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PREFACE 

The importance of fiber-reinforced composites can be gaµged from the fact 
that the U.S. fiber reinforced polymer matrix composites industry has grown 
at an average rate of 6.5% since 1960, which is far greater than that of the 
conventional metallic materials aluminum · and steel, and is approximately 
twice the growth rate of the U.S. economy (see Chapter 1). This growth is 
due to the outstanding mechqnical properties, unique flexibility in design ca
pabilities, and ease of fabrication offered by the composites. Additional ad
vantages of these composites include lightweight, corrosion resistance, impact 
resistance and excellent fatigue strength. New applications of composites are 
being developed continuously and the development of new composites have 
resulted in the sus,tained.growth of the composites industry. 

The first and second editions of this book have been widely accepted as a 
textbook for university-level composite materials courses in several countries. 
They. also served as a useful reference source for practicing engineers and 
scientists wishing to continue their. education. The third edition has been 
prepared based on the authors contin~g experiences in teaching university
level courses and conducting seminars for industry. 

This book provides a complete treatment of the subject, covering mechan
ics, materials, analysis, fabrication, characterization, performance and other 
topics of practical importance. Basic consepts -are explained in simple lan
guage, and the subject is developed gradually, maintaining a balance between 
mechanics and materials aspects. A basic knowledge of the strength of ma
terials is sufficient to pursue most of the topics in this book. Example prob
lems and numerous illustrations throughout the book help to develop a better 
understanding of the subject. The exercise problems at the end of each chapter 
are provided for practice on application of the principles. 

The revisions for the third edition were aimed at making the text more 
self-sufficient by providing greater coverage of the composites technology. A 
new chapter on analysis of laminated plates and beams (Chapter 7) greatly 
enhances the analysis capabilities of the book. Another new chapter on emerg
ing composite materials (Chapter 11) provides brief coverage of this topic. 
Significant additions have been made to Chapter 2 ( discussion on fillers and 
resin transfer molding) and Chapter 10 (new section on measurement of phys
ical properties, and discussion on two new damage identification techniques). 
Chapter 5 on analy~s of an orthotropic lamina has been completely rewritten 
and reorganized to improve presentation and readability. Addition of several 



xiv PREFACE 

example problems and explanations in this chapter should enhance under 
standing of the subject. Several sections have been rewritten in many othe 
chapters, and new material added, most notably, the concepts of therma 
stresses (Chapter 6), free-edge effects and joints (Chapter 8), and fractur· 
mechanics (Chapter 9). The survey of commercially available computer pack 
ages in Appendix A.5 has been updated. 

With these additions and modifications, this book will serve the needs o 
undergraduate and graduate courses, as well as the needs of the practicin. 
engineers and scientists. The entire book will be difficult to cover in a one 
semester course. Depending on the background of the students and the leve 
of the course, appropriate topics may be .selected. In the first course of com 
posites Chapters 7-9 may be omitted. Chapters 1 through 4 should be ade 
quate to introduce composites in a general course on materials. Chapter 'i 
which deals with the analysis of laminated plates and beams, an.ct Chapters 
and 9, which deal with advanced topics and performance of composites, ma 
be covered in an advanced course. The contents and references of Chapter f 
9 and 11 should be helpful to those using or engaged in research studi~ 
dealing with composite materials. Exercise problems in Chapter 7, and som 
(marked with an asterisk) in Chapter 6 require lengthy calculations and shoul 
be assigned only selectively to the students who have competence with pe1 
sonal computers and the appropriate software (see Appendix A.5). A solutio 
manual for all the exercise problems is available and may be requested fror 
the authors or the publisher. 

The authors would like to acknowledge the help of Saikrishna Sundarai 
aman, a graduate student at the University of Missouri-Rolla, in solving ne, 
example and exercise problems. He also typed most of the new material i 
the book. 

BHAGW AN D. AGARW A 

LAWRENCE J. BROUTMA 

K.CHANDRASHEKHAR 



1 

INTRODUCTION 

1.1 DEFINITION 

The word "composite" means "cons.i§ting of two or more distinct parts." 
Thus a material having two or more distinct constituent materials or phases 
may be considered a composite material. However, we recognize materials as 
composites only when the constituent phases have significantly different phys
ical properties, and thus the composite properties are noticeably different from 
the constituent properties. For example, common metals almost always con
tain unwanted impurities or alloying elements; plastics generally contain small 
quantities of fillers, lubricants, ultraviolet absorbers, and other materials for 
commercial reasons such as economy and ease of processing, yet these gen
erally are not classified as composites. In the case of metals, the constituent 
phases often have nearly identical properties (e.g., modulus of elasticity), the 
phases are not generally fibrous in character, and one of the phases usually 
is present in small-volume fractions. Thus the modulus of elasticity of a steel 
alloy is insensitive to the amount of the carbide present, and metallurgists 
generally have not considered metal alloys as composites, particularly from 
the point of view of analysis. Nevertheless, two-phase metal alloys are good 
examples of particulate composites in terms of structure. Although plastics
which are filled for cost purposes and contain small amounts of additives
are composites, they need not be considered as such if their physical prop
erties are not greatly affected by the additives. Thus classification of certain 
materials as composites often is based on cases where significant property 
changes occur as a result of the combination of constituents, and these prop
erty changes generally will be most obvious when one of the phases is in 
platelet or fibrous form, when the volume fraction is greater than 10%, and 
when the property of one constituent is much greater (~5 times) than the 
other. 



2 INTRODUCTION 

Within this wide range of composite materials, a definition may be adopte 
to suit one's requirements. For the purpose of discussion in this book, corr 
posites can be consideted to be materials consisting of two or more chemicall 
distinct constituents, on a macroscale, having a distinct interface separatin 
them. This definition encompasses the fiber composite materials of primar 
interest in this text. This definition also encompasses many other types c 
composites that are not treated specifically in this book. 

1.2 CHARACTERISTICS 

Composites consist of one or more discontinuous phases embedded in a cor 
tinuous phase. The discontinuous phase is usually harder and stronger tha 
the continuous phase and is called the reinforcement or reinforcing materia 
whereas the continuous phase is termed the matrix. The most notable excef 
tion to this rule is the class of materials known as rubber-modified polymer. 
consisting of a rigid polymer matrix filled with rubber particles. 

Properties of composites are strongly influenced by the properties of the 
constituent materials, their distribution, and the interaction among them. Th 
composite properties may be the volume-fraction sum of the properties of th 
constituents, or the constituents may interact in a synergistic way so as t 
provide properties in the composite that are not accounted for by a simpl 
volume-fraction sum of the properties of the constituents. Thus, in describin 
a composite material as a system, besides specifying the constituent materia: 
and their properties, one needs to specify the geometry .of the reinforce mer 
with reference to the system. The geometry of the reinforcement may b 
described by the shape, size, and size distribution. However, systems contair 
ing reinforcements with identical geometry may differ from each other i 
many ways; for example, the reinforcement . in the systems may differ i 
concentration, concentration distribution, and orientation. Therefore, all thes 
factors may be important in determining the properties of the composites, bt 
seldom are all accounted for in the development of theoretical descriptior 
of composites. 

The shape of the discrete units of the discontinuous phase often may b 
approximated by spheres or cylinders. There are some natural materials sue 
as mica and the clay minerals and some man-made materials such as glm 
flakes that can best be described by rectangular cross-sectioned prisms c 
platelets. The size and size distribution control the texture of the materia 
Together with volume fraction, they also determine the interfacial area, whic 
plays an important role in determining the extent of the interaction betwee 
the reinforcement and the matrix. 

Concentration is usually measured in terms of volume or weight fractim 
The contribution of a single constituent to the overall properties of the corr 
posite is determined by this parameter. The concentration generally is n: 
garded as the single most important parameter influencing the composil 
properties. Also, it is an easily controllable manufacturing variable used t 
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alter the properties of the composite. The concentration distribution is a mea
sure of homogeneity or uniformity of the system. The homogeneity is an 
important characteristic that determines the extent to which a representative 
volume of material may differ in physical and mechanical properties from the 
average properties of the material. Nonuniformity of the system should be 
avoided because it reduces those properties that are governed by the weakest 
link in the material. F'or example, failure in a nonuniform material will initiate 
in an area of lowest strength, thus adversely affecting the overall strength of 
the material. 

The orientation of the reinforcement affects the isotropy of the system. 
When the reinforcement is in the form of particles, with all their dimensions 
approximately equal (equiaxed), the composite behaves essentially as an iso
tropic material whose properties are independent of direction. When the di
mensions of .the representative reinforcement particles are unequal, the 
composite may behave as an isotropic. material provided that the particles are 
randomly oriented, such as in the randomly oriented short-fiber-reinforced 
composites. In other cases the manufacturing process (e.g., molding of a 
short-fiber composite) may induce orientation of the reinforcement and hence 
induce some anisotropy. In continuous-fiber-reinforced composites, such as 
unidirectional or cross-ply composites, anisotropy may be desirable. More
over, the primary advantage of these composites is the ability to control an
isotropy by design and fabrication. 

The concentration distribution of the particles refers to their spatial rela
tions to each other. Particles may by uniformly dispersed in a composite and 
placed at regular spacings so that no two particles touch each other. On the 
other hand, it is possible to imagine a dispersion of particles so arranged that 
they form a network such that a continuous path connects all particles. This 
happens at a much lower concentration than. that at which the close packing 
of particles becomes possible. Such network-forming dispersions may have a 
significant influence on the electrical properties of the composites. An inter
esting example of this is the dispersion of carbon black in rubber. Above a 
volume concentration of about 10%, the electrical conductivity of the mixture 
increases markedly. This has been attributed to the network formation of 
carbon-black particles. 

1.3 CLASSIFICATION 

Most composite materials developed thus far have been fabricated to improve 
mechanical properties such as strength, stiffness, toughness, and high
temperature performance. It is natural to study together the composites that 
have a common strengthening mechanism. The strengthening mechanism 
strongly depends on the geometry of the reinforcement. Therefore, it is quite 
convenknt to classify composite materials on the basis of the geometry of a 
representative unit of reinforcement. Figure 1-1 represents a commonly ac
cepted classification .scheme for composite materials. 



Composite materials 
L __ 

I ·-~·-··· 1 

Fiber-reinforced composites Particle-reinforced composites 
(fibrous composites) (particulate composites) 

I 
Random Preferred 

orientation orientation 

~,~~~~~~'--~~~~---., 

Single-layer composites Multilayered (angle-ply) 
(including composites having composites 

same orientation and properties I 
in each layer) I 1 I Lam;nates Hybr;d, 

~,--~~~~~~~"'---~----~--~ ..... , 
Continuous-fiber-reinforced Discontinuous-fiber-reinforced 

composites composites 

I l 
l .-----~~. ·-, 

Unidirectional Bidirectional Random Preferred 
reinforcement reinforcement orientation orientation 

(woven reinforcements) 

Figure 1-1. Classification of composite materials. 
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With regard to this classification, the distinguishing characteristic of a par
ticle is that it is nonfibrous in nature. It may be spherical, cubic, tetragonal, 
a platelet, or of other regular or irregular shape, but it is approximately 
equiaxed. A fiber is characterized by its length being much greater than its 
cross-sectional dimensions. Particle-reinforced composites are sometimes re
ferred to as particulate composites. Fiber-reinforced composites are, under
standably, called fibrous composites. 

1.4 PARTICULATE COMPOSITES 

A composite whose reinforcement may be classified as particles is called a 
particulate composite. A particle, by definition, is nonfibrous and generally 
has no long dimension, with the exception of platelets. The dimensions of 
the reinforcement determine its capability of contributing its properties to the 
composite. Also, a reinforcement having a long dimension discourages the 
growth of incipient cracks normal to the reinforcement that otherwise might 
lead to failure, particularly with brittle matrices. Therefore, fibers are very 
effective in improving the fracture resistance of the matrix. In general, par
ticles are not very effective in improving fracture resistance. However, par
ticles of rubberlike substances in brittle polymer matrices improve fracture 
resistance by promoting and then arresting crazing in the brittle matrices. 
Other types of particles, such as ceramic, metal, or inorganic particles, pro
duce reinforcing effects in metallic matrices by different strengthening mech
anisms. The particles in a particulate composite place constraints on the 
plastic deformation of the matrix material between them because of their 
inherent hardness relative to the matrix. The particles also share the load, but 
to a much smaller extent than those fibers in fibrous composites that lie par
allel to the direction of load. Thus the particles are effective in enhancing the 
stiffness of the composites but do not offer the potential for much strength
ening. For example, hard particles placed in brittle matrices reduce the 
strength due to stress concentrations in the adjacent matrix material. Particle 
fillers, however, are used widely to improve the properties of matrix materials, 
such as to modify the thermal and electrical conductivities, improve perform
ance at elevated temperatures, reduce friction, increase wear and abrasion 
resistance, improve machinability, increase surface hardness, and reduce 
shrinkage. In many cases they are used simply to reduce cost. 

The particles and matrix material in a particulate composite can be any 
combination of metallic and nonmetallic materials. The choice of a particular 
combination depends on the desired end properties. Particles of lead are mixed 
with copper alloys and steel to improve their machinability. In addition, lead 
is .a natural lubricant in bearings made of copper alloys. Particles of many 
brittle metals such as tungsten, chromium, and molybdenum .are incorporated 
into' ductile metals to improve their elevated temperature performance while 
maintaining ductile characteristics at room temperature. Composites with par-
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ticles of tungsten, molybdenum, or their carbides in silver and copper matrice 
are used widely for electrical-contact applications. These applications requiI 
materials with properties such as high thermal and electrical conductivitie: 
high melting point, and low friction and wetting characteristics. These m, 
terials are also used for electrodes and related applications in the weldin 
industry. 

Cermets are examples of ceramic and metal composites. Oxide-based ce1 
mets are used extensively as tool materials for high-speed cutting, thermc 
couple protection tubes, furnace mufflers, and a variety of high-temperatur 
erosive applications. Carbide-based cermets mostly have particles of tungstet 
chromium, and titanium. Tungsten carbide in a cobalt matrix is used in mr 
chine parts requiring very high surface hardness such as cutting tools, win: 
drawing dies, valve parts, and precision gauges. Chromium carbide in a coba 
matrix is highly resistant to corrosion and abrasion and has a coefficient c 
thermal expansion close to that of steel. This makes it useful for valve part: 
nozzles, and high-load bearings operating at very high temperatures. Titaniur 
carbide in a nickel or cobalt matrix is well suited for high-temperature ar 
plications such as turbine parts, torch tips, and hot-mill parts. 

Inorganic fillers are used very effectively to improve various properties c 
plastics, such as to inerease _surface hardness, reduce shrinkage and eliminat 
crazing after molding, improve fire retardancy, provide color and improv 
appearance, modify the thermal and electrical conductivities, and most irr 
portant, greatly reduce cost without necessarily sacrificing the other desirabl 
properties. Many commercially important elastomers are filled with carbo 
black or silica to improve their strength and· abrasion resistance while main 
taining their necessary extensibility. Cold solders consist of metal powder 
suspended in thermosetting resins. The composite is hard and strong an 
conducts heat and electricity. Copper in epoxy increases the conductivity im 
mensely. High lead content in plastics acts as a sound deadener and shiel 
against gamma radiation. Fluorocarbon-based plastics are being used as beru 
ing materials. Metallic inclusions are incorporated to increase thermal con 
ductivity, lower the coefficient of expansion, and drastically reduce the wea 
rate. 

Thin flakes offer attractive features for an effective reinforcement. The 
have a primarily two-dimensional geometry and thus impart equal strength i 
all directions in their plane compared With fibers that are unidirectional re 
inf orcements. Flakes, when laid par:;illel, can be packed more closely tha 
fibers or spherical particles. Mica flakes are used in electrical and hea1 
insnlating applications. Mica.flakes embedded in a glassy matrix provide com 
posites that can be machined easily and are used in· electrical applicatiorn 
Aluminum flakes are employed commonly in paints and other coatings i 
which they orient themselves parallel to the surface and give the coatin 
exceptionally good properties. Silver flakes are employed where good con 
ductivity is required. It has not been possible to fully exploit the attractiv 
possibilities of flake composites because of fabrication difficulties. 
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Nanocomposites, which are emerging new composites, are discussed in 
Chap. 11. Clay-reinforced nanocomposites are particulate composites. While 
nanotubes are fibrous in character, . their size is very small compared with 
conventional fibrous reinforcements. Therefore, nanotube-reinforced nano
composites also may be analyzed as particulate composites, especially since. 
nanotube concentration is very small. 

Particulate composites are an important class of composite materials. The 
discussion in this text, however, deals primarily with fiber composites. 

1.5 FIBER-REINFORCED COMPOSITES 

It is well known that the measured strengths of most materials are found to 
be much smaller (by a couple of orders of magnitude) than their theoretical 
strengths. The discrepancy in strength values is believed to be due to the 
presence of imperfections or inherent flaws in the material. An attempt to 
minimize or eliminate flaws enhances the strength of a material. Flaws in the 
form of cracks that lie perpendicular to the direction of applied loads are 
particularly detrimental to strength. Therefore, compared with the strength of 
the bulk material, man-made filaments or fibers of nonpolymeric materials 
exhibit much higher strengths along their lengths because large flaws that 
may be present in the bulk material are minimized owing to the small cross
sectional dimensions of the fiber. In the case of polymeric materials, orien
tation of the molecular structure is responsible for high strength and stiffness. 
Properties of some common types of fibers as well as some conventional 
materials are given in Table 1-1, which clearly shows the importance of fibers 
in achieving higher strengths. The high strength of glass fibers is attributed 
to a defect-free surface, whereas graphite and aramid fibers attain their 
strength as a result of improved orientation of their atomic or molecular struc
ture. The most important reinforcement fiber is E-glass because of its relative 
low cost. However, boron, graphite, and the aramid polymer fibers (Kevlar 
49) are most exceptional because of their high stiffness values. Of these, the 
graphite fibers offer the greatest variety because of the ability to control their 
structure. 

Fibers, because of their small cross-sectional dimensions, are not directly 
usable in engineering applications. They are, therefore, embedded in matrix 
materials to form fibrous composites. The matrix serves to bind the fibers 
together, transfer loads to the fibers, and protect them against environmental 
attack and damage due to handling. In discontinuous fiber-reinforced com
posites, the load-transfer function of the matrix is more critical than in 
continuous-fiber composites. The fibrous composites have become the most 
important class of composite materials because they are capable of achieving 
high strengths. 

Fibrous composites can be classified broadly as single-layer and multilayer 
(angle-ply) composites on the basis of studying both the theoretical and ex-
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Table 1-1 Properties of fibers and conventional bulk materials 

Tensile Tensile 
Modulus Strength Density Specific Specific 

(E) (o-u) (p) Modulus Strength 
Material (GPa) (GPa) (g/cm3) (Elp) (a-,/ p) 

Fibers 
E-glass 72.4 3.5° 2:54 28.5 1.38 
S-glass 85.5 4.6° 2.48 34.5 1.85 
Graphite (high 

modulus) 390.0 2.1 1.90 205.0 1.1 
Graphite (high 

tensile strength) 240.0 2.5 1.90 126.0 1.3 
Boron 385.0 2.8 2.63 146.0 1.1 
Silica 72.4 5.8 2.19 33.0 2.65 
Tungsten 414.0 4.2 19.30 21.0 0.22 
Beryllium 240.0 1.3 1.83 131.0 0.71 
Kevlar 49 (aramid 

polymer) 130.0 2.8 1.50 87.0 1.87 
Conventional materials 

Steel 210.0 0.34-2.1 7.8 26.9 0.043-0.2' 
Aluminum alloys 70.0 0.14-0.62 2.7 25.9 0.052-0.2: 
Glass 70.0 0.7-2.1 2.5 28.0 0.28-0.8, 
Tungsten 350.0 1.1-4.1 19.30 18.1 0.057-0.2 
Beryllium 300.0 0.7 1.83 164.0 0.38 

"Virgin strength values. Actual strength values prior to incorporation into composite are approx 
imately 2.1 (GPa). 

perimental properties. "Single-layer" composites actually may be made fron 
several 9istinct layers with each layer having the same orientation and prop 
erties, and thus the entire laminate may be considered a "single-layer" com 
posite: In the case of molded composites made with discontinuous fibers 
although the planar fiber orientation may not be uniform through the thick 
ness, there are no distinct layers, and they can be classed as single~laye 
composites. In the case of composites fabricated from nonwoven mats, th 

. random orientation is constant in each layer, and the resulting composit1 
would be considered a single-layer composite even though a resin-rich laye 
might be found between each reinforcement layer on microscopic examina 
tion. Most composites used in structural applications are multilayered; that is 
they consist of several layers of fibrous composites. Each layer or lamina i 
a single-layer composite, and its orientation is varied. according to design 
Each layer of the composite is usually very thin, typically of a thickness o 
0.1 mm, and hence cannot be used directly. Several ideli1tica~ or differen 
layers are bonded together to form a multilayered composite u;able for en 
gineering applications. When the constituent materials in each layer are th 
same, they are called simply laminates. Hybrid laminates refer to multilayere, 
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composites consisting of layers made up of different constituent materials. 
For example, one layer of a hybrid laminate may be a glass-fiber-reinforced 
epoxy, whereas another layer may be graphite-fiber-reinforced epoxy. It is 
possible, but not as common, to find hybrid composites having a mixture of 
fibers within the single layer. A single layer of a composite, therefore, rep
resents a basic building block for its structural applications. 

Reinforcing fibers in a single-layer composite may be short or long 
compared with its overall dimensions. Composites with long fibers are 
called continuous-fiber-reinforced composites, and those with short fibers, 
discontinuous-fiber-reinforced composites. A further distinction is that a 
discontinuous-fiber composite can be considered to be one in which the fiber 
length affects the properties of the composite. In continuous-fiber-reinforced 
composites it may be assumed that the load is applied directly to the fibers 
and that the fibers in the direction of load are the principal load-carrying 
constituent. The latter assumption is particularly valid when high-modulus 
fibers are used in large concentrations. Thus the principal purpose of a matrix 
is not to be a load-carrying constituent but essentially to bind the fibers to
gether and protect them. The failure mode of such composites is also gen
erally controlled by the fibers. 

The continuous fibers in a "single-layer" composite may be all aligned in 
one direction to form a unidirectional composite. Such composites are fab
ricated by laying the fibers parallel and saturating them with resinous material, 
such as polyester or epoxy resin, that holds the fibers in position and serves 
as the matrix material. Such forms of preimpregnated fibers are called pre
pregs. Generally, a removable backing is also provided to prevent the layers 
from sticking together while being stored. The backing provides additional 
means to hold the fibers in position. The unidirectional composites are very 
strong in the fiber direction but generally are weak in the direction perpen
dicular to the fibers. Therefore, unidirectional prepregs are stacked together 
in various orientations to form laminates usable in engineering applications. 
However, unidirectionally glass-reinforced adhesive tapes are used widely for 
heavy-duty sealing applications, and some unidirectional composites are used 
for fishing poles and other rodlike structures. 

The continuous reinforcement in a single layer also may be provided in a 
second direction to achieve more balanced properties. The bidirectional re
inforcement may be provided in a single layer in mutually perpendicular 
directions as in a woven fabric. The bidirectional reinforcement may be such 
that the strengths in two perpendicular directions are approximately equal. In 
some applications, a minimum of reinforcement perpendicular to the primary 
direction is provided only to prevent damage and fiber separaqon in handling 
owing to the poor strength in the transverse direction. In such cases, the 
transverse strength is much less than the strength in the direction of primary 
reinforcement 

The orientation of short or discontinuous fibers cannot be controlled easily 
in a composite material. In most cases, the fibers are assumed to be randomly 
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oriented in the composite. However, in the injection molding of a fiber
reinforced polymer, considerable orientation can occur in the flow direction. 
Different areas of a single molding can have quite different fiber orientations 
(see Fig. 4-11 on page 149). Short fibers, sometimes referred to as chopped 
fibers, may be sprayed simultanevusly with a liquid resin against a mold to 
build up a reinforced-plastic structure. Alternatively, chopped fibers may be 
converted to a lightly bonded preform or mat that can be later impregnated 
with resin to fabricate single-layer composites. In all these processes, the 
chopped fibers generally lie parallel to the surface of the mold and are ori
ented randomly in planes parallel to the surface. Therefore, properties of a 
discontinuous-fiber-reinforced composite can be isotropic; that is, they do not 
change with direction within the plane of the sheet. 

Chopped fibers also may be blended with resins to make a reinforced 
molding compound. These fibers tend to become oriented parallel to the di
rection of material flow during a compression- or injection-molding operation 
and thus get a preferential orientation. Composites fabricated in this manner 
are not isotropic. Their properties depend, among other things, on the degree 
of preferential orientation achieved-during the fabrication process. 

1.~ APPLICATIONS OF F~BER COMPOSITES 

The two outstanding features of oriented-fiber composites are their high 
strength-weight ratio and contrQlled anisotropy. The strength and modulus of 
commonly used bidirectional composites are compared with those of conven
tional structural materials in Table 1-2. Since polycrystalline metals have 
equal properties in all directions, for a fair comparison, bidirectional laminate 
(e.g., cross-ply) properties are used in Table 1-2. Bidirectional laminates have 

Table 1-2 Proper:ties of conventional structural materials and bidirectional (cross-ply) 
fiber composites 

Fiber 
Volume Tensile Tensile 
Fraction Modul1's Strength Density Specific Specific 

(Vf) (E) (0-0 ) (p) Modulus Strength 
Material (%) (GPa) (GPa) (g/cm3) (El p) (u) p) 

Mild steel 210 0.45-0.83 7.8 26.9 0.058-0.106 
Aluminum 

2024-T4 73 0.41 2.7 27.0 0.152 
6061-T6 69 0.26 2.7 25.5 0.096 

E-glass-epoxy 57 21.5 0.57 1.97 10.9 0.26 
Kevlar 49-epoxy 60 40 0.65 1.40 29.0 0.46 
Carbon .fiber-epoxy 58 83 0.38 l.54 53.5 0.24 
Boron-epoxy 60 106 0.38 2.00 53.0 0.19 
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strengths and moduli approximately one-half of those of unidirectional lam
inates. They have equal properties in two principal directions and show 
smaller property. variation with direction. Fiber composites generally are su
perior to metals with respect to specific strength and modulus (see Table 1-
2). However, glass-fiber composites are inferior to both steel and aluminum 
with respect to specific modulus. In applications where the structure's weight 
is a factor in the design, comparisons should be made on the basis of specific 
properties of the materials. 

Controlled anisotropy means that the ratio of property values in different 
directions can be varied or controlled. For example, in a unidirectional com
posite, tl>P. longitudinal strength-transverse strength ratio can be changed eas
ily by changing the fiber volume fraction. Similarly, other properties can be 
altered by altering the material and manufacturing variables. Further, lami
nates are designed and constructed from unidirectional composites to obtain 
desired directional properties to match requirements of specific applications. 

These two features, high specific strength and controlled anisotropy, make 
fiber composites very attractive structural materials. Their other advantages 
include ease of manufacture and structural forms that are otherwise incon
venient or impossible to manufacture. Their use, therefore, in aerospace and 
transportation industries is increasing continuously. 

Fiber-reinforced polymer matrix composites are the most widely used fiber 
composites. The U.S. polymer composite industry has grown at an average 
rate of 6.5% since 1960, which is approximately twice the growth rate of the 
U.S. economy [1]. U.S. growth in composites is compared with that of steel, 
aluminum, and the U.S. economy (GDP) in Fig. 1-2. Between 1960 and 2004, 
the U.S. consumption of steel doubled, the U.S. economy or gross domestic 
product (GDP) tripled, consumption of aluminum quadrupled, and.composites 
consumption grew 16 times (see Fig. 1-2). It is estimated· that in 2004, the 

1700 

1500 
Q 1300 Q ... 
II 1100 

Q 
(.() 900 en ... 
>< 700 
(I) 
,::, 

500 .5 
300 

100 
1960 64 68 72 76 80 84 88 92 96 '00 '04 

Year 

Figure 1-2. Growth of composites in the United States compared with steel, aluminum, and 
GDP. (Adapted from MacNeil [1].) 
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U.S. composites industry shipped 1.8 x 109 kg (4 billion lb) of finished 
products to domestic customers. These composites are found in applications 
in many industries, such as automotive, construction, appliance, marine, cor
rosion, electrical, and aerospace. The percentage consumption of composites 
in different industries is shown in Fig. 1-3. 

The maintenance of transportation infrastructure, especially bridges, is a 
growing concern worldwide. Finding innovative, cost-effective solutions for 
the repair and replacement of concrete and steel in bridges is a necessity. 
Bridge decking made from composite materials may be a promising alterna
tive to conventional materials [2,3]. Several composite bridges have been 
installed successfully in the United States. One such bridge, designed, man
ufactured, and installed at the University of Missouri-Rolla (UMR), is de
scribed in the next paragraph. 

A 9.14-m-long and 2.74-m-wide composite bridge was designed and built 
with funding from the Missouri Department of Transportation and the Na
tional Science Foundation [4,5]. The bridge can sustain a class H-20 truck 
passage. This required the design load to be 21 tons. The bridge was con
structed from pultruded hollow composite tubes of 76 mm x 76 mm square 
cross section with a wall thickness to 6.35 mm. Five middle layers of the 

Aircraft 
1% 

Electrical 
10% 

Transport 
32% 

Estimated 2004 composites consumption: 1.8 x 1 os kg (4.0 billion lb) 

Figure 1-3. Estimated percentage use of composites in different U.S. industries in 2004. 
(Adapted from MacNeil [1].) 
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Figure 1-4. Cross section of a composite bridge manufactured at the University of Missouri
Rolla. 

Figure 1-5. The composite bridge installed at the UMR campus with a truck on it. 
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bridge, out of a total of seven layers, are made of commercially available 
glass-vinyl ester tubes. The top and bottom layers are made of carbon-vinyl 
ester tubes, pultruded in the laboratory. A cross section of the bridge is shown 
in Fig. 1-4. The bridge, installed in July 2000 on the UMR campus (Fig. 1-
5), is being used by pedestrian and bicycle traffic, as well as by campus 
maintenance vehicles such as snow plows and lawn mowers. The bridge per
formance is being monitored remotely by means of embedded fiberoptic 
sensors. Based on the results so far, the bridge is estimated to perform 
satisfactorily for 75 years. The current estimates also show that such bridges 
will be cost-effective on a long-term basis, although its initial cost was about 
25% higher than the conventional-material bridge. 

EXERCISE PROBLEMS 

1.1. Think of as many naturally occurring materials as you can that could be 
classed as composite materials and classify them according to Fig. 1-1. 

1.2. Prepare a list of man-made materials-metals, ceramics, and plastics
and also classify them according to Fig. 1-1, provided that they are 
considered composites. 

1.3. Prepare a graph using specific strength and specific modulus as coordi
nate axes, and using data in Table 1-1, plot the points for various metals, 
fibers, and bidirectional composites. Also show points for unidirectional 
composites using data from Table 3-1. Add any other materials you feel 
are relevant. 

1.4. (a) A rectangular cross-sectional beam subjected to a bending moment 
is made of steel and is 10 cm in width and 6 mm in thickness. If 
the width of the beam is held constant, calculate the beam thickness 
if designed from 2024-T4 aluminum and the various composites 
shown in Table 1-2 to provide the equivalent stiffness (El) in one 
case and in another the equivalent strength. 

(b) Calculate the beam weight differences (per unit of beam length) for 
the preceding cases. 

(~) For all materials considered in part (a), if the beams are to be of 
identical weight, calculate the stiffnesses and bending strengths rel
ative to those of the steel beam. 

1.5. An example of a synergistic property of a composite is the toughness of 
a glass-fiber-reinforced thermosetting plastic. In other words, the tough
ness of the composite is much greater than the toughness of both the 
glass fiber and the thermosetting plastic and cannot be predicted by a 
volume-fraction law. Why? 
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2 
FIBERS, MATRICES, 
AND FABRICATION 

OF COMPOSITES 

A broad overview of materials aspects of fiber composites is presented in this 
chapter. Important reinforcing fibers and matrix materials are discussed in the 
first two sections, and composite fabrication processes, in the last section. 

2.1 ADVANCED FIBERS 

A great majority of materials are stronger and stiffer in the fibrous form than 
as a bulk material. A high fiber aspect ratio (length-diameter ratio) permits 
very effective transfer of load via matrix materials to the fibers, thus taking 
advantage of their excellent properties. Therefore, fibers are very effective 
and attractive reinforcement materials. Reinforcing fibers used in advanced 
composites are discussed in this section. 

2.1.1 Glass Fibers 

Glass fibers are the most common of all the reinforcing fibers for polymer 
matrix composites. The principal advantages of glass fibers are the low cost 
and high strength. However, glass fibers have poor abrasion resistance, which 
reduces their usable strength. They also exhibit poor adhesion to some pol
ymer matrix resins, particularly in the presence of moisture. To improve ad
hesion, the glass fiber surface often is treated with chemicals called coupling 
agents (mostly silanes). Glass fibers also have a lower modulus compared 
with the other advanced reinforcing fibers such as Kevlar, carbon, and boron. 
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2.1.1.1 Production of Glass Fibers Two forms of fiberglass can be pro
duced-continuous fiber and staple (discontinuous) fiber. Both forms are 
made by the same production method up to the fiber-drawing stage. 

Ingredients such as sand, limestone, and alumina are dry-mixed and melted 
in a refractory furnace. The temperature of the melt varies for each glass 
composition but generally is about 1260°C. The molten glass flows directly 
into the fiber-drawing furnace in the direct-melt process or flows into a 
marble-making machine in the. marble process. The marbles are subsequently 
remelted and drawn into fibers. Most fiberglass is currently produced by the 
direct-melt process, illustrated schematically in Fig. 2-1. 

Continuous fibers are produced by introducing molten glass into a platinum 
bushing, where the molten glass is gravity-fed through a multiplicity of holes 
in the base of the bushing. The molten glass exits from each orifice and is 
gathered together and attenuated mechanically to the proper dimensions, 
passed through a light water spray (quench), and then traversed over a belt 
that applie's a protective and lubricating binder or size to the individual fibers. 
These fibers then are gathered together into a bundle of fibers called a strand 
or end. The fiberglass strand, typically consisting of 204 filaments, is then 
wound onto a receiving package (spool) at speeds of up to 50 mis. This 
"cake" is then conditioned or dried prior to further processing into other 
textile forms. 
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Figure 2-1. Glass-fiber production process. 



18 FIBERS, MATRICES, AND FABRICATION OF COMPOSITES 

Staple fibers are produced by passing a jet of air across the orifices in the 
base of the bushing, thus pulling individual filaments 20-40 cm long from 
the molten glass exiting from each orifice. These fibers are collected on a 
rotating vacuum drum, sprayed with a binder, and gathered as a "sliver" that 
can be drawn and twisted into yams. 

2.1.1.2 Glass Composition and Properties Glass fibers are amorphous 
solids. Chemically, glass is composed primarily of a silica (Si02) backbone 
in the form of (-Si04-)n tetrahedra. Modifier ions are added for their con
tribution to glass properties and manufacturing capability. 

For structural composites, the two commonly used types of glass fiber are 
E-glass and S-glass. Compositions of these are given in Table 2-1 and some 
important properties in Table 2-2. At present, E-glass constitutes the majority 
of glass-fiber production. 

2. 1. 1.3 Surface Treatment of Fibers: Sizes and Coupling Agents The 
chemical treatments applied during the forming of glass fibers are called sizes. 
These are of two general types: temporary sizes and compatible sizes. 

The temporary sizes are applied to minimize the degradation of strength 
resulting from abrasion of fibers against one another and to bind the fibers 
together for easy handling in forming woven (twisting and weaving) glass
fiber products. These sizes are often starch-oil sizes. Ingredients of starch-oil 
sizes interfere with good bonding between the fibers and impregnating resin. 
Oil, emulsifying agent, and lubricant prevent good fiber wetting by the resin, 
and the starch, gelatin, and polyvinyl alcohol result in high water absorption 
and poor fiber-resin adhesion in the presence of moisture. Sizes of this type 
must be removed and replaced by a finish (coupling agent) before the fibers 
can be impregnated with resin. The sizes are easily removed by heating the 
fibers in an air-circulating oven at 340°C or higher temperatures for 15-20 h. 

Table 2-1 Typical compositions of E-glass and S-glass 
fibers 

% Weight 

Material E-Glass S-Glass 

Silicon oxide 54.3 64.20 
Aluminum oxide 15.2 24.80 
Ferrous oxide 0.21 
Calcium oxide 17.2 0.01 
Magnesium oxide 4.7 10.27 
Sodium oxide 0.6 0.27 
Boron oxide 8.0 0.01 
Barium oxide 0.20 
Miscellaneous 0.03 
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Table 2-2 Properties of E-glass and S-glass fibers 

Property, units 

Density, g/ cm3 

Tensile strength,a MPa 
Tensile modulus, GPa 
Range of diameter, µ,m 
Coefficient of thermal expansion, 1 o-6 /°C 

E-Glass 

2.54 
3448 

72.4 
3-20 

5.0 

S-Glass 

2.49 
4585 

85.5 
8-13 

2.9 

0 Virgin values, immediately on formation. Usable values in finished products may range from 
50-75% of virgin values. 

The compatible sizes are applied to help improve initial adhesion of resin 
to glass and to reduce the destructive effects of water and other environmental 
forces on this bond. The compatible sizes are often called coupling agents. 
The most common coupling agents are organofunctional silanes. Silane cou
pling agents have the general chemical formula 

where n = 0-3 
Y = organofunctional group that is compatible with polymer matrix 
X = hydrolyzable group on silicon 

They are generally applied to glass fibers from water solutions and applied 
from 0.1-0.5% of the weight of glass treated. The hydrolyzable groups are 
essential for generating intermediate silanols as follows: 

A common silane used for epoxy matrix composites is y-amino propyl tri
ethoxy silane and has the structure 

H2NCH2Cfl2{'H2Si(OC2H5 )3 

l Hydrol;zed 

H2NCH2CH2CH2Si(OH)3 

The silanol functional group establishes hydrogen bonds with the glass sur
face through hydroxyl (-OH) groups present on the glass surface. The or
ganofunctional group may react with the polymer matrix, forming strong 
covalent bonds, and/ or may form physical bonds or van der Waals bonds. 
Although the coupl_i.ng agent may have three reactive silanols per molecule, 
if the reactive sites on a glass surface are spaced far apart, only one silanol 
group per molecule may bond to the surface. 
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The remaining silanol groups may condense with adjacent silanols to form a 
siloxane layer or may remain partly uncondensed at the surface. 

Moisture at the glass surface is an important element with regard to the 
function and success of silanes. Glass surfaces, immediately on forming, ab
sorb water molecules to form hydroxyl groups. The subsequent interaction 
with silanols was shown earlier. It is thought that coupling agents allow better 
retention of interfacial strength when composites are subjected to moisture 
because of their ability to reversibly bond with water molecules at the inter
face. For example, without coupling agents, water molecules diffusing into a 
composite could displace the organic polymer functional groups at the inter
face, thus in effect plasticizing and weakening the interface. The following 
diagram represents the interaction with penetrating moisture at the interface 
in the presence of a coupling agent: 
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Although any individual bond of coupling agent to glass surface is hydrolyz
able, the reversible nature of this hydrolysis prevents complete loss of adhe
sion as long as the silane-modified resin retains.its integrity. 

The major contribution of silane coupling is to maintain the strength oJ 
the interface in the presence of moisture. For polymer matrices that by them
selves do not bond well to glass, improvements in dry strengths also may be 
achieved. The principal composite properties, which will be better preserved 
include transverse tensile strength, off-axis tensile strengths, and shea1 
strengths. 
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2.1.1.4 Forms of Glass Fiber Glass fibers are commercially available in 
various forms suitable for different applications. Some of them are described 
in the following paragraphs and are illustrated in the photographs in Fig. 
2-2. 

