemes, 497-508 
Upwinding (see Upwind schemes) 

Van Leer's flux splitting, 502 
Vector plots, 270---274 

(See also Computer graphic techniques) 
Vector processors (see Processors) 
Velocity profiles: 

for flat plate flow, 473, 475 
for rearward-facing step, 242 
for unsteady Couette flow, 431 

Viscous interaction, 4 70 
von Neumann stability method, 161 
Vortex-shock interaction, 528, 529 

Wave diagram, 504, 505 
Wave equation, 121, 161,498 

Wave number, 156---158 
Well-posed problems, 120 

xy plots, 264, 265 
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(See also Computer graphic techniques) 