FIBERGLASS ROVING Fiberglass roving is a collection of parallel continuous 
ends of filaments. Conventional rovings are produced by winding together the 
number of single strands necessary to achieve the desired yiekl (number of 
meters of roving per kilogram of weight). Generally, rovings are made with 
fibers of diameter 9 or 13 µm. Roving yields vary from about %00 to 450 
m/kg and typically have 20 strands. Rovings are used directly in pultrusion, 
filament winding, and prepreg manufacture. 

Figure 2-2. Photographs of glass fibers in different forms: (a) roving, {b) chopped strand, (c) 
chopped-strand mat, {d) woven roving. 
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Figure 2-2. (Continued) 

wovEN ROVING Rovings may be woven into a heavy, \Coarse-weave fabri< 
for· applications that require rapid thickness buildup over. Jarge areas. Thi: 
characteristic is especially useful in the manufacture of fiberglass boats, var 
ious marine products, and many types of tooling. Woven rovings are available 
in different widths and weights. 

Chopped-Strand Mat and Other Mats There are three basic forms of fiber 
glass mat: chopped-strand mat, continuous-strand mat, and surfacing mat o 
veil. 
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Chopped-strand mat is a nonwoven material in which the fiberglass strands 
from roving are chopped into 25-50-mm lengths, evenly distributed at ran
dom onto a horizontal plane, and bound together with an appropriate chemical 
binder. These mats are available in widths of from 5 cm to 2 m and weigh 
0.25-0.92 kg/m2• 

Continuous-strand mat consists of unchopped continuous strands of fiber
glass deposited and interlocked in a spiral fashion. This mat is open and 
springy but, as a result of mechanical interlocking, does not require much 
binder for adequate handling strength. 

Surfacing mat or veil is a very thin mat of single continuous filaments 
often used as a surface reinforcing layer in hand lay-up or molding process 
to minimize telegraphing the primary reinforcement through to the finished 
surface of a component, thus providing a smoother surface. 

TEXTILE FIBERGLASS YARN A yam is a combination of strands that can be 
woven suitably into textile materials. The continuous, individual strand as it 
comes from the bushing represents the simplest form of textile fiberglass yarn 
and is referred to as a single yarn. In order for this yarn to be used properly 
and efficiently in a weaving operation, additional strand integrity is introduced 
by twisting it slightly, usually less than 40 turns per meter. 

However, many woven fabrics require yarns that are heavier than can be 
conveniently drawn from a bushing. These can be produced by combining 
single strands via twisting and plying operations. Typically, this involves 
twisting two or more strands together and subsequently plying (i.e., twisting 
two or more of the twisted strands together). 

FIBERGLASS FABRIC Fiberglass yam is woven into fabric by standard textile 
operations. The properties and contribution to product performance of fiber
glass fabric depend on the fabric construction, that is, the number of yams 
per inch in each direction, weave pattern, and yarn type. 

CHOPPED-STRAND MILLED FIBERS Continuous fiberglass strands can be 
chopped to specific lengths or hammer-milled into very short fiber lengths 
(generally 0.4-6.5 mm). The actual lengths are determined by the diameter 
of the screen openings through which the fibers pass during the milling. 
Milled fibers are used as reinforcements and fillers for thermoplastic and 
thermosetting resins. 

2.1.2 Carbon and Graphite Fibers 

Carbon/ graphite fibers are the predominant high-strength, high-modulus re
inforcement used in the fabrication of high-performance polymer-matrix com
posites. Their use is growing rapidly owing to a significant reduction in their 
price in the 1990s and an increase in their availability. Besides aerospace 
applications, they are now being u,sed in sporting goods, automotive, civil 
infrastructure, offshore oil, and mahy other consumer applications. 
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In the graphite structure, the carbon atoms are arranged in the form of 
hexagonal layers with a very dense packing in the layer planes. The high
strength bond between carbon atoms in the layer plane results in an extremely 
high modulus, whereas the weak van der Waals-type bond between the neigh
boring layers results in a lower modulus in that direction. Strictly speaking, 
the term "graphite fibers" is a misnomer because there is no true graphite 
crystal structure in the fibers. The term "graphite fiber" is used to describe 
fibers that have a carbon content in excess of 99%, whereas the term "carbon 
fiber" describes fibers that have a carbon content of 80-95%. The carbon 
content is a function of the heat-treatment temperature. 

The current technology for producing carbon fibers generally centers on 
the thermal decomposition of various organic precursors. However, currently 
available carbon fibers are made using one of the three precursor materials: 
polyacrylonitrile (PAN), pitch, and rayon. · 

Candidate organic materials for pyrolysis into carbon fibers having good 
properties should satisfy four criteria. First, the precursor should possess the 
appropriate strength and handling characteristics needed "to hold the fibers 
together" during all stages of the conversion process to carbon. Second, the 
precursor should not melt during any stage of the conversion process. This 
can be accomplished by either selecting infusible precursor material or by 
stabilizing a thermoplastic precursor prior to the conversion process. Third, 
the precursor material must not volatilize completely during the pyrolysis 
process; that is, the carbon yield of the precursor fiber after pyrolysis should 
be appreciable enough to justify its use on an economic basis. Furthermore, 
in order to obtain optimal properties, the carbon atoms should tend to array 
themselves in an aligned graphite structure during pyrolysis. In general, the 
more highly graphitic and oriented the fibers, the better are the mechanical 
properties. Finally, the, precursor material should be as inexpensive as possi
ble. One of the production methods for graphite fiber production is described 
below. 

Graphite Fibers from PAN The process by which PAN* is converted to 
carbon fibers involves five steps (Fig. 2-3): 

1. Spinning the PAN into a precursor fiber. 
2. Stretching the precursor. 
3. Stabilization by holding the prestretched polymer under tension at a. 

temperature of 205-240°C for up to 24 h in •an oxidizing atmosphere 
(air). 

* Chemical structure of PAN is H H 
I I 

(-C-C-)n 
I I 
H C=N 
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Figure 2-3. Process of converting PAN precursor fibers to carbon fibers. 

4. Carbonization at approximately 1500°C in an inert atmosphere. Car
bonization is the process of pyrolizing stabilized PAN fibers to drive 
out most (if not all) noncarbon elements of the precursor fibers until 
they are essentially transformed into carbon1fibers. It is during this stage 
that the high mechanical properties found in most commercially avail
able carbon fibers are developed. 

5. Graphitization at approximately 3000°C in inert atmosphere. Graphiti
zation heat treatments are carried out at temperatures in excess of 
1800°C in order to improve the tensile modulus of elasticity of the fiber 
by improving the crystallite structure and preferred orientation of the 
graphitelike crystallite within each individual fiber. 

Carbon fibers produced from each precursor have distinct advantages and 
drawbacks in terms of both cost and properties. The PAN-based carbon fibers 
are lower in cost and have good properties. They are the dominant class of 
structural carbon fibers and are used widely in military aircraft, missiles, and 
spacecraft structures. Pitch-based carbon fibers generally have higher stiffness 
and thermal c;onductivities, which make them useful in satellite structures and 
thermal-management applications, such as space radiators and electronic en
closures. Rayon-based carbon fibers are not used for structural applications, 
but their low thermal conductivity makes them useful for insulating and ab~ 
lative applications such as rocket nozzles, missile reentry vehicle nosecones, 
and heat shields. 

Typical property ranges of each class of carbon fibers are given in Table 
2-3. Carbon fibers are available in a great variety of property combinations 
because their properties can be altered easily by controlling their structure 
through manufacturing process (e.g,, by heat-treatment temperature). Fiber 
properties change from batch to batch and also as manufacturers improve 
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Table 2-3 Properties of carbon fibers 

Pr9perty,. units 

Tensile strength, MPa 
Tensile f!lOdulus, GPa 
Density, g/ cm3 

Elongation, % 
Coefficient of thermal expansion 

Axial, I o-6 /°C 
Transverse, 1o-61°C 

Thermal conductivity, W /mK 
Fiber diameter, µ.m 

PAN 

1925-6200 
230-595 
1.77-1.96 
0.4-1.2 

-0.75 to -0.4 
7-10 

20-80 
5-8 

Precursor 

Pitch 

2275-4060 
170-980 
2.0-2.2 

0.25-0.7 

-1.6 to -0.9 
7.8 

400-1100 
10-11 

Rayon 

2070-276( 
415-550 

1.7 

6.5 

fiber techndlogy. The latest data from the manufacturer should be consulte< 
for speeifk fib'ers and their actual properties. 

Carbon fibers are available in various forms: continuous, chopped, wove1 
fabric, 01/ mat. Tows, yarn, rovings, and tape are the most common foons o 
conti'nuot4's-graphite fibers sold today. A tow consists of numerotrS rilament 
in a straight-laid bundle and is /specified by their number. Depending on th1 
organic precursor and manufacturer, typical filament counts vary from 400-
10,000 or as high as 160,000. A ·yiim is a twisted tow, whereas a roving is : 
number of ends or strands collected in a parallel bundle with little or no twis 
and is specifiea by the number of ends. Finally, a tape consists of numerou 
tows or yarns' (e.g., 300) side by side on a backing or stitched together. 

2.1.3 Aramid Fibers* 

Various types of polymer fibers (e.g., nylon, polyester, rayon) have been i1 
use for many years as reinforcements in automobile tires, large balloons am 
dirigibles, body armor, and rubber-coated fabrics. 

Polymer-aramid fibers (Kevlar) were first introduced in 1971. The arami1 
fiber-forming polymers, that is, the aromatic polyamides, are believed to b 
made by solution-polycondensation of diamines and diacid halides at lo, 
temperatures. The polymers are spun from strong acid solutions (e.g., con 
centrated H2S04 ) by a dry-jet wet spinning process. The polymers are mad 

* Typical chemistry of fiber: 
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by rapidly adding a diacid chloride to a cool (5-10°C) amine solution while 
stirring. The polymer thus formed is recovered from the crumbs or gel by 
pulverizing, washing, and drying. To form filaments, the clean polymer, mixed 
with a strong acid, is extruded from spinne,rets at an elevated temperature 
(51-100°C) through a 0.5-1.9-cm layer of air into cold water (0-4°C). The 
fibers are then washed thoroughly in water and dried on bobbins. 

Fiber properties can be altered by using solvent additives, varying the spin
ning conditions, and using postspinning heat treatments. 

Kevlar fibers possess unique properties. Tensile strength and modulus are 
substantially higher and fiber elongation is significantly lower for Kevlar fi
bers than for other organic fibers. Kevlar fibers have poor characteristics in 
compression, with compressive strength being only one-eighth the tensile 
strength. This results from their anisotropic structure, which permits rather 
easy local yielding, buckling, and kinking of the fiber in compression. They 
are not as brittle as glass or graphite fibers and can be readily woven on 
conventional fabric looms. Representative properties of Kevlar fibers are given 
in Table 2-4. 

2.1.4 Boron Fibers 

Boron filaments are produced by chemical vapor deposftion (CVD) from the 
reduction of boron trichloride (BC13) with hydrogen on a tungsten or carbon 
monofilament substrate. The substrate is resistively heated to a temperature 
of 1260°C and pulled continuously through a reactor to obtain the desired 
boron coating thickness. Currently, boron filaments are produced with diam
eters of 100, 140, and 200 µm (4, 5.6, and 8 mils), in descending order of 
production quantity; however, both smaller- and larger-diameter fibers have 
been produced in experimental quantities. 

The tensile strength of boron-tungsten filaments has improved steadily 
over the past decade from an average of under 2750 MPa to over 3445 MPa. 

Table 2-4 Typical properties of Kevlar fibers 

;Property, units Kevlar 29 Kevlar 49 Kevlar 129 Kevlar 149 

Diameter, µ,m 12 12 
Density, g/cm3 1.44 1.44 1.44 1.44 
Tensile strength, MPa 2760 3620 3380 3440 
Tensile modulus, GPa 62 124 96 186 
Elongation, % 3.4 2.8 3.3 2.5 
Coefficient of thermal 

expansion (0-100°C), 
m/m/°C 
In axial direction -2 X 10-6 -2 X 10-6 -2 X 10-6 -2 X 10-6 

In radial direction 60 X 10-6 60 X 10-6 
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The tensile strength of boron-tungsten filaments can be increased by etching 
away part of the outer portion of the filament. This improvement in tensile 
strength is attributed to the decrease in residual tensile stresses at the inner 
surface in the core owing to removal of the outer region of the filament, which 
contains a compressive residual stress. Typical properties of boron-tungsten 
filaments are given in Table 2-5. 

2.1.5 Other Fibers 

The need for high-temperature reinforcing fibers has led to the development 
of ceramic fibers. The ceramic fibers combine high strength and elastic mod
ulus with high-temperature capability and a general freedom from environ
mental attack. Alumina fibers and silicon carbide fibers are among the 
important ceramic fibers. Alumina fibers marketed by Du Pont (E.I. Du Pont 
de Nemours & Co.) with the trade name "Fiber FP" are a continuous a
alumina yarn with a 98% theoretical density. These fibers are made by spin
ning of an aqueous slurry and a two-step firing. As-produced Fiber FP surface 
is very rough. A thin silica coating enhances tensile strength by about 50%. 
An excellent feature of Fiber FP is its strength retention at high temperatures. 
They retain strength up to about 1370°C. Properties of Fiber FP are given in 
Table 2-6. 

Silicon carbide (SiC) fibers are produced by a chemical vapor deposition 
(CVD) process (AVCO Specialty Materials Co.), as well as by controlled 
pyrolysis of a polymeric precursor (Nippon Carbon Co.-Nicalon fibers). 
Properties of SiC fibers are also given in Table 2-6. Silicon carbide fibers 
retain tensile strength well above 650°C. Alumina and SiC fibers are suitable 
for reinforcing metal matrices, in which carbon and boron fibers exhibit ad
verse reactivities. In addition, alumina has an inherent resistance to oxidation 
that is desirable in applications such as gas-turbine blades. 

High-Performance Polyethylene (HPPE) Fibers: Ultrastrong and high
modulus fibers can be produced from the polyethylene molecule. For this 
purpose, an ultra-high-molecular-weight polyethylene (UHMW-PE) is dis-

Table 2-5 Properties of boron fiber (with tungsten, core) 

Fiber Diameter 

Property, units 100 µ,m 140 µ.m 200 µ.m 

Tensile strength, MPa 3450 3450 3450 
Tensile modulus, GPa 400 400 400 
Coefficient of thermal 4.9 X IQ-6 4.9 X 10-6 4.9 X 10-6 

expansion, m/m/°C 
Density, g/cm3 2.61 2.47 2.39 
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Table 2-6 Properties of ceramic fibers 

Property, units 

Diameter, J.Lm 
Density, g/cm3 

Tensile strength, MPa 
Tensile modulus, GPa 

Alumina 
(Fiber FP) 

20 ± 5 
3.95 

1380 
,379 

Fiber 

SiC 
(CVD) 

140 
3.3 

3500 
430 

SiC 
(Pyrolysis) 

10-20 
2.6 

2000 
180 

solved in a solvent, spun through a spinneret, and cooled to obtain filaments. 
These PE filaments have an ultrahigh molecular weight and a low degree of 
molecular entanglement and are capable of being superdrawn. The PE fibers 
thus. obtained have very long molecular chains, oriented and crystallized in 
the fiber direction, that together impart exceptional properties to the fibers. 
These fibers are called high-peiformance polyethylene (HPPE), high-modulus 
polyethylene (HMPE), or extended-chain polyethylene (ECPE) fibers. These 
fibers are produced commercially under the trade name "Dyneema" by DSM 
in the Netherlands, and "Spectra" by Honeywell (formerly Allied Signal) in 
the United States. Several grades of fibers are marketed with different prop
erties for different applicatiqns. The range of properties of the HPPE fibers, 
as reported by manufacturers, is given in Table 2-7. The reported properties 
often are influenced by the testing method, and actual usable properties of 
fibers may b~ lower than the reported values. 

HPPE fibers have a density of only 0.97 g/cm3
• Their modulus and strength 

are slightly lower than those of K5¥lar fibers but on a per-unit-weight basis, 
HPPE fibers have 30-40% higher strength and modulus than Kevlar fibers. 
High-energy absorption of HPPE fibers makes them suitable for use in bal
listic protection applications. HPPE fiber-based composites perform excep
tionally well against high~velocity impacts such as the ones produced by rifle 
rounds and shock waves from an explosion. This is so because the high
velocity impact produces a high strain-rate loading on the composite, and the 
strength and stiffness of the PE fibers increase at high strain rate. High
performance body armors (concealed ballistic vests) made from these fibers 

Table 2-7 Properties of high-performance polyethylene 
(HPPE) fibers 

Diameter, J.Lm 
Density, g/cm3 

Tensile strength, MPa 
Tensile modulus, GPa 
Elongation, % 

38 
0.97 

2180-3600 
62-120 
2.8-4.4 
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provide comfort and maneuverability. They also find use in vehicles for se· 
curity and law enforcement, blaSt-:dmtainment applications, and reinforcec 
cockpit doors on commercial airliners. 

Major limitations in the application of HPPE fibers come from their lo"' 
melting point of l 50°C, an inert surface that makes it difficult to bond to othei 
polymers, and poor creep characteristics. 

2.2 MATRIX MATERIALS 

Fibers, because of their small cross-sectional dimensions, cannot be loadec 
directly. Further, fibers, acting alone, cannot transmit loads from one to an· 
other to be able to share a load. This severely limits their direct use in load· 
bearing engineering applications. This limitation is overcome by embeddini 
them in a matrix material to form a composite. The matrix binds the fiber: 
together, transfers loads between them, and protects them against environ· 
mental attack and damage due to handling. The matrix has a strong influenct 
on several mechanical properties of the composite, such as transverse modulw 
and strength, shear properties, and· properties ir1 compression. The matrb 
material frequently limits a composite's service -femperature. Temperatun 
ranges at which composites with different types of matrices can be used an 
shown in Fig. 2-4. Physical and chemical characteristics of the matrix, sud 
as· melting or curing temperatures, viscosity, and reactivity with fibers, influ. 
ence the choice of fabrication process. The matpx material for a composite 
system is selected keeping in view all these factors. Commonly used matrb 
materials are described in this section. 

2.2.1 Polymers 

Polymers (commonly called plastics) are the most widely used matrix materia 
for fiber composites. Their chief advantages are low cost, easy processibility 
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Figure 2-4. Usable temperature ranges for composites with different types of matrix material: 
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good chemical resistance, and low specific gravity. On the other hand, low 
strength, low modulus, and low operating temperatures limit their use. They 
also degrade by prolonged exposure to ultraviolet light and some solvents. 

2.2.1.1 Thermosetting and Thermoplastic Polymers According to their 
structure and behavior, polymers can be classified as thermoplastics or ther
mosets. The polymers that soften or melt on heating, called thennoplastic 
polymers, consist of linear or branched-chain molecules having strong intra
molecular bonds but weak intermolecular bonds. Melting and solidification 
of these polymers are reversible, and they can be reshaped by application of 
heat and pressure. They are either semicrystalline or amorphous in structure. 
Examples include polyethylene, polystyrene, nylons, polycarbonate, polyace
tals, polyamide-imide, polyether-ether ketone (PEEK), polysulfone, poly
phenylene sulfide (PPS), and polyether imide. Thermosetting plastics have 
cross-linked or network structures with covalent bonds between all molecules. 
They do not melt but decompose on heating. Once solidified by a cross
linking ( curing) process, they cannot be reshaped. Common examples of ther
mosetting polymers include epoxide~ polyesters, phenolics, ureas, melamine, 
silicone, and polyimides. 

2.2.1.2 Polymer Properties of Importance to the Composite Certain 
physical and chemical properties of a polymer have particular significance to 
the properties of a composite. Further, polymers have unique characteristics 
that set them quite apart from metals and ceramics. Of .,!?articular importance 
are the properties shown in Table 2-8. This table shows the influence of 
external variables on the properties. Unlike metals and ceramics, polymers 
may be considerably influenced by external variables. In contrast, the me
chanical properties of metals typically are influenced only near the melt tem
perature. 

Table 2-8 Effect of external variables on polymer properties 

Strain 
Temperature Environment Rate 

Strength 
Stiffness 
Thermal expansion 
Thermal conductivity 
Permeability 
Solubility 
Environmental aging (ultraviolet) 
Melt temperature (semicrystalline polymer) 
Glass transition temperature (amorphous 

polymer) 

X 
X 
X 
X 
X 
X 
X 

X 

X 
X 

X 

X 

An X indicates a strong interaction between the external variable and the property. 

X 
X 
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The temperature limitations of a thermoplasic depend on whether it is 
semicrystalline or amorphous. Thermosetting plastics typically have amor
phous structures, but thermoplastics may be either semicrystalline (they are 
never I 00% crystalline) or amorphous. The amorphous state is characterized 
by a glass transition temperature (Tg) only, whereas the semicrystalline pol
ymer has a crystalline melting point (Tm) as well as a glass transition tem
perature. These transition temperatures are illustrated in Fig. 2-5 as measured 
by specific volume changes with temperature. Transition temperatures (Tg and 
Tm) of some polymers are given in Table 2-9. 

The temperature for processing of thermoplastics is governed by either the 
melt temperature or glass transition temperature. For example, an amorphous 
thermoplastic must be molded well above its Tg in order to reduce its melt 
viscosity sufficiently. 

An understanding of the effect of these temperatures on the mechanical 
behavior of polymers is best seen by the behavior of modulus of elasticity 
(E) with temperature (Fig. 2-6). An amorphous thermoplastic (e.g., polysty
rene, polycarbonate, or polymethylmethacrylate) has a significant change of 
mechanical properties at the glass transition temperature. Hence maximum 
use temperatures must be less than the glass transition temperatures. A ther
moset (e.g .. epoxy, polyester, or phenolic) has a much reduced change in 
properties at the glass transition temperature because of its high degree of 
cross-linking. However, their maximum use temperatures should not exceed 
Tg. Semicrystalline thermoplastlics alsohave a modest change in properties at 
the glass transition temperature owing to the presence of the crystalline 
regions. Their maximum use temperatures are more dictated by the melting 
points, as in the case of metals and ceramics. 

Examples of stress-strain curves for thermoplastics are shown in Fig. 2-7. 
These general shapes are applicable for crystalline or amorphous materials. 
It is important to recognize that these large variations in behavior can occur 
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Figure.2-5. Specific volume of amorphous and semicrystalline polymers: variation with tem
perature. 
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Table 2-9 Transition temperatures for polymers 

Polymer 

Thermosets 
Epoxy 
Polyester 

Thermoplastics 
Polystyrene 
Polyethylene (HD) 
Polycarbonate 
Nylon (6,6) 
Polymethylmethacrylate 
Polyetherether ketone (PEEK) 
Polyphenylene sulfide (PPS) 
Polyether sulfone 

100-250 
75-150 

100 
-80 
150 
50 

105 
143 
85 

225 

137 

255-265 

334 
285 

over a temperature range of only 100-200°C for some materials. Further, the 
rate of strain has a comparable effect, although much greater rate changes 
must occur to alter the behavior substantially. Thermosets also are not as 
affected by temperature and strain rate, the range of behavior being limited 
to approximately the higher three curves shown in Fig. 2-7. 

Environmental influences (e.g., moisture absorption) also have a significant 
effect on the behavior of polymers, particularly relative to metals and ceram
ics. For example, epoxy or polyester resins can absorb up to 4-5% by weight 
of water if exposed to l 00% relative humidity or immersed in water. The 
mechanical properties of nylon thermoplastics are influenced significantly by 
their moisture contents. Polymers are also susceptible to deterioration as a 
result of exposure to ultraviolet radiation. 

Transition behavior 

Temperature 

(a} 

"l 

8' 
...J 

decomposition 

Temperature 

(b) 

Temperature 

(c) 

Flow 

Figure 2-6. Variation of elastic modulus of polymers with temperature: (a) thermoplastic, amor
phous (high molecular weight or lightly· cross-linked); (b) thermoset, highly cross-linked; (c} 
semicrystalline. 
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Figure 2-7. Tensile stress-strain curves of a thermoplastic at different strain rates and tem
peratures. 

These effects must be properly taken into consideration when the matrix 
is selected for a composite. 

2.2.1.3 Common Polymeric Matrix Materials Polyester and epoxy res
ins are the most common polymeric matrix materials used with high
performance reinforcing fibers. Both are thermosetting polymers. Easy 
processibility and good chemical resistance are their chief advantages. 

Polyester Resin A polyester resin is an unsaturated (reactive) polyester solid 
dissolved in a polymerizable monomer. Unsaturated polyesters are long-chain 
linear polymers containing a number of carbon double bonds. They are made 
by a condensation reaction between a glycol (ethylene, propylene, or diethy
lene glycol) and an unsaturated dibasic acid (maleic or fumaric). A typical 
polyester resin made from reaction of malejc acid and diethylene glycol is 
shown below: 

Maleic acid Diethylene glycol 
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The length of the molecule or degree of polymerization n may vary. The resin 
generally will be a solid. It is dissolved in a polymerizable (reactive) monomer 
such as styrene, which also contains carbon double bonds and acts as a cross
linking agent by bridging adjacent polyester molecules at their unsaturation 
points. The monomer also acts as a diluent, reducing the viscosity of the 
polyester, and makes it easier to process. The curing or cross-linking process 
is initiated by adding a small quantity of a free-radical initiator/curing agent 
such as an organic peroxide (e.g., benzoyl peroxide) or an aliphatic azo com
pound. 

The styrene monomer cross-links or reacts with the double bond in the 
polyester backbone above to form a network polymer, as shown below: 

Styrene monomer: 

Styrene link (St): 

Cross-linked polyester: 

I I I I 
c~ ~o c~ ~o 
I I I I 

-R-OOCC-CCOO-OOCC-CCOO-OOCC-CCOO-OOCC-CC00-
1 I I I 

(St) (St) (St) (St) 

I I I I 
-R-OOCC-CCOO-OOCC-CCOO-OOCC-CCOO-OOCC-CC00-

1 I I I 
(St) (St) (St) (St) 

I I I I 

This reaction does not produce a by-product and is an exothermic reaction. 
Thus the curing process is accompanied by shrinkage as well as a temperature 
increase. The curing is done at room temperature with or without the appli
cation of pressure. 

Capabilities of modifying or tailoring the chemical structure of polyesters 
by processing techniques and raw-materials selection make them versatile. 
For example, the starting acids and glycols, as well as solvent monomers, all 
can be varied. Typical properties of cast thermosetting polyesters are given 
in Table 2-10. 
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Table 2-10 Typical properties of cast thermosetting 
polyesters 

Density, g/cm3 

Tensile strength, MPa 
Tensile modulus, GPa 
Thermal expansion, 10-6 /°C 
Water absorption, % in 24 h 

1.1-1.4 
34.5-103.5 

2-4.4 
55-100 

0.15-0.6 

Epoxy Resins Epoxy resins are low-molecular-weight organic liquids co1 
taining a number of epoxide groups, which are three-membered rings wi1 
one oxygen and two carbon atoms: 

0 

/ "' -C-C-
1 I 

The most common process for producing epoxies is the reaction of ep 
chlorohydrin with bisphenol-A and obtaining cross-linking by introducir 
chemicals that react with the epoxy groups between the adjacent chains. 

The chemical reaction to form the epoxy resin prepolymer is 

Epichlorohydrin Bisphenol-A 

The epoxy resin is a viscous liquid, and the viscosity is a function of tl 
degree of polymerization n. Each epoxy molecule is end-capped with tl 
epoxy group. A curing agent is mixed into the liquid epoxy to polymeri 
the polymer and form a solid network cross-linked polymer. For exampl 
diethylene triamine, as shown below, achieves rapid cure at room temperatut 

Diethylene triamine: 
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Five molecules of epoxy can react with each amine molecule through the 
active hydrogen on the nitrogen atom. A polymerization reaction involving 
the breakage of the epoxy ring occurs as follows: 

~CH-CH2 + H-N ~--? 

"' / 0 

~CH-CH2-N~ 
I 

OH 

Thus a segment of the fully cured structure is as follows: 

OH OH 
I I 

-C-CH2 '- / CH2-C-
NCH2CH2NCH2CH2N 

-C-CH2/ I '-.. CH2-C-
I CH2 I 

OH I OH 
C-OH 
I 

This reaction does not produce a by-product but does produce heat accom
panied with chemical shrinkage. 

Epoxy systems, like polyesters, can be cured at room temperature. The 
choice of curing agent dictates whether a room-temperature or elevated
temperature cure is required. Heat is added quite often to accelerate curing 
and to achieve a higher degree of cure. 

The properties of a cured epoxy resin depend on the chemical composition 
of the epoxy prepolymer, which can be modified greatly, as well as on the 
curing-agent molecule. Typical properties of cast epoxy resin are given in 
Table 2-11. 

Table 2-11 Typical properties of cast epoxy resins 
(at 23°C) 

Density, g/ cm3 

Tensile strength, MPa 
Tensile modulus, GPa 
Thermal expansion, 10-6 /°C 
Water absorption in 24 h, % 

1.2-1.3 
55-130 

2.75-4.10 
45-65 

0.08-0.15 
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Epoxy systems are superior to polyesters, particularly with regard to ad
hesion with a wide variety of fibers, moisture resistance, and chemical resis
tance. 

Other Thermosetting Polymers Vinyl esters, polyimides, and phenolics are 
among the other thermosetting polymers that are used as matrix materials for 
composites. Vinyl esters are closely related to the unsaturated polyesters. Like 
unsaturated polyesters, they possess low viscosity and cure fast but are 
slightly more expensive. They possess exceptional mechanical and chemical 
performance characteristics and thus provide a transition in mechanical prop
erties and cost between polyesters and the high-performance epoxy resins. 
Vinyl esters often are used because of their ease and speed of processing and 
their good resistance to wet environments. Their applications include high
performance gel coats, pipes, and reaction vessels. 

Polyimides have a relatively high service temperature range (250-300"C). 
They also possess excellent chemical and solvent resistance. Bismaleimides 
(BMls) are the most widely used thermosetting polyirnides for composites 
employed at high temperatures. However, these materials are inherently very 
brittle, and thus they are often combined with polysulfone, polyetherimide, 
or other thermoplastics. The handling and processing techniques for BMI 
resins are similar to those for epoxy resins. Their applications include aero
space wing-skin ribs, helicopter firewalls, and printed wiring boards. 

Phenolic resins have low flammability, low smoke production, good di
mensional stability under temperature fluctuations, and good adhesive prop
erties. Phenolics are attractive for aircraft and mass-transit vehicles and as 
interior construction materials where outgassing due to fire must be extremely 
low. Phenolics also are used for rocket nozzle ablative and insulation liners. 
Chopped-fiber molding compounds of phenolic resin are used mostly in the 
automotive, appliance, and electrical component markets. 

Typical properties of vinyl esters, polyimides and phenolic resins are given 
in Table 2-12. 

Thermoplastic polymers are used extensively for short-fiber composites in 
large-volume applications. The manufacturing cost usually is lower b~cause 
the composite can be manufactured by mass-production methods much more 
quickly. Most of the manufacturing processes (e.g., injection molding) that 

Table 2-12 Typical properties of vinyl esters, polyimides, and phenolics 

Property, units 

Density, g/cm3 

Tensile strength, MPa 
Tensile·modulus, GPa 
Coefficient of thermal expansion, l o-6 !°C 
Water absorption in 24 h, % 

Vinyl Esters 

1.12-1.32 
73-81 
3.0-3.5 

53 

Polyimides 

1.46 
120 
3.5-4.5 

90 
0.3 

Phenolics 

1.30 
50-55 
2.7-4.1 
45-110 
0.1-0.2 
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are used for unreinforced thermoplastics also can be adopted to manufacture 
short-fiber-reinforced thermoplastics. Such composites generally are viewed 
as higher-strength and higher-stiffness replacements for plastics rather than 
the high-performance load-bearing composites competing with such structural 
materials as metals. However, some thermoplastic resins have much higher 
glass transition temperatures and maximum use temperatures than epoxies 
and BMis. Such resins are used in high-temperature applications of high
performance composites. Properties of some of the high-temperature ther
moplastic resins are given in Table 2-13. Standard references can be consulted 
for properties and performance of more common thermoplastics. 

2.2.1.4 Fillers Fillers are used widely in polymeric composites primarily 
to reduce cost with some sacrifice in physical properties. They also are used 
to reduce shrinkage, control viscosity, and improve part stiffness. Commonly 
used fillers include calcium carbonate, kaolin (china clay), silica (sand), feld
spar, talc, and glass microspheres. Fillers are not as common in high
performance composites because they may adversely affect the fiber-resin 
load transfer and decrease the toughness of the resin at high filler content. 

Calcium carbonate (CaC03 ) is a widely used filler for both economic and 
performance considerations. Glass-fiber-reinforced polyesters from sheet
molding compounds or bulk-molding compounds may contain substantial 
amounts of CaC03 for cost reduction and shrinkage control. High surface 
smoothness may be achieved and sink marks eliminated. Kaolin is used to 
increase resin viscosity to prevent fibers from extruding from molded surfaces. 
It also improves the fire resistance of the compound. Natural silicas are used 
in thermoset resins for dimensional stability, good electrical insulation, and 
improved thermal conductivity. Talc (hydrated magnesium silicate), in the 
form of finely ground thin platelets, is added to resins to improve stiffness 
and creep resistance. Some natural organic materials such as wood flour, shell 
fibers (e.g., shell of almond, coconut, peanut, walnut, etc.), and cotton and 
vegetable fibers (e.g., hemp, jute, ramie, and sisal) are also used as fillers. 
Hollow microspheres made from glass or polymers can be used to reduce the 
density of the resin significantly. 

Additives used for fire resistance (e.g., antimony oxide), chemical thick
ening (e.g. magnesium oxide and calcium hydroxide), and for lowering 
shrinkage (e.g .. fine-powdered polyethylene) are also common. 

For more detailed information on fillers and additives, the reader should 
refer to the books suggested at the end of this chapter. 

2.2.2 Metals 

Metals are by far the most versatile engineering materials. The properties that 
are particularly important for their use as matrix materials in composites in
clude high strength, high modulus, high toughness and impact resistance, and 
relative insensitivity to temperature changes. Their greatest advantage over 



Table 2-13 Typical properties of some thermoplastic resins 

Polyphenylene 
Property, units PEEK Polyamide-imide Polyetherimide Polysulfone Sulfide 

Density, g/ cm3 1.30 1.38 1.24 1.25 1.32 
Tensile strength, MPa 92 95 105 75 70 
Tensile modulus, GPa 3.24 2.76 3.0 2.48 3.3 
Continuous service temperature, °C 310 190 170 175-190 260 
Coefficient of thermal expansion, 1 o-6 /°C 63 56 94-100 99 
Water absorption in 24 h, % 0.1 0.3 0.25 0.2 0.2 
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the polymer matrices is in applications that require exposures to high tem
peratures and other severe environmental conditions. The factors that limit 
their use include their high density, high processing temperatures ( due to a 
high melting point), reactivity with fibers, and attack by corrosion. 

The most commonly used metal matrices are based .on aluminum and ti
tanium. Both thes~ metals have low densities (aluminum, 2.7 g/cm3

; titanium, 
4.5 g/cm3

) and are available as alloys. Magnesium, although lighter (density 
1.74 g/cm3

), is unsuitable because of its great affinity to oxygen, which pro
motes corrosion. Nickel- and cobalt-based superalloys have been used as a 
matrix; however, some alloying elements in them tend to accentuate the ox
idation of fibers at elevated temperatures. 

Aluminum and its alloys are the most widely used metal n1atrices. Me
chanical properties of some aluminum-alloy matrix materials are given in 
Table 2-14. Commercially pure aluminum has good corrosion resistance. Alu
minum alloys such as 6061 and 2024 have been used for their higher strength
weight ratios. Carbon is the most common fiber used with aluminum alloys. 
However, carbon reacts with aluminum at typical fabrication temperatures of 
500°C or higher. This severely degrades the mechanical properties of the 
composite. Protective coatings are used often on carbon fibers to reduce this 
degradation of fibers, as well as to improve fiber wetting by the aluminum
alloy matrix. 

Titanium alloys used as matrices include a and {3 alloys (e.g., Ti-6Al-
9V) and metastable {3 alloys ( e.g., Ti-10V-2Fe-3Al). These alloys have 
higher strength-weight ratios and are superior to aluminum alloys in strength 
retention at 400-500°C. One problem with titanium alloys is their high reac
tivity with boron and alumina fibers at normal fabrication temperatures. Sil
icon carbide (SiC) and borsic (boron fibers coated with silicon carbide) fibers 
show less reactivity with titanium. 

2.3 FABRICATION OF COMPOSITES 

Finished products are formed from materials such as plastics and metals by 
molding or shaping methods. The material is first created and then processed 

Table 2-14 Properties of some aluminum-alloy matrix materials 

Tensile Yield Stress Ultimate Strain to 
Modulus (0.2% Offset) Tensile Strength Failure 

Alloy (GPa) (MPa) (MPa) (%) 

1100 63 43 86 20 
2024 71 128 240 13 
5052 68 135 265 13 
6061 70 77 136 16 
Al-7Si 72 65 120 23 
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at a later stage by companies specializing in forging, sheet forming, iqjectio1 
molding, etc. However, products consisting of composites can be created si 
multaneous with the creation of the material. Such is the case when filamen 
winding a pipe from a pdlymer and glass fiber strands. 

With regard to polymeric matrix composites, the processing methods fo 
thermosetting materials typically involve materfal formation during fina 
molding (e.g., hand lay-up, spray-up, and vacuum-bag molding). In somi 
cases material formation is accomplished separately from forming or shaping 
but because of the curing nature of thermosetting .resins, final curing occur 
during final formation. In thermoplastic matrix composites, it is more commo1 
to fabricate the composite first and form or mold a shape in a second oper 
ation. However, in this latter step, the composite properties still can be influ 
enced (e.g., fiber length reduction or fiber orientation during molding). 

The choice of a fabrication process is strongly influenced by the chemica 
nature of the matrix (e.g., thermoset. or thermoplastic in case of a polymer 
and the temperature required to form, melt, or cure the matrix. The variou 
composite forming and fabrication methods are described in the followin: 
subsections. 

2.3.1 Fabrication of Thermosetting Resin Matrix Composites 

Monomers or prepolymers of thermosetting resin systems are usually in 
fluid state. They become solid as a result of a chemical reaction. During thi 
chemical reaction, molecules of monomers or prepolymers are linked togethe 
to form polymer networks. This process of linking the molecules is calle, 
polymerization and cross-linking in polymers. The cross-linking is accom 
plished by catalysts or curing agents usually selected to give a desired com 
bination of time and temperature to complete the reaction suitable for 
particular product. The curing and accompanying hardening are irreversible 
Further heating does not melt or soften them for molding or reshaping. How 
ever, the curing can be staged so that formation of the composite can b 
accomplished separate from the final stage of hardening. 

Fabrication processes for thermosetting resin matrix composites can b 
broadly classified as wet-forming processes and processes using premixes c 
prepregs. In the wet-forming processes, the final product is formed while th 
resin is quite fluid, and then the curing process is usually completed by hea1 
ing. The wet processes include hand lay-up, bag molding, resin-transfer mok 
ing, filament winding, and pultrusion. In the processes using premixes, as th 
name suggests, material preparation is separated from lay-up or moldin! 
Premixes such as bulk molding compounds (BMCs) and sheet molding corr 
pounds (SMCs) are compounded from resin, fillers, and fibers and partiall 
cured. Prepregs are usually partially cured sheets of oriented fibers or fabric: 
The matrix material in some of the premixes is thickened so that it is tad 
free or slightly tacky, does not flow, and can be handled easil)(. Thickenin 
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is achieved by the use of a thickening agent and by advancing the cure of 
the resin. In the latter case, the resins must be stored and transported at low 
temperatures (10-15°C). Premixes are used subsequently for product lay-up, 
and final cming completed under heat and pressure. The use of premixes 
makes manufacturing more simple and increases the possibility of automation. 
High-fiber-volume fractions can be achieved with uniform fiber distribution. 

Different wet-forming processes and compounding of premixes and their 
subsequent use for final product fabrication are described in the following 
subsections. 

2.3.1.1 Hand Lay- up Technique The hand lay-up technique is the oldest, 
simplest, and most commonly used method for the manufacture of both small 
and large reinforced products. A flat surface, a cavity (female) or a positive 
(male) mold, made from wood, metal, plastics, reinforced plastics, or a com
bination of these materials may be used. Fiber reinforcements and resin are 
placed manually against the mold surface. Thickness is controlled by the 
layers of materials placed against the mold. 

This technique, also called contact lay-up, is an open-mold method of 
molding thermosetting resins (polyesters and epoxies) in association with fi
bers (usually glass-fiber mat, fabric, or woven roving). A chemical reaction 
initiated in the resin by a catalytic agent causes hardening to a finished part. 
Hand lay-up techniques are best used in applications where production vol
ume is low and other forms of production would be prohibitive because of 
costs or size requirements. Typical applications include boat and boat hulls, 
radomes, ducts, pools, tanks, furniture, and corrugated and flat sheets. 

The following operations are involved in a typical hand lay-up process: 

Mold preparation This is one of the most important functions in the 
molding cycle. If it is done well, the molding will look good and sep
arate from the mold easily. Production mold preparation requires a thor
ough machine buffing and polishing of the mold. After the desired finish 
has been attained, several coats (usually three or four) of paste wax are 
applied for the purpose of mold release. Many different release systems 
are available, such as wax, polyvinyl alcohol (PVA), fluorocarbons, sil
icones, release papers and release films, and liquid internal releases. The 
choice of release agent depends on the type of surface to be molded, 
the degree of luster desired on the finished product, and whether painting 
or other secondary finishing will be required. 

Gel coating When good surface appearance is desired, the first step in 
the open-mold processes is the application of a specially formulated 
resin layer called the gel coat. It is normally a polyester, mineral-filled, 
pigmented, nonreinforced layer or coating. It is applied first to the mold 
and thus becomes the outer surface of the laminate when complete. This 
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produces a decorative, protective, glossy, colored surface that requires 
little or no subsequent finishing. The gel coating may be painted on, 
air-atomized with gravity or pressure feeding, or sprayed by an airless 
sprayer. 

Hand lay-up After properly preparing the mold and gel-coating it, the 
next step in the molding process is material preparation. In hand lay
up, the fiberglass is applied in the form of chopped strand mat, cloth, 
or woven roving. Premeasured resin and catalyst (hardener) are then 
thoroughly mixed together. The resin mixture can be applied to the glass 
either outside of or on the mold. To ensure complete air removal and 
wet-out, serrated rollers are used to compact the material against the 
mold to remove any entrapped air. The resin-catalyst mixture can be 
deposited on the glass via a spray gun, which automatically meters and 
combines the ingredients. The first layer of reinforcement is usually a 
thin, randomly oriented fiber mat designed to reinforce the resin-rich 
surface of the moldings and improve surface finish. Such a reinforce
ment, called su,facing mat or veil and made with a weight of about 30 
g/m2

, also may be made from a chemically resistant type of glass if 
corrosion resistance is required. Extra care must be given to this sur
facing mat to ensure that no air bubbles are left between the glass and 
the gel coat. 

Spray-up This is a partially automated form of hand lay-up. Chopped 
glass fibers and resin are deposited simultaneously on an open mold. 
Fiberglass roving is fed through a chopper on the spray gun and blown 
into a resin stream that is directed at the mold by either of two spray 
systems: 
(i) The external mixing system has two nozzles. One of the nozzles 

ejects resin premjxed with catalyst or catalyst alone, whereas the 
other nozzle ejects resin premixed with accelerator. 

(ii) The internal mixing system has only one nozzle. Resin and catalyst 
are fed into a single gun mixing chamber ahead of the spray nozzle. 

By either method, the resin mix precoats the strands of glass, and the 
merged spray is directed at the mold in an even pattern by the operator. 
A typical spray-up process is shown schematically in Fig. 2-8. After the 
resin and glass mix is deposited, it is rolled by hand to remove air, to 
compact the fibers, and to smooth the surface. The spray-up process 
relies heavily on operator skill for product quality. It is faster and hence 
less costly than hand lay-up. In practice, combinations of hand lay-up 
and spray-up are often used in which layers of sprayed and/ or chopped 
fibers are alternated with cloth or woven roving. It should be noted that 
the spray-up method produces short-fiber composites, whereas the hand 
lay-up method can be used with continuous woven fibers as well. Ad
vantages and disadvantages of these processes are as follows: 
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Figure 2-8. Spray-up process. (Courtesy of CertainTeed Corp.) 

Advantages of Hand Lay-up and Spray-up 

1. Large and complex items can be produced. 
2. Minimum equipment investment is necessary. 
3. The startup lead time and cost are minimal. 
4. Tooling cost is low. 
5. Semiskilled workers are easily trained. 
6. Design flexibility. 
7. Molded-in inserts and structural changes are possible. 
8. Sandwich constructions are possible. 

Disadvantages of Hand Lay-up and Spray-up 

1. The process is labor-intensive. 
2. It is a low-volume process. 
3. Longer cure times may be required because room-temperature curing 

agents generally are used. 
4. Quality is related to the skill of the operator. 
5. Product uniformity is difficult to maintain within a single part or from 

one part to another. 
6. Only one good (molded) surface is obtained. 
7. The waste factor is high. 
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2.3.1.2 Bag Molding Processes Bag molding is one of the oldest an 
most versatile of the processes used in manufacturing composite parts. Th 
laminae (preimpregnated or freshly impregnated with wet resin) are laid u 
in a mold, covered with a flexible diaphragm or bag, and cured with heat an 
pressure. After the required cure cycle, the materials become an integrate 
molded part shaped to the desired configuration. 

A cross section of a typical lay-up of a composite structure is shown i 
Fig. 2-9. In addition to the actual composite laminate, the lay-up include 
release coatings, peel plies, release films, bleeder plies, breather plies, vacuun 
bags, sealant tape, and damming material. Each of these materials serves 
specific function. Release agents are used to prevent the composite materia 
from bonding to the mold. Peel plies protect the surface of the molded pa1 
from contamination. Release films are used to separate the bleeder or breathe 
materials from the composite laminate. In some cases the release film is po 
rous so that resin can flow through the film. Bleeder and breather plies ar, 
porous, high-temperature fabrics that are used to absorb excess resin durini 
processing. Breather plies provide a pathway into the composite laminate am 
act as a conduit for the removal of air and volatiles during curing. BagginJ 
films form a barrier between the composite laminate and the oven or autoclav1 
environment. 

Laying up and bagging are critical steps influencing the quality of par 
production. Thus a worker's skill and know-how play an important role i1 
the quality of a part. The size of a part that can be produced by bag moldini 
is limited only by the curing equipment, specifically, the size of the curini 
oven or autoclave. 

The general process of bag molding can be divided, on the basis of pressun 
and heat applied to the laminate during curing, into pressure bag, vacuun 
bag, and autoclave. In pressure-bag molding, pressures above atmospheric an 
applied on the laminate inside the closed mold, as shown in Fig. 2- IOa. Tht 
curing is accomplished by heating the mold in an oven. In vacuum-bag mold 
ing, air and other volatiles between the bag and laminate are removed by , 
vacuum pump (see Fig. 2- IOb ). Thus the laminate is subjected to atmospheri< 

Resin dam 

Figure 2-9. Typical bagging lay-up. 
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Figure 2-10. Bag molding: (a) pressure bag, (b) vacuum bag. 

pressure when it is being cured in an oven. Autoclave processing (Fig. 2-11) 
of composites is an extension of the vacuum-bag technique. Autoclaves can 
be pressurized during processing of the composites. A picture of an autoclave 
is shown in Fig. 2-12. In this method, the composite part is laid up and 
enclosed in a vacuum bag. Full or partial vacuum is drawn under the bag, 
and gas pressure greater than atmospheric pressure is applied on the exterior 
of the bag. Curing of the polymer is initiated by raising the part temperature 
in the autoclave chamber. Augmented pressure exerts higher mechanical 
forces on the lay-up, increases the efficiency of transport of volatiles to the 
vacuum ports, and results Jn increased wetting and flow of the resin. Reduc
tion in volume of trapped air and released volatiles results in lower void 
content. 

Vacuum-bag and autoclave methods are used to produce most bag-molded 
parts. Their main advantages are the relatively inexpensive tooling and use 
of the basic curing equipment (oven and autoclave) for an unlimited variety 
of shaped parts. The disadvantage of the pressure-bag system is the relatively 
expensive tooling because it is combined with the curing pressure system. 
Further, the tooling can be used only for a specific part for which it is de
signed. 
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Pressure chamber 

Base plate 

Figure 2-11. Autoclave molding. 

Figure 2-12. A 3-ft-diameter and 6-ft-long autoclave at the University of Missouri-Rolla. 
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2.3.1.3 Resin Transfer Mo:ding Resin transfer molding (RTM) is a wet 
impregnation process in which fibers and resin are introduced separately into 
the mold. It requires placing dry-fiber reinforcement in the mold and intro
ducing liquid resin in the closed mold to impregnate the fibers and fill the 
r.nold cavity. RTM uses a mold with inlets for resins and outlets for air to 
escape (Fig. 2-13). When the mold is full, the resin supply is removed, 
the mold inlets and outlets are sealed, and heat is applied to cure the resin. 
Continuous-strand mat, woven roving, or cloth can be used as reinforcement 
in RTM. Typically, a thermosetting polymer of relatively low viscosity is used 
in the RTM process. Large continuous-fiber-reinforced composites can be 
produced by RTM with relatively short cycle times. The RTM allows for 
better control over the orientation of the fibers, thus improving material prop
erties. 

A variation of the RTM process is vacuum-assisted resin transfer molding 
(VARTM). In VARTM, vacuum is applied to the outlet of the mold, and the 
resin is drawn into the mold by vacuum only. Since vacuum is applied instead 
of pressure, half the mold may be replaced by a vacuum bag. Also, since the 
pressure differential is much lower than the pressure used in conventional 
RTM, the cost of the mold can be reduced substantially. 

2.3.1.4 Filament Winding Filament winding is a technique used for the 
manufacture of surfaces of revolution such as pipes, tubes, cylinders, and 
spheres and is used frequently for the construction of large tanks and pipe
work for the chemical industry. High-speed precise lay-down of continuous 
reinforcement in predescribed patterns is the basis of the filament-winding 
method. Continuous reinforcements in the form of rovings are fed from a 
multiplicity of creels. A creel is a metallic shelf holding roving packages at 
desired intervals and designed for pulling roving from the inside of the pack
age. The reinforcement goes from the creels to a resin bath and may be 
gathered into a band of given width and wound over a rotating male mandrel. 
The winding angles and the placement of the reinforcements are controlled 
through specially designed machines traversing at speeds synchronized with 

Air escape 
outlet 

Mixer/injector 
head 

Bottom mold 

Dry 
reinforcement 

Figure 2-13. Resin-transfer molding. 



50 FIBERS, MATRICES, AND FABRICATION OF COMPOSITES 

the mandrel rotation. The reinforcements may be wrapped in adjacent bands 
that are stepped the width of the band and which eventually cover the entire 
mandrel surface. The technique has the capacity to vary the winding tension, 
wind angle, and resin content in each layer of reinforcement until the desired 
thickness and resin content of the composite are obtained. A diagram of a 
filament winding operation is given in Fig. 2-14. 

The winding angle used for construction of pipes or tanks depends on the 
strength-performance requirements and may vary from longitudinal through 
helical to circumferential, as shown in Fig. 2-15. Fibers aligned perfectly in 
the longitudinal direction are difficult to place and depend on the mandrel 
ends and machine design. Often a combination of different winding patterns 
is used to give optimal performance. 

In addition to the wet winding described earliei:, filament-wound vessels 
can be produced from prepreg tapes and rovings (fabrication of prepreg tapes 
and rovings is discussed in Section 2.3.1.6). This technique reduces fiber 
damage during the winding operation and permits the use of resin systems 
that cannot be handled by wet lay-up techniques. Resin content of the lami
nate can be controlled more accurately with prepregs. The use of prepregs 
also makes for a cleaner operation. 

Mandrel design is comparatively simple for open-end structures such as 
cylinders or conical shapes. Either cored or solid steel or aluminum serves 
satisfactorily. When end closures are integrally wound, as in pressure vessels, 
a careful consideration must be given to mandrel design and selection of a 
suitable material. Concepts frequently used for the construction of mandrels 
include segmented collapsible metal, low-melting alloys, eutectic salts, solu
ble plasters, frangible or break-out plasters. and inflatables. References are 
given at the end of this chapter for a more detailed discussion on the subject. 

PROGRAMMABLE 
WAYWINO CONTROL 

Figure 2-14. Filament wir.iding operation. (Courtesy of CertainTeed Corp.) 
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Hoop or circumferential 

Helical 

Figure 2-15. Filament winding patterns. 

The filament winding process has the following advantages: 

1. The process may be automated and provides high production rates. 
2. Highest-strength products are obtained because of fiber placement con

trol. 
3. There is versatility of sizes. 
4. Control of strength in different directions possible. 

The following are limitations of filament winding: 

1. Winding reverse curvatures is difficult. 
2. Winding at low angles (parallel to rotational axis) is difficult. 
3. Complex (double-curvature) shapes are difficult to obtain. 
4. There is poor external surface. 

2.3.1.5 Pultrusion Pultrusion is an automated process for manufacturing 
composite materials into continuous, constant-cross-section profiles. This 
technique has some' similarities to aluminum extrusion or thermoplastic ex
trusion. In pultrusion, however, the product is pulled from the die rather than 
forced out by pressure. A large number of profiles such as rods, tubes, and 
various structural shapes can be produced using appropriate dies. A photo
graph showing several pultruded shapes is given in Fig. 2-16. Profiles may 
have high strength and stiffness in the length direction, with fiber content as 
high as 60-65% by volume. 

The pultrusion process generally consists of pulling continuous rovings 
and/ or continuous glass mats through a resin bath or impregnator and then 
into preforming fixtures, where the section is partially shaped, and excess 
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Figure 2-16. Pultruded samples made at the University of Missouri-Rolla. 

resin and/ or air are removed. Then it goes into a heated die, where the section 
is cured continuously. The basic pultrusion machine consists of the following 
elements: (1) creels, (2) resin bath or impregnator, (3) heated dies, (4) puller 
or driving mechanism, and (5) cutoff saw. A diagram of a pultrusion scheme 
is given in Fig. 2-17. A picture of a pultrusion machine is shown in Fig. 
2-18. 

The pultrusion process is most suitable for thermosetting resins that cure 
without producing a condensation by-product (polyester and epoxy). The re
inforcements used consist of continuous fibers such as rovings or ch::ipped-

Figure 2-17. Pultrusion scheme. (Courtesy of CertainTeed Corp.) 
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Figure 2-18. A Labstar pultrusion machine at me University ot Missouri-Rolla. 

strand mat or a combination of the two, depending on the strength and rigidity 
required in the molded profile. Thermoplastic resins may be used, but special 
impregnation equipment is required to melt or soften the resin. 

References are given at the end of this chapter for a more detailed discus
sion on pultrusion machines, pultrusion part design, and other related topics. 

2.3.1.6 Preformed Molding Compounds A large number of reinforced 
thermosetting resin products are made by matched-die molding processes such 
as hot-press compression molding, injection molding, and transfer molding. 
Matched-die molding can be a wet process, but it is most convenient to use 
a preformed molding compound or premix to which all necessary ingredients 
have been added. This enables faster production rates to be achieved. Molding 
compounds can be divided into three broad categories: bulk or dough molding 
compounds (BMC, DMC), sheet molding compound (SMC), and prepregs. 
The following paragraphs briefly describe these premixes and their manufac
turing methods. 

BULK OR DOUGH MOLDING COMPOUNDS (BMC, DMC) These compounds 
consist of a doughlike or puttylike mixture of a resin, fiber reinforcement, 
and filler to which pigments and other materials may be added. The reinforce
ment used may be glass, cellulose, cotton, or other fibrous material. Manu-
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facture usually is carried out in a high-shear Z-blade mixer, after which the 
compound is often extruded into rope form. Usually polyester DMC contains 
glass fiber strands, with fiber lengths ranging from 3-12 mm (t-t in.) and a 

· fiber content of between 15 and 20% by weight. These limits are dictated by 
the high shear loads created during manufacture and extrusion into usable 
forms. 

SHEET MOLDING COMPOUNDS (SMC) These compounds are produced as flat 
sheets and invariably are based on unsaturated polyester resin systems rein
forced with chopped-glass fibers, although carbon and/ or aramid fibers also 
can be used separately or as hybrids. However, SMC differs from DMC in 
that it has a higher fiber content, usually 20-35%, and longer fibers, 21-55 
mm (f-2 in.). Moldings made from SMC therefore have somewhat higher 
mechanical properties. 

To manufacture SMC, a continuous polyethyl~oe or cellophane film i5 
coated with a suitably formulated polyester resin system into which is de
posited a layer of either a chopped-strand mat (:d.50 g/m2) or chopped rovings. 
A second layer of polyethylene film, similarly coated with the resin system 
is placed over the reinforcement, and the sandwich thus formed is passec 
through a series of rollers to press the glass fibers into the resin and ensure 
thorough wetting. The sandwich 1s then wound into a roll and allowed tc 
stand while the resin thickens (Fig. 2-19). 

Resins for SMC need to be of low initial viscosity to ensur ! thorougr 
wetting of the glass reinforcement. However, once the glass has been wetted 
the resin must thicken so that a relatively tack-free, easy-to-handle sheet 01 

molding material is produced. This thickening is usually brought about b) 
the addition of a thickening agent such as calcium oxide or magnesium oxidt 
to the resin. Prior to molding, the SMC is cut to the required size, and botl 
layers of polyethylene films are removed. The SMC then can be placed ir 
the mold, pressed, and cured. 

Figure 2-19. Manufacture of sheet molding compound. (Courtesy of CertainTeed Corp:) 
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PREPREGS This is the short form for preimpregnated fiber-reinforced plastics. 
Prepregs consist of roving, woven fabric, continuous unidirectional fiber re
inforcement sheets, or random chopped-fiber sheets impregnated with a par
tially cured resin system. These differ from sheet molding compounds in that 
thickening agents, fillers, pigments, and additives are rarely, if ever, present. 
Most prepregs are based on epoxy resin systems, and reinforcements usually 
include glass, carbon, and aramid fibers. 

Prepregs are manufactured from either a resin solution or a solvent-free 
resin system. In the first case, the fiber reinforcement is drawn through a bath 
of resin solution and then through a "doctor" blade or metering roller assem
bly to control resin pickup. The impregnated reinforcement then passes 
through a vertical heating zone to evaporate the solvent and partially advance 
the cure of the resin system. The prepreg is then cooled and sandwiched 
between two layers of release film, such as silicone-impregnated paper or 
polyethylene film, prior to winding into a roll or cutting into sheets. 

Prepregs made from solvent-free resin systems are produced in a similar 
way to sheet molding compounds in that the reinforcement is sandwiched 
between two layers of a resin system applied to suitable release film. With 
epoxy resin systems, heated rollers may be used to melt or lower the viscosity 
of the resin and ensure adequate wetting of the fibers. The solvent-free im
pregnation is claimed to produce superior composites with no possibility of 
any solvent entrapment. Thickening of the epoxy resin in prepregs is accom
plished by advancing the cure of the resin system with heat until an only 
slightly tacky or tack-free prepreg is obtained. Cooling the prepreg to room 
temperature then reduces the rate of further cure. Such prepregs have shelf 
lives of from several weeks to several months at 20°C depending on the 
particular curing agent used. 

The preformed molding compounds discussed earlier are very convenient 
to use in various molding processes for producing composite-materials parts 
and structures. The BMC, DMC, and SMC compounds are used with 
matched-die molding processes (Fig. 2-20), whereas prepregs are used widely 
in hand lay-up, bag-molding, and winding processes, as already discussed. 

2.3.2 Fabrication of Thermoplastic-Resin Matrix Composites 
(Short-Fiber Composites) 

The principal method used for the production of parts with short-fiber
reinforced thermoplastics is injection molding. Conventional mold-and
plunger or reciprocating screw-type machines are used for this purpose. The 
normal molding cycle used for unfilled thermoplastics is also used for the 
reinforced material, but the details of processing conditions employed are 
quite different. Further details of injection-molding processes can be seen in 
any standard text on processing of thermoplastics. It may be mentioned, how
ever, that when fibers are introduced into a thermoplastic, the rheologic prop
erties of the melt are modified significantly. Furthermore, the thermal 
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Figure 2-20. Compression molding. (Courtesy of CertainTeed Corp.) 

conductivity of the melt usually is increased by the presence of the fibers. 
Hence both the flow fields and thermal conditions will be quite different 
compared with an unfilled thermoplastic. Another important point that must 
be considered is the fact that the properties of a short-fiber-reinforced ther
moplastic are very dependent on fiber length and orientation, which can be 
greatly affected by the molding conditions. It is therefore important that both 
these parameters be controlled in the final molding by an appropriate choice 
of molding conditions. 

The raw material used for injection molding of reinforced thermoplastics 
is a molding compound of the resin and fibers in a pelletized form. The 
compounding is carried out as a separate process prior to the injection mold
ing: A compounding method aims at achieving the following: 

1. Total enclosure of each fiber by the matrix 
2. Uniform dispersion of fibers throughou.t the matrix 
3. Low fiber breakage so that a high aspect ratio (ratio of fiber length to 

diameter) is maintained for effective stress transfer 

In principle, the compounding and fabrication stages can be combined in 
one operation; that is, a dry blend of polymer and fibers is fed to the molding 
machine. However, injection molding of dry blends often results in poor sur
face finish and variable strength owing tQ the presence of undispersed fiber 
bundles in the finished product. The use of pelletized compound is generally 
more convenient. It eliminates the need for special material-handling equip
ment and minimizes the health haz$'ds associated with airborne fibers. 
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The. choice of a compounding technique depends on the requirements of 
fiber length, volume fraction, and degree of dispersion of the fibers throughout 
the matrix. The two most common compounding methods are extruder com
pounding and strand coating. In the extruder-compounding process, the fibers 
and resin are fed directly into an extruder for mixing. The fiber feed normally 
is introduced in the form of chopped fibers. Certain twin-screw extruders are 
designed so that continuous rovings enter at a downstream point where the 
polymer is already fully molten. The addition of fibers to the premelted pol
ymer has the advantage of less fiber breakage. It also improves fiber disper
sion and reduces wear in the working parts of the extruder. 

The strand-coating method consists of passing the rovings or tows of fibers 
through a specially designed extruder die head so that they are coated and 
partially impregnated by the molten polymer (Fig. 2-21). The impregnated 
fiber tow is cooled in a water bath and then chopped into desired lengths. 
The molding pellets produced by this method contain a high volume fraction 
of long fibers. The fibers are contained in the pelkts as a concentrated core 
surrounded by the resin. This may result in the uneven penetration of the fiber 
roving by the polymer and therefore an incomplete wetting' of the fibers in 
the core. However, further dispersion of the fibers will occur during subse
quent molding. 

In addition to the injection molding of a pelletized molding compound, 
reinforced thermoplastic sheets are produced for stamping or thermoforming. 
These materials are made by lamination of a chopped-strand mat into a ther
moplastic matrix. The process of producing these materials is similar to that 
of producing SMC. The important difference is that in this case the matrix 
material is a thermoplastic that is melted in an extruder before being incor-

A Hopper for receiving polymer granules 
B Fibre roving package 
C Screw extruder 
D Fibre-roving coating die head 
E Water cooling bath 
F Take up spool for coated rovings 

Figure 2-21. Production of polymer-coated continuous-fiber roving. 
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porated with the fibers on a conveyor belt. The fibers contained in these 
materials are longer than those contained in pelletized compounds. In some 
cases the reinforcement is in the form of continuous roving. The AZDEL 
material of AZDEL, Inc., consists of 40% glass mat by weight in a polypro
pylene matrix, and AZMET has 35% glass mat by weight in a polybutylene 
terephthalate matrix. The reinforced-plastic sheets are thermoformed to the 
desired shape. A schematic of the process is shown in Fig. 2-22. 

2.3.3 Fabrication of Metal Matrix Composites 

Metals require significantly higher process temperatures than do polymers. At 
these higher temperatures, fibers may react with the metal matrix material, 
which invariably has a detrimental effect on the properties of the composite. 
Sufficient care must be exercised to limit the interaction between the fibers 
and the metal matrix. Metal matrix composites are fabricated most often by 
liquid infiltration or hot-pressing of solid matrix on fibers. 

The simplest method of liquid infiltration is to pour the molten matrix into 
a vessel containing the fibers. The method is quite suitable if the fiber-matrix 
combination is nonreactive. In the case of a mutually reactive matrix-fiber 
combination (e.g., aluminum and silica), each individual fiber may be coated 
by drawing it singly through a bead of the molten metal. Continuous single 
fibers can be moved very quickly through small metal beads to give adequate 
coating thicknesses with very little time for the chemical reaction because the 
coating on a single fiber will cool extremely quickly. With this method, the 
coated fibers must be hot-pressed to make the composite. 

With less reactive systems (e.g., carbon aluminum), a fiber tow can be 
drawn through a crucible containing the molten metal. The fibers can be 
protected against attack to some degree by a suitable metallic coating (e.g., 
nickel for carbon-aluminum system) or by reducing the rate of reaction 

Feed magazine 
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Indexing conveyor 

Hydraulic or 
mechanical 

press 

Figure 2-22. Thermostamping process. 
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through lowering of processing temperature obtained as a result of alloying 
the metal with a substance that reduces its melting point (e.g., 12% silicon 
in the molten aluminum reduces the processing temperature from just over 
660 to 580°C). If the reinforced-rod preforms produced by this process are 
not thick enough for immediate use in a structure, a large number of them 
can be combined by hot-pressing to produce the desired cross section. 

Plasma spraying is another method of liquid infiltration. The matrix is 
sprayed onto the fibers, which are supported on a foil, also made of the matrix 
material. The resulting tape is very porous, easily deformable, and suitable 
for cutting to the shape and size required for hot-pressing to the finished 
product. In the plasma-spraying technique, the metal cools rapidly and freezes 
in contact with the fibers, thus minimizing the undesirable interaction between 
the fibers and the matrix. 

In the fabrication of metal matrix composites by hot-pressing of solid ma
trix on fibers, the matrix can be in the form of a sheet or powder. In the first 
case, fibers are laid between thin sheets of matrix foil in a mold, and the 
material is then consolidated by hot-pressing. The method is suitable only for 
relatively large-diameter fibers (e.g., boron) or wires. The temperature and 
pressure must be controlled very carefully to ensure adequate consolidation 
without too much chemical interaction or mechanical damage. Tapes can be 
made up with sheet matrix on either side of a layer of fibers, and the fibers 
can be held together by a resin binder (e.g., polystyrene) that evaporates 
during the first stage of the consolidation process. The tape can be used in 
the same way as polymer prepreg tape in processes such as filament winding. 

When the matrix is in a powder form, the fibers and matrix powder are 
combined and held together by a volatile solid binder. When the mixture is 
hot-pressed, the binder escapes by evaporation. Often the pressing is done in 
two stages. Stage 1 results in removal of this binder and sufficient consoli
dation to hold the matrix and fibers together. Stage 2 results in consolidation 
of the material to the practical limit consistent with acceptable chemical and 
mechanical damage to the fibers. 

Metal matrix composites also can be formed by a chemical vapor depo
sition process, coextrusion of matrix and pellet-shaped particles producing 
fibers, or forming fibers in situ during the controlled solidification of some 
off-eutectic or eutectic alloys. 

2.3.4 Fabrication of Ceramic Matrix Composites 

Ceramic matrix composites, glass, glass-ceramic, and oxide-ceramic matri
ces generally are fabricated by a two-stage process. In the first stage, fibers 
are incorporated into an unconsolidated matrix. The most common technique 
for this purpose is the slurry infiltration process, in which a fiber tow is passed 
through a slurry tank (containing the matrix powder, a carrier liquid, and an 
organic binder) and wound on a drum and dried. The second stage consists 
of cutting and stacking of tows and consolidation. Hot-pressing or firing at 



60 FIBERS, MATRICES, AND FABRICATION OF COMPOSITES 

temperatures in excess of l 200°C is the most common technique for consol 
idating the ceramic matrix composites. The high temperatures are needed tc 
promote rapid diffusion and recrystallization so that the densification proceedi 
to the required extent in a reasonable time. Porosity in a ceramic material ii 
a common and serious flaw. To minimize the porosity, it is essential to removt 
the fugitive binder completely and have the matrix powder particle smalle1 
than the fiber diameter. 
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3.1 INTRODUCTION 

BEHAVIOR OF 
UNIDIRECTIONAL 

COMPOSITES 

Fiber-reinforced composites are certainly one of the oldest and most widel: 
used composite materials. Their study and development have been carried ou 
largely because of their vast structural potential. Most of the structural ele 
ments or laminates made of fibrous composites consist of several distinc 
layers. Each layer or lamina is usually made of the same constituent material 
(e.g., resin and glass). But an individual layer may differ from another laye 
in (1) relative volumes of the constituent materials, (2) form of the reinforce 
ment used such as continuous or discontinuous fibers, woven or nonwove 
reinforcement, and (3) orientation of fibers with respect to common referenc 
axes. Furthermore, hybrid laminates can be made, consisting of layers havin. 
different fibers and/ or matrix material. Thus the directional properties of th 
individual layers may be quite different from each other. Analysis and desig 
of any structural element would require a complete knowledge of the proi: 
erties of individual layers. A unidirectional composite, which consists of pai 
allel fibers embedded in a matrix, represents a basic building block for th 
construction of laminates or multilayered composites. The properties and bt 
havior of unidirectional composites are described in this chapter. An unde1 
standing of the behavior of unidirectional composites is essential to bettt: 
understand the behavior of discontinuous or short-fiber composites discusse 
in the next chapter. 

3.1.1 Nomenclature 

A unidirectional composite is shown schematically in Fig. 3-1. Several un 
directional layers can be stacked in a specified sequence of orientation t 
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2, T 

1, L 

Axis 1, L - longitudinal direction 
Axis 2, T - transverse direction (in lamina plane) 
Axis 3, T'- transverse direction (perpendicular to lamina plane) 

Figure 3-1. Schematic representation of a unidirectional composite. 

fabricate a laminate that will meet design strength and stiffness requirements. 
Each layer of a unidirectional composite may be referred to as simply a layer, 
ply, or lamina. The direction parallel to fibers generally is called the longi
tudinal direction (axis 1). The direction perpendicular to the fibers is called 
the transverse direction (any direction in the 2-3 plane). These axes are also 
referred to as the material axes of the ply. 

The ply depicted schematically in Fig. 3-1 shows only one fiber through 
the ply thickness. In practice, this may be true only for large-diameter fibers 
such as boron. Plies from other fibers have several fibers through the actual 
ply thickness. Typical cross sections of composites taken from a single ply 
are shown in Fig. 3-2. The fibers are distributed randomly throughout the 
cross section and may be in contact with each other in some locations. This 
type of fiber distribution in the ply is typical of several fiber-resin systems. 
These plies generally are constructed from single-end or multiple-end rovings 
impregnated with the matrix (see Chap. 2). The thickness of a single ply is 
often greater than 0.1 mm (0.005 in.), whereas the fiber diameter is typically 
10 µm. Thus the ply thickness-fiber diameter ratio is typically 10. 

Because · of the structure of the composite, a unidirectional composite 
shows different properties in the longitudinal and transverse directions. Thus 
the unidirectional composites are orthotropic with the axes 1, 2, and 3 as the 
axes of symmetry (see Fig. 3-1). A unidirectional composite has the strongest 
properties in the longitudinal direction. Because of the random fiber distri
bution in the cross section, material behavior in the other two directions (2, 
3) is nearly identical. Therefore, a unidirectional composite or ply can be 
considered to be transversely isotropic; that is, it is isotropic in the 2-3 plane. 
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Figure 3-2. Cross section of a unidirectional composite: (a) glass-epoxy (from a single ply); 
{b) Fiber FP (alumina fiber) in aluminum matrix. 

3.1.2 Volume and Weight Fractions 

One of the most important factors determining the properties of composites 
is the relative proportions of the matrix and reinforcing materials. The relative 
proportions can be given as the weight fractions or the volume fractions. The 
weight fractions are easier to obtain during fabrication or by one of the ex
perimental methods after fabrication. However, the volume fractions are used 
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exclusively in the theoretical analysis of composite materials. It is thus de
sirable to determine the expressions for conversion between the weight frac
tions and volume fractions. These expressions are derived for a two-phase 
material and then generalized to a multiphase material. 

Consider a volume vc of a composite material that consists of volume vr 
of the fibers and volume v 01 of the matrix material. Let we, Wr, and w111 rep
resent the corresponding weights of the composite material, fibers, and the 
matrix material, respectively. (Throughout this book, the subscripts c, f, and 
m are used consistently to represent the composite material. fibers, and the 
matrix material, respectively.) Let the volume fraction and weight fraction be 
denoted by the capital letters V and W, respectively. The volume fractions 
and weight fractions are defined as follows: 

(3. la) 

(3.1 b) 

and 

(3.lc) 

W = Wm 
m lVc 

(3.ld) 

To establish conversion relations between the weight fractions and the vol
ume fractions, the density Pc of the composite material must be obtained. The 
density of the composite material can be obtained easily in the terms of the 
densities of the constituents and their volume fractions or weight fractions. 
To that end, the weights in Eq. (3. lc) can be replaced by the products of 
corresponding density and volume and the equation rewritten as 

(3.2) 

Dividing both sides of Eq. (3.2) by vc and substituting the definition for the 
volume fractions from Eq. (3.lb) yields 

(3.3) 

By similar manipulations in Eq. (3. la), the density of composite materials in 
terms of weight fractions can easily be obtained as 
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(3A 

Now the conversion between the weight fraction and volume fraction ca 
be obtained by considering the definition of weight fraction and replacing i 
it the weights by the products of density and volume as follows: 

(3.: 

W _ Pm V 
m - - m 

Pc 

The inverse relations can be obtained similarly from Eq. (3.1) or Eq. (3.: 
by multiplying both sides of the equation by an appropriate ratio of densitie 
The inverse relations are 

(3.( 

Equations (3.3)-(3.6) have been derived for a composite material with onl 
two constituents but can be generalized for an arbitrary number of constitt 
ents. The generalized equations are 

II 

Pc= I P;V; 
i=l 

Pc= n 

I (W/p,.) 
i=l (3.' 

W=PiV. 
, Pc , 

V. = Pc W. 
I Pi I 

The validity of generalized equations may be verified easily by the reader. 
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It may be pointed out here that the composite density calculated theoreti
cally from weight fractions using Eq. (375) may not always be in agreement 
with the experimentally determined density. This will happen when voids are 
present in the composite. The difference in densities indicates the void con
tent. It can be shown easily that if the theoretical composite density is denoted 
by Pc, and the experimentally determined density by Pw the volume fraction 
of voids Vv is given by 

V = Pct - Pee 
V 

Pct 
(3.8) 

In an actual composite, the void content may be determined by following 
ASTM (American Society for Testing and Materials) Standard D2734-94 
(reapproved 2003). The density of the resin in this method is assumed to be 
the same in the composite as it is in an unreinforced bulk state. Although it 
is necessary to use this assumption, it may not be correct. Differences in 
curing, heat and pressure, and interaction with the reinforcement surface may 
affect the in situ resin density. It is thought that the bulk density is lower, 
making the void content seem lower than it really is. 

The void content of a composite may affect some of its mechanical prop
erties significantly. Higher void contents usually mean lower fatigue resis
tance, greater susceptibility to water penetration and weathering, and 
increased variation or scatter in strength properties. The knowledge of void 
content is desirable for estimation of the quality of composites. A good com
posite should have less than 1 % voids, whereas a poorly made composite can 
have up to 5% void content. 

3.2 LONGITUDINAL BEHAVIOR OF UNIDIRECTIONAL COMPOSITES 

The properties of a composite material depend on the properties of its con
stituents and their distribution and physical and chemical interactions. Prop
erties of composites can be determined through experimental measurements. 
Experimental methods may be simple and direct. However, one set of exper
imental measurements determines the properties of a fixed fiber matrix system 
produced by a single fabrication process. Additional measurements are re
quired when any change in the system variables occurs, such as' relative vol
umes of the constituents, constituent properties, and fabrication process. Thus 
experiments may become time-consuming and cost-prohibitive. Theoretical 
and semiempirical methods of determining composite properties can be used 
to predict the effects of a large number of system variables. These methods 
may not be reliable for component design purposes and present difficulty in 
selecting a representative but tractable mathematical model for some cases, 
such as the transverse properties of unidirectional composites. However, the 
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mathematical model for studying some of the longitudinal properties (tensile 
strength and modulus of elasticity) of a unidirectional composite is quite 
accurate. This model and its predictions are discussed in the following sub
sections. 

3.2.1 Initial Stiffness 

A unidirectional composite may be modeled by assuming fibers to be uniform 
in properties and diameter, continuous, and parallel throughout the composite 
(Fig. 3-3). It may be further assumed that a perfect bonding exists between 
the fibers and the matrix so that no slippage can occur at the interface, and 
the strains experienced by the fiber, matrix, and composite are equal: 

(3.9) 

For this model, the load Pc carried by the composite is shared between the 
fibers Pr and the matrix Pm so that 

(3.10) 

The loads Pc, Pr, and Pm carried by the composite, the_ fibers, and the matrix, 
respectively, may be written as follows in terms of stresses o-c, o-r, and o-m 
experienced by them and their corresponding cross-sectional areas Ac, Ar, and 
Am. Thus 

or 

(3.11) 

But for c_omposites with parallel fibers, the ,vqlume fra<rtforis are equal (o the 
area ,fractions such that 

Pt / Pm 

Pc 

Figure 3-3. Model for predicting longitudinal'behavior of unidirectional composites. 
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(3.12) 

Thus 

(3.13) 

Now Eq. (3.13) can be differentiated with respect to strain, which is the same 
for the composite, the fibers, and the matrix. The differentiation yields 

(3.14) 

where (da-ldc) represents the slope of the corresponding stress-strain dia
grams at the given strain. If the stress-strain curves of the materials are linear, 
the slopes (da-1 de) are constants and can be replaced by the corresponding 
elastic modulus in Eq. (3.14). Thus 

(3.15) 

Equations (3.13)-(3.15) indicate that the contributions of the fibers and the 
matrix to the average composite properties are proportional to their volume 
fractions. Such a relationship is called the rule of mixtures. Equations (3.13) 
and (3.15) can be generalized as 

n 

(Tc= I CT;V; 
i=I 

n 

E~·= I EY; 
i=I 

(3.16) 

(3.17) 

The following numerical example illustrates the influence of elastic mod
ulus and volume fraction of the fibers on the longitudinal modulus of the 
composite. 

Example 3-1:. Calculate the ratios of longitudinal modulus of the com
posite to the matrix modulus for glass-epoxy and carbon-epoxy compos
ites with 10% and 50% fibers by volume. Elastic moduli of glass fibers, 
carbon fibers, and epoxy resin are 70, 350, and 3.5 GPa, respectively. 

Equation (3.15) can be written as 
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Calculations will give the following results: 

Glass-epoxy (20) 
Carbon-epoxy (100) 

2.9 
10.9 

Ve= 50% 

10.5 
50.5 

It may be observed that as the fiber volume fraction increases by a fact< 
of 5, the ratio of Eel Em also increases by a similar factor (3.62 for glass 
epoxy and 4.63 for carbon-epoxy). Further, as the fiber modulus increast 
by a factor 5, the ratio of EJ Em again increases by a similar factor (3.7 
at Vf = 10% and 4.81 at Vf = 50%). These calculations show that fibe 
are very effective in increasing the composite modulus in the longitudin 
direction. Further, the elastic modulus of fibers has a significant influenc 
on the composite modulus. This behavior will be compared with the infl1 
ence of these factors on the composite transverse modulus in a later sectio 

The predictions of Eq. (3.13) can be explained by considering the stres~ 
strain diagrams for the fibers and the matrix. Let us consider two composite 
The fibers in both composites have linear stress-strain curves up to the 
fracture. The matrix material of one of the composites also has a linear stresi 
strain curve, but that of the other has a nonlinear stress-strain curve (Fig. : 
4a,b ). The stress in the composite at a given strain can be calculated accordir 
to Eq. (3.13) by first finding the matrix stress and the fiber stress at the give 
strain from the corresponding stress-strain diagrams and then adding the 
proportional to their volume fractions. This process can be repeated for 
number of strain values up to the fiber fracture strain. Thus a complete stresi 
strain diagram for the composite may be obtained. It may be noted that th 
procedure is applicable to both the composites being considered here becau: 

E E 

(a) (b) 

Figure 3-4. Longitudinal stress-strain diagrams for a composite with (a) linear and (b) nonlim 
matrix material. 



3.2 LONGITUDINAL BEHAVIOR OF UNIDIRECTIONAL COMPOSITES 71 

Eq. (3.13) has been derived without making any assumption about the prop
erties of the constituent materials. Thus the stress-strain curve of composite 
(a) will be linear, whereas that of the composite (b) will be nonlinear. The 
composite strain at which the stress-strain curve for composite (b) becomes 
nonlinear will be the strain at which the,matrix stress-strain curve becomes 
nonlinear. However, because of the predominance of fiber properties, the non
linearity of the composite stress-strain curve may not be distinct, especially 
at higher fiber volume fractions. In any case, the composite stress-strain 
curves would lie between the stress-strain curves of the fibers and the matrix. 
The actual location of the composite stress-strain curve will depend on the 
relative volume fractions of the constituents. If the fiber volume fraction is 
high, the composite stress-strain curve will be closer to the fiber stress-strain 
curve. On the other hand, the composite stress-strain curve may be closer to 
the matrix stress-strain curve for a higher matrix volume fraction. Thus it 
can be seen that the assumption of a linearly elastic stress-strain curve for 
polymeric matrices will not cause large errors in predicted values of com
posite stress. 

The predictions of Eqs. (3.14) and (3.15) are quite accurate when the ap
plied load is tensile and agree very well with experimental results. However, 
when the applied load is compressive, the experimental observations may 
deviate from the theoretical predictions. This may be attributed to the fact 
that the behavior of the fibers in the composite subjected to compressive loads 
is analogous to the behavior of columns on an elastic foundation. Thus the 
response of the composite to compressive load is strongly dependent on ma
trix properties such as its shear stiffness. This observation is different from 
the response of the composite to longitudinal tensile loads, which is governed 
primarily by the fibers. 

3.2.2 Load Sharing 

It is of considerable interest to know how the load is shared between the 
constituents of a composite and the stresses to which they may be subjected. 
To that end, Eq. (3.9), for linearly elastic fibers and matrix material, can be 
written in terms of stresses and elastic moduli as 

(3.18) 

Thus 

(3.19) 

Equation (3.19) indicates that the ratio of stresses is the same as the ratio 
of corresponding elastic moduli. Thus, to attain high stresses in the fibers and 
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thereby use high-strength fibers most efficiently, it is necessary for the fiber 
modulus to be much greater than the matrix modulus. 

The ratio of loads now can be obtained in terms of elastic moduli and 
volume fractions as follows: 

Pr CTrAr Er Vr 
-=--=-- (3.20) 

(3.21) 

The load carried by the fibers is plotted as a fraction of the composite load 
in Fig. 3-5. The percentage of load carried by the fibers becomes higher for 
a higher ratio of elastic moduli of· fibers and matrix and a higher volume 
content of fibers. Thus, for a given fiber matrix system, the volume fraction 
of fibers in the composite must be maximized if the fibers are to carry a 
higher proportion of the composite load. Although the maximum volume per
cent of cylindrical fibers that can be packed into a composite is almost 91 %, 

80 

X 

~ll:l.." 
--40 

20 

0.2 0.4 0.6 0.8 

Fiber volume fraction 

Figure 3-5. Percentage load carried by the fibers in a unidirectional composite loaded in the 
longitudinal direction. 
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above 80% the composite properties usually begin to decrease because of the 
inability of the matrix to wet and infiltrate the bundles of fibers. This results 
in poorly bonded fibers and voids in the composite. 

The excellent strengths and strength-weight ratios achieved by glass-fiber
reinforced plastics are a result of the high strength of the glass fibers and the 
ability of the composite to use this strength because the ratio Erl Em is ap
proximately· 20. Even at 10% by volume of glass, the fiber will account for 
70% of the total load. 

Example 3-2: Calculate the fraction of load carried by the fibers in the 
composites indicated in Example 3-1. 

The desired fractions can be obtained easily using Eq. (3.21). The results 
are 

Glass-epoxy (20) 
Carbon-epoxy ( 100) 

Vr = 10% Vr = 50% 

0.69 0.952 
0.917 0.99 

3.2.3 Behavior beyond Initial Deformation 

The rule of mixtures accurately predicts the stress-strain behavior of a uni
directional composite subjected to longitudinal loads, provided that Eq. (3.13) 
is used for the stress and Eq. (3.14) for the slope of the stress-strain curve. 
However, the simplification of Eq. (3.14) to Eq. (3.15) through the replace
ment of slopes by the elastic moduli is possible only when both the constit
uents deform elastically. This may constitute only a small portion of the 
composite stress-strain behavior and is applicable primarily for glass- or 
ceramic-fiber-reinforced thermosetting plastics. In general, the deformation of 
a composite may proceed in four stages [l], summarized as follows: 

1. Both the fibers and the matrix deform in a linear elastic fashion. 
2. The fibers continue to deform elastically, but the matrix now deforms 

nonlinearly or plastically. 
3. The fibers and the matrix both deform nonlinearly or plastically. 
4. The fibers fracture followed by the composite fracture. 

Stage 2 may occupy the largest portion o{ the composite stress-strain 
curve, particularly for a metal matrix composite, and in this stage the matrix 
stress-strain curve is no longer linear, so the composite modulus must be 
predicted at each strain level by 



74 BEHAVIOR OF UNIDIRECTIONAL COMPOSITES 

(3.22) 

where (do-ml d€m)~ is the slope of stress-strain curve of the matrix at the strain 
€c of the composite. 

Although stage 3 is not observed with brittle fibers, the elastic modulus 
for composites with ductile fibers must be predicted by Eq. (3.14). Further
more, for ductile fibers that fail by necking, additional factors such as the 
hydrostatic lateral restraint exerted by the matrix to prevent necking of the 
fibers will cause deviations from the simple rule of mixtures. 

The stress-strain curves for hypothetical composite materials with ductile 
and brittle fibers and a typical metal or ductile matrix are shown in Fig. 3-6. 
The stress-strain curves of the composite fall between those of the fiber and 
the matrix. It is generally observed that the composites with brittle fibers 
fracture at the fracture strain of the fibers. However, if the fibers are capable 
of deforming plastically within the matrix, the fracture strain of fibers in the 
composite may be larger than the fracture strain of fibers when tested sepa
rately (without the matrix). Thus the fracture strain of the composite may 
exceed that of the fibers. This situation has been shown in Fig. 3-6. The 
difference between the two fracture strains increases as V r decreases and as 
the matrix strength-fiber strength ratio increases. 

3.2.4 Failure Mechanism and Strength 

In a unidirectional composite subjected to a longitudinal load, failure initiates 
when the fibers are strained to their fracture strain. This assumes that the 

-- Brittle fiber 

----- Ductile fiber 

o Yield point 

x Fracture 

Motrix 

Strain 

Figure 3-6. l..ongitudinal stress-strain curves for unidirectional composites with ductile and 
b,~le fibers and a typical ductile matrix. 
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failure strain of the fibers is less than that of the matrix. It is generally as
sumed, for theoretical predictions, that all the fibers fail at the same strain. If 
the fiber volume fraction is large enough (above a certain minimum, Vmin• 
defined later), the matrix will not be able to support the entire load when all 
the fibers break, and composite failure then will take place instantly. Under 
these conditions, the ultimate longitudinal tensile strength of the composite 
can be assumed equal to the composite stress at the fiber fracture strain ef. 
The rule of mixtures [Eq. (3.13)] therefore can be used to obtain 

(3.23) 

where O"cu is the longitudinal strength of the composites, O"fu is the ultimate 
strength of the fibers, and (O"m)e;, is the matrix stress at the fiber fracture strain 
e* f • 

If the fiber volume fraction is small, that is, below V11,;n, the matrix will be 
able to support the entire composite load when all the fibers break. Further, 
the matrix will be able to take additional load with increasing strain. It is 
generally assumed that the fibers do not support any load (i.e., ar = 0) at 
composite strains higher than the fiber fracture strain. The composite even
tually fails when the matrix stress equals its ultimate strength (i.e., 0"111 = O"m). 

Thus the ultimate strength of a composite with the fiber volume fraction less 
than V min is given by 

(3.24) 

Now V min can be defined as the minimum fiber volume fraction that ensures 
fiber-controlled composite failure. It can be seen easily that Vnun is obtained 
by equating the right-hand sides of Eqs. (3.23) and (3.24). Thus 

(3.25) 

The longitudinal composite strengths, as predicted by Eqs. (3.23) and 
(3.24 ), have been plotted against fiber volume fraction in Fig. 3-7. The matrix 
may be a strain hardening metal or an inelastic polymer, and a typical stress
strain curve is shown in Fig. 3-7. The solid portions of the lines represent the 
range of their applicability, and their intersection defines V,run· It may be 
noticed that Eq. (3.24) predicts composite strength that is always less than 
the strength of unreinforced matrix. On the other hand, Eq. (3.23) predicts 
composite strength that can be lower or higher than the matrix strength de
pending on the fiber volume f,raction. A critical fiber volume fraction Vcri, that 
must be exceeded for strengthening therefore can be defined as follows: 
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Figure 3-7. Longitudinal strength of a unidirectional composite as a function of fiber volume 
fraction. 

(3.26) 

or 

(3.27) 

Thus Vcrit is obviously a more important system property than Vnun· An ex
amination of Eqs. (3.25) and (3.27) shows that Vent and V nun arise as a result 
of the strain hardening and plastic flow orihe matrix and the matrix strength 
being higher than the matrix stress at the fiber fracture strain. In metal matrix 
composites, Ven, and V nun increase as the degree of strain hardening of the 
matrix increases and also as the matrix strength approaches the fiber strength. 
Thus, when a strong matrix is to be reinforced by fibers of marginal strength, 
large volume fractions will be required before strengthening can be observed. 
In composites with polymeric matrices, Vcri, and V nun are very small because 
most polymers exhibit only a limited amount of plastic flow and strain hard
ening. For example, if it is assumed that the strength of a glass-fiber rein
forcement )s 2.8 GPa (Ef = 70 GPa), the maximum composite strain at failure 
would be 4%, so <Tmu - (um)s; for typical epoxy resins may range 7-28 MPa. 
Therefore, V nun would range between 0.25% and 1.00%. 

3.2.5 Factors Influencing Longitudinal Strength and Stiffness 

While deriving stiffness and strength of unidirectional composites in the pre
ceding subsection, many simplifying assumptions regarding the physical var-
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iables of the system were made. Only some of these assumptions were stated 
explicitly, whereas others were implied. It is very rare that all the assumptions 
are met completely in an actual situation. This results in deviations of com
posite properties from the derived equations. Many of these deviations may 
be small and may not require any correction. Corrections may be necessary 
in many other situations; therefore, it is of interest to study the factors influ
encing strength and stiffness. Some of these factors are discussed in the fol
lowing paragraphs. A description of how these factors may influence the 
properties and how corrections are to be incorporated is provided. Actual 
correction terms are not given, but appropriate references have been supplied 
for further study. The factors influencing the strength and stiffness of com
posites are (1) misorientation of fibers, (2) fibers of nonuniform strength, (3) 
discontinuous fibers, (4) interfacial conditions, and (5) residual stresses. 

Orientation of fibers with respect to the loading axis is an important pa
rameter. Fiber orientation directly affects the distribution of load between the 
fibers and the matrix. The contribution of the fibers to the composite prop
erties is maximum only when they are parallel to the loading direction. Com
posite strength and stiffness will be reduced when the fibers are not parallel 
to the loading direction. The extent to which the strength and stiffness may 
be reduced depends on the angle of the fibers to the loading axis or the 
number of fibers that are not parallel to the loading direction. In practice, all 
the fibers cannot be aligned perfectly while making composites. No correction 
is necessary when the misorientation is limited to only a few degrees. In the 
case of laminated composites, the loads in some of the plies may not be in 
the fiber direction. Appropriate theories of behavior are necessary for such 
situations. Methods of analysis for laminated composites are discussed in later 
chapters. 

The strength of fibers affects the strength of composites in a yery direct 
manner [see Eq. (3.23)]. Any reduction in fiber strength will result in lowering 
of the composite strength. A high-strength composite will be obtained when 
all the fibers are uniform in their strength values. Individual metal fibers 
generally exhibit reproducible strengths [9], particularly ductile wires and to 
some extent uniform brittle wires. Drawn glass or silica fibers show a con
siderable spread in strengths about a mean value. There are two possible 
causes for this variation: (1) The variation can occur as a result of variations 
in fiber diameter with length resulting from the manufacturing process, and 
(2) a variation can occur as a result of the handling of fibers and from their 
surface treatment because of differences in the nature and intensity of chem
ical action at the coating-fiber interface. Whenever such nonuniforrnity in 
fiber strength exists, this should be taken into account through appropriate 
statistical models if a detailed understanding of strength is desired. 

The statistical models of composite strength have been developed on the 
basis of experimental observations of the failure of the composites. It is ob
served that the fracture of individual fibers in a composite starts at loads much 
smaller than the composite failure load. More fibers break with increasing 
load, and some fibers break at many different cross sections. Thus the fiber 
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breaks accumulate as the load increases. This results in a statistical weakening 
of the cross sections of the composite. The model, based on this weakening 
of the cross sections resulting from a statistical accumulation of fiber frac
tures, is usually referred to as the cumulative-weakening failure model. This 
model takes into account, through appropriate statistical parameters, the ef
fects of stress redistributions in the vicinity of an individual fiber break. 

The second consideration in the statistical models is the fact that fiber 
strength depends on fiber length. This length dependence can be explained 
by considering a fiber as a long chain of links. This chain breaks at the 
weakest link. Moreover, a longer chain has a higher probability of having a 
very weak link; thus longer fibers have smaller strengths. Another important 
aspect is the fact that composites actually contain bundles of fibers of non
uniform strength. The fiber strength usually is assumed to follow a Weibull 
distribution. In general, the average strength of a bundle is somewhat less 
than the average strength of the fibers when tested individually. The statistical 
tensile failure model takes into account the length-strength relationship, the 
statistical variation of fiber strength, and the difference between the strength 
of the bundle and an average strength of the fibers. Thus this model predicts 
the strength of the composite by taking into consideration the in situ fiber 
strength. Detailed discussions and the quantitative approach of the statistical 
models have been presented in other works [1-:3]. 

In composites, load is not directly applied to the fibers but to the matrix 
material and is transferred to the fibers through the fiber ends and small fiber 
lengths near the end. When the length of a fiber is much greater than the 
length over which the transfer of stress takes place, the end effects can be 
neglected, and the fiber may be considered to be infinite in length or contin
uous. The stress on a continuous fiber therefore can be assumed constant over 
its entire length. In the case of short-fiber composites, the end effects cannot 
be neglected. Their behavior cannot, in general, be described by relations 
such as Eqs. (3 .13) and (3 .15). Some corrections in the values of <Tr or Vr in 
Eqs. (3 .13) and (3 .23) will be needed to account for the fact that a portion . 
of the end of each finite-length fiber is stressed at less than the maximum 
fiber stress. The extent of correction depends on the length of fibers over 
which the load gets transferred from the matrix. This adjustment or correction 
becomes negligible when the fiber length is much greater than a critical 
length. However, the properties of discontinuous-fiber-reinforced composites 
are lowered to a greater degree because of the difficulty in controlling fiber 
alignment. The subject of discontinuous-fiber reinforcement is treated in a 
later chapter and has been discussed elsewhere in the literature [1,4-7]. 

Another important consideration in the behavior of discontinuous-fiber
reinforced composites is that the fiber ends cause stress concentrations. This 
is particularly important in the case of the failure of composites with brittle 
matrices. As a result of the stress concentrations, the fiber ends become sep
arated from the matrix at a very small load, thus ·producing a microcrack in 
the matrix. A similar situation arises in a continuous-fiber-reinforced com
posite when a fiber breaks at its weakest cross section. The first microcrack 
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at the fiber end may result in several alternate effects. The interface shear 
stresses may separate the fiber from the remaining composite by propagating 
the crack along the length of the fiber. When this happens, the fiber becomes 
totally ineffective, and the composite is acting as if it were a bundle of fibers. 
For this case, the strength of the composite is not enhanced by the presence 
of a matrix material. Alternatively, the crack may propagate out in a direction 
normal to the fibers across the other fibers, as a result of the local stress 
concentrations, leading to immediate composite fracture. If both these crack
propagation effects are suppressed, an increased load results in further sepa
ration of fiber ends from the matrix in a discontinuous-fiber composite and 
the fracture of fibers at additional sites in a continuous-fiber composite. Each 
crack thus formed causes a stress redistribution in its vicinity and changes 
the relative probability of modes of crack propagation. Such probabilistic 
behavior is considered in the statistical models, as indicated earlier. However, 
important considerations in the statistical models are the stress distribution in 
the vicinity of the crack at the fiber ends and the mechanism of load transfer 
from the matrix to the fibers. A discussion on these subjects may be found 
in other works [2,8-15]. 

The interfacial bond between the matrix and the fibers is an important 
factor influencing the mechanical properties and performance of composites. 
The interface is responsible for transmitting the load from the matrix to the 
fibers, which contribute the greater portion of the composite strength. Thus 
the composite strength is affected by the interfacial condition. The mechanism 
of load transfer through the interface becomes more important in the dis
continuous-fiber-reinforced composites and in the continuous-fiber-reinforced 
composites when the individual fibers fracture prior to ultimate failure of the 
composite. The interfacial condition controls the mode of propagation of mi
crocracks at the fiber ends. When a strong bond exists between the fibers and 
the matrix, the cracks do not propagate along the length of the fibers. Thus 
the fiber reinforcement remains effective even after the fiber breaks at several 
points along its length. A strong bond is also essential for higher transverse 
strengths and for good environmental performance of composites. Improved 
adhesion usually enhances water resistance of polymer matrix composites. 
The detrimental effect of an adverse environment becomes severe if the ad
hesion is inadequate, especially when the composite is under load. However, 
there is at least one composite property, namely, the fracture toughness, that 
may be improved by decreasing adhesion. Thus maximum use of fiber prop
erties requires optimal bonding across the interface, although it is difficult to 
relate other composite properties (e.g., fatigue and creep behavior) to the 
interface properties. Some aspects of the interf acial conditions are discussed 
in Chapter 9, on the performance of composites. As such, the subject of 
interfaces is quite vast, and there are books [ 16, 17] devoted exclusively to 
the subject. 

The fabrication process used to make fibrous composites inherently pro
duces residual stresses in the constituents and at the interface. The residual 
stresses are caused by two primary reasons: ( 1) the difference in the coeffi-
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cients of thermal expansion for the constituents and (2) the difference in 
fabrication temperature and the temperatures at which they are used. More
over, in laminates, residual stresses are present because of the difference in 
thermal expansion of the individual plies. These residual stresses may be 
caused even if the plies are identical and differ only in their relative orien
tation. Like other properties, thermal expansion of unidirectional composites 
is also orientation-dependent. The residual stresses affect the in situ properties 
of the matrix and the actual state of stress resulting from the service loads. 
Thus the residual stresses affect the strength of the composite as well as its 
response to mechanical loads. The residual stresses should not be neglected 
for an accurate analysis of the laminated composites using advanced methods. 
Detailed discussion on the residual stresses and the methods for the analysis 
of laminated anisotropic materials subjected to combined states of stress re
sulting from applied loads and the residual stresses have been presented by 
Chamis [18] and Tsai and Azzi [19]. 

3.3 TRANSVERSE STIFFNESS AND STRENGTH 

3.3.1 Constant-Stress Model 

A simple mathematical model may be constructed for studying the transverse 
properties of composites in the same manner as the one constructed earlier 
for studying the longitudinal properties in Sec. 3.2.1. The fibers may be as
sumed to be uniform in properties and diameter, continuous and parallel 
throughout the composite. The composite is stressed in the transverse direc
tion, that is, the direction perpendicular to the parallel fibers. This model may 
be thought of as made up of layers representing fibers and matrix material 
shown in Fig. 3-8. Each layer is perpendicular to the direction of loading and 
has the same area on which the load acts. It is clear that each layer will carry 
the same load and experience equal stress, that is, 

Fibers 

Figure 3-8. Model for predicting transverse properties of unidirectional composites. 
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Each layer is also assumed uniform in thickness so that the cumulative thick
ness of fiber layers and the matrix layers will be proportional to their re
spective volume fractions. In this case, the composite elongation Be in the 
direction of the load is the sum of the fiber elongation Br and the matrix 
elongation c\1: 

(3.29) 

The elongation in the material can be written as the product of the strain and 
its cumulative thickness, so 

(3.30) 

Substituting Eq. (3.30) in Eq. (3.29) gives 

(3.31) 

Dividing both sides of Eq. (3.31) by tc and recognizing that the thickness is 
proportional to the volume fraction yields 

(3.32) 

If the fibers and the matrix are now assumed to deform elastically, the strain 
can be written in terms of the corresponding stress and the elastic modulus 
as follows: 

(3.33) 

In view of Eq. (3.28), Eq. (3.33) can be simplified as 

(3.34) 

The transverse modulus of a composite with n number of materials may be 
obtained by generalizing Eq. (3.34): 
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(3.3: 

The transverse modulus of a unidirectional composite as predicted by Ee 
(3.34) has been plotted in Fig. 3-9 as a function of the fiber volume fractio1 
The longitudinal modulus as predicted by the rule of mixtures [Eq. (3.15 
also has been shown in Fig. 3-9. It may be noted that the fibers are muc 
less effective in raising the composite modulus in the transverse directio 
than in the longitudinal direction. 
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Figure 3-9. Transverse modulus of a unidirectional composite as a function of fiber volur 
fraction: (a) predictions, (b) comparison of predictions with the experimental measurements, 
a boron-epoxy lamina (E1 = 414 GPa, v = 0.2, Em = 4.14 GPa, um = 0.35). (Experimental d< 
from ref. 29.) 
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As an example, observe that if (Erl Em) = 10, more than .55% by volume 
of fibers is required to raise the transverse composite modulus to twice the 
matrix modulus, whereas only 11 % by volume of fibers is required to raise 
the longitudinal modulus to the same value. Theoretically, the transverse mod
ulus can be raised to five times the matrix modulus by providing 90% fibers, 
which, as stated previously, is not practical. Thus the fibers do not contribute 
much to the transverse modulus .unless the percentage of fibers is very high. 
Further, the use of higher-modulus fibers also does not enhance the transverse 
modulus significantly. 

Experimentally measured transverse modulus ET of a boron-epoxy unidi
rectional composite is compared with the predictions of Eq. (3.34) (and the 
Halpin-Tsai equations to .be discussed later) in Fig. 3-9b. It is noted that the 
measured values are significantly higher than the predictions of Eq. (3.34). 
This disagreement in moduli values highlights the fact that the model used 
to derive Eq. (3.34) does not properly simulate the deformation behavior of 
a unidirectional composite subjected to a transverse load. 

The simple model described in the preceding paragraphs is not mathemat
ically rigorous. In a real composite, the parallel fibers are dispersed in the 
matrix material in a random fashion, as shown in Fig. 3-2. Generally, both 
the fibers and the matrix will be present at any section perpendicular to the 
load, especially at the higher fiber volume fractions. Thus the load is shared 
between the fibers and the matrix, and the assumption that the stresses in the 
fibers and the matrix are equal is inaccurate. The assumption of equal stresses 
also results in a mismatch of strains in the loading direction at the fiber
matrix interface. Another inaccuracy in the solution arises owing to the mis
match of Poisson ratios of the fibers and the matrix, whic:h induces stresses 
in the fibers and matrix perpendicular to the load with no net resulting force 
on the composite in that direction. A mathematically rigorous solution with 
a complete match of displacements across the boundary between the fiber and 
the matrix is accomplished through the use of the theory of elasticity. 

3.3.2 Elasticity Methods of Stiffness Prediction 

The methods of pre~kting composite stiffness using elasticity principles can 
be divided into three categories: (1) the bounding techniques, (2) the exact 
solutions, and (3) the self-consistent model. In the first of these methods, the 
energy theorems of classical elasticity are used to obtain bounds on the elastic 
properties. The minimum-complementary-energy theorem yields the lower 
bound, whereas the minimum-potential-energy theorem yields the upper 
bound. This method has been used, among others, by Paul [20] and Hashin 
and Rosen [21]. Paul's bounds are too far apart to be of much practical utility, 
particularly at intermediate fiber volume fractions. The bounds obtained by 
Hashin and Rosen are much improved. A comparison of their predictions 
with experimental data shows that the experimental results on the transverse 
modulus lie close to the upper bound. 
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An exact method of analyzing fibrous composites consists of assuming the 
fibers to be arranged in a regular periodic array. The resulting elasticity prob
lem has to be solved using an appropriate technique. There are few closed
form. solutions using classical methods because of the difficulties arising as a 
result ,of the complex geometries of the reinforcement. The method of a series 
development [22-24] and the complex-variable technique [25] have been used 
as alternative approaches for the solution. However, the numerical solution 
techniques are the best to analyze the complex geometries with ease. Adams 
an~ Doner [26] used the finite-difference method to predict the transverse 
properties of a fibrous composite, whereas Chen and Lin [27] used the finite
element method for the purpose. Numerical results of Adams and Doner for 
transverse modulus are shown in Fig. 3-10. It is assumed here that fibers are 
packed in a square array. It has been found that good agreement exists be
tween experiment and their numerical results. 

In the self-consistent model, a single fiber is assumed to be embedded in 
a concentric cylinder of matrix material. This outer cylinder, in turn, is em
bedded in a homogeneous material that is macroscopically the same as the 
composite being studied. The ratio of the volume of the fiber to that of the 
cylinder containing the matrix and fiber is assumed to be equal to the volume 
fraction of the fibers in the composite. This model has the advantage that its 
results are applicable to any regular or irregular packing of fibers. This 
method has been used by Hill [28], Whitney and Riley [29], and Hermans 
[30]. A more detailed discussion of these methods and various models has 
been presented in a review article by Chamis and Sendeckyj [31]. 

Although a large amount of useful data has been generated through the 
procedures, some of the results are in the form of curves and others in the 
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Figure 3-10. Transverse f"'lodulus predicted through numerical calculations. (From Adams and 
Doner [26].) 
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form of complicated equations, thus limiting their adaptability to design pro
cedures. For design purposes, it is often desirable to have simple and rapid 
computational procedures for estimating composite properties even though 
the estimations may be only approximate. 

3.3.3 Halpin-Tsai Equations for Transverse Modulus 

Halpin and Tsai [32] have developed simple and generalized equations to 
approximate the results of more exact micromechanics analyses. These equa
tions are simple and can be used readily in the design process. _Moreover, the 
predictions of these equations are quite accurate if the fiber volume fraction 
does not approach 1. The Halpin-Tsai equation for transverse composite 
modulus can be written as 

ET 1 + fryVf 

Em 1 - 11Vr 
(3.36) 

where 

(3.37) 

in which g is a measure of reinforcement and depends on the fiber geometry, 
packing geometry, and loading conditions. The values of l; are obtained by 
comparing Eqs. (3.36) and (3.37) with exact elasticity solutions through 
curve-fitting techniques. Halpin and Tsai have suggested that a value of g = 
2 may be used for fibers with circular or square cross,sections. For rectangular 
cross-section fibers, g may be calculated as 

g=2~ 
b 

(3.38) 

where alb is the rectangular cross-section aspect r.atio with the dimension a 
taken in the. direction of the loading. Predictions of the Halpin-Tsai equation 
for transverse composite modulus have been shown as a function of fiber 
volume fraction in Fig. 3-11 for different constituent modulus ratios. Halpin 
and Tsai [32] have demonstrated the applicability of these equations by show
ing that the predictions of Eq. (3.36) agree very well with some of the more 
exact solutions. A more thorough discussion on the comparison of the Halpin
Tsai equations and the exact elasticity solution has been presented in the 
original reference [32]. Also given in this reference are similar simple rela
tions for other composite properties, some of which will be discussed later . 

. Predictions of the Halpin-Tsai approach [Eq. (3.36)] are compared with 
the experimental measurements in Fig. 3-9b, along with the predictions of 
Eq. (3.34). Expyrimental results clearly are much .closer to the Halpin-Tsai 
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Figure 3-11. Transverse modulus predicted by Halpin-Tsai equation [Eq. (3.36)]. 

equation than they are to Eq. (3.34). This comparison further demonstratf 
applicability of the Halpin-Tsai equations for transverse modulus predictio1 

It is suggested that the Halpin-Tsai equations are quite adequate to satisJ 
the practical requirements for the predictions of transverse composite modi 
lus, particularly because the variations in composite materials manufacturir: 
processes always cause a variation in the composite moduli. Therefore, or 
cannot hope to precisely predict composite moduli. · 

Example 3·3: Calculate, using the Halpin-Tsai equation, the ratios < 

transverse modulus of the composite to the matrix modulus for the con 
posites given in Example 3-1. Compare these ratios with those obtained i 
Example 3-1. 

t = 2 for all cases 

Glass-Epoxy System 

20 - 1 19 
T/ = 20 + 2 = 22 

Vr = 10% 
ET = 1 + 2 x (19/22) x 0.1 = l 28 
Em 1 - (19/22) X 0.1 . 

Vr = 50% 
1 + 2 X (19/22) X 0.5 = 

3 28 
1 - (19./22) X ~.5 . 
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Carbon-Epoxy System 

E 
_f = 100 
Em 

100 - 1 99 
71 = 100 + 2 = 102 

Vr = 10% 
1 + 2 X (99 /102) X 0.1 = l 

32 
1 - (99/102) X 0.1 . 

Vr = 50% ET = 1 + 2 X (99/102) x 0.5 = 3 83 
Em 1 - (99/102) X 0.5 . 

For a better comparison, these results, along with the results of Example 
3-1, can be tabulated as follows: 

Glass-epoxy (20) 
Carbon-epoxy ( 100) 

2.9 
10.9 

1.28 
1.32 

10.5 
50.5 

Vr = 50% 

3.28 
3.83 

It is easily .observed that under these conditions, the transverse modulus of 
a unidirectional composite is much smaller than its longitudinal modulus. 
Further, while an increase in fiber volume fraction results. in an increase 
of transverse modulus similar to the longitudinal modulus, an increase in 
fiber modulus only marginally increases the transverse m~dulus, unlike the 
longitudinal modulus. 

3.3.4 Transverse Strength 

So far in this discussion it is seen that the composite longitudinal strength 
and stiffness and transverse stiffness are improvements over the corresponding 
matrix properties owing to the presence of fibers. The longitudinal strength 
and stiffness are improved as a result of the predominant role played by the 
fibers. The response of composites to longitudinal loading is determined by 
the fact that the load is shared between the fibers and the matrix. However, 
because of their higher strength and stiffness, fibers carry a major portion of 
the load fil\d thus cause composite propertfes that are significantly improved 
over the mlitrix properties. . 

When a unidirectional composite is subjected to transverse loads, the fibers, 
as a result of the geometry, are unable to take. as large a proportion' of the 
load as they do in the case of longitudinal loading. The high-modulus fibers 
serve as effective constraints on the deformation of the matrix, whi~h results 
in the transverse composite modulus being higher than the matrix modulus, 
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although only marginally unless the fiber volume fraction is very high. I1 
terms of the transverse strength, the constraints placed on the matrix by th1 
fibers cause strain and stress concentrations in the matrix adjacent to the fiber 
and thus result in composite failure at a much lower strain than the strain a 
which the unrestrained matrix material fails. Therefore, unlike the longitudina 
strength and stiffness and transverse modulus, the transverse strength is re 
duced because of the presence of fibers. 

3.3.4. 1 Micromechanics of Transverse Failure Failure is a process th, 
is initiated by localized conditions. State of stress is the most important con 
dition influencing initiation of failure. The failure of structures and compc 
nents generally is initiated at the locations of highest stress produced b 
geometric or material discontinuities. Geometric discontinuities result fror 
the shape of the structure or from holes and cutouts made for assembly pm 
poses. These geometric discontinuities reduce the strength of structures on 
macroscopic level as a result of the stress concentrations produced by th 
discontinuity. 

In the case of composite materials, material discontinuities are always pre! 
ent and influence local stress states on a microscopic level, which then contn 
the microscopic failure events (i.e., matrix cracking, interface failure, fibi 
break, etc.) and eventually the macroscopic failure. It is therefore importai 
to understand and appreciate the internal stresses and their influence on in 
tiation of failure. 

Internal stresses in a unidirectional composite subjected to a transverse lo, 
can be explained through the results of classical analysis by Goodier. f 
analyzed the stresses in an elastic matrix surrounding a single cylindric 
inclusion (e.g., a single fiber). Variations in radial and tangential stresses a 
shown in Fig. 3-12a. It is observed that near the inclusion, both these stre 
components are significantly greater than the respective applied stressvs. Thi 
such inclusions cause stress concentrations in the matrix. The stres 
concentration factor (SCF) is defined as the ratio of maximum internal stre 
to the applied stress. When these stresses are sufficiently high, they cau 
failure initiation in the matrix material. The applied stress required to cau 
failure can be predicted from knowledge of matrix strength and the stre 
concentration factor. Since the state of stress near the inclusion is triaxial, 
suitable failure criterion is used to predict the failure stress. For example, 
the case of brittle materials, the maximum principal stress may be used 
predict failure. Therefore, a brittle material with an inclusion. will fail at ; 
applied stress lower than the failure stress of the material by a factor equ 
to the SCF. 

It may be further observed in Fig. 3-12a that the tangential stress u 8 c 
minishes rapidly and is small for (r/ a) = 2~ However, the influence of t 
radial stress u, extends to (rla) = 3 or 4. Clearly, two inclusions centered, 
a l.ine along the direction of applied load that are separated by a center-1 
center distance of less than 3a produce significant interaction, and some i 
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Figure 3-12. (a) Stress distributions in matrix surrounding a single cylindrical inclusion: 
EifEm = 10,.,um = 0.35, v1 = 0.30; (b) principal stress in matrix surrounding multiple fibers: 
vm;= 0.35, v1 = 0.20. 
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teraction persists for separation distances of up to 6a. Therefore, stress 
concentrations and stress distributions in composites depend on volume frac
tion of fibers, in addition to the elastic properties of fibers and matrix mate
rials. The complete state of stress in the matrix material may be obtained by 
using numerical-solution techniques such as the finite-difference method [26] 
or the finite-element method [27]. The results of a finite-element analysis are 
shown in Fig. 3- l 2b for stress concentrations in unidirectional composites 
loaded in a transverse direction. Such results, in combination with the knowl
edge of matrix strength and suitable failure criterion, are used to predict the 
composite transverse strength, as discussed in the next section. 

3.3.4.2 Prediction of Transverse Strength The transverse tensile 
strength of the composite can be predicted using one of two methods: (1) the 
strength-of-materials method or (2) the advanced elasticity method using 
numerical-solution: techniques. In both methods it is assumed that the com
posite transverse strength· <Tru is controlled by the matrix ultimate strength 
<Tmu· It is further assumed that the composite strength is lower than the matrix 
strength by a factor S known as the strength-reduction facto,; which depends 
on the relative properties of the fibers and the matrix and their volume frac
tions. Thus the composite transverse strength can be written as 

(3.39) 

where S is determined using one of the preceding methods. 
In the strength-of-materials method, the factor Sis assumed to be the stress

concentration factor (SCF) [33] or the strain-magnification factor (SMF: 
[34,35].* These factors are calculated using simple mathematical models 
When the Poisson effects are neglected, the equations for the SCF and SMF 
take the following simplified forms: 

1 - Vr[l - (Emf Er)] 
SCF = 1 - (4Vrf 1r)112[1 - (Em/Er)] 

' 1 
SMF = 1 - (4Vrf 1r)1'2[l - (Emf Er)] 

(3.40 

(3.41 

Thus, once the SCF or SMF is known from Eq. (3.40) or Eq. (3.41), th 
transverse strength in terms of stresses or strains can be calculated easily. 

In the advanced methods the factor S is calculated from the complet 
knowledge of state of stress or strain in the composite. The failure of th 
matrix can be predicted by a suitable failure criterion. Tl;le maximum 

*'J]1e strain-magnification factor can be used in the expression Eiu = (emu/SMF), 
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distortion-energy criterion is the most commonly used failure criterion. Ac
cording to this criterion, the material failure occurs when the distortion energy 
at any point reaches a critical value. It can be shown easily that according to 
this criterion, the strength-reduction factor S can be written as 

(u ) 1/2 
S = max (3.42) 

ac 

where Umax is the maximum normalized distortional energy at any point in 
the matrix, and ac is the applied stress on the composite. For a given com
posite stress ac, the distortional energy U max is a function of fiber· volume 
fraction, fiber packing, condition at the fiber-matrix interface, and constituent 
properties. This method is more accurate and rigorous and hence is expected 
to yield more reliable results. 

A further empirical approach for the prediction of transverse tensile 
strength of fibrous composites, which can be modeled in a fashion similar to 
particulate composites, has been described by Nielsen [36]. The composite 
strain to failure may be approximated as follows: 

(3.43) 

where Eca is the breaking strain of the composite transverse to the fibers, 
Erne is the matrix breaking strain, and Vr is the volume fraction of fibers. If 
the matrix and composite have linear elastic stress-strain curves, Eq. (3.43) 
can be stated in terms of stress: 

(3.44) 

where ET is the transverse modulus of composite, and Em is the matrix mod
ulus. The preceding equations assume perfect adhesion between phases, and 
thus failure occurs by matrix fracture at or near the interface. 

3.4 PREDICTION OF SHEAR MODULUS 

The in-plane shear modulus of a unidirectional composite may be predicted 
by the same model used for transverse modulus in Sec. 3.3.1. This model 
with the shear loading is shown in Fig. 3-13. Shearing stress on the fibers 
and the matrix are equal. Thus 

(3.45) 

The total shear deformation of the composite /;l.c is the sum of the shear 
deformations of the fibers Ar and the matrix D..m: 



92 BEHAVIOR OF UNIDIRECTIONAL COMPOSITES 

,: dc=L'.t+dm ft) 
j 1 

Matrix / 
/ 

/ 
---( 

I 
I 

I 
I 

I 

(a) (b) 

Figure 3-13. (a) Model for predicting shear modulus of a unidirectional composite and (b) shea 
deformations in the model. 

(3.46: 

The shear deformation in each material can be written as the product oi 
corresponding shear strain y and the cumulative thickness of the material: 

(3.47) 

Substitution of Eq. '(3.47) in Eq. (3.46) gives 

(3.48) 

Dividing both sides of Eq. (3.48) by tc and recognizing that the thickness is 
proportional to the volume fraction yields 

tr tm 
"V - "V -+ "\I -
IC - I[ f Im f 

C C 

(3.49) 

If the shear stress-shear strain behavior of fibers and matrix is assumed linear, 
the shear .strains in Eq. (3.49) can be replaced by the ratios of shear stress 
and appropriate shear modulus as follows: 

(3.50) 
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where GLT is the in-plane shear modulus of the composite, and Gr and Gm . 
are the shear modulus of fibers and matrix, respectively. In view of Eq. (3 .45), 
Eq. (3.50) can be simplified as 

(3.51) 

or 

(3.52) 

This model for predicting shear modulus of a unidirectional composite also 
suffers from the same limitations as were pointed out during the discussion 
on transverse modulus in Sec. 3.3.1. It is therefore desirable to use either a 
more rigorous mathematical model or a proven empirical method to predict 
shear modulus. Numerical results of Adams and Doner for shear modulus are 
shown in Fig. 3-14. As was pointed out in Sec. 3.3.3, Halpin and Tsai [32) 
have developed simple equations to approximate the results of more exact 
micromechanics analyses. The Halpin-Tsai equations for in-plane shear mod
ulus of a unidirectional composite can be written as 

~· 
Circular fibers in o 
square array 75% ~).044] 

o~,~~2,--___.,.4~6~s~,o~-='20-=---~4~0~6~0=--:c10~0~2~0~0,..-:4~0~0~=!100·0 

Shear modulus ratio G11Gm 

(3.53) 

Figure 3-14. Shear modulus predicted through numerical calculations. (From Adams and 
Doner [26].) · 
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.where 

(3.54) 

in which Halpin and Tsai have suggested that g = I. Shear modulus as pre
dicted by Eq. (3.53) has been shown as a function of fiber volume fraction 
in Fig. 3-15. It may be pointed out that Gm (or Em) has as significant an 
influence on GLT as Em has on ET. 
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Figure 3-15. (a) Shear modulus of a unidirectional composite as predicted by Halpin-Tsai 
equation [Eq. (3.53)]; (b) comparison of predictions with the experimental measurements on a 
glass-:-epoxy unidirectional lamina (G1 = 30.19 GPa, Gm = 1.83 GPa). (Experimental data from 
ref. 29.) 
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Experimentally measured values of in-plane shear modulus of a glass
epoxy lamina are compared with the predictions of the Halpin-Tsai equations 
[Eq. (3.53)] and Eq. (3.51) in Fig. 3-15b. Experimental results are closer to 
the predictions of the Halpin-Tsai equations than they are to Eq. (3.51). As 
with transverse modulus, this comparison demonstrates the applicability of 
the Halpin-Tsai equations for predicting shear modulus. 

3.5 PREDICTION OF POISSON'S RATIO 

For in-plane loading of a unidirectional composite, two Poisson ratios are 
defined. The first of these relates the longitudinal stress to the transverse strain 
and is denoted by vLT· It is normally referred to as the major Poisson ratio. 
The second one, called the minor Poisson ratio ( vTL), relates the transverse 
stress to the longitudinal strain. 

The major Poisson ratio can be predicted using the same model as that 
used for predicting ET. However, the load is applied parallel to the fibers, that 
is, parallel to the layers in the model. The deformation pattern is shown in 
Fig. 3-16 for cumulative thicknesses of layers. 

Transverse strains in the fibers, matrix, and composite can be written in 
terms of longitudinal strains and the Poisson ratios as follows: 

(eT)r = -vr(eL)r 

(eT)m = - Vm(eJm 

(eT)c = -vLT(eL)c 

(3.55) 

where vr and vm are the Poisson's ratios of the fibers and matrix, respectively. 
Transverse deformations can be written as the product of strain and cumu
lative thickness: 
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Figure 3-16. Model for predicting Poisson's ratio of a unidirectional composite. 
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Om = tm(eT)m = -tmvm(eL)m 

De = tc(eT)c = -tcvLT(eL)c 

(3.56) 

The deformation of the composite is the sum of deformations of the fibers 
and the matrix. Therefore, 

(3.57) 

Since the longitudinal strains in the fibers, matrix, and composite owing to 
the longitudinal stress are equal, Eq. (3.57) becomes 

(3.58) 

Dividing both sides of Eq. (3.58) by tc and recognizing that the thickness is 
proportional to the volume fraction yields 

(3.59) 

This is the rule of mixtures for the major Poisson ratio of a unidirectional 
composite. 

The minor Poisson ratio can be obtained from the knowledge of values for 
Eu ET, and vLT· Derivation of the following relation between these four elastic 
constants will be given in Chap. 5: 

(3.60) 

3.6 FAILURE MODES 

In a very broad sense, failure of a structural element can be stated to hav( 
taken place when it ceases to perform satisfactorily. Therefore, the definitior 
of failure will change from one application to another. In some applicatiorn 
a very small deformation may be considered failure, whereas in others onl) 
total fracture or separation constitutes failure. In the case of composite ma 
terials, internal material failure generally initiates much before any change i1 
its macroscopic appearance or behavior is observed. The internal materia 
failure may be observed in many forms, separately or jointly, such as (1 
breaking of the fibers, (2) microcracking of the matrix, (3) separation of fiber 
from the matrix ( called de bonding), and ( 4) separation of laminae from eacl 
other in a laminated composite (called delamination). The photomicrograph 
in Fig. 3-17 illustrate some of the types of internal material failures. Thi 
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Figure 3-17. Microscopic failure events in fiber-reinforced polymer composites: (a) separation 
of fibers from matrix in a glass-epoxy composite (5000x); (b) microcracking of a glass-epoxy 
laminate during fatigue (800x); (c) separation of laminae in a glass-epoxy laminate (200X). 

effect of internal damage on macroscopic material response is observed only 
when the frequency of internal damage is sufficiently high. 

In many cases the macroscopic material response changes well before the 
macroscopic failure. Thus, depending on the application or design procedure, 
the failure load of a unidirectional composite could be considered as the load 
at which material behavior deviates from linear stress-strain response or the 
load at fracture. In the first case, a ply or lamina is considered to have failed 
when the stress exceeds the proportional limit so that its subsequent stress
strain behavior cannot be predicted using initial properties. The second defi
nition of failure load permits maximal material utilization assuming that an 
appropriate safety factor is considered. However, most unidirectional mate
rials exhibit a linear stress-strain behavior up to fracture. In such cases, the 
two definitions yield the same failure load. Figure 3-18 shows longitudinal 
stress-strain diagrams for unidirectional boron-epoxy and graphite-epoxy 
systems. The only unidirectional composites in which a nonlinear curve would 
be expected (assuming that fiber behavior is elastic) would be very low vol
ume fraction fiber composites having a matrix capable of plastic deformation. 
The nonlinearity would be more pronounced if the matrix also had a high 
value of Young's modulus. 

In the following subsections, the fracture modes of unidirectional compos
ites s1,1bjected to different loading conditions are described. 
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Figure 3-17. (Continued) 
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Figure 3-17. (Continued) 
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Figure 3-18. Longitudinal tensile stress-strain curves for graphite-epoxy (V1 = 62%) and 
boron-epoxy {V1 = 55%) composites. 
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3.6.1 Failure under Longitudinal Tensile Loads 

In a unidirectional composite ( consisting of brittle fibers) subjected to increas 
ing longitudinal tensile load, failure initiates by fiber breakage at their weakei 
cross sections. As the load increases, more fibers break. Variation in the cu 
mulative number of fiber breaks is shown as a function of applied load i 
Fig. 3-19 for a model representing a unidirectional composite [37]. It can b 
observed that the individual fibers break at less than 50% of the ultimate loac 
Breaking of the fibers is a completely random process. As the number c 
broken fibers increases, some cross section of the composite may become to 
weak to support an increased load, thus causing a complete rupture of th 
composite. The interfaces of broken fibers may become debonded because c 
stress concentrations created at the fiber ends and thus may contribute to th 
separation of the composite at a given cross section. In other cases, cracks < 
different cross sections of the composite may join up by debonding of th 
fibers along their length or by shear failure of the matrix. Therefore, a un: 
directional composite can fail in at least three modes under longitudinal ter 
sile load. These modes are (1) brittle, (2) brittle with fiber pullout, and (~ 
brittle failure with fiber pullout and (a) interface-matrix shear failure and (l 
constituent debonding (i.e., matrix breaking away from the fibers). These thre 
modes are illustrated schematically in Fig. 3-20. Photographs of specimer 
failed under longitudinal tensile load are shown in Fig. 3-21 [38]. The phc 
tographs show how the cradks at different cross sections join up to caus 
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Figure 3-19. Cumulative number of fiber breaks with increasing longitudinal load. (From Ro51 
(37].) 
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Figure 3-20. Failure modes of a unidirectional composite subjected to longitudinal tensile load: 
(a) brittle failure, (b) brittle failure with fiber pullout, and (c) brittle failure with debonding and/ 
or matrix failure. 

ultimate failure of the specimen. The pullout of fibers from the matrix depends 
on the bond strength and the load-transfer mechanism from matrix to fiber. 

Interfi.ber matrix shear failure and constituent debonding could occur either 
independently or combined; that is, portions of the failure path in Fig. 3-20c 
occur by debonding and other portions by matrix shear failure. Glass-fiber 
composites having low fiber volume fractions CVr < 0.40) exhibit predomi
nantly the brittle-type failure mode. Composites with intermediate fiber vol-

Figure 3-21. Photographs of unidirectional composite specimens show how cracks at different 
cross sections join up to cause failure under longitudinal tensile loads. 
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ume fraction (0.40 < Vr < 0.65) exhibit brittle failure with fiber pullout. 
Composites with high fiber volume fraction <Vr > 0.65) exhibit brittle failure 
with fiber pullout and debonding or matrix shear failure. These ranges are 
applicable if the void content in the composite is negligible. Graphite-fiber 
composites generally fail as shown by Fig. 3-20a,b. 

3.6.2 Failure under Longitudinal Compressive Loads 

When composites are subjected to compressive loads, continuous fibers act 
as long columns, and microbuckling of the fibers can occur. In composites 
with very low fiber volume content, fiber microbuckling may occur even when 
the matrix stresses are in the elastic range. However, at practical fiber volume 
fractions <Vr > 0.40), fiber microbuckling generally is preceded by matrix 
yield and/ or constituent debonding and matrix microcracking. Compressive 
failure of a unidirectional composite loaded in the fiber direction may be 
initiated by transverse splitting or failure of the composite [39,40]. In other 
words, the transverse tensile strain resulting from the Poisson ratio effect can 
exceed the ultimate transverse strain capability of the composite, resulting in 
cracks at the interface. Shear failure is another mode of gross failure of com
posites subjected to longitudinal compressive loads. Failure modes for com
posites subjected to longitudinal compressive load may be listed as follows: 
(1) transverse tensile failure, (2) fiber microbuckling (a) with matrix still 
elastic, (b) preceded by matrix yielding, and (c) preceded by constituents 
debonding, and (3) shear failure. 

Transverse failure and fiber microbuckling are illustrated in Fig. 3-22. The 
adjacent fibers in a composite may buckle independently of each other or may 
buckle in a cooperative manner. In the first case, the transverse deformation 
of the fibers is out of phase relative to each other (Fig. 3-22b). The resulting 
strains in the matrix are predominantly extensional. This mode of buckling 
therefore is referred to as the extension mode. This buckling mode is possible 

ii l l• T 

IIll • tttltt ttttttt t!ttttt 
(al {b) (c) 

Figure 3-22. Failure modes of unidirectional composite subjected to longitudinal compressive 
load: (a) transverse tensile failure, (b) fiber microbuckling in extensional mode, and (c) fiber 
microbuckling in shear mode. 
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only when the interfiber distance is quite large, that is, when the fiber volume 
fraction is very small. The second buckling mode is more common and may 
occur in most of the practical fiber volume fractions. In this case, the trans
verse deformations of the adjacent fibers are in phase (Fig. 3-22c) with each 
other. The resulting strains in the matrix. are predominantly shearing strains. 
This mode therefore may be referred to as the shear mode. The theoretical 
analyses for prediction of compressive strength have been carried out on the 
basis of these modes of buckling [41]. Photographs in Fig. 3-23 'Show that 
the two failure modes really do occur [42]. 

The shear failure mode in a compression test is illustrated in Fig. 3-24. 
Experimental results of Hancox [43] indicate that carbon fiber composites fail 
in a shear mode at approximately 45° to the loading axis. There is evidence 
(Fig. 3-25) of localized fiber rotation that may occur before or during failure. 

The preceding observations of failure modes in compression have been 
used to formulate theoretical expressions for predicting longitudinal com-

200 

D=50d 

Figure 3-23. Microbuckling of fibers in unidirectional composites owing to shrinkage during 
curing. Parallel fibers buckle in phase (i.e., in shear mode) at separations of up to 10 fiber 
diameters (a,b). Only at very large separations of 50 fiber diameters do they buckle indepen
dently in extension mode (c). (From Dale and Baer [42].) 
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Figure 3-24, Shear failure of a unidirectional composite under longitudinal compressive load. 

pressive strength. For example, Rosen [ 44] has derived an equation that con
siders compressive failure to be initiated by fiber microbuckling. If a shear 
mode of buckling occurs (Fig. 3-22c), a simple equation results: 

CT~u = _G_m_ 
1 - vr (3.61) 

where cr~u is the longitudinal compressive strength, Gm is the matrix shear 
modulus, and Vr is the fiber volume fraction. This .equation, at reasonable 
fiber fractions, predicts a lower strength value than does the equation resulting 
from the assumption that fiber buckling is in an extensional mode. This is 
shown in Fig. 3-26. However, Eq. (3.61) predicts values much greater than 
measured values [ 45], and even when it is assumed that the matrix can behave 
inelastically (see Fig. 3-26), the predictions are still too great. 

Figure 3-25. Photograph shows localized rotation 6t carbon fibers that may occur before or 
during shear failure under longitudinal compressive load (SOX). (From Hancox [43].) 
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~ Experimental points (ref. 45) 
Transverse splitting theory ( Eq. 3.66) 
Rosen theory (ref. 44) 
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Figure 3-26. Comparison of predicted longitudinal compressive strength with experimental 
data. 

The observation that transverse splitting or debonding might be the failure
initiating event [39,40] also can be formulated as a simple theoretical ex
pression for the longitudinal compressive strength. In this case, failure is 
assumed to occur when the transverse tensile strain, produced as a result of 
longitudinal compression, exceeds the ultimate transverse strain capability of 
the composite. The expression may be derived as follows. 

A longitudinal compressive stress crL produces the longitudinal strain 

(3.62) 
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where EL.c is the longitudinal modulus in compression. The transverse tensil, 
strain owing to Poisson's effect is given as 

er' 
"' - "' - L c,T - - JILTC,L - JILT E 

L,c 
(3.63 

. At failure, er~ is the ultimate longitudinal compressive strength (er~0 ) sue 
that eT equals the ultimate transverse tensile strain (eTU). Thus 

(3.6£1 

or 

(3.6: 

Use of Eq. (3.44) for eTU and the rule of mixtures for EL,c and JILT give tr 
desired expression for the longitudinal compressive strength of a unidire< 
tional composite: 

(3.6( 

where emu is the matrix ultimate strain. Predictions of Eq. (3.66) for tl 
longitudinal compressive strength are also shown in Fig. 3-26 for two valui 
of emu• namely, emu = 0.02 and 0.05. Experimental points showing streng 
are in much better agreement with the predictions of Eq. (3.66) than with ti 
predictions based on microbuckling of fibers. The agreement is particular 
good ·when emu = 0.05, which is a reasonable value for the epoxy resin us1 
in the composite tested. As shown, the predicted strength is greatly influenct 
by the matrix ultimate strain ( or transverse composite ultimate strain if intc 
face failure or fiber failure occurs prior to matrix failure). Also, there is , 
optimal value of fiber volume fraction at which strength will be maximum 

3.6.3 Failure under Transverse Tensile Loads 

Fibers perpendicular to the loading direction act essentially to produce stre 
concentrations at the interface and in the matrix. Therefore, unidirectior 
composites subjected to transverse tensile loads fail because of matrix 
interface tensile failure, although in some cases they may fail by fiber trar 
verse tensile failure if the fibers are highly q1iented and weak in the transve1 
direction. Thus the composite failure modes under transverse tensile load m 
bedescribed as (1) matrix tensile failure and (2) constituent debonding ar 
or fiber splitting. Matrix tensile failure is illustrated in Fig. 3-27. Matrix tt: 
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Figure 3-27. Failure of unidirectional composite under transverse tensile load. 

sile failure with constituent debonding means that some portions of the frac
ture surface are formed because of failure of interfacial bonds between the 
fibers and the matrix. Figure 3-28a,b shows the fracture surface of high
modulus graphite and high-tensile-strength carbon composites [46]. These 
photographs indicate that constituent debonding and fiber splitting both may 
take place. 

3.6.4 Failure under Transverse Compressive Loads 

A unidirectional composite subjected to transverse compressive load generally 
fails by shear failure of the matrix, which may be accompanied by constituent 
debonding or fiber crushing. Therefore, the failure modes of a unidirectional 
composite under transverse compressive loads may be listed as (1) matrix 
shear failure or (2) matrix shear failure with constituent debonding and/ or 
fiber crushing. The failure modes are illustrated in Fig. 3-29, where some 
portions of the \failure surface are created by constituent debonding. Experi
mental investigations of Collings [47] with carbon-fiber-reinforced plastics 
indicate that when the composites are subjected to transverse compressive 
loads, failure occurs by shear in a direction normal to the fibers on planes 
parallel to them at the expected angles. The photographs of two of the failed 
specimens in Fig. 3-30 clearly illustrate the failure mode. It has been sug
gested that the failure is precipitated by failure of the fiber-resin bond. Thus 
the transverse compressive strength is lower than the longitudinal compressive 
strength. However, if constraints are placed on the specimen to prevent its 
deformation in the direction perpendicular to the plane of load-fiber axes, it 
is possible to achieve a transverse compressive strength comparable with the 
longitudinal compressive strength. The increase in strength is observed be
cause the failure now occurs by the shear failure of the fibers, whose strength 
is higher than the matrix strength or the bond strength. In this mode of failure, 
that is, the shear failure of the fibers, it has been observed, as expected, that 
the transverse compressive strength of the composite increases with an in
crease in the fiber volume fraction. 

3.6.5 Failure under In-Plane Shear Loads 

In this case the failure could take place by matrix shear failure, constituent 
debonding, or a combination of the two. Thus the failure modes are (1) matrix 
shear failure, (2) matrix shear failure with constituent debonding, and (3) 
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Figure 3-28. Photomicrographs of fracture surfaces of unidirectional graphite-fiber compos
ites failed under transverse tensile loads with fibers being (a) high modulus and (b) high tensile 
strength. (From Chamis et al. [46].) 

constituent debonding. These failure modes are illustrated in Fig. 3-31, where 
the failure surface could include debonded portions as well. 

3. 7 EXPANSION COEFFICIENTS AND TRANSPORT PROPERTIES 

3. 7 .1 Thermal Expansion Coefficients 

A change in temperature of a body causes a change in its dimensions pro
portional to the change in temperature and its initial dimensions. For equal 
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Figure 3-28. (Continued) 

Figure 3-29. Shear failure of unidirectional composite subjected to transverse compressive 
load. 
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Figure 3-30. Photographs showing shear failure of unconstrained unidirectional carbon7fibe 
reinforced plastics subjected to transverse compressive loads. (From Collings [47].) 
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Figure 3-31. Failure of a unidirectional composite subjected to in-plane shear load. 

change in temperature and initial dimensions, bodies made of different ma
terials change in dimensions by different amounts. The actual change depends 
on the material property called coefficient of thermal expansion, which, is 
defined as the change in linear dimension per unit initial length per unit 
change in temperature. For isotropic bodies, the coefficient of thermal expan
sion is the same in all directions. For composite materials, the coefficient of 
thermal expansion, like other properties, changes with direction. 

Unidirectional composites have two principal coefficients of thermal ex
pansion, the longitudinal coefficient ·of expansion aL and the transverse co
efficient of expansion aT. The longitudinal coefficient aL generally is small 
because the fibers, which usually have a smaller coefficient than that for the 
polymer matrices, impose a mechanical restraint on the matrix material. The 
transverse coefficient aT is larger and at low volume fractions of fibers even 
can be greater than that of the unreinforced polymer because the matrix, 
which is prevented from much expansion in the lqngitudinal direction, is 
forced to expand more than usual in the transverse direction. 

Schapery [ 48] has derived the following simple expressions for the lon
gitudinal and transverse coefficients of thermal expansion: 

(3.67) 

(3.68) 

where ar and am are coefficients of thermal expansion for fibers and matrix, 
EL is the elastic modulus of the composite in the longitudinal direction and 
can be evaluated by the rule of mixtures [Eq. (3.15)], and vLT is the major 
Poisson ratio of the composite and also can be approximated by the rule of 
mixtures as [Eq. (3.59)]. In the derivation of Eq. (3.68) it has been assumed 
that the Poisson ratios of the fibers and the matrix are not too far apart. For 
fiber volume fractions greater than 0.25, Eq. (3.68) can be closely approxi
mated by 

(3.69) 



112 BEHAVIOR OF UNIDIRECTIONAL COMPOSITES 

The coefficients of thermal expansion for a typical glass-epoxy system ar 
shown in Fig. 3-32 as functions of fiber volume fraction. The following cor 
stituent properties have been assumed: 

O\- = 0.5 X 10-5/°C am= 6.0 X 10-51°C 

Ef = 70 GPa Em= 3.5 GPa 

Vf = 0.20 Vm = 0.35 

It may be observed that for unidirectional composites having fiber volum 
fractions of practical importance, the coefficients of thermal expansion i 
the longitudinal and transverse directions are quite different. This therma 
expansion anisotropy of unidirectional laminae causes residual therm, 
stresses in laminates. Transformation of coefficients of thermal expansion i 
an arbitrary direction and a procedure for calculating residual stresses in th 
laminates are discussed in Chap. 6. As shown in Table 3-1, the longitudirn 
thermal-expansion coefficient of a graphite-fiber composite is quite small anc 
in some cases, negative, depending on the specific value for the fiber. Th 
graphite crystallographic structure can produce negative therrnal-expansio 
coefficients in certain crystallographic directions. Moreover, the therma 
expansion coefficients usually are a function of temperature, as shown in Fi! 
3-33 [49]. Similar results occur for the highly oriented polymeric Kevh 
fibers. In both cases the fibers are highly anisotropic, and the transverse eJ1 
pansion coefficients of the fiber and their composites are much larger. Th 
near-zero thermal expansions in the fiber axis direction are very significar 
because laminates thus can be designed having near-zero expansions in certai 
directions. This is a very powerful consideration for structures requiring gre, 
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Figure 3-32. Coefficients of thermal expansion for a unidirectional composite. 
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Table 3-1 Typical properties of unidirectional-fiber-reinforced epoxy resins 

Property 

Fiber volume fraction 
Specific gravity 
Tensile strength, 0° (MPa) 
Tensile modulus, 0° (GPa) 
Tensile strength, 90° (MPa) 
Tensile modulus, 90° (GPa) 
Compression strength, 0° (MPa) 
Compression modulus, 0° (GPa) 
Compression strength, 90° (MPa) 
Compression modulus, 90° (GPa) 
In-plane shear strength (MPa) 
In-plane shear modulus (GPa) 
Longitudinal Poisson ratio (vLT) 
Interlaminar shear strength (MPa) 
Longitudinal coefficient of thermal 

expansion (I o-61°C) 
Transverse coefficient of thermal 

expansion (1 o-6 /
0 C) 

a -79 to + 100°c. 
b-195 to +120°C. 

40 

u 30 . 
' E 
~ 
E 20 ... 

10 

Fiber type 

E-Glass Kevlar 49 

46 60-65 
1.80 1.38 

1104 1310 
39 83 
36 39 
10 5.6 

600 286 
32 73 

138 138 
8 5.6 

60 
2.1 

0.25 0.34 
31 69 
5.4 -2.3 to -4.ou 

36 35b 
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113 
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Figure 3-33. Coefficients of thermal expansion of a unidirectional high-modulus graphite
epoxy composite as a function of temperature. (From Northrop Corporation [49].) 



114 BEHAVIOR OF UNIDIRECTIONAL COMPOSITES 

dimensional stability because most other materials that are of use structurally 
have significant thermal expansions. 

3. 7 .2 Moisture Expansion Coefficients 

Moisture absorption by a body (e.g., resin matrix in composite materials) 
causes a volumetric change ( or swelling) in the body. A coefficient of mois
ture expansion f3 can be defined as the change in linear dimension of the 
body per unit initial length per unit change in moisture concentration (mois
ture concentration may be defined as the weight of moisture present per unit 
weight of the body). The following expression for the moisture expansion 
coefficient of a body can be derived easily by converting the weight of mois
ture content to its volume and considering that linear strain is only one-third 
of the volumetric strain: 

(3.70) 

where p and Pw are the densities of the body and water, respectively. It may 
be pointed out here, however, that Eq. (3.70) is applicable when there are no 
voids in the body. When voids are present, the actual expansion of the body 
owing to moisture wilJ be less than that indicated by Eq. (3.70) because a 
part of the moisture absorbed will fill some voids and thus will not contribute 
to swelling. 

It is well known that polymer matrices absorb moisture when exposed to 
a humid environment but that inorganic fibers do not. Moisture absorbed by 
the matrix results in a volume change of the composite. However, the expan
sion of unidirectional composites in the longitudinal direction is negligible 
because of the much higher stiffness of the fibers. Therefore, the longitudinal 
coefficient of moisture expansion f3L of a unidirectional composite is taken to 
be zero. The transverse coefficient of moisture expansion {3T of a unidirec
tional composite is related to the moisture expansion coefficient of the matrix 
/3m as follows [50]: 

(3.71) 

where Pc and Pm are the densities of the composite and matrix material, re
spectively, and vm is the Poisson's ratio of the matrix. Thermal and moisture 
expansion coefficients of several commercial composites are given in Appen
dix 4. 

3. 7 .3 Transport Properties 

Fiber composites are employed frequently in engineering applications that are 
influenced by considerations of heat conduction, permeation, electrical con-
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duction, or transport of electrical and magnetic fields. Accordingly, it is im
portant to know the relationship between composite structure and such 
physical constants as thermal conductivity, mass diffusivity, electrical con
ductivity, dielectric constants, and magnetic permeability. It has been sug
gested [51-53] that a transport coefficient of a unidirectional composite in 
the longitudinal direction kL can be calculated by the rule of mixtures as 

(3.72) 

The transverse coefficient kT can be computed by invoking an analogy from 
classical physics between the in-plane shear field equations and boundary 
conditions to the transverse transport phenomenon [52,53]. Thus the trans
verse transport coefficient kT may be computed by the Halpin-Tsai equation: 

where 

kT = 1 + !';7JVr 
k111 1 - 11Vr 

log t = v'3 log ~ 

(3.73) 

(3.74) 

(3.75) 

where kr and km are the appropr~ate transfer coefficients for fibers and matrix 
and a and b are the dimensions' of 'the fiber along and perpendicular to the 
direction of measurement_ of the transfer coefficient. For circular cross
sectional fibers, the ratio alb is 1 if transverse coefficients are to be estimated. 

Example 3-4: Find the thermal conductivities of unidirectional glass-fiber
and carbon-fiber-reinforced epoxy composites in the longitudinal and trans
verse directions. Fiber volume fraction is 60% in both cases. Following are 
the thermal conductivities for the fibers and the matrix (note that the carbon 
fiber itself is anisotropic): 

Epoxy matrix Km = 0.25 WI m/°C 

Glass fibers Kr = 1.05 W /m/°C 

Carbon fibers (Kr)L = 80 W /m/°C 

(Krh = 12.5 W/m/°C 
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Glass-Epoxy Composite 

KL = 0.6 x 1.05 + 0.4 x 0.25 = 0.73 W /m/°C 

For circular or square cross-sectional fibers 

~ = 1 

(l.05/0.25) - l 
7/ = (l.05/0.25) + 1 = 0·615 

1 + 0.615 X 0.6 = 
2

_
17 

1 - 0.615 X 0.6 

KT= 0.543 W/m/°C 

Carbon-Fiber-Epoxy Composite 

KL= 0.6 x 80 + 0.4 x 0.25 = 48.1 W/m/°C 

(12.5/0.25) - l 
71 = (12.5/0.25) + 1 = 0·961 

1 + 0.961 X 0.6 = 
3 72 

1 - 0.961 X 0.6 . 

KT= 0.93 W/m/°C 

Longitudinal and transverse thermal conductivities of high-modulus (HMS 
and high-strength (HTS) carbon-fiber-epoxy composites are shown as a func 
tion of fiber volume fraction in Figs. 3-3:4 an9 3-35 [54]. Th~ linearity bf th1 
longitudinal thermal conductivities is consistent with Eq. (3~12). The plot 
show that the thermal conductivity of the matrix may be neglected for pre 
diction of the longitudinal thermal conductivity. The transverse thermal con 
ductivity of these composites also increases with increasing fiber volum 
fraction. The experimental data could not be compared with the theoretica 
predictions because of the absence of pertinent data, that is, transverse therma 
conductivities for fibers. Longitudinal and transverse electrical conductivitie 
of these composites are shown in Figs. 3-36 and 3-37. The trends exhibite, 
by the electrical conductivities are similar to those exhibited by the corre 
sponding thermal conductivities. 
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Figure 3-34. Longitudinal thermal conductivity of unidirectional carbon-epoxy composites at 
20°c. (From Knibbs et al. (54].) 

3. 7 .4 Mass Diffusion 

Polymer matrix composites, when exposed to humid environments or im
mersed in water, absorb moisture. The moisture content in the composite, 
besides causing volumetric changes, influences mechanical properties such as 
modulus and strength. It is of considerable practical interest to know the 
moisture apsorption (and also desorption) characteristics of composite mate
rials. 'The effects of moisture content on 1physic:al dimensions were discussed 
in Sec. 3.7.2, and the effects on mechanical properties will. be discussed in 
Chap. 9. A brief discu_ssion is presented here on the concepts or' mass diffu
sion and some simplified equations governing the diffusion process are given. 

The percent moisture content C in a body is defined as 

C = weight of moist material - weight of dry material X 
100 

(
3

. 
76

) 
weight of dry material 

In any 
1
problem involving moisture absorption or desorption, it is desired 

to obtajp /the moisture content at any given time. The moisture content de
pends on the environmental conditions, the initial moisture content in the . 
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Figure 3-35. Transverse thermal conductivity of unidirectional carbon-epoxy composites at 
20°c. (From Knibbs et al. [54].) 
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Figure 3-36. Longitudinal electrical conductivity of unidirectional carbon-epoxy composites at 
20°c. (From Knibbs et al. [54].) 
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Figure 3-37. Transverse electrical conductivity of unidirectional carbon-epoxy composites at 
20°c. (From Knibbs et al. [54].) 

body, and the mass diffusivity of the material. For a one-dimensional diffu
sion, the relationship between different variables is discussed in the following 
paragraphs. 

Consider a plate of thickness h initially with uniform temperature and 
moisture distributions inside it (Fig. 3-38). The plate is considered infinitely 
large so that the diffusion takes place in the thickness direction only. The 

Insulation 

(a) (bl 

Figure 3-38. Diffusion through thickness of a plate: problem description. 
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plate is exposed to an environment with constant moisture and temperature 
on one or both sides. The moisture content C in the plate during absorption 
or desorption is given by 

(3.77) 

where C0 is the initial moisture content of the plate, Cm is the equilibrium or 
maximum moisture content that can be attained under the given environmental 
conditions, and G is a time-dependent parameter given by the following equa
tion [50): 

8 ~ 1 [ (2} + 1)2
Tr

2Dt] 
G = 1 - 1T2 j"'='o (2} + 1 )2 exp 52 (3.78) 

where D is the mass diffusivity of the material in the direction of diffusion 
(thickness direction in this case), tis time, and S = h if the material is exposed 
on both sides and S = 2h if the material is exposed on one side only. For 
sufficiently large values oft, Eq. (3.78) can be approximated by the first term 
of the series: 

8 ( Tr
2Dt) G = 1 - - exp --ry-

1T2 s- (3.79) 

Experimental evidence indicates that the equilibrium moisture content Cm 
is insensitive to the temperature but depends on the moisture content of the 
environment. For a material exposed to humid air, it is related to the relative 
humidity <f, (in percent) by a power law: 

(3.80) 

The parameters a and b are determined experimentally [53). For a typical 
graphite-epoxy composite, a = 0.018 and b = 1. 

For an isotropic material (e.g., polymeric matrix material), the diffusivit) 
is the same in all directions. For a unidirectional composite, the diffusivity. 
like other properties, is direction-dependent. There are two princip'al value~ 
of diffusivities, namely, the longitudinal diffusivity DL and the transverse dif
fusivity DT. The diffusivities DL and DT may be calculated using Eqs. (3.72: 
and (3.73). Generally, the diffusivity of the fiber is much smaller than that oJ 
the matrix (Dr <{ Dm) and frequently is neglected in calculating the diffusivit) 
of the composite. In that case, the rule of mixtures [Eq. (3.72)) for diffusivit) 
reduces to 
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It is also suggested [53] that the following simple equation be used for trans
verse diffusivity if Vr < 0.78: 

(3.82) 

Diffusivities DL and DT for a graphite-epoxy composite along with the matrix 
diffusivity Dm are shown in Fig. 3-39. 

Equations (3.77) and (3.79) can be used to calculate the time tm required 
for a material to attain 99.9% of its maximum possible moisture content: 

0.678S 2 

t = 
m D (3.83) 

"' ' ,o-s 
1 
E 
::i' 

~ 
:~ ,o-6 
£ 
i5 

,o-s 450 400 350 300 

Temperature T, K 

Figure 3-39. Matrix diffusivity and longitudinal and transverse diffusivities of a graphite-epoxy 
composite. 



122 BEHAVIOR OF UNIDIRECTIONAL COMPOSITES 

The time required to reach the maximum moisture content is insensitive to 
the moisture content of the environment but depends on the temperature be
cause D depends on temperature. 

Example 3-5: A 12.5-mm-thick plate of graphite-epoxy composite with 
an initial moisture content of 0.5% is exposed on both sides to air at 25°C 
and 90% relative humidity. Estimate the time required to reach 1 % mois
ture content. For the composite, at 25°C, assume DT = 2.6 x 10-7 

mm2/s. 

Solution: Substitution of Eq. (3.79) in Eq. (3.77) gives 

52 [ 1 1r2 ( c - c) J 
t = D - 7T2 In 8 c: -Co 

In the composite laminate, diffusion is taking place in the thickness direc
tion. Therefore, the transverse diffusivity DT is to be used for calculation, 
which is given. Also given are S = 12.5 mm, C = 1.0%, and C0 = 0.5%; 
Cm may be calculated using Eq. (3.80): 

cm= 0.018(:!) = 0.0162 or 1.62% 

Therefore, 

= (12.5)
2 

[--1 l (1r
2 

_ 1.62 - 1.0)] 
t 2.6 X 10-7 1r2 n 8 1.62 - 0.5 

= 2.32 x 107 s or 269 days 

Exa~ple 3-6: The plate specified in Example 3-5, having attained the 
moisture content of 1 %, is exposed on both sides to humid air at 15°C and 
10% relative humidity. Estimate the moisture content after 10 days. As
,sume DT = 1.13 x 10-7 mm2/s at 15°C. 

Solution: Given S = 12.5 mm, C0 = 1.0%. At 10% relative humidity, 

cm= 0.01_8(/~) = 0.0018 or 0.18% 

From Eq. (3.77), 
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_ [ _ ~ ( 1r
2 

X 10 X 24 X 3600 X 1.13 X 10-
7

) J 
C - 1 

1r2 exp 12.5 x 12.5 
X (0.18 - 1.0) + 1.0 = 0.84% 

Thus in 10 days the moisture content would be reduced from 1 % to 0.84%. 

3.8 TYPICAL UNIDIRECTIONAL FIBER COMPOSITE PROPERTIES 

The preceding discussions on property-prediction methods and failure modes 
should be of use in comparing various physical properties of unidirectional 
composites. It is also valuable to appreciate the difference between different 
types of fiber composites and their respective properties. From the known 
values of fiber and matrix properties (see Chap. 2), the interested reader can 
try to predict the properties shown in Table 3-1. A more detailed insight into 
mechanical behavior can be gained by reviewing the stress-strain curves pre
sented in Appendix 4 for unidirectional composites. 

A few points should be made concerning the data presented in Table 3-1. 
The measured compression strength in the fiber direction of a unidirectional 
composite generally is less than the tensile strength. Since compression 
strength of this type of composite is so difficult to measure, the reported valutt 

Table 3-2 Summary of influence of constituents on properties of unidirectional 
polymer composites" 

Composite Property Fibers Matrix Interface 

Tensile Properties 

Longitudinal modulus s w N 
Longitudinal strength s w N 
Transverse modulus w s N 
Transverse strength w s s 

Compression Properties 

Longitudinal modulus s w N 
Longitudinal strength s s N 
Transverse modulus w s N 
Transverse strength w s N 

Shear Properties 

In-plane shear mddulus w s N 
In1plane shear strength w s s 
Interlaminar shear strength N s s 
"S = siong influence; W = weak' influence; N = negligible influence. 
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often is merely a reflection of the quality of the test technique. Occasional!) 
one sees values reported in the literature that might exceed the value of th1 
tensile strength, and in such cases, the compression test fixture is often sucl 
that it prevents certain failure modes, perhaps producing artificially large val 
ues of strength. The very low value of compression strength for the Kevla 
composite is caused by the exceptionally low shear and transverse tensile 
strength of the highly oriented Kevlar fiber, which initiates failure in the 
composite when subjected to compression. 

An overview of the influence of constituent properties on properties o 
unidirectional polymer composites is presented in Table 3-2. The influence: 
indicated in the table generally are applicable when the ratio Erl Em is greate 
than 10. Since Erl Em < 10 for metal matrix composites, the influences indi 
cated in Table 3-2 may not be valid. 

EXERCISE PROBLEMS 

3.1. In a unidirectional composite, cylindrical fibers may be packed ir 
square or hexagonal (sometimes called triangular) arrays, as shown ir 
Fig. 3-40. By selecting representative area elements (repeating units) 
show that the fiber volume fractions are 

Square packing: 

Hexagonal packing: 

00000 
000000 
OOCofvOO 
00©000 
000000 
000000 

(a) Square-packed array 

1rd2 
V =-

r 4s2 

1rd2 
V =--

r 2V3sz 

Fiber 

Matrix 

(b) Hexagonal (or triangular) 
packed array 

Figure 3-40. Fiber packing in unidirectional composites {Exercise Problem 3.1). 
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where d is the fiber diameter, and s is the distance between centers of 
two adjacent fibers. Theoretical maximum fiber volume fraction occurs 
when adjacent fibers touch each other. Calculate theoretical maximum 
fiber volume fractions in each case. 

3.2. A burn-off test was performed to determine the volume fractions of 
constituents in a glass-fiber-reinforced epoxy composite. The following 
observations were made: 

Weight of empty crucible = 47.6504 g 
Weight of crucible and a small piece of composite = 50.1817 g 
Weight of crucible and glass after the burn-off = 49.4476 g 

Calculate the weight and volume fractions of glass fibers and epoxy 
resin. Assume that the densities of the fibers and resin are 2.5 and 1.2 
gl cm3, respectively. 

3.3. Derive Eq. (3.8). (Hint: For a given weight, actual volume of the com
posite with voids is obtained from the experimentally measured com
posite density, whereas the volume calculated from theoretical density 
consists of the volumes of fibers and matrix only.) 

3.4. Calculate the density of the composite in Exercise Problem 3.2 using 
weight fractions and densities of the constituents. If the density was 
determined experimentally to be 1.86 g/cm3

, calculate the void content 
in the composite. 

3.5. Calculate the ratios of fiber stress to matrix stress and fiber stress to 
composite stress for unidirectional composites with Vr = 10%, 25%, 
50%, and 75%. Assume that the composites are loaded in the fiber 
direction; Er= 400 GPa and Em= 3.2 GPa. 

3.6. Estimate Eu ET, GLT• and vLT, of glass-epoxy, graphite-epoxy, Kevlar
epoxy, and boron-aluminum composites with Vr = 25%, 50%, and 
75%. Constituent properties are 

Material E (0Pa) V 

Epoxy 3.5 0.35 
Glass fibers 70 0.20 
Graphite fibers 250 0.20 
Kevlar fibers 140 0.20 
Boron fibers 350 0.20 
Aluminum 70 0.33 

For the purpose of calculations, assume all fibers to be isotropic. 
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3.7. A rod consists of a binder and two types of filamentous reinforcemer 
with the following constituent properties: 

Density 
Material (g/cm3) Wt.% E (GPa) o-u (GP~ 

Binder 1.3 35 3.5 0.06 
Fiber A 2.5 45 70 1.4 
Fiber B 1.6 20 6 0.45 

(a) What maximum load can this rod carry without rupturing any c 
the constituents? (Assume that the cross-sectional area of the ro, 

= 10 cm2
.) 

(b) What is the maximum load the rod can carry? 
(c) What constituent will rupture last? 
(d) Plot the load-elongation curves for the rod to failure in load 

maintained and elongation-maintained tests. 

3.8. Two composites are fabricated with glass fibers (Vr = 50%) and ma 
trices A and B, whose stress-strain curves are shown in Fig. 3-41. Th 
glass fibers are elastic up to failure and have an elastic modulus of 71 
GPa and ultimate tensile strength of 2.8 GPa. Assuming that the corn 
pll)$ttes are stressed parallel to the unidirectional glass fibers, calculat 
(a) nhte composite stress at 1 % and 4% strains for each composite ani 
(b) the minimum and critical fiber volume fractions for both compos 
ites. 

3.9. Draw the stress-strain diagrams for the two composites indicated i1 
Problem 3.8. Also calculate the longitudinal strengths of the compos 
ites. 

Strain, percent 

Figure 3-41. Stress-strain curves for matrices A and B (Exercise Problem 3.8). 
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3.10. The material of a tension link is changed from an aluminum alloy to a 
unidirectional graphite-epoxy composite. Calculate the volume fraction 
of graphite fibers required in the composite to match its longitudinal 
modulus with that of the aluminum alloy. What is the percentage weight 
saving in .this material replacement? Use the properties given in Table 
1-1. The elastic modulus of epoxy is 3.5 GPa, and its density is 1.2 
g/cm3

• 

3.11. Estimate the longitudinal strength of the composite considered in Prob
lem 3.10 by neglecting the load carried by the epoxy. 

3.12. Repeat Exercise Problems 3.10 and 3.11 assuming that Kevlar fibers 
are used in place of graphite fibers in the composite. Can glass fibers 
be used in this application? 

3.13. A uniaxial tension rod is expected to carry a maximum load of 2000 
N. Consider a graphite-epoxy composite (Vr = 0.65) to replace steel 
as the rod material. This graphite-epoxy composite costs five times as 
much as the steel on a weight basis. Would you choose the composite 
if the criterion depends just on 
1. Weight of the rod 
2. Cost 

Assume the following properties for steel: 

Elastic modulus = 210 GPa 
Poisson's ratio = 0.3 
Tensile strength = 450 MPa 
Specific gravity = 7.8 

Properties of graphite fibers (PAN) and epoxy resin are given in Tables 
2-3 and 2-11, respectively. For calculation of the composite strength, 
neglect the load carried by the epoxy. 

3.14. A unidirectional glass-epoxy composite has Vm/ Vf = 1.5. What mini
mum volume fraction of carbon fibers should be added to the glass
epoxy composite, without changing the ratio of volume fractions of 
epoxy resin and glass fibers, to obtain any strengthening? Following 
are the constituent properties. 

Density 
Mate1ial (g/cm3) E (GPa) u" (MPa) 

Epoxy resin 1.2 3.5 52.5 
Glass fibers 2.5 70 700 
Carbon fibers 1.8 350 700 
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3.15. While maintaining the matrix volume fraction at 30%, addition of wha 
volume fraction of carbon fibers will double the longitudinal modulu 
of a unidirectional glass-epoxy composite? What is the percent reduc 
tion in density by this addition of carbon fibers? Also calculate th 
longitudinal strengths of the two composites. Take the constituent prop 
erties given in Exercise Problem 3.14. Explain why the composit, 
strength decreases even though the strengths of carbon fibers and glas 
fibers are equal. 

3.16. A unidirectional composite shows the following properties in tension: 

EL= 40 GPa €LU= 0.0276 

ET= lOGPa Em= 0.0036 

1-'LT = 0.25 

Estimate the longitudinal compressive strength of the composite. As 
sume the composite moduli to be equal in tension and compression. 

3.17. Using Eqs. (3.39)-(3.41), calculate and plot normalized transverse com 
posite strength (<rm/ <r111u) as a function of fiber volume fraction fo 
glass-fiber-reinforced epoxy. Assume that E

111
/ Er = 0.05. (Note: Fo 

better appreciation of results, the strengths obtained by using SCF an, 
SMF should be plotted on the same graph.) 

3.18. Plot the longitudinal and transverse coefficients of thermal expansio 
for a unidirectional glass-polyester composite as functions of fiber vol 
ume fraction. Assume the following constituent properties: 

ar = 0.5 X 10-5 /°C 

Er= 70 GPa E111 = 3.5 GPa 

Vr = 0.2 Vm = 0.35 

31.9. Plot the longitudinal and transverse thermal conductivities of unidirec 
tional glass fiber and carbon-fiber-reinforced epoxy composites as func 
tions of fiber volume fraction. Assume the same constituent propertie 
as in Example 3-4. 

3.20. The coefficient of longitudinal thermal expansion of a unidirectiom 
composite is measured as -0.61 x 10-6 l°C. Estimate the coefficier 
of thermal expansion of the fibers. Given: Er = 294 GPa, Em = 3. 
GPa, am = 54 X 10-6/°C, and Vr = 55%. 



REFERENCES 129 

3.21. The maximum water absorption of a typical epoxy is 6%. What is the 
maximum amount of water in a graphite-epoxy composite (V1 = 70% )? 
Assume that graphite fibers do not absorb moisture and that the specific 
gravities of the epoxy and composite are 1.2 and 1.6, respectively. 
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4.1 INTRODUCTION 

4 

SHORT-FIBER 
COMPOSITES 

A distinguishing feature of the unidirectional composites discussed in Chap. 
3 is that they have higher strength and modulus in the direction of the fiber 
axis . and generally are very weak in the transverse direction. This is very 
advantageous when these composites are used in applications where the state 
of stress can be determined accurately so that laminates can be fabricated 
froml:he-unidirectional laminae having strengths matched to the design needs. 
However, in applications where the state of stress may not be predictable or 
where it is known that the stresses are approximately equal in all directions, 
unidirecti<?nal composites or laminae may not be required or cost-effective. 
Such applications require composites that have approximately equal strengths 
in all directions. Multilayered composites can b.e constructed from layers of 
unidirectional laminae havirig different fiber orientations so that the resulting 
composite is essentially isotropic in a plane. Such composites have the dis
advantage that although the overall composite is equally strong in all direc
tions, the surface layers, where the failure is quite often initiated, are still 
very weak in the transverse direction. In applications where protection from 
a corrosive environment is an important factor, such as in storage tanks ir 
the chemical industry and in many applications in the ~utomobile industry. 
laminates of unidirectional laminae do not solve the problem completely. Thm 
it is advantageous to have each layer or lamina isotropic in some applications 
An effective way of producing an isotropic layer is to use randomly orientec 
short fibers as the reinforcement. Molding compounds consisting of shor 
fibers can produce generally isotropic composites. They can be molded easil) 
by injection or compression molding and also are economical. A summary o 
these types of composites is given in Table 4-1. 
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Table 4-1 Short-fiber composites: examples 

Fiber 
Type Molding Method Lengths (cm) Fiber Orientation 

Fiber-reinforced Injection molding <1.25 Random or 
thermoplastics dependent on flow 

in mold 
Sheet-molding Compression molding 2.5-7.5 Random in 

compound or sheet stamping compound but 
(polyester resin dependent on flow 
matrix) in mold 

Bulk-molding Compression molding <2.5 Random in 
compound compound but 

dependent on flow 
in mold 

Non woven-mat- Sheet stamping <7.5 Random 
reinforced 
thermoplastic 

Non woven-mat- Contact molding or <7.5 Random 
reinforced laminating 
thermoset 

The composites containing short fibers as the reinforcement are called 
sh011-fiber composites. They are also referred to as discontinuous-fiber
reinforced composites. Various aspects of this class of composites are dis
cussed in this chapter. 

4.2 THEORIES OF STRESS TRANSFER 

In composites, loads are not applied directly on the fibers but are applied to 
the matrix material and transferred to the fibers through the fiber ends and 
also through the cylindrical surface of the fiber near the ends. When the length 
of a fiber is much greater than the length over which the transfer of stress 
takes place, the end effects can be neglected, and the fiber may be considered 
to be continuous. In the case of short-fiber composites, the end effects cannot 
be neglected, and the composite properties are a function of fiber length. The 
end effects significantly influence the behavior of and reinforcing effects in 
discontinuous-fiber composites. For a good understanding of the behavior of 
discontinuous-fiber composites, it is necessary to first understand the mech
anism of stress transfer. 

4.2.1 Approximate Analysis of Stress Transfer 

Early studies concerning variation of stresses along the length of a fiber were. 
performed by Cox [1] and Outwater [2]. Probably the most often quoted 
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theory of stress transfer is the shear-lag analysis applied by Rosen [3], who 
modified an earlier analysis of Dow [4]. The stress distribution along the 
length of a fiber can be understood in a simple manner by considering the 
equilibrium of a small element of fiber, as shown in Fig. 4-1. The force 
equilibrium of an infinitesimal length dz requires 

or 

dur 2r 
dz r 

(4.1) 

where ur is the fiber stress in the axial direction, r is the shear stress on the 
cylindrical fiber-matrix interface, and r is the fiber radius. Equation (4.1) 
indicates that for a fiber of uniform radius, the rate of increase of fiber stress 
is proportional to the shear stress at the interface and can be integrated to 
obtain the fiber stress on a cross section a distance z away from the fiber end: 

2 i' <Ff = (TfO + - T dz 
r o 

(4.2) 

where uro is the stress on the fiber end. In many analyses, uro is neglected 
because of yielding of the matrix adjacent to the fiber end or separation of 
the fiber end from the matrix as a result of large stress concentrations. When 
uro is negligible, Eq. ( 4.2) can be written as 

CJc 

Rgure 4-1. Equilibrium of a small length of fiber in a short-fiber composite. 
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21· <7. = - T dz r r o 
(4.3) 

The right-hand side of Eq. (4.3) can be evaluated if the variation of shear 
stress along the fiber length is known. In practice, the shear stress is not 
known beforehand and is determined as a part of the complete solution. To 
obtain analytical solutions such as those obtained in the works just cited [1-
4], it is necessary to make assumptions regarding the deformation of material 
surrounding the fiber and the fiber-end conditions. For example, it may be 
assumed that the interface shear stress at the midfiber length and the normal 
stress at the fiber ends are zero. A frequently used approximate method of 
determining-fiber stress is to assume that the matrix material surrounding the 
fibers is a rigid perfectly plastic material having a shear stress-strain diagram 
as shown in Fig. 4-2. For this case, the interface shear stress is constant along 
the fiber length and is equal to the matrix yield stress in shear TY. Equation 
( 4.3) then yields 

(4.4) 

For short fibers, the maximum fiber stress occurs at the midfiber length (i.e'., 
z = l/2). Therefore, · 

(4.5) 

where l is the fiber length. As the fiber length increases, the maximum fiber 
stress also increases. However, for a sufficiently long fiber, the maximum fiber 
stress is limited by the stress applied to the composite and the fiber volume 
fraction. The limiting stress value is the stress experienced by the fibers in a 

u,1--------
Ul 

~ 
"' 
J 

Shear strain 

Figure 4-2. Shear-stress-shear-strain curve for an idealized rigid, perfectly plastic matrix ma-
terial. · 
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unidirectional composite, with infinitely long fibers but equal fiber volum 
fraction, and subjected to the same composite stress. Using the analysis car 
ried out in Chap. 3 (assuming equal strains in fibers, matrix, and composite; 
it can be shown that the maximum fiber stress is limited to 

(4.6 

where <re is the applied composite stress, and the composite modulus Ee cai 
be calculated from the rule of mixtures [Eq. (3.15)]. The minimum fibe 
length, in which the maximum fiber stress ( <rc).nax can be achieved, may bi 
defined as a load-transfer length It. It is over this length of the fiber that th 
load is transferred from matrix to fiber. It is given by 

(4.7 

where d (=2r) is the fiber diameter, and (<rr)max is given by Eq. (4.6). Sine 
. ( <rr)max is a function of applied stress, the load-transfer length is also a functio 
of applied stress. A critical fiber length le independent of applied stress ma 
be defined as the minimum fiber length in which the maximum allowabl 
fiber stress (or the fiber ultimate strength) <rru can be achieved. Thus 

(4.8 

It may be noted that the critical fiber length is the maximum value of load 
transfer length. The critical fiber length is an important system property an 
affects ultimate composite properties. 

Sometimes the load-transfer length and critical length are referred to as th 
ineffective length because over this length the fiber supports a stress less tha 
the maximum fiber stress. Stress distribution (fiber stress and interface she, 
stress) in fibers of different lengtbs are shown in Fig. 4-3a for a given corr 
posite stress. Figure 4-3b shows the variations of fiber stress for increasin 
composite stress on a fiber longer than the critical length. It may be observe 
that a small length adjoining the fiber end is stressed at less than the maximm 
fiber stress. Thi.s affects the strength and elastic modulus of the composit< 
as is discussed in later sections. It may be pointed out here, however, th, 
when the fiber length is much greater than the load-transfer length, the corr 
posite behavior approaches the behavior of continuous-fiber-reinforced corr 
posites. 
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Fiber stress 

lnterfacial shear stress 

(a) 

(arlmax 1 

(bl 

Figure 4-3. (a) Fiber stress and interfacial shear stress on fibers of different lengths when 
subjected to the same composite stress. (b) Influence of composite stress on variation of stress 
along fiber length when fiber is longer thanJts critical length. 

4.2.2 Stress Distributions from Finite-Element Analysis 

The stress distributions shown in Fig. 4-3 are approximate because they were 
obtained by assuming that the matrix material is perfectly plastic. In reality, 
most matrix materials are elastic-plastic in behavior. Accurate stress distri
butions thus can be obtained only by assuming the matrix to be elastic-plastic. 
This, however, presents many difficulties in performing a theoretical analysis 
of the composite. Numerical solutions probably are best for facile analysis of 
complex problems. In numerical methods, very few simplifying assumptions 
are required, and an accurate solution can be obtained. eas~ly. Finite-element 
analyses of aligned short-fiber composites have been cartied out by many 
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investigators to study the various aspects of these composites. In some of the 
analyses [5-8] the matrix material has been assumed to be completely elastic, 
whereas in others [9-14] it is assumed to be elastic-plastic. The analyses 
provide very useful information regarding stress distributions in the fibers as 
well as the matrix. Some of the stress distributions obtained by elastic anal
yses are shown in Figs. 4-4 and 4-5. Variation of fiber stress shows that there 
is significant stress transfer at the end because it is only an elastic analysis, 
and perfect adhesion has been assumed. Interfacial shear-stress distribution is 
consistent with Eq. (4.2) in that the interfacial shear-stress becomes zero when 
the fiber stress attains its maximum value. Variation of matrix stresses (axial 
and radial) is shown in Fig. 4-5. It may be noted that there is a stress con
centration near the fiber end. It can be shown easily that the ratio of maximum 
fiber stress (Fig. 4-4) to the maximum matrix stress is equal to the ratio of 
their respective elastic moduli. Equivalently, the maximum fiber stress is in 
agreement with Eq. (4.6). It is interesting to note that the matrix radial stress 
has a compressive value for the case shown. This indicates that even if the 
interfacial bond between the fiber and the matrix is broken, load transfer still 
can occur because of friction forces between the two. However, if the fibers 
are normal to the load direction or the interfiber distances become quite small, 
the preceding assumption is not always true. 

Stress distributions obtained in an elastic-plastic analysis [12] are shown 
in Fig. 4-6. The elastic-plastic analysis shows that the stress transfer through 
the fiber end is insignificdllt. In this case also, the maximum fiber stress was 
shown to be in agreement with Eq. (4.6). Interfacial shear stress near the fiber 
end is not a constant, although the matrix deforms plastically. This is so 
because a three-dimensional stress criterion was used to predict yielding of 
the matrix. However, the interfacial shear-stress distribution is in agreement 
with Eq. (4.2). 

0.4 

Fiber stress 

2 0.3 

t5' 
' 0.2 .... 

0.1 

0 2 4 5 
ild 

Figure 4-4. FEA results: elastic analysis. Fiber stresses (axial and interfacial shear) along fiber 
length [(E,IE,,J = 29.5, (lid)= 10.4, V1 = 42%]. (From Broutman and Agarwal [BJ.) 
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Figure 4-5. FEA results: elastic analysis. Matrix stresses (axial and radial} along fiber length 
[(E/Em) = 29.5, (lief)= 10.4, Vt= 42%]. (From Broutman and Agarwal [8].) 

4.2.3 Average Fiber Stress 

From the preceding discussion it is clear that the ends of finite-length fibers 
are stressed to less than the maximum fiber stress. The influence of fiber ends 
is to lower the elastic modulus and strength of short-fiber composites. In an 
analysis for elastic modulus and strength, average fiber stress is a very useful 
quantity. It can be evaluated as follows: 

- 1 (I 
<Tr = l J

0 
uf dz (4.9) 

2.0 
Fiber stress 

0.015 

1
0010 I f 

10005 

zld 

Figure 4-6. FEA results: elastoplastic analysis. Fiber stresses (axial and interfacial shear) along 
fiber length [(ErfEm) = 117, (!/cfJ = 100, Vt= 49.6%; matrix yield strain= 2.4%]. (From Agarwal 
and Bansal [13].) 
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where ur is the average fiber stress. The quantity represented by the integn 
is given by the area under the curve of fiber stress plotted against length. Fe 
the approximate stress distribution shown in Fig. 4-3, the average stress ca 
be found to be 

(4.10 

For more accurate stress analyses, the stress variation at the fiber end wil 
be different from a linear one, although the fiber stress in the middle portio 
of the length (l - l,) will be constant at (o-r)max· Another difference can occu 
if the load-transfer length is not defined by Eq. ( 4. 7). In such cases, th 
average fiber stress can be obtained by considering the actual stress distri 
bution. However, there may be only a small difference between the averag, 
stresses obtained from actual and approximate (linear) stress distributiom 
particularly when fibers are longer than the critical length. The average 
maximum fiber-stress ratios as predicted by Eq. (4.10) are given in Table 4 
2 for different fiber lengths, where it can be observed that when the fibe 
length is 50 times the load-transfer length, the average fiber stress is 99% o 
the maximum fiber stress. Therefore, when the fiber length exceeds 50 time 
its critical length, the composite behavior approaches that of a continuous 
fiber composite for an equivalent fiber orientation. 

4.3 MODULUS AND STRENGTH OF SHORT-FIBER COMPOSITES 

The stress distributions obtained through finite-element methods, as discussej 
in the preceding section, also have been used to predict the strength anj 
modulus of short-fiber composites [8,11,13]. The results are available in th 
form of curves for specific values of system variables such as fiber aspec 
ratio (l/ d), fiber volume fraction, and properties of the constituents. Wheneve 

Table 4-2 Average-maximum fiber-stress ratios 

1 
2 
5 

10 
50 

100 

0.50 
0.75 
0.90 
0.95 
0.99 
0.995 
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a change in any of the system variables takes place, a new set of results has 
to be obtained. Thus the results have limited adaptability to design procedures. 
For design purposes, it is usually desirable to have simple and rapid com
putational procedures for estimating composite properties, even though the 
estimations are only approximate. 

4.3.1 Prediction of Modulus 

The Halpin-Tsai equations [15], which were discussed in Chap. 3 for pre
dicting the transverse modulus of unidirectional composites, are also very 
useful in predicting the longitudinal and transverse moduli of aligned short
fiber composites (shown schematically in Fig. 4-7). The Halpin-Tsai equa
tions for longitudinal and transverse moduli can be written as 

EL } + (21/ d)'"flL Vf 
(4.11) 

Em 1 - '"flLVf 

and 

ET 1 + 271TVf (4.12) 
Em 1 - '"flTVf 

where 

(Er/Em) - 1 
'TlL = (E/ Em) + 2(l/ d) 

(4.13) 

and 

, Erf Em) - 1 
'TlT = (Erf Em)+ 2 

(4.14) 

It may be pointed out that Eqs. (3.36), (4.11), and (4.12) are only particular 
cases of a general equation. The form of the general equation coincides with 

T 

t 
------------------------L ------------------------

Figure 4-7. Model of an aligned short-fiber composite. 
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that of Eq. (3.36), in which g is a measure of reinforcement and is given b:, 
Eq. (3.38). Equations (4.11) and (4.12) can be obtained from Eq. (3.36) b:, 
substituting g = 2lld for the case of longitudinal modulus and g = 2 for the 
case of transverse modulus. The two values of g are consistent with Eq. (3.38) 
Further, the Halpin-Tsai equations predict that the transverse modulus of ar 
aligned short-fiber composite is not influenced by the fiber aspect ratic 
(II d) and that its value is the same as that for the transverse modulus of z 
continuous-fiber composite. Variations of transverse composite modulus arc 
shown as a function of fiber volume fraction in Fig. 3-11 for different con
stituent modulus ratios. Variations of longitudinal modulus have been shown 
as functions of fiber aspect ratios in Figs. 4-8 and 4-9 for different fibet 
volume fractions for the cases where the modulus ratios are 20 and 100, which 
approximately represent glass-epoxy and graphite-epoxy systems, respec
tively. 

It was pointed out earlier that randomly oriented short-fiber composites are 
produced to obtain composites that are essentially isotropic in a plane. Such 
composites are prepared by injection or compression molding or from non
woven mats that often form the surface layers of laminated composites to 
prevent otherwise easy initiation of cracking resulting from poor transverse 
strength of layers of unidirectional composites. Analysis of such laminates, 
which have some layers of isotropic composites as well, requires knowledge 
of the elastic properties of isotropic layers. An effective method of predicting 
elastic properties of an isotropic layer made from randomly oriented short 
fibers is to assume them equal to the properties, averaged for angular de
pendence, of a unidirectional composite. The angular dependence of proper
ties of a unidirectional lamina will be discussed in Chap. 5. A good estimate 
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Figure 4-8. Dependence of longitudinal modulus of short-fiber composites on fiber aspect 
ratio (ltd) and fiber volume fraction (E,!Em = 20). 
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Figure 4-9. Dependence of longitudinal modulus of short-fiber composites on fiber aspect 
ratio (/Id) and fiber volume fraction (Eif Em = 100). 

of the averaged properties also can be obtained through the analysis of 
a quasi-isotropic laminate made from unidirectional laminae. Construction of 
quasi-isotropic laminates and the analysis procedures will be discussed in 
Chap. 6. 

'rhe following empirical equations are often used to predict the elastic 
modl\llus and shear modulus of composites containing fibers that are randomly 
oriented in. il plane: 

(4.15) 

where EL and ET <).re, respectively, the longitudinal and transverse moduli of 
an aligned short~:fiber composite having the same fiber aspect ratio and fiber 
volume fraction as the composite under consideration. Moduli EL and ET 
either can be determined.experimentally or can be calculated using Eqs. ( 4.11) 
and (4.12). 

Example 4-1: A glass-fiber-reinforced nylon with a fiber volume fraction 
of 20% is injection-molded to produce a random fiber orientation. The fiber 
length is 3.2 mm, and the fiber diameter is 10 µm. Calculate the elastic 
modulus, shear modulus, and Poisson's ratio of the random fiber composite. 
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Solution: First calculate the modulus EL assuming that the fibers were 
oriented. Using Eq. (4.11), 

For nylon: Em= 2.76 GPa 

Glass: Er= 72.4 GPa 

Using Eq. (4.13), 

(Erl Em) - 1 
'Tl -

L - (Erl E
01

) + (21/ d) 

(72.4/2.76) - I 25.23 
(72.4/2.76) + (6.4/10-2) = 666.23 = 0·

03787 

Thus 

E = 
2 76 

I + 128 X 0.03787 
L • 1 - 0.03787 X 0.2 

= 16.26 GPa 

Now calculate the transverse modulus ET using Eq. (4.12): 

where 

_ (E/ Em) - 1 _ 26.2 - 1 _ O 
89 'TIT - - -(Erf Em)+ 2 26.2 + 2 . 

1 + 1.78 X 0.2 
ET = 2.76 

1 
_ 

0
_
2 

x 
0

_
89 

= 4.53 GPa 

Now the elastic modulus and shear modulus of the random fiber composite 
can be calculated using Eq. (4.15): 
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ER= ix 16.26 + i .x 4.53 = 8.93 GPa 

GR= t x 16.26 +-! x 4.53 = 3.17 GPa 

Since a random fiber composite is considered isotropic in its plane, its in
plane Poisson's ratio can be calculated using the following isotropic 
relationship between ER, GR, and Poisson's ratio vR: 

or 

8.9.3 
VR = 2 X 3.17 - 1 = 0.41 

4.3.2 Prediction of Strength 

The average longitudinal stress on an aligned short-fiber composite can be 
calculated by the rule of mixtures: 

(4.16) 

where <Tr is the average fiber stress given by Eq. (4.9). For a linear stress 
distribution at the fiber ends as shown in Fig. 4-3, values of <Tr are given by 
Eq. (4.10). Thus the average composite stress can be written as 

<Tc = f( <Tr)ma,Yf + <Tm V m• l < l, (4:17) 

and 

o-c = (o-r)max ( 1 - ~Jvr + o-mVm I> I, (4.18) 

If the fiber length is much greater than the load-transfer length ( e.g., I = 
1001,), the factor 1 - (l/l) approaches I, and Eq. (4.18) can be written as 

(4.19) 
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Depending on the fiber length, Eq. (4.17), Eq. (4.18), or Eq. (4.19) can b 
used for predicting the ultimate strength of the composite. When fibers ar 
smaller than the critical length, the maximum fiber stress is less than th 
average fiber strength so that the fibers will not fracture regardless of th 
magnitude of the applied stress. In this case the composite failure occurs whe 
the matrix or interface fails, and the composite ultimate strength <Ycu is ap 
proximated by 

(4.2C 

When the fiber length is greater than the critical length, the fibers can b 
stressed to their average strength. In this case it can be assumed that the fibe 
failure initiates when the maximum fiber stress is equal to the ultimat 
strength of the fibers. Thus 

( () acu = <Tru 1 -
2
z Vr + (<Tm),7Vm l > le (4.21 

and 

aeu .= <Tru Vr + (<Tm),1Ym f ~ /e (4.2~ 

where (<Tm)•1' is the matrix stress at the fiber fracture strain t:f. A useft 
approximation in these equations can be made by using the value of matri 
ultimate strength <Tmu in place of (<Tm) ••. In writing Eqs. (4.21) and (4.22), 

f 

has been assumed that the fiber volume fraction is above a certain minimm 
V min so that the matrix will not be able to support the full load when all th 
fibers break, and composite failure then will take place. The minimum an 
also critical volume fractions of fibers, which were defined for the case c 
continuous-fiber-reinforced composites in Chap. 3, can be defined in an ana 
ogous manner in this case also. It is left to the reader to define them and t 
obtain the following expressions for V min and Veri,: 

(4.2~ 

(4.2< 

Comparisons of Eq. (4.23) with Eq. (3.25) and Eq. (4.24) with Eq. (3.2~ 
show that, for identical properties of fibers and matrix material, short-fib, 
composites require higher values of vmin and verit than do the continuom 
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fiber-reinforced composites. The reason is obvious in that the short fibers are 
not fully effective. However, as the fiber length becomes very large compared 
with the transfer length, the average fiber stress approaches the maximum 
fiber stress, and the behavior of short-fiber composites approaches that of 
continuous-fiber composites. 

If the fiber volume fraction is less than V min• the composite will not fracture 
when all fibers break because the remaining cross-sectional area of matrix 
material can support the full load. The composite fracture will occur when 
the matrix fails. Thus the ultimate strength of composite with Vf < V min is 
given by 

(4.25) 

In the case of discontinuous-fiber composites, an additional factor influences 
the failure, namely, the large stress concentrations in the matrix produced as 
a result of the fiber ends. The effect of the stress concentration is to further 
lower the composite strength. 

The problem of off-axis strength of an aligned short-fiber composite takes 
on added complexity because the failure-mode changes as the angle between 
the stress and fiber direction increases from 0° to 90°. In the case of contin
uous fibers, at intermediate angles, matrix shear failure occurs at the interface, 
and at large angles near 90°, the matrix or interface fails in plain strain. A 
discussion on the angular dependence of strength is presented in Chap. 5. 

It was pointed out earlier that randomly oriented short-fiber composites are 
of particular significance because they are quasi-isotropic; that is, they ha;e 
the same properties in all directions. The strength, like modulus, of a ran
domly oriented short-fiber composite may be obtained by assuming it equal 
to the strength, averaged for angular dependence, of a unidirectional com
posite. However, an approach used often to predict the strength of random 
short-fiber composites utilizes a laminate-analysis procedure. In this approach, 
the strength of an isotropic laminate constructed from unidirectional plies is 
used to approximate the strength of random-fiber composites. In practice, the 
strength of a [0/ ±45/90] symmetric laminate is close to that of an isotropic 
laminate made up of many more orientations [16]. Construction of isotropic 
laminates, along with the analysis of laminates, and the stepwise procedure 
to calculate ultimate strength of laminates are discussed in Chap. 6. Kardos 
[16] compared experimental results obtained by Lavengood (17] with the 
predictions of isotropic laminate analogy calculations as shown in Fig. 4-10. 
For the purpose of calculating ultimate strength of the laminate, a modified 
maximum strain theory of failure was applied. Also shown in Fig. 4-10 are 
the predictions of Chen [18] and Lees (19]. It is clear that the maximum 
strain criterion in conjunction with the laminate model comes by far the clos
est to predicting the strength of random-orientation systems at volume frac
tions of engineering interest. The fact that the predicted strengths are. 
somewhat below experimental findings may be attributed to the interaction 
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Figure 4-10. Comparison of experimentally measured and theoretically predicted tensil, 
strengths of short-fiber composites. (From Kardos [16].) 

between failure modes in the laminate or lack of information on how th, 
allowable ply strains vary with volum~ frac;tion of fibers and fabrication·con 
ditions. 

It would be wise to point out here that in molded short-fiber compositei 
the fiber orientation throughout the molding varies greatly according to th 
flow within the mold (Fig. 4-11). Thus the molded-part properties will var 
from section to section according to the local fiber orientation. The strengt 
of the molding then will be dependent on both the local stress state and loc~ 
fiber orientation. Methods to measure fiber-orientation distributions and t 
account for their effect on mechanical properties are discussed in the literatur 
[20-22]. A recent method of measuring spatial orientation of shorFftbel 
reinforced thermoplastics is based on image analysis [23]. 
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Figure 4-11. Photomicrographs of injection-molded glass-fiber-reinforced nylon (100x) in(?) 
an area where fibers are aligned due to flow ~nd (b) an area where fibers are randomly oriented. 
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4.3.3 Effect of Matrix Ductility 

The effect of matrix ductility and interface treatment on the properties of 
short-fiber composites have been investigated by Gaggar and Broutman [24]. 
Studies were conducted on glass-fiber-mat-reinforced epoxy resins. Ductility 
of the matrix was varied by mixing a brittle epoxy resin (DER 334) with a 
flexible epoxy resin (DER 736) in different proportions. The properties of 
three blends of matrix material are given in Table 4-3. Tensile stress-strain 
curves for the composites with the three different matrix materials are shown 
in Fig. 4-12. The ductile resin (designated as blend C) composite shows lower 
strength and modulus but a slightly larger strain to failure compared with the 
brittle resin composites. However, the difference between failure strains of 
the three composites (and also their strengths and moduli) is very insignificant 
compared with the difference in the corresponding properties of the respective 
matrix materials. The reason for the low elongation to failure of the ductile
matrix composite is that the matrix is confined by the fibers and cannot de
form. In a composite, the matrix is subjected to a triaxial state of stress, even 
when a uniaxial load is applied to the composite. The effect of triaxial tension 
causes the ductile matrix to fail at a very low strain. Thus the elongation to 
failure drops drastically when fibers are added to the matrix. Composites with 
ductile and brittle resins are observed to fail by the same mechanism. The 
tensile strength is shown as a function of fiber volume fraction in Fig. 4-13. 
The maximum tensile strength for the brittle-matrix composite occurs at a 
fiber volume fraction of approximately 50%, beyond which there is a slight 
decrease in strength because of fabrication difficulties in obtaining a good
quality composite at these high volume fractions of fibers. The improved 
strength of the brittle-matrix composite results from the higher matrix 
strength, which has an observable influence in the case of randomly oriented 
fiber composites. 

Table 4-3 Properties of different blends of matrix material 

Material 

70% DER 334 
30% DER 736 
(material A) 
50% DER 334 
50% DER 736 
(material B) 
30% DER 334 
70% DER 736 
(material C) 

•Pounds per square inch. 

Tensile Yield 
Strength, psia 

(MPa) 

10,500 (72.3) 

8,100 (55.8) 

3,300 (22.7) 

Elastic Modulus, 
psi, (GPa) 

4.75 x lOS (3.27) 

4.1 X 105 (2.82) 

2.8 X 105 (1.93) 

Strain to 
Failure 

(%) 
4 .. , 

5.4 

>80 
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Figure 4-12. Tensile stress-strain curves for composites with ductile and brittle matrices. 
(From Gaggar and Broutman [24].) 
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Figure 4-13. Tensile strength of composites with ductile and brittle matrices. (From Gaggar 
and Broutman [24].) 
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Izod impact strength of the composites made with the three blends of 
matrix materials has been plotted in Fig. 4-14. It is observed that the matrix 
ductility has little influence on the notched impact strength of such compos
ites. This behavior can be explained by considering how the presence of fibers 
influences the behavior of brittle and ductile matrices. In the case of ductile 
matrices, fibers limit the elongation of the matrix between them, and thus 
addition of rigid fibers greatly reduces the toughness. On the other hand, 
addition of fibers to a brittle matrix can increase toughness because of crack 
blunting, branching, and arrest effects. A more detailed discussion on the 
crack-propagation mechanics in fiber composites is given in Chap. 8 in the 
section on fracture mechanics, and different energy-absorbing mechanism are 
described in Chap. 9 in the section on impact. 

4.4 RIBBON-REINFORCED COMPOSITES 

A ribbon can be defined as a filament having a rectangular cross section in 
which the width is much greater than the thick::less. Ribbon (or tape)
reinforced composites may have several possible advantages over the com
posites containing fibers with a circular cross section. Ribbon-reinforced 
composites can have high strength and stiffness in two directions: the longi
tudinal direction and the in-plane transverse direction (i.e., the direction per
pendicular to the length of the ribbon in the plane of the sheet). Thus such 
composites can be nearly isotropic in the plane of a sheet exhibiting nearly 
equal strength in all directions. This is a big advantage over the aligned-fiber 
composites, which have poor transverse strength, making them prone to easy 
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Figure 4-14. Notched lzod impact strength of composites with ductile and brittle matrices. 
(From Gaggar and Broutman [24].) 
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crack initiation and hence requiring great care in their handling. Ribbon com
posites tend to be very resistant to puncture by sharp objects. They exhibit 
greatly decreased permeability to gases and liquids compared with polymers 
o'r other kinds of composites. To permeate through a ribbon composite, a 
diffusing molecule must follow a long, circuitous path around the imperme
able ribbons. Another advantage that the ribbons offer as the reinforcement 
is that they can be packed in larger volume fractions than can circular fibers. 
For a typical ribbon-reinforced composite, whose cross section is shown in 
Fig. 4-15, the volume fraction of ribbons Vr is given by 

1 
(4.26) 

where W, and t, are, respectively, the width and thickness of the ribbons, tm 
is · the spacing between two layers of the ribbons, and Wm is the spacing 
between two ribbons in a layer. Equation (4.26) can be written in terms of 
the amount of overlap B of the ribbons as 

V, = 2[1 - (B/Wr)][I + (tm/tr)] 
(4.27) 

It is quite clear from Eq. (4.26) that Vr can be made quite large by reducing 
spacings between ribbons and the layers of ribbons. Theoretically, the lower 
limit of Wm or tm is zero. This, however, puts more stringent requirements on 
the properties of the matrix for ribbon composites than for fibrous composites. 
These requirements are discussed in a later paragraph. 

The longitudinal modulus of ribbon composites, like that of the continuous
fiber composites, is also given by the rule of mixtures as 

(4.28) 

where Er is the elastic modulus of ribbons. The in-plane transverse behavior 
of ribbon composites is analogous to the longitudinal behavior of aligned 

T' 

t ----------BIIIIIIBIIIIIIBIIIIIIBIIIIIIDmlll ----r 
'tm 

tr 

Figure 4-15 .. Representation of a cross section of ribbon-reinforced composite. 
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short-fiber composites. Therefore, the in-plane transverse modulus is giver 
by the Halpin-Tsai equation as 

(4.29 

where 

'Tl= 
r (£/ Em) + 2(W/tr) 

(4.30 

However, when the aspect ratio of ribbons (i.e., the ratio of width to thicknes 
of the ribbons W/ tr) is large, the in-plane transverse modulus also will bi 
given by the rule of mixtures [Eq. (4.28)]. In that case, the ribbon composite 
]Jecome essentially isotropic in the plane of the sheet. This is in contrast witl 
<the aligned-fiber composites, which are transversely isotropic but exhibit ; 
high degree of orthotropy in the plane of the composite. It may be pointei 
out that the transverse modulus in the thickness direction of ribbon composite 
may be calculated by replacing W/ tr by its reciprocal in Eqs. ( 4.29) and ( 4.30 
and will have a value much less than that of the longitudinal or in-plan 
transverse modulus of the composite. 

The in-plane transverse tensile strength of a ribbon composite can be nearl: 
as large as the longitudinal strength, provided that the failure occurs by lon 
gitudinal splitting of the ribbons and not by interlarninar shear failure. Thi 
will require that the ribbon aspect ratio W/ tr be quite large to provide enoug 
overlap between the ribbons. An essential condition for the longitudinal spli1 
ting of ribbons is that the shear force required for shear failure of the matri. 
in the region of overlapping ribbons be greater than the force required fc 
tensile splitting. With reference to Fig. 4-15, this condition requires that 

(4.31 

where Tmu is the shear strength of the matrix, and uru is the ultimate tensil 
strength of the ribbons. 

To attain high ultimate strength of ribbon-reinforced composites, good ac 
hesion between the matrix and the reinforcement is essential. If the interfaci, 
bonding is weak, the strength decreases rapidly with ribbon concentratiot 
However, even with good adhesion, the experi.mental values may be low b~ 
cause the matrix does not have the required properties. The matrix must b 
ductile with a high ultimate elongation to minimize the effect of thenrn 
stresses induced by the fabrication process. In addition, there must be enoug 
eloµgation left over to fully transmit the stresses to the ribbons. The ribbor 
reinforced composites· also require better control during fabrication processt 
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to maintain a regular arrangement of ribbons to ensure that all areas of overlap 
are above a critical value. There must be few, if any, voids or areas of poor 
adhesion. 

EXERCISE PROBLEMS 

4.1. A composite is fabricated of glass fibers (diameter = 0.03 mm) in an 
epoxy-resin matrix. All the fibers are aligned parallel to the direction of 
load application. The volume fraction of fibers is 40%. Assume that the 
matrix behaves as a rigid-plastic material with a yield strength of 28 
MPa and that Ef = 70 GPa and Em= 3.5 GPa. 
(a) Determine the load-transfer length l, for composite stresses <re = 70 

MPa and <Tc = 210 MPa. 
(b) Plot fiber stress and interfacial shear stress along fiber length for 

fibers with length l = ·tit, I,, and 4lt. Also calculate average fiber 
stress in each case. 

(c) Show plots of fibecstrain for I = It and l = flt. 
4.2. Assuming that the ultimate strength of the fibers considered in Exercise 

Problem 4.1 is 1.4 GPa, calculate critical fiber length le. Construct a plot 
of composite strength versus fiber length for fiber lengths between 0.1/c 
and lOOlc. Assume matrix strength to be 28 MPa. 

4.3. In Sec. 4.2.1 the interf acial shear stress was assumed constant (=Ty). A 
better approximation may be to assume the interfacial shear stress vary
ing linearly as T = Ty - az, where a is constant and z is distance from 
fiber end (see Fig. 4-1). With this assumption, derive an expression for 
the load-transfer length in terms of the maximum fiber stress, fiber .di
ameter, and Ty- Compare your result with Eq. (4.7), and explain the 
difference. Also plot the fiber stress and interfacial shear stress along the 
fiber length when l > It. 

4.4. The material used in the transmission gears of an automobile is an 
injection-molded nylon 6,6 containing 20% by weight of randomly ori
ented chopped-glass fibers. Calculate the length of glass fibers if the 
material shows a tensile modulus of 7 GPa, given that Er = 70 GPa, Em 
= 3.5 GPa, Pr= 2.5 g/cm3, Pm= 1.4 g/cm3, and dr = 20 µm. 

4.5. In a more demanding application, . the modulus of the material is in
creased to twice the value indicated in Exercise Problem 4.4 by replacing 
the glass fibers with carbon fibers. Calculate the length of carbon fibers 
required if the matrix material and fiber w~ight fraction are the same as 
in Exercise Problem 4.4. For carbon fibers, take Er= 210 GPa, Pf= 1.8 
g/cm3

, and dr = 15 µ.m. 
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4.6. Derive Eqs. (4.23) and (4.24) by following the procedure adopted in 
Chap. 3 for obtaining expressions for Vnun and Vcrit in the case of a 
continuous-fiber composite. 

4.7. Obtain an expression for the ratio of the strengths of an aligned 
discontinuous-fiber composite and a continuous-fiber composite with 
equal fiber volume fraction. For a limiting case of Vr = 1.0, plot this 
ratio as a function of l/ le, and indicate the region where values of the 
ratio will lie if Vr < 1.0. 

4.8. In a ribbon-reinforced composite, the spacing between two consecutive 
layers of ribbons is 10% of the ribbon thickness, whereas the spacing 
between two ribbons in a layer is 50% of the ribbon thickness. Construct 
a plot of ribbon volume fraction-ribbon aspect ratio that varies from 1 
to 1000. 

4.9. Assume that the diameter of long fibers (circular in cross section) is the 
same as the thickness of ribbons in Exercise Problem 4.8 and that the 
fiber spacing is the same as the spacing between two layers of ribbons. 
Calculate the volume fractions of fibers when they are packed in regular 
square and hexagonal arrays. Compare results with those of Exercise 
Problem 4.8. 
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ANALYSIS OF AN 
ORTHOTROPIC LAMINA 

5.1 INTRODUCTION 

A single layer of a laminated composite material generally is referred to , 
a ply or lamina. It usually contains a single layer of reinforcement, unidire1 
tional or multidirectional. A single lamina generally is too thin to be use 
directly in any engineering application. Several laminae are bonded togeth1 
to form a structure termed a laminate. Properties and orientation of the Ian 
inae in a laminate are chosen to meet the laminate design requirements. Pro1 
erties of a laminate may be predicted by knowing the properties of i 
constituent laminae. Behavior of the laminate is governed by the behavior 1 

individual laminae. Thus analysis or design of a laminate requires a comple 
knowledge of the behavior of the iaminae. The analysis of a lamina is di 
cussed in this chapter, and analysis of a laminate, in Chap. 6. 

Microscopically, fiber composites are heterogeneous materials. Their proJ 
erties and behavior are controlled by their microstructure and the properti1 
of their constituents. Properties and behavior of a unidirectional lamina, sul 
jected to loads in the fiber direction and perpendicular to it, have been studh 
in Chap. 3, and those of short-fiber composite, in Chap. 4. It is observed th 
their elastic properties and strengths are quite different in these two direction 
It is expected that their properties in other directions (off-axis properties) a 
different from those in the longitudinal and transverse directions but relat< 
to them. The off-axis properties may be predicted by carrying out macroscop 
analysis of a lamina using the principles of mechanics and assuming a lamil 
to be macroscopically homogeneous. 

5.1.1 Orthotropic Materials 

From the mechanics standpoint, fiber composites are among the class of m 
terials called orthotropic materials, whose behavior lies between that of is, 
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tropic and that of anisotropic materials. Differences between these materials 
can be best explained through their responses to tensile and shear loads. 
Consider rectangular specimens made of isotropic, anisotropic, and ortho
tropic materials. A uniaxial tensile load on the specimen of isotropic material 
will produce an elongation in the load direction and a shortening in the per
pendicular direction, as shown in Fig. 5-la. However, there will be no change 
in the angles between two adjacent sides. A pure shear load will produce 
distortion of the specimen through changes in angles between its adjacent 
sides but will cause no change in lengths. Further, when the direction of 
applied load is changed, the material response does not change qualitatively 
or quantitatively. That is, equal loads applied in different directions produce 
equal changes in lengths and angles. Thus the deformation behavior of iso-

Uniaxial tension 
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Figure 5-1. Deformation of materials under uniaxial tension and pure shear: (a) isotropic ma
terial, (b) anisotropic and generally orthotropic material, and (c) specially orthotropic material. 
Undeformed plate is shown by broken lines 
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tropic materials is direction-independent and is characterized by "norm 
stresses produce normal strains only but no shear strain" and "shear stresst 
produce shear strains only but no normal strains." 

In the case of anisotropic materials, uniaxial tension will produce changt 
in lengths as well as in angles (see Fig. 5-lb). Similarly, pure shear also wi 
produce changes in lengths as well as angles. Further, when the direction .< 

applied load is changed, the material response does not change qualitative] 
but changes quantitatively. That is, equal loads applied in different directior 
produce unequal changes in lengths and angles. In other words, the defo 
mation behavior of anisotropic material is direction-dependent. 

Deformation response of an orthotropic material, in general, is similar 1 

that of the anisotropic material. That is, it is direction-dependent, and norm: 
stresses and shear stresses alike give rise to normal strains as well as she: 
strains. However, in special cases, when the loads are applied in some specif 
directions, the material response is similar to that of isotropic materials i 
that the normal stresses produce normal strains only and shear stresses pre 
duce shear strains only (see Fig. 5-lc). These directions with special behavic 
are the axes of symmetry of the material. In a unidirectional composite, lor 
gitudinal and transverse directions are the axes of symmetry. The existenc 
of the axes of symmetry and their number are governed by the microstructm 
of the material. A general three-dimensional orthotropic material has thre 
mutually perpendicular axes of symmetry. A unidirectional composite is a 
orthotropic material but has more than three axes of symmetry-the long 
tudinal direction and all directions perpendicular to it. Because of these a< 
ditional axes of symmetry, the unidirectional composites are transverse] 
isotropic. 

Analysis procedures for orthotropic materials are developed in this chapte 
Developments are limited to small deformations only so that their deformatic 
behavior can be considered linearly elastic. Stress-strain relations for a tw< 
dimensional orthotropic lamina (e.g., a unidirectional composite) in terms c 
engineering constants are explained in the next section. Stress-strain relatior 
in terms of stiffness and compliance matrices are derived from the generalize 
Hooke's law in another section. Procedures for transformation of stiffness an 
compliance matrices are also developed. These developments are essential fc 
the laminate analysis procedures discussed in the next chapter. The last se, 
tion deals with the strengths of orthotropic laminae. 

5.2 STRESS-STRAIN RELATIONS ANO ENGINEERING CONSTANTS 

Consider a two-dimensional orthotropic lamina (e.g., a unidirectional :::on 
posite), as shown in Fig. 5-2, with the principal material axes (axes of syn 
metry) as the longitudinal direction and the transverse direction. F01 
independent engineering constants are required to relate stresses antl strair 
in this lamina. These constants are the elastic moduli in the longitudinal an 
transverse directions EL and Ep respectively, the shear rriodulus or the moc 
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T 

L 

Figure 5-2. Specially orthotropic lamina. 

ulus of rigidity associated with the axes of symmetry GLT, and the major 
Poisson's ratio vLT, giving transverse strain caused by a longitudinal stress. 
Minor Poisson's ratio vTu which gives longitudinal strain caused by a trans
verse stress, is also. used frequently in the stress-strain relations, but it is 
related to other independent constants [Eq. (3.60)]. Procedures for predicting 
these constants for unidirectional composites were discussed in Chap. 3. Anal
ysis presented in this chapter assumes a lamina to be macroscopically ho
mogeneous and uniform in properties. 

When reference axes in an analysis coincide with the lamina axes of sym
metry, as in Fig. 5-2, the lamina usually is called a specially orthotropic 
lamina. When the reference axes are different from the lamina axes of sym
metry, the lamina is called a generally orthotropic lamina. Stress-strain re
lations for specially and generally orthotropic lamina are discussed in this 
section. 

5.2.1 Stress-Strain Relations for Specially Orthotropic Lamina 

Deformation behavior of a specially orthotropic lamina is shown in Fig. 5-3. 
Lamina strains for each stress component can be written as follows: 

1. When o-L is the only nonzero stress (o-T = TLT = 0), the strains produced 
are 

(5.1) 

(5.2) 

'YLT = 0 (5.3) 

2. When o-r is the only nonzero stress (o-L = TLT = 0), the strains produced 
are 
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Figure 5-3. Deformation behavior of a specially orthotropic lamina. Undeformed lamina, shown in 
broken lines, is a square with sides of unit length. 
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(5.5) 

1'LT = 0 (5.6) 

3. When 7'LT is the only nonzero stress (aL = aT = 0), the strains produced 
are 

EL= 0 (5.7) 

€T = 0 (5.8) 

7' 
1'LT = GLT (5.9) 

LT 

Superposition of these three states of stresses gives a most general state of 
stress on the lamina consisting of au aT, and 7'LT· In view of the assumption 
of linearly elastic material, the strains given ·by Eqs. (5.1)-(5.9) can be .su
perposed to give the following relations: 

(5.10) 

Equations (5.10) are the stress-strain relations for a specially orthotropic 
lamina in terms of engineering constants. It may be noted that Eqs. (5.10) 
are similar to the stress-strain relations of an isotropic material under plane . 
stress conditions. However, Eqs. (5.10) involve four independent elastic con
stants, whereas isotropic stress-strain relations under plane stress conditions 
require only two constants. Stress-strain relations of a generally orthotropic 
lamina (i.e., fill.. orthotropic lamina referred to arbitrary axes) differ from Eqs. 
(5.10) and are discussed in the next section. 

Example 5-1: A unidirectional composite is subjected to the following 
stresses: 

aL = 3.0 MPa, aT = 0.5 MPa, and 7'LT = 3.5 MPa 

Find the normal and shear strains. Engineering constants are 



164 ANALYSIS OF AN ORTHOTROPIC LAMINA 

EL= 14.0 GPa, ET= 3.5 GPa, GLT = 4.2 GPa 

VLT = 0.4 and VTL = 0.1 

Strains can be obtained by using Eq. (5.10): 

BL = 
3

·
0 

0 1 X 
0

·
5 

= 200 10-6 
14 X 103 - • 3.5 X 103 X 

0.5 04 3·0 = 57 X 10-6 
BT = 3.5 X 103 - • X 14 X 103 

-
3

·
5 

- 833 o-6 
'YLT - 4.2 X 103 - X 1 

5.2.2 Stress-Strain Relations for Generally Orthotropic Lamina 

A generally octhotropic lamina is shown in Fig. 5-4, which has the principa 
material axes (L and T) oriented at an angle e to the reference coordinat< 
axes (x and y). In this case, engineering constants associated with the x anc 
y axes are required to relate stresses and strains. As explained earlier, thi: 
lamina responds to the loads like an anisotropic material. That is, norma 
stresses ( ax and ay) produce shear strains ( Y.) in addition to the normal strain: 
( Ex and Ey), and shear stress ( Tx) produces normal strains ( E, and Ey) aloni 
with the shear strain ( 'Yx)· In other words, the shear and normal component: 
of stresses and strains are coupled. Therefore, in this case, in addition to th< 
usual engineering constants associated with the x and y axes (Ex, Ey, Gxy• vx> 
and vyx), cross-coefficients mx and my are also required to relate stresses an< 
strains. These cross-coefficients relate the shear and normal components o 
stresses and strains. The significance of cross-coefficients will become clea 
from the stress-strain relations described below. It may be pointed out tha 

Figure 5-4. Generally orthotropic lamina with applied stresses. 
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the engineering. constants and cross-coefficients associated with the x and y 
axes are related to the four independent engineering constants (EL, ET, GLT• 
and vLT). Transformation equations relating these constants will be derived in 
Sec. 5.2.3. 

Lamina strains for a generally orthotropic lamina (see Fig. 5-4) for each 
stress component can be written as follows. 

1. When crx is the only nonzero stress (cry = rxy = 0), the strains produced 
are 

(5.11) 

(5.12) 

(5.13) 

2. When cry is the only nonzero stress (crx = rxy = 0), the strains produced 
are 

(5.14) 

(5.15) 

(5.16) 

3. When rxy is the only nonzero stress (crx = cry = 0), the strains produced 
are 

(5.17) 

(5.18) 

(5.19) 
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In view of the assumptions of linearly elastic material, the strains given by 
Eqs. (5.11)-(5.19) can be superposed to obtain the following relations: 

(5.20) 

Equations (5.20) are the stress-strain relations for a generally orthotropic 
lamina in terms of its engineering constants. 

5.2.3 Transformation of Engineering Constants 

It was pointed out in the preceding section that the engineering constants in 
an arbitrary direction, such as the coordinate axis x or y, are related to the 
four independent engineering constants (EL, Er, GLT• and vLT) for the lamina. 
To derive transformation equations relating these constants, first consider a 
generally orthotropic lamina (see Fig. ·s-4) subjected to a stress crx with cry = 
Txy = 0. Transformation of stresses [Eq. (A2.12) in Appendix 2) gives the 
normal and shearing stresses along the longitudinal and transverse directions 
as 

crL = crx cos2 8 

err = crx sin2 e 
TLT = -crx sin () COS () 

(5.21) 

The strains in the longitudinal and transverse directions are given by Eq. 
(5.10). 

(5.22) 
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The strains in the x and y directions can be obtained by the inverse of the 
strain-transformation law [Eq. (A.2.2)], which can be written in the expanded 
form as 

E\ = EL COS2 8 + ET Sin2 8 , 'YLT Sin O COS 8 

Ey = EL sin 2 8 + ET COS2 8 + 'YLT Sin 8 COS 8 

'Yxy = 2(eL - eT) sin e cos e + 1'LT(cos2 e - sin2 e) 

Substitution of Eq. (5.22) in (5.23) gives the strains 

[
cos

4 e sin
4 e 1 ( 1 2vLT) . 2 28] 

E =u --+--+- ---- sm 
X X EL ET 4 GLT EL 

e = -u - - - - + -- + - - - sm 2e 
[ 

VLT 1 ( 1 2VLT 1 1 ) . z J 
Y x EL 4 EL EL ET GLT . 

(5.23) 

. [VIT 1 1 z ( 1 2vLT 1 1 )] y = -u sm 2e -· + - --- - cos e - + -- + - - -
X}' X EL ET 2GLT EL EL ET GLT 

(5.24) 

Now the definitions of elastic constants can be used to q1lculate them from 
Eq. (5.24). Since 

the first relation in Eq. (5.24) gives 

J COS4 
8 Sin4 

8 1 ( 1 2vLT) • o 
2 - = -- + -- + - - - -- srn- () 

Ex EL ET 4 GLT EL , 
(5.25) 

An expression for EY can be obtained by substituting () + 90° for () in Eq. 
(5.25). The result is 

1 sin4 e cos4 e 1 ( 1 2 vLT) . 2 2 -=--+--+- ~--- sm e 
Ey EL Er 4 GLT EL 

(5.26) 

The Poisson ratio is defined as 
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when only a uniaxial stress ux is applied. Equation (5.25) and the second 
relation in Eq. (5.24) can be used to obtain 

(5.27) 

Similarly, 

(5.28) 

It should be noted that when the normal stress ux is applied in a direction 
other than the longitudinal or transverse direction, it may induce a shearing 
strain such as that given by Eq. (5.24). Therefore, a cross-coefficient mx may 
be defined that relates the shearing strain to the normal stress ux in the fol
lowing manner: 

(5.29) 

Comparing Eq. (5.29) with the third relation in Eq. (5.24) gives 

. [ E E ( E E )] m = sm 28 v + _b - _L_ - cos2 e 1 + 2v + _b - _L 
X LT E 2G LT E G 

T LT T LT 

(5.30) 

A second cross-coefficient my that relates the shearing strain to normal stress 
aY is defined as 

(5.31) 

It can be shown in a similar manner that 

(5.32) 

Finally, to obtain an expression for Gxy• assume that the only nonzero stress 
acting on the lamina of Fig. 5-4 is Txy· This will induce the following stresses 
in the longitudinal and transverse directions: 

(TL = -uT = 2Txy sin (J COS (J 

TLT = (cos2 e - sin2 O)Txy (5.33) 

The strains in longitudinal and transverse directions are given by Eq. (5.10). 
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2 . ( 1 VTL) 
E1. = Txy sm O cos O EL + ET 

. ( 1 VLT) 
ET = -2Txy sm e cos e ET + EL 

Txy 
'YLT = G ( cos2 e - sin2 8) 

LT 

(5.34) 

Now the shearing strain 'Yxy is obtained by substituting Eq. (5.34) in Eq. (5.23). 
This results in 

(5.35) 

Now the definition of shear modulus Gxy• will give 

(5.36) 

It should be noted that the shearing stress Txy will cause normal strains Ex 

and Ey in the x and y directions, respectively, given by 

(5.37) 

where the cross-coefficients were defined in Eqs. (5.29) and (5.31) and were 
evaluated in Eqs. (5.30) and (5.32). 

To better appreciate the variation of the elastic constants, they can be plot: 
ted as functions of orientation () for specific materials. Variations in Ex, GX}., 
vX}., mx, and my are shown in Figs. 5-5 to 5-7 for typical glass-epoxy, graphite
epoxy, and boron-epoxy systems. It may be noted that for the glass-epoxy 
and graphite-epoxy systems chosen, Ex monotonically decreases from EL at 
() = 0° to ET at () = 90°. It should be pointed out that the variation of Ex will 
be quite dependent on the assumed value of GLT' It is recommended that this 
value be obtained experimentally rather than by a predictive technique based 
on the constituent properties. For the boron-epoxy system, Ex is less than 
both EL and ET for values of() between 45° and 90°. The value of Gxy for all 
three systems is largest at e = 45° and its variation is symmetric about this 
orientation. The largest value of the Poisson ratio vxy is nearly 1.21.'LT at () = 
30° for the glass-epoxy, 1.1 vLT at e = 15° for graphite-epoxy, and l.9vLT at 
() = 25° for the boron-epoxy systems. The cross-coefficients m; and my are 
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Figure 5-5. Elastic constants of a glass-epoxy lamina: variation with fiber orientation. 

zero at e = 0° and e = 90°, but for intermediate values of e, they achiev 
large values compared with vxy· The variations shown in Figs. 5-5 to 5-7 ar 
not entirely typical of all composite materials. The curves shown can b 
changed considerably by relatively small variations in the properties of th 
fiber-matrix combination. It should be observed from these curves that th 
extremum (largest and smallest) material properties do not necessarily occu 
in principal material directions, which is actually the case for Ex in the boron 
epoxy system and for Gxy, vxy• mx and my in all thre~ systems. It was show 
by Jones [1] that whenever values of properties in the principal material di 
rections violate certain inequalities, extrema in their yalues occur in the di 
rections other than the principal material direqtions. For example, it can b 
shown by finding maximum and minimum values of Ex as given by Eq. (5.25 
that Ex is greater than both EL and ET for some v~µes of e other than 0° c 
90° if 

(5.3~ 

and that Ex is less than both EL and Er for some values of f) other than 0° c 
90° if 
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Figure 5-6. Elastic constants of a graphite-epoxy lamina: variation with fiber orientation. 
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Figure 5-7. Elastic constants of a boron-epoxy lamina: variation with fiber orientation. 
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(5.39) 

The inequality in Eq. (5.38) is not violated by any of the systems chosen 
earlier, but the inequality in Eq. (5.39) is violated by the boron-epoxy system 
and hence the behavior shown in Fig. 5-7. Similar conditions can be obtained 
for other material properties as well. 

It is of practical interest to consider a lamina having identical properties 
in the two principal material directions (i.e., EL = ET and vLT = i•TL). Such 
a lamina is called a balanced orthotropic lamina, an example of which is a 
glass-fabric-reinforced material with equal volume fractions of fibers in two 
mutually perpendicular directions. Typical variations in the elastic constants 
of a balanced lamina are shown in Fig. 5-8. The elastic constants show sym
metry in their variations about an orientation of 45° to the principal material 
axes. Fabric-reinforced laminae are of practical significance because with 
them almost any ratio of EL/ ET can be established through the fabric weave 
(i.e., by changing the ratio of fiber volume fractions in the two mutually 
perpendicular directions). 

Example 5-2: For the lamina shown in Fig. 5-9, find the strains in the xy 
directions. Lamina has the same engineering constants in the longitudinal 
and transverse directions as given in Example 5-1. 

GLT=3.5 GPa 
3.0 

, VLT =Vu= 0.2 

10 

l 
02 "g 

0 

0 :,., 
1E 

-02. g 
-0.4 

-0.6 

-08 

Figure 5-8. Elastic constants of a balanced lamina: variation with fiber orientation. · 
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rMPa 

3.5 MPa 

1.4 MPa 

1 
Figure 5-9. State of stress on a lamina for Example 5-2. 

From Fig. 5-9, the stresses are 

<Tx = -3.5 MPa 

<T> = 7.0 MPa 

'Txy = 1.4 MPa 

Engineering constants in the x and y directions are required to calculate . 
strains. These are obtained by substituting e = 60° in Eqs. (5.25)-(5.28) 
and (5.36). The transformed constants are 

Ex= 5.02 GPa, Ey = 10.87 GPa, Gxy = 2.70 GPa 

vxy = vyx = -0.00446 GPa:- 1 

Ex E,. 

mx = 1.833, my = 0.765 
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Therefore, strains are 

-3.5 X 10-3 

Ex = 
5

.02 - (-0.00446)(7 .0 X 10-3
) 

7.0 X 10-3 

Ey = l0.
87 

- (-0.00446)(-3.5 X 10-3
) 

- 0.765(-1.
4 
l: l0-

3

) = 705 X 10-6 

= -1.4 X 10-3 
_ l 833 (-3.5 X 10-3

) 

'Y.,y 2.70 . 14 

5.3 HOOKE'S LAW AND STIFFNESS AND COMPLIANCE MATRICES 

5.3.1 General Anisotropic Material 

In general, the state of stress at a point in a body is described by the nil 
components of the stress tensor uij, as shown in Fig. 5-10. Corresponding] 
there is a strain tensor, E;j, with nine components. 

Figure 5-10. Components of stress tensor on a cube element. 
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The most general linear relationship that connects stress to strain is known 
as the generalized Hooke's law and can be expressed mathematically as 

aij = EiiklEk1 (5.40) 

where Eijkl is a fourth order tensor. The elements of Eijkl are known as the 
elastic constants. Equation (5.40) also can be written in the matrix form as 

0'11 E1111 E1122 E1133 E1123 E1131 E1112 E1132 E1113 E1121 ell 
0'22 E2211 E2222 E2233 E2223 E2231 E2212 E2232 E2213 E2221 822 

0'33 E3311 E3322 E3333 £3323 E3331 E3312 £3332 E3313 E3321 C:33 

7'23 E2311 £2322 E2333 E2323 E2331 E2312 E2332 E2313 E2321 823 

7'31 E3111 E3122 E3133 E3123 E3131 E31!2 E3132 E3113 E3121 831 

7'12 E1211 E1222 E1233 E1223 E1231 E1212 E1232 E1213 E1221 812 

7'32 E3211 E3222 E3233 E3223 E3231 E3212 E3232 E3213 E3221 832 

7'13 E1311 E1322 E1333 E1323 E1331 E1312 E1332 E1313 E1321 813 

7'21 E2111 E2122 E2133 E2123 E2131 E2112 E2132 E2113 E2121 8 21 

(5.41) 

The first two subscripts on the elastic constants correspond to those of stress, 
whereas the last two subscripts correspond to those of strain. 

It is seen that each stress component is related to all nine components of 
the strain tensor, and there are 81 elastic constants defining the tensor Eijkl· 

Fortunately, this tensor exhibits certain symmetry properties that reduce the 
total number of independent components to 21 for a material that does not 
have any axes of symmetry. Such a material is called aeolotropic or aniso
tropic. 

The first set of reductions in elastic constants is obtained by considering 
the symmetry of strain. It can be shown easily that because of the symmetry 
of the strain tensor, there is no loss of generality if Eiikl is assumed symmetric 
with respect to the last two indices; in other words, 

(5.42) 

which will reduce the number of constants from 81 to 54. A second reduction 
in constants comes by assuming E;ikl symmetric with respect to the first two 
indices because of the symmetry of the stress tensor. Thus 

(5.43) 

This causes a further reduction in constants by 18, reducing the number of 
independent constants to 36. 
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The further reduction in the number of independent constants to the fin 
total of 21 can be accomplished only by thermodynamic considerations, ac 
cording to which a strain-energy density function can be assumed to exist : 
follows: 

u = U(E;) 

with the property 

au 
-=a 
ac-· ij 

lj 

(5.4'. 

Then, by Eq. (5.40), 

(5.4( 

The partial differentiation of Eq. (5.46) with respect to Ekt yields 

(5.4' 

Interchanging the indices in Eq. (5.47) gives 

(5.4l 

Since the order of partial differentiation is immaterial, that is, 

(5.4~ 

it is clear that 

(5.5( 

Thus the first pair of indices in the elasticity tensor can be interchanged wi1 
the second pair without any change in the values. This operation reduces tt 
number of independent elastic constants for an aeolotropic or anisotropic m: 
terial to only 21. 

The response of an anisotropic material to impressed forces can be pre 
dieted with the help of these 21 constants, and generally it will be differe1 
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along each axis. If one pushes along a given direction, changes in length as 
well as in angle will occur along and between all the axes. It should be noted 
that since the components both of the stress tensor and of the strain tensor 
are functions of the orientation of the axis system, the elastic constants (the 
elements of the elasticity tensor) also will be functions of axis orientation. 
The elasticity tensor is a fourth-order tensor, and hence its transformation law 
can be written as 

(5.51) 

where E;,mrs is the elasticity tensor in the transformed (x') axis system, E;jkl is 
the elasticity tensor in the original (x) axis system, and a;m are the direction 
cosines of the new axes with respect to the original axes. Once the elastic 
constants are known in one reference coordinate system, the transformation 
law [Eq. (5.51)] enables us to calculate the elastic constants in any other 
reference coordinate system. In general, the elastic constants will change with 
the transformation, but under some specific transformations, the elastic con
stants may remain unchanged as a result of additional symmetries existing in 
the material properties. 

5.3.2 Specially Orthotropic Material 

Because of their macroscopic structure, many materials exhibit symmetry in 
their elastic properties with respect to certain planes; that is, the elastic con
stants do not change when the direction of the axis perpendicular to the plane 
of symmetry is reversed. The number of elastic constants will reduce when 
the number of planes of symmetry increases. The transforma:tion law can be 
used to derive the number of independent elastic constants for various sym
metry conditions. Fiber composites come under the category of orthotropic 
materials that exhibit symmetry of their elastic properties with respect to two 
orthogonal planes. The number of independent elastic constants for ortho
tropic materials is now derived. 

First, consider that one of the planes of symmetry of orthotropic materials 
is the x 1x2 plane (Fig. 5-11 ). This symmetry requires that the elastic constants 
do not change under the following coordinate transformation: 

(5.52) 

The corresponding direction cosines can be expressed as follows: 

x: 
I x; x' 3 

X1 all = 1 a 12 = 0 a 13 = 0 (5.53) 
X2 a21 =O '!22 = 1 llz3 = 0 
X3 a31 =O a32 =; q a33 = -1 
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Figure 5-11. Transformation of coordinate axes when x,x2 is a plane of symmetry. 

The invariance of elastic properties under the preceding coordinate trans
formation imposes certain restrictions on the elasticity tensor. These restric
tions are actually the conditions necessary to satisfy the invariance condition 
(i.e., Eijkt = Eijkt) and are obtained by applying the transformation law [Eq. 
(5.51)). To this end, examine the dependence of components of Eijkl on E;jkl: 

(5.54) 

Since there are only three nonzero direction cosines [Eq. (5.53)], the expan
s'ion of the transformation law is simplified. The result given in Eq. (5.54) 
states that the invariance conditions are satisfied for the first two components 
examined, but not for the third one. To satisfy the invariance condition for 
the third one, it is necessary to set E1113 equal to zero. In a similar manner, 
it can be verified easily that the condition of no change in the elastic constants 
under the coordinate transformation [Eq. (5.52)) would require that 8 of the 
21 elastic constants should be • zero. These 8 components that must be set 
equal to zero are 

Now to complete the symmetry requirements for an orthotropic material, 
consider that the second plane of symmetry is the x~3 plane (Fig. 5-12). This 
means that the elastic constants do not change under the following coordina_te 
transformation: 

x; = x2 (5.56) 

The direction cosines corresponding to the preceding transformations are 
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Figure 5-12. Transformation of coordinate axes w
1
hen x:r:3 is a plane of symmetry. 

x' 1 x~ x; 

X1 a11 = -1 a12 = 0 a13 = 0 (5.57) 
Xz a21 =O a22 = 1 a23 = 0 
X3 a31 =O a32 = 0 a33 = 1 

The application of the transformation law [Eq. (5.51)] subject to the di
rection cosines given by Eq. (5.57) will lead to contradictions of the type 
shown in Eq. (5.54). These are resolved by setting some of the elastic con
stants equal to zero. It can be verified easily that the following additional 
constants must be zero: 

(5.58) 

It may be pointed out that the symmetry of elastic properties with respect 
to two mutually perpendicular planes implies the symmetry with respect to 
the third orthogonal plane. An interested reader may verify that the tbird plane 
of symmetry (the x3x1 plane) does not yield any additional reduction in the 
elastic constants in the present case. Thus elastic constants of an orthotropic 
material can be described by the following array of nine constants: 

E1u1 E1122 £1133 0 0 0 
E1122 E2222 £2233 0 0 0 

(Eijk1) = £1133 £2233 £3333 0 0 0 (5.59) 
0 0 0 Ele323 0 0 
0 0 0 0 £1313 0 
0 0 0 0 0 E1212 

By a careful examination of Eq. (5.59), it is quickly realized that it is now 
unnecessary to use four subscripts of the original elasticity tensor to describe 
the nine nonzero elastic constants of orthotropic materials. It is more conven
ient to write Hooke's law for an orthotropic material in the contracted notation 
as 
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i,j = 1, 2, 3, 4, 5, 6 (5.60) 

where a-; are the stress components, Cij is the stiffness matrix, and ej are the 
engineering strain components. 

The engineering strains are different from the tensor strains used in Eq. 
(5.40). The two types of strain are described in Appendix 2. The difference 
between the two arises only in the shearing-strain components. An engineer
ing shear strain is twice the corresponding tensorial shear strain. Equatior: 
(5.60), which uses engineering strains, can be written in the matrix form as 

0"1 C11 C12 C13 0 0 0 €1 

0"2 C12 C22 C23 0 0 0 €2 

0"3 C13 C23 C33 0 0 0 €3 (5.61: 
T23 0 0 0 CM 0 0 ,'23 

T13 0 0 0 0 Css 0 '}'13 

T12 0 0 0 0 0 c66 'Y12 

Equation (5.61) represents three-dimensional stress-strain relations for ar 
orthotropic material when the reference coordinate axes coincide with tht 
material axes. Therefore, these are called stress-strain relations for a special/:, 
orthotropic material. The stiffness matrix contains 12 nonzero elements, witl 
only 9 of those being independent (C11 , C 22, C 33, C 12, C 13, C 23, C 44, C55 , anc 
C66). When coordinate axes do not coincide with the material axes, the sami 
orthotropic material is called a generally orthotopic material. Stress-strai1 
relations for a generally orthotropic material can be obtained by tensor trans 
formation, as used in the preceding sections. The stiffness matrix for a gen 
erally orthotropic material is usually fully populated; that is, it has no zerc 
elements. However, all 36 elements are obtained only from the 9 independen 
elements mentioned above. 

5.3.3 Transversely Isotropic Material 

It was pointed out earlier that for unidirectional composites, mechanical prop 
erties in all directions perpendicular to the longitudinal direction generall 
are assumed to be equal. Thus, for a unidirectional composite, the transvers 
plane (plane perpendicular to the longitudinal axis) is a plane of isotropy, an 
a unidirectional composite is an example of a transversely isotropic materia 
In general, an orthotropic material is called transversely isotropic when on 
of its planes of symmetry is isotropic. Since transversely isotropic materii 
has more axes of symmetry than a specially orthotropic material, its stiffne~ 
matrix has a smaller number of independent elements. If it is assumed thi 
plane 23 is the plane of isotropy, the following relations between the elemen1 
of stiffness matrix can be shown to exist: 
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(5.62) 

The stiffness matrix therefore can be written as 

C11 C12 C12 0 0 0 

0-1 C12 C22 C23 0 0 0 €1 

<rz 
C12 C23 C22 0 0 0 

€2 

U'3 
C22 - C23 

€3 (5.63) 
7 23 0 0 0 0 0 'Y23 

713 2 'Y13 

712 0 0 0 0 c66 0 'Y12 

0 0 0 0 0 c66 

A transversely isotropic material thus has only five independent elastic con
stants (C11 , Cw C 12, C 23, and C 66). 

5.3.4 Isotropic Material 

A material is called isotropic when its properties are independent of direction. 
As a result, every coordinate axis is an axis of symmetry. It can be shown 
that the following relations exist between the elements of the stiffness matrix 
[Eq. (5.63)]: 

(5.64) 

Therefore, the stiffness matrix for an isotropic material becomes 
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ell e12 e12. 0 0 0 

<T1 e12 e11 e12 0 0 0 €1 
<T2 

e12 e12 e11 0 0 0 
€2 

<T3 €3 
Tz3 0 0 0 

e11 - e12 
0 0 'Y23 

T13 2 
ell - e12 ')'13 

T12 0 0 0 0 
2 

0 'Y12 

0 0 0 0 0 
e11 - e12 

2 
(5.65) 

There are only two independent elastic constants for isotropic materials ( e u 

and e 12). 
A summary of independent and nonzero elastic constants for different ma-

terials is given iri Table 5-1 for both three- and two-dimensional cases. 

5.3.S- Specially Orthotropic Material under Plane Stress 

In most structural applications, composite laminates are loaded in the plane 
of the laminate. Such a loading is called a plane-stress condition in which all 
out-of-plane stress components are zero. If axis 3 is the out-of-plane direction, 
a plane-stress condition gives 

(5.66) 

By substituting Eq. (5.66) in Eq. (5.61) and writing it in expanded form, we 
get 

Table 5-1 Number of elastic constants 

· Three-Dimensional Two-Dimensiona11 

Number of Number of Number o( 'Number of 
Nonzero Independent Nonzero Independen 

Material Constants Constants Constants Constants 

Anisotropic 36 21 9 6 
Specially 12 9 5 4 

orthotropic 
Generally 36 9 9 4 

orthotropic 
Transversely 12 5 5 4 

isotropic 
Isotropic 12 2 5 2 
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0 = C 13e 1 + C 23e2 + C 33e3 

'Y23 = '}'13 = 0 

Elimination of strain e3 from Eq. (5.67) gives 

(5.67) 

(5.68) 

For simplicity, new stiffness coefficients are defined for a specially orthotropic 
material under plane stress conditions as follows: 

(5.69) 

Q = C _ C13C23 
12 12 C 

33 

Now the stress-strain relations for a specially orthotropic lamina under plane
stress conditions can be written as 

(5.70) 

The stress-strain relations written as Eq. (5.70) are used in this text to develop 
laminae and laminate analysis procedures. 
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5.3.6 Compliance Tensor and Compliance Matrix 

The stress-strain relations given by Eq. (5.40) can be expressed in the inverted 
form as 

(5.71) 

where Sijkt is known as the compliance tensor. It should be evident that the 
compliance tensor has the same symmetry properties as the elasticity tensor 
and the same type of transformation law. The number of independent com
ponents of the complJance tensor may be reduced in a manner similar to the 
one used for the elasticity tensor. Finally, the stress-strain relations for an 
orthotropic material for the two-dimensional case can be written in terms of 
a compliance matrix as follows: 

(5.72) 

where directions 1 and 2 coincide with the natural axes of the material. It 
may be noted that the Eqs. (5.70) and (5.72) are inversions of each other. 
Therefore, the following relations between the elements of the stiffness matrix 
and compliance matrix may be obtained by the matrix inversion (see Appen
dix 1): 

1 
Q66 = -s 

66 

(5.73) 

It may be pointed out that whereas three-dimensional orthotropy requires 
nine independent elastic constants, as shown in Eq. (5.61), only four constants 
are needed for two-dimensional orthotropy. The number of elastic constants 
required for an isotropic material is only two for both two- and three
dimensional stress states. The increased number of elastic constants indicates 
the additional complexity of orthotropic problems. The two-dimensional or
thotropic problem is of primary concern in the remainder of this book. 
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5.3. 7 Relations between Engineering Constants and Elements of 
Stiffness and Compliance Matrices 

Relations between the five engineering constants of Eq. (5.10) and four in
dependent elastic constants of Eq. (5.70) and Eq. (5.72) can be established 
easily by considering a specially orthotropic lamina with the longitudinal and 
transverse directions as the material axes of symmetry. For such a lamina, 
stress-strain relations in terms of stiffness and compliance matrices can be 
written as follows by changing subscripts of stresses and strains from 1 and 
2 to L and T, respectively: 

(5.74) 

(5.75) 

Now consider that the lamina is subjected to a general state of stress con
sisting of crL, crT, and rLT- The resulting strains are given by Eq. (5.10) in 
terms of engineering constants. The strains in terms of elements of the com
pliance matrix are given by Eq. (5.75), which can be written in the expanded 
form as 

eL = Su CTL + S12crT 

eT = S12crL + S22CTT (5.76) 

Comparison of Eq. (5.10) with Eq. (5.76) gives the desired relations between 
engineering constants and elements of the compliance matrix: 

1 
Su= E 

L 

(5.77) 

Substitution of Eqs. (5.77) in Eqs. (5.73) gives the relations between engi
neering constants and elements of the stiffness matrix: 
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(5.78) 

It may be pointed out that although five engineering constants have been 
mentioned, only four of them are independent. The following functional re
lationship, which is evident from Eq. (5.78), exists between four of the five 
constants: 

or 

(5.79) 

Engineering constants for a number of commercially available composites are 
given in Appendix 4. 

Example 5-3: Determine the stiffness and compliance matrices for a uni
directional .AS4/3501-6 graphite-epoxy lamina that has the following en
gineering constants: 

EL= 148.0 GPa, ET= 10.5 GPa 

GLT = '5.61 GPa, vLT = 0.3 

From Eq. (5.79), 

0:3 X 10.5 
VTL = 

148
.
0 

= 0.021 

Elements of the stiffness matrix are obtained by using Eq. (5.78): 
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148.0 
Q11 = 1 _ 0.3 x 0.021 = 148.95 GPa 

10.5 
Q22 = 1 - 0.3 X 0.021 = 10.57 GPa 

0.3 X 10.5 
Q12 = 1 - 0.3 x 0.021 = 3.1 7 GPa 

Q66 = 5.61 GPa 

[

148.95 
[Q] = 3.67 

3.17 
10.57 

0 
g ] GPa 

5.61 

Elements of the compliance matrix are obtained by using Eq. (5.77): 

1 
S 11 = 

148
.0 = 0.0068 GPa-1 

I 
S22 = l0.

5 
= 0.0952 GPa- 1 

0·3 0020 -I S12 = -
148

.0 = -0. GPa 

1 
S66 = 

5
_
61 

= 0.1783 GPa- 1 

Thus 

[ 

0.0068 -0.0020 
[SJ = -0.0020 0.0952 

0 0 
0 ] 0 GPa- 1 

0.1783 

5.3.8 Restrictions on Elastic Constants 

It was pointed out in an earlier section that for an orthotropic material, three
dimensional str~ss-strain relations require nine independent elastic constants 
and two-dimensional relations require four constants. For isotropic materials, 
the number of independent elastic constants is only two for both the two- and 
three-dimensional stress-strain relations. Consequently, for characterization 
purposes, more measurements have to be made for an orthotropic material 
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than for an isotropic material. However, additional measurements could be 
made for an isotropic material to calculate different engineering constants, 
but it will be found that the new constants could be calculated using known 
relations between them. For example, the Young modulus (E) and Poisson 
ratio ( v) of an isotropic material can be determined in a uniaxial tension test, 
and shear modulus (G), in a torsion test. It is well known that the value of 
G calculated from the values of E and v using the relation 

G = E 
2(1 + v) 

(5.80) 

is in good agreement with the experimentally observed value. For orthotropic 
materials, Eq. (5.80) is not, in general, valid. The elastic constants Eu Ep 
GLT• and vLT therefore should be determined independently (methods for their 
experimental evaluation are discussed in a later chapter). For a specific case 
of a transversely isotropic composite (e.g., a unidirectional composite), a re
lation similar to Eq. (5.80), as well as other relations among different con
stants, can be derived from the symmetry conditions. If the axis perpendicular 
to the longitudinal and transverse axes is denoted by T', the following rela
tions among the properties can be shown to exist: 

(5.81) 

It may be noted that for a transversely isotropic material there are only five 
independent elastic constants, namely EL, ET, GLT, vLT, and vrr'· An interested 
reader may verify this statement by following a procedure based on the in
variance of elastic constants for an arbitrary rotation of the T - T' axes about 
the longitudinal axis [i.e, the procedure similar to the one adopted in deriving 
Eq. (5.59)]. 

The stress-strain relations represent a mathematical formulation that de
scribes the behavior of a mathematical model of a real physical problem. 
Therefore, the elastic constants involved in the formulation should have values 
that will not violate certain basic physical principles. For example, a tensile 
force on a real solid body should produce an extension in the direction of the 
force, or a hydrostatic pressure should not cause an expansion of material. 
Constraints on the values of the elastic constants of isotropic materials im
posed by such conditions are simple. They are as follows: (1) the elastic 
modulus E, shear modulus G, and bulk modulus K, all should be positive, 
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and (2) the Poisson ratio should have a value between -1 and 0.5. The 
constraints on elastic constants of an orthotropic material obtained by Lem
priere [2] can be stated as follows: 

(5.82) 

(5.83) 

(5.84) 

In view of Eq. (5.79), the conditions of Eq. (5.83) can be written as 

(E y12 

JvLTI < E~ (E r12 JvTLJ < E: 

( E )'
12 

\vLT,I < E~. (E ) 112 

JvT'LI < E: (5.85) 

( E y12 

\vrr.J < E;. ( E ) 
112 

lvTTI < E: 
A more detailed discussion of the constraints on the elastic constants can be 
found in Jones [3]. 

The preceding restrictions on engineering constants can be used to examine 
experimental data to determine whether they are physically consistent with 
the mathematical model. If the measured material properties satisfy the con
straints, one can proceed with confidence to design structures using these 
material properties. Otherwise, one has reasons to doubt the experimental 
techniques. 

The restrictions on engineering constants can be helpful in arriving at the 
physically admissible solution to a practical engineering analysis problem. 
For example, a governing differential equation may have several solutions 
depending on the relative values of coefficients in a differential equation. 
These coefficients in a problem of deformation of a body generally involve 
the elastic constants. The solutions corresponding to the elastic constants that 
violate the constraints can be rejected. 

5.3.9 Transformation of Stiffness and Compliance Matrices 

It was mentioned earlier that a composite material structure is constructed by 
stacking several unidirectional laminae in a specified sequence of orientation. 
That is, the principal material directions of each lamina make a different angle 
with a common set of reference axes. Each lamina is orthotropic and obeys 
the previously described stress-strain relations referred to its principal ma
terial axes. However, for the purpose of analysis,and synthesis of laminated 
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structures, it is convenient, in fact necessary, to refer the stress-strain relatic 
to a common-reference coordinate system. Therefore, the stiffness and con 
pliance matrices for an orthotropic lamina referred to arbitrary axes are di 
rived in this section. 

Stresses and strains can be transformed from one set of axes to another l: 
following the procedures described in Appendix 2. The stress-transformatic 
equation [Eq. (A.2.12)] can be written as 

where the stress-transformation matrix [Ti] is 

[ 

cos2 8 sin2 8 
[Ti] = sin2 

() cos2 e 
-sin () cos () sin () cos () 

2sin () cos () ] 
- 2sin () cos () 

cos2 () - sin2 
() 

The strain-transformation equations [Eq. (A.2.2)] can written as 

where the strain-transformation matrix [T2] is 

[ 

COS2 {) sin2 {) 

[T?] = sin2 () cos2 () 

-2sin () cos () 2sin () cos () 

sin () cos () ] 
-sin () cos () 

cos2 () - sin2 () 

(5.8( 

(5.8~ 

(5.8~ 

(5.85 

It should be noted that the angle () is taken positive when the angle of th 
LT axes measured from .xy axes is in the counterclockwise direction, as show 
in Fig. 5-4. It may be pointed out that the strain-transformation matrix [T: 
is different from the stress-transformation matrix [T1] because engineerin 
strains are being transformed rather than the tensorial strains. 

Now, to obtain a transformed stiffness matrix, we first write Eq. (5.86) i 
the inverted form by premultiplying its both sides by the inverse of the [T1 

matrix: 

(5.90 

The procedure for obtaining the [T1]-1 matrix is illustrated in Appendix 1 
However, in the present case, [Ti]- 1 may be obtained from [Ti] by replacin: 
the angle () by - e so that 
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[ 

cos2 fJ sin2 fJ 
[T1]- 1 = sin2 fJ cos2 fJ 

sin fJ cos fJ -sin fJ cos fJ 

Substitution of Eq. (5.74) into Eq. (5.90) gives 

- 2sin fJ cos fJ ] 
2sin 8 cos fJ 

cos2 fJ - sin2 fJ 

Now, substitution of Eq. (5.88) into Eq. (5.92) gives 

(5.91) 

(5.92) 

(5.93) 

Thus Eq. (5.93) gives stress-strain relation for an orthotropic lamina referred 
to arbitrary axes. For the purpose of uniformity, a [Q] matrix similar to the 
[Q] matrix of Eq. (5.74) is defined that relates engineering strains to the 
stresses refetretf to arbitrary axes. Then the [Q] matrix is defined by the 
equation 

(5.94) 

A careful comparison between Eqs. (5.93) and (5.94), along with some al
~braic manipulations, will yield the relations between the elements of the 
[Q] matrix and [Q] matrix. The resµlt is as follows: 

Q11 = Q11 cos4 fJ + Q22 sin4 fJ + 2(Q12 + 2Q66) sin2 fJcos2 fJ 

Q22 = Q11 sin4 fJ + Q22 cos4 fJ + 2(Q12 + 2Q66) sin2 fJ cos2 fJ 

Q12 == (Q11 +· Q22 - 4Q66) sin2 fJ cos2 8 + Qdcos4 fJ + sin4 fJ) 

Q66 = (Q11 + Q22 - 2Q12 - 2Q66) sin2 fJ cos2 fJ + Q66(sin4 fJ + cos4 8) 

Q16 = (Q11 - Q12 - 2Q66) cos~ 8 sin 8 - (Q22 - Q12 - 2Q66) cos 8 sin3 8 

Q26 = (Q11 - Q12 - 2Q66) cos 8 sin3 fJ - (Q22 ~ Q12 - 2Q66) cos3 fJ sin fJ 

(5.95) 
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The [Q] matrix is now fully populated and similar in appearance to tr 
[Q] matrix for a fully anisotropic lamina (Q16 :f= 0, Q26 :f= 0). It would see1 
that there are now six elastic constants that govern the behavior of the lamin 
However, Q16 and Q26 are not independent but merely linear combinations c 
the four basic elastic constants. Sometimes Eq. (5.74) is referred to as tr 
constitutive equation for "specially" orthotropic lamina because Q16 = Q 
= 0, and Eq. (5.94), as the constitutive equation for a generally" orthotropi 
lamina, although both of them apply to the same lamina. 

The inverse stress-strain relations referred to arbitrary axes now can t 
written as 

(5.9{ 

In a manner similar to the one adopted for obtaining the elements of th 
[Q] matrix in terms of the elements of the [Q] matrix, the elements of th 
[S] matrix also can be obtained in terms of the elements of the complianc 
matrix. The result is as follows: 

Sn = Sn cos4 fJ + S22 sin4 fJ + (2S12 + S66) sin2 fJ cos2 fJ 

S22 = S11 sin4 fJ + S22 cos4 fJ + (2S12 + S66) sin2 fJ cos2 fJ 

S12 = (S11 + S22 - S66) cos2 fJ sin2 fJ + S12 (cos4 fJ + sin4 fJ) 

S66 = 2(2S11 + 2S22 - 4S12 - S66) cos2 fJ sin2 fJ + S66 (cos4 8 + sin4 fJ) 

S16 = (2S11 - 2S12 - S66) cos3 fJ sin 8 - (2S22 - 2S12 - S66) cos fJ sin3 fJ 

S26 = (2S11 - 2S12 - S66) cos 8 sin3 fJ - (2S22 - 2S12 - S66) cos3 fJ sin fJ 

(5.97 

Example 5-4: For the lamina considered in Example 5-2 (Fig. 5-9), fir~ 
find the stresses and strains in the longitudinal and transverse directiom 
and then transform the strains to the x and y directions. Compare result 
with those of Example 5-2. 

Stresses in the longitudinal and transverse directions may be obtained fron 
Eq. (5.86) by substituting fJ = 60°: 

{

(TL } [ 0.25 0.75 
(TT = 0.75 0.25 
TLT -0.433 0.433 

0.866 ]{-3.5} {3.16} -0.866 7.0 = 0.34 
-0.5 -1.4 5.24 
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aL = 3.16 MPa 

aT = 0.34 MPa 

rLT = 5.24 MPa 

Strains in the longitudinal and transverse directions may be obtained from 
Eq. (5.10) as follows: 

_ 3.16 X 106 (0.34 X 106) _ _6 
eL - 14 X 109 - 0.1 3.5 X 109 - 216 X 10 

= 0.34 X 10
6 

_ O 4 (3.16 X 10
6
) = 6 9 X 10_6 

eT 3.5 X 109 • 14 X 109 • 

= 5.24 X 106 = 1248 X 10-6 
'YLT 4.2 X 109 

The preceding strains now can be transformed to obtain strains in the x 
and y directions using the inverse of Eq. (5.88) as follows: 

{
ex} [ 0.25 
e> = 0.75 
'Yxy 0.866 

0.75 
0.25 

-0.866 

-0.433]{ 216 X 10-
6

} 
0.433 6.9 X 10-6 

-0.5 1248 X 1 o-6 

ex = -481 X 10-6 

e = 704 X 10-6 
y 

%y = -442 X 10-6 

These strains differ slightly from those calculated in Example 5-2 only 
because of rounding-off errors. 

Example 5-5: If longitudinal and transverse axes of the lamina considered 
in Example 5-3 make a counterclockwise angle of 30° with the reference 
axes, determine Q and S matrices. 
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Substitution of e = 30° in Eqs. (5.87) and (5.89) gives stress- and strain 
transformation matrices as 

[ 

0.750 
[T1] = 0.250 

-0.433 

[ 

0.750 
[T2] = 0.250 

-0.866 

0.250 0.866 ] 
0.750 -0.866 
0.433 0.500 

0.250 0.433 ] 
0.750 -0.433 
0.866 0.500 

Inversion of [T1] and [T2] gives 

[0.750 0.250 -0.866] 
[T1J-I = 0.250 0.750 0.866 

0.433 -0.433 0.500 

r0.750 0.250 -0.433] 
[T2]-1 = 0.250 0.750 0.433 

L 0.866 -0.866 0.500 

From Eq. (5.93), 

Substitution of [Ti]- 1, [Q], and [T2] gives 

Similarly, 

[

89.84 27.68 44.11] 
[Q] = 27.68 20.65 15.81 GPa 

44.11 15.81 30.12 

Substitution of [T2]-
1

, [S], and [T1] gives 

[ 

0.0424 -0.0156 -0.0539] 
[S] = -0.0156 0.0867 -0.0227 GPa- 1 

-0.0539 -0.0227 0.1241 

5.3.10 Invariant Forms of Stiffness and Compliance Matrices 

Design of laminates invariably requires a decision on constituent lamina 
orientations to meet stiffness and strength requirements in different directiom 
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Contribution of a lamina to the laminate stiffness in any direction can be 
obtained through the stiffness transformation equations (5.95). However, that 
form of equations is not very convenient to visualize the consequences of 
changing orientation of a lamina in a laminate. Tsai and Pagano (4) have 
recast transformation equations in m1 invariant form, that makes it easier to 
visualize the effects of changing lamina orientation, and thereby, simplifying 
the laminate design process. The invariant form of Eq. (5.95) is 

where 

Q11 = U1 + U2 cos 28 + U3 cos 48 

Q22 = U1 - U2 cos 28 + U3 cos 48 

Q12 = U4 - U3 cos 48 

Q16 = i U2 sin 28 - U3 sin 48 

Q26 = i U2 sin 28 - U3 sin 48 

Q66 = U5 - U3 cos 48 

u - Qll + Q22 - 2Q12 - 4Q66 
3 - 8 

U = QI! + Q22 + 6Q12 - 4Q66 
4 8 

Qll + Q22 - 2Q12 + 4Q66 
Us= 8 

(5.98) 

(5.99) 

In the above,equations, expressions for Q'1i,"Q22, Q12 and Q66 , are composed 
of an invariant or constant part (Ui, U4 , or U5), that does not change with the 
lamina orientation, 8, and another part that changes with 8. This form of 
expression is useful when examining the consequences of changing lamina 
orientation to achieve a certain stiffness profile. This concept of invariance 
will be more useful in the study of laminates (Chap. 6) because laminates are 
made of a collection of laminae at different orientations to achieve certain. 
mechanical pfoperties. 
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The invariant form of the compliance matrix [Eq. (5.97)) is 

where 

Sil = vi + V2 cos 28 + V3 cos 48 

S22 = V1 - V2 cos 28 + V3 cos 48 

S12 = V4 - V3 cos 48 

S16 = V2 sin 28 + 2V3 sin 48 

S26 = V2 sin 28 - 2V3 sin 48 

S66 = V5 - V3 cos 40 

V = 3S11 + 3S22 + 2S12 + 4S66 

I 8 

Vs= S11 + S22 + 2S12 - S66 
2 
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(5.100) 

(5.101 

Strengths of a material are obtained experimentally by subjecting suitabl, 
specimens to loads that produce simple stress fields in the test specimen ani 
by determining the load at which;failure occurs. For example, ultimate tensil 
and compressive strengths of isotropic Jnaterials are obtained through test 
that produce uniaxial tensile and compressive stresses, respectively, in the te~ 
section of the specimen. 

A design engineer estimates the load-carrying capacity of a structure or 
component through the procedures that involve stress analysis of the structur 
and a comparison of the actual stress field with the strengths of the materia 
When the actual stress field is simple, such as the one produced in the spec 
imens during strength-determination tests, a direct comparison can be mad 
and the load-carrying capacity of the structure obtained. Otherwise, a dire< 
comparison may not be valid. In reality, structures may be subjectt!d to biaxi. 
stress states, and it is impractical to establish the strength characteristics c 
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materials for every possible biaxial stress state. A "failure criterion" or "fail
ure theory," if valid, can predict strength of materials under biaxial stress 
states using strength data obtained from uniaxial tests. For isotropic materials, 
the failure criteria are written in terms of principal stresses and ultimate ten
sile, compressive, and shear strengths. Thus the load-carrying capacity of a 
structure made of an isotropic material can be predicted from knowledge of 
these three strengths. 

In the case of orthotropic materials, the situation is considerably more 
complex. The most important complexity arises from the fact that their 
strengths, like their elastic constants, are direction-dependent. Thus, for an 
orthotropic material, an infinite number of strength values can be obtained 
even through uniaxial tests, depending on the direction of load application. 
For prediction purposes, they can be limited to five strengths in the principal 
material directions. These strengths are the longitudinal tensile strength (aw), 
transverse tensile strength (aru), shear strength ( TLru), longitudinal compres
sive strength (a~u), and .transverse compressive strength (a~u). As a conse
quence of the fact that the basic uniaxial strength values for an orthotropic 
material are known only along the principal material axes, the first step in all 
calculations related to their strengths has to be the transformation of the actual 
stress field to the principal material axes so that a comparison can be made 
with the appropriate strengths. Further, whenever the actual stress field re
ferred to the principal material axes is multiaxial, a direct comparison of the 
actual stress field with the preceding uniaxial strengths may not be valid, and 
a suitable failure criterion must be used. It may be pointed out here that a 
uniaxial stress applied in any direction other than the principal material axes 
produces multiaxial stresses along the principal material axes. Therefore, off
axis uniaxial strengths of orthotropic materials must be predicted, like their 
strengths under complex stress states, through an appropriate failure criterion. 
All the failure criteria for orthotropic materials are, quite obviously, written 
in terms of stresses along principal material axes rather than the principal 
stresses. 

There are a number of theories for predicting the failure of isotropic ma
terials and orthotropic materials subjected to a complex stress state. Nahas 
[5] has presented a useful survey of failure and postfailure theories of 
laminated-fiber-reinforced composites, giving a large number of references. 
Many failure theories for orthotropic materials have been developed from the 
failure theories of isotropic materials. Many failure, theories are not general 
but are applicable only to some specific types of composites. In this section, 
three of the strength theories used widely for fiber composites, based on 
maximum stress, maximum strain, and maximum work, are discussed. 

5.4.1 Maximum-Stress Theory 

This theory states that failure will occur if any of the stresses in the principal 
material axes exceed the corresponding allowable stress. Thus the following 
inequalities must be satisfied to avoid failure: 
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(5.102) 

If the normal stresses are compressive, o-w and urn in Eq. (5.102) must be 
replaced by the allowable compressive stresses: 

(5.103) 

According to this the011, when one of the inequalities indicated by Eqs. 
(5.102) and (5.103) is violated, the material is considered to have failed by a 
failure mode associated with the allowable stress. There is no interaction 
between the modes of failure in this criterion. Thus this is actually not one 
criterion but five subcriteria. 

To illustrate the application of this theory, consider an orthotropic lamina 
subjected to a stress o-x making an angle e with the longitudinal direction. 
The stresses in the principal material direction are obtained by transformation 
as 

(5.104) 

'TLT = -o-x Sin (J COS (J 

Now, from Eq. (5.102), failure will occur if o-x exceeds the smallest of 
(o-wlcos2 0), (o-rn/sin2 O), or (rLTu/sin e cos O). The maximum-stress theory 
is applied to a typical glass-epoxy composite with the following normalized 
material properties: 

Urn = 0.025 
O"LU 

Oiu,·= 1 
0-Lu' 

VLT =;. 0.25 

'TLTU = 0.05 
O"LU 

<T~ = 0.125 
O"LU 

VTL = 0.08 

The same material properties are used for discussing two other strength the
ories. Predictions of the maximum-stress theory are shown in Fig. 5-13. Solid 
lines represent the variation of allowable stress o-x with the orientation e. 
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2.00 

1.00 CJX 

0.50 

0.20 

0.10 

0.05 

0.02 
--- Maximum-stress theory 
•••••••·•• Maximum-strain theory 

0.01 ~---~----~---~ 
0 30 60 90 

e 
Figure 5-13. Off·axis strength predicted by maximum·stress and maximum·strain theories of 
failure. 

Example 5-6: A unidirectional glass-epoxy lamina, shown in Fig. 5-14, 
has the following allowable stresses: 

Oiu = 1062 MPa 

CT~u = 610 MPa 

25MPa 

--t--P 50 MPa 

~

Y. L 

60° 
X 

50MPa 

---50MPa 

Figure 5-14. State of stress on a glass-epoxy lamina for Example 5·6. 
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crrn = 31 MPa 

cr~u = 118 MPa 

1irn = 72 MPa 

Determine if, according to the maximum-stress theory, the lamina will fail 
under the applied stresses. 

The off-axis stresses applied to the lamina are 

{~:} = { }f 5} MPa 
7xy 50 

Since the fibers are oriented at 60° to the x axis, the stress-transformation 
matrix is 

[ 

0.250 
[T1] = 0.750 

-0.433 

Stress transformation gives 

0.750 
0.250 
0.433 

0.866] 
-0.866 
-0.500 

(TT = 0.750 {
(TL} [ 0.250 0.750 

0.250 
0.433 

=-0.866 -25 = -12.05 MPa 
0.866 ]{ 50 } { 37.05 } 

7LT -0.433 -0.500 50 -57.48 

Comparison of allowable stresses. crw, cr~u, and TLTu with the calculated 
stresses crL, crT, and ,.LT shows that, according to the maximum-stress the
ory, the lamina will not fail under the applied stresses. 

5.4.2 Maximum-Strain Theory 

This theory states that failure will occur if any of the strains in the principal 
material axes exceed the corresponding allowable strain. Thus the following 
inequalities must be satisfied for "no failure": 

(5.105) 

'YLT < 'YLTU 

If normal strains are compressive, Ew and Ern in Eq. ( 5 .105) must be replaced 
by the allowable compressive strains: 
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EL< E~u (5.106) 

The maximum-strain theory is similar· to the maximum-stress theory. All 
the stresses are replaced by the corresponding strains first to apply the 
maximum-strain theory. If the material is assumed to be linearly elastic up to 
ultimate failure, the ultimate strains (allowable strains) in Eqs. (5.105) and 
(5.106) can be related directly to the strengths: 

TLTU 
1'LTu = G 

LT 

(5.107) 

Consider an orthotropic lamina subjected to a stress <rx making an angle e 
with the longitudinal direction, as considered earlier to illustrate the maxi
mum-stress theory. The stresses in the principal material directions can be 
obtained by Eq. ( 5 .104 ), and the strains in the principal material direction are 
calculated by using Eq. (5.10): 

_l( 2 ·2) 
EL - E cos e - VLT sm e a:y 

L 

1 ( . 0 ry ) 
ET = E sm- e - VTL cos- () (Yx 

T 

1'LT = -G
1 

(sin e cos O)<r, 
LT 

(5.108) 

Now Eqs. (5.105) and (5.107) predict that failure will occur if <rx exceeds the 
smallest of <rwl(cos2 e - vLT sin2 O), <rru/(sin2 e - vTL cos2 e), or Tuul(sin 
() cos e). Predictions of the maximum-strain theory for the glass-epoxy com
posite considered earlier also have been shown in Fig. 5-13 along with the 
predictions of the maximum-stress theory. Predictions of the two theories are 
quite close to each other. This is so because the material has been assumed 
to be linearly elastic up to ultimate failure. The differences are a result of the 
effect of the Poisson ratio. When the material does not remain linearly elastic 
up to failure, the two theories are completely independent and have to be 
applied separately. In that case, larger differences in their predictions should 
be expected. 
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Example 5-7: The lamina considered in Example 5-6 has the following 
elastic constants: 

EL= 38.6 GPa 

ET= 8.27 GPa 

VLT = 0.26 

GLT = 4.14 GPa 

Determine if, according to the maximum-strain theory, the lamina will fail. 
Assume that the lamina deforms linearly up to failure. 

Lamina strains can be obtained using Eq. (5.10) and the stresses O"L, O"p 

and rLT calculated in Example 5-6: 

37.05 0.26 
8 L = 38.6 X 1Q3 - 38.6 X l03 X (-12.05) = 0.00104 

12.05 ( 0.26 ) O 001 O 
eT = - 8.27 X 103 - 38.6 X 103 X (37.05) = - . 7 

57.48 
'YLT = - 4.14 X 103 = -0.01388 

The lamina allowable strains can be obtained from allowable stresses and 
elastic constants as follows: 

(}"LU 
ew = EL = 0.0275 

e~u = iu = 0.0158 
L 

(T. 

ew = ;; = 0.0037 

a'.. 
e~ = En;= 0.0143 

7 LTU 
'YLTU = -G = 0.0174 

LT 
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Comparison of allowable strains ew, e~u, and 'YLTu with the calculated 
strains eL, en and 'YLT shows that, according to the maximum-strain theory, 
the lamina will not fail. 

5.4.3 Maximum-Work Theory 

This theory states that in plane-stress states the failure initiates when the 
following inequality is violated: 

(5.109) 

When normal stresses are' compressive, the corresponding compressive 
strengths are to be used in Eq. (5.109). 

The theory was derived in this form by Tsai [6] from a yield criterion for 
anisotropic materials proposed by Hill [7]. Therefore, it is sometimes referred 
to as the Tsai-Hill theory. Application of this theory can be illustrated by the 
example used in the previous cases where an off-axis stress <J"_. acts on an 
orthotropic lamina. The stresses in the principal material directions given by 
Eq. (5.104) can be substituted directly into Eq. (5.109) to obtain the failure 
criterion as 

cos2 fJ sin2 fJ sin4 fJ sin2 fJ cos2 fJ 1 --- +--+ <-
<J"[u <J"[u O"itJ T[ ru <J"; 

cos4 e 
(5.110) 

Thus the maximum-work theory provides a single function to predict 
strength. This criterion does take into consideration the interaction between 
strengths, which was not considered in the maximum-stress or maximum
strain theory. Predictions of the maximum-work theory for the glass-epoxy 
composite considered earlier are shown in Fig. 5-15. Also shown in the fig
ure are the predictions of the maximum-stress theory. The maximum-work 
theory predicts slightly lower strength compared with that predicted by the 
maximum-stress theory. The largest differences occur at the points where 
the maximum-stress theory predicts a change in the failure mode, that is, 
from the shear mode to the longitudinal or transverse tensile failure mode. 
The maximum-work theory has found wider acceptability compared with the 
other two theories primarily because of the smooth variation of strength ac
cording to a single equation [Eq. (5.109)]. Experimental support for this the
ory has been reported by many investigators [8-12]. 

The theories discussed in the preceding paragraphs are applicable to cases 
where the state of stress is biaxial. When all three stresses O"x, O"y, and Txy are 
acting at a point, the theories may be applied in a manner similar to the one 
used earlier for a uniaxial off-axis stress. The first step in the application of 
the theories is to transform the stresses O"x, O"y, .and TX). to the stresses <J"L, <J"T, 
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e 
Figure 5-15. Off-axis strength predicted by maximum-work (Tsai-Hill) and maximum-stress 
theories of failure. 

and -rLT in the longitudinal and transverse directions by means of the trans
formation law [Eq. (5.86)]. Now failure may be predicted by comparing au 
aT, and -rLT with the corresponding allowable stresses in the case of the 
maximum~stress theory or by examining the failure criterion [Eq. (5.109)] for 
the maximum-work theory. Thus, for one set of reference axes (xy axes), there 
will be infinite combinations of ax, a", and · -rxv that will cause failure. A 
graphic representation of the failure conditions is quite difficult in this case 
because (1) one graphic representation is valid for only one set of reference 
axes (a new representation is needed for any change in the orientation of 
reference axes), and (2) a two-dimensional representation of the type used 
for isotropic materials is not possible because the direction of principal 
stresses does not, in general, coincide with either the reference axes or the 
longitudinal and transverse directions. Thus, in the case of multiaxial stress 
states, it is best to apply the failure conditions separately for each case. 

Although it is not possible to construct a graphic representation of a failure 
criterion for a general case of biaxial stresses in which all three stresses aL, 

aT, and -rLT are nonzero, it is interesting to consider some specific cases. For 
a case in which -rLT vanishes (i.e., when principal stress directions coincide 
with the longitudinal and transverse directions), the Tsai-Hill criterion can 
be represented on normalized stress axes ad aw and aTI a-Tu· The failure 
envelope in the normalized stress plane will depend on the ratio of strengths 
in the longitudinal and transverse directions (awl am). Failure envelopes for 
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three different values of (er LU/ er TU) are shown in Fig. 5-16. When strengths 
in the longitudinal and transverse directions are equal (er LU/ crTU = 1 ), the 
failure ellipse represents a case of an isotropic material. In the other extreme 
case as the ratio (crLU/ crru) approaches an infinite value (e.g., when the trans
verse strength is negligibly small), the failure envelope becomes a circle. For 
a practical case of an orthotropic material in which the ratio of strengths has 
a value between one and infinity, the failure envelope will be an ellipse lying 
between the ellipse for an isotropic case and the circle. Influence of a nonzero 
shear stress TLr is shown in Fig. 5-17. For a fixed value of crLU/crru), the 
effect of shear stress is to reduce the size of the failure envelope. As the value 
of TLT! TLTu increases, the major and minor axes of the failure ellipse become 
smaller with no change in orientations. 

Example 5-8: Determine if, according to the maximum-work theory, the 
lamina in Example 5-6 will fail under the applied stresses. 

To apply the maximum-work theory, the left-hand side of Eq. (5.109) can 
be evaluated as follows: 

(
37.05)

2 

1062 ( 37.05) (12.05) + (12.05)
2 

+ (57.48)
2 

= O 65 < l 
1062 610 118 72 ,_ . 

Therefore, according to the maximum-work theory, the lamina will not fail 
under the applied stresses. 

5.4.4 Importance of Sign of Shear Stress on Strength of Composites 

A sign convention for stresses that is almost universally accepted is discussed 
in Appendix 2. It can be stated as "on a plane where the outward normal is 
in the positive direction of a coordinate axis, all the stress components acting 
in the positive directions of the axes are positive." According to this conven-

a<JLU = ro (circle) 
TU 

Figure 5-16. Failure envelopes on a normalized stress plane for zero shear stress. 



206 ANALYSIS OF AN ORTHOTROPIC LAMINA 

(J"L 
--1--f--,'--,,H"-l"--I'--- (JLU 

_TLT =O 
TLTU 

TLT =0.5 
TLTU 

TLT = ./5.5 
TLTU 

Figure 5-17. Influence of shear stress on failure envelopes. 

tion, a stress component in the negative direction of a coordinate axis H 

negative when the outward normal to the surface on which it is acting is ir 
the positive direction of the coordinate axis parallel to the normal. Positive 
and negative stress components on a two-dimensional element are shown ir 
Fig. 5-18a and Fig. 5-18b, respectively. This sign convention is in agreemen1 
with the understanding that tensile stress is positive and compressive stress 
is negative. 

It is generally recognized that the tensile and compressive strengths of 
materials are different. It is not generally appreciated, however, that the sheai 
strength of an anisotropic material is dependent on the direction of the shear 
stress, particularly when the reference axes are different from the principal 
material axes. This statement can be illustrated by considering positive and 
negative shear stresses applied to a unidirectionally reinforced lamina. When 
the fibers are aligned parallel to a reference axis (as in Fig. 5-19), there is no 
difference between the stress fields labeled "positive" and "negative" shear 
stress. The two stress fields are mirror images of each other even when the 
principal stresses are examined as in the lower half of Fig. 5-19. Thus the 
shear strength is the same in both cases and is independent of the longitudinal 
and transverse strengths of the lamina. 

O"y 
_Lrxy 

- I 
(a) 

- t 
(b) 

Figure 5-18. Sign conventions for stress components: (a) positive and (b) negative. 
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Positive shear 
stress 

Negative shear 
stress 

Figure 5-19. Stress fields for positive and negative shear stress with fibers aligned parallel to 
reference axis. 

Consider that the lamina now has fibers oriented at 45° to one of the 
reference axes and is subjected to positive and negative shear stresses, as 
shown in Fig. 5-20. In this case, positive and negative shear stresses result in 
normal stresses of opposite signs in the longitudinal and transverse directions. 
For positive shear stress, tensile stresses result in the fiber direction and com
pressive stresses in the transverse direction. For negative shear stress, com
pressive stresses exist in the fiber direction and tensile stresses in the 

Positive shear 
stress 

Negative shear 
stress 

Figure 5-20. Stress fields for positive and negative shear stress with fibers oriented at 45° to 
reference axis. 
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transverse direction. Since the stresses in the fiber direction and perpendicul 
to it are of equal magnitude in both cases, it is reasonable to assume that ti 
shear strength is largely controlled by the transverse strength of the lami1 
(longitudinal strength generally is much greater). Thus, for this 45° lamin 
the apparent shear strength for a negative shearsffesswillbe lower than th 
for a positive shear stress because transverse tensile strength of a larni1 
generally is smaller than the compressive strength. 

Similar arguments can be extended to other fiber orientations. Thus o1 
axis shear strength of a lamina depends not only on the fiber orientation b 
also on the sign of applied shear stress. The following numerical examp 
illustrates the point further. 

Example 5-9: A unidirectional lamina of glass-epoxy composite shO\ 
the following strength properties: 

a-LU = 500 MPa 

o-~u = 350 MPa 

urn= 5 MPa 

o-~u = 75 MPa 

TLTu = 35 MPa 

Estimate off-axis shear strength of the lamina for fiber orientations of 1: 
45° and 60°. Failure may be predicted by using the Tsai-Hill criterion. 

When Txy is the only nonzero stress, the stress in the longitudinal a1 
transverse directions may be obtained as 

o-T = -T,y sin 2fJ 

When the sign of applied shear stress is positive, o-L will be tensile and , 
compressive. In that case, the Tsai-Hill failure criterion may be written 

T;Y sin2 2fJ T_;, sin2 2fJ T_;, sin2 2fJ ,_;, cos2 2fJ 
500 X 500 500 X 350 + 75 X 75 + 35 X 35 

When the sign of applied stress is negative, o-L will be compressive ai 

o-T tensile. In that case, the failure criterion may be written as 



-r;-' sin2 28 
350 X 350 
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-r~ sin2 28 -r;>. sin2 28 -r_;_, cos2 28 -.• + . +~---
500 X 350 5 X 5 35 X 35 

By substituting different values of 8, the following shear strengths are 
obtained: 

e= 

EXERCISE PROBLEMS 

15° 

39.03 
9.71 

45° 

75.36 
5.00 

60° 

54.54 
5.75 

5.1. Derive expressions for E,, v,.r and m, by assuming that a,, is the only 
nonzero stress acting on. the lamina shown in Fig. 5-4. Compare your 
results with Eqs. (5.26), (5.28), and (5.32). 

5.2. Derive expressions for m, and m, by assuming that -rn is the only non
zero stress acting on the lamina shown in Fig. 5-4. Compare your results 
with Eqs. (5.30) and (5.32). 

5.3. Plot the variation of Ex, Gxy• vxy' mx, and m> for a lamina with the 
following properties: 

EL= 35 GPa ET= 3.5 GPa 

GLT = 4 GPa VLT = 0.45 

5.4. Plot the variations of E,,, Gxy• vxy' mx, and my for a balanced lamina with 
the following properties: 

GLT = 2.5 GPa 

5.5. Calculate Ex, Gxy, vxy• mx, and my at 30°, 45°, and 60° for an orthotropic 
lamina having the following properties: 

EL= 14 GPa ET= 3.5 GPa 

GLT = 4.2 GPa 
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5.6. Verify that the elastic constants given in Eq. (5.55) are actually zer 
for a material that has the x 1x2 plane as a plane of symmetry. 

5.7. Verify that the elastic constants given in Eq. (5.58) are actually zer 
for a material that has the XiX3 plane as a plane of symmetry. 

5.8. Obtain the elastic constants that must be zero for a material having x 1J 

plane as a plane of symmetry. Indicate which of these constants ar 
common to Eqs. (5.55) and (5.58). 

5.9. Obtain the stiffness and compliance matrices for a unidirectional Jamin 
that has the following elastic constants: 

EL= 20 GPa ET= 2 GPa 

GLT = 0.7 GPa VLT = 0.35 

5.10. Following are the experimentally observed elastic constants of a boron 
epoxy composite: 

EL= 81.7 GPa ET= 9.1 GPa 

VLT = }.97 VTL = 0.22 

Determine whether the data satisfy the constraints on the elastic cor 
stants of an orthotropic material. Comment on the large value of vr: 
Will it be an admissible number for the Poisson ratio of an isotropi 
material? 

5.11. Show that the inequalities in Eq. (5.83) reduce to -1 < v < 1 fc 
isotropic materials. 

5.12. Show that the inequality in Eq. (5.84) correctly reduces to v < t fc 
isotropic materials. 

5.13. Calculate the Q matrix at 30°, 45° and 60° for a lamina whose Q matri 
is given by 

[

20 0.7 0 ] 
[Q] = 0.7 2 0 

0 0 0.7 

5.14. A tensile specimen of a unidirectional composite with a rectanguh 
cross section of dimensions 12.5 mm x 4 mm has the fibers oriente 
at 45° to a longitudinal edge of the specimen. It is subjected to an axi, 
force of 500 N. · 
(a) Calculate normal strains in the axial and perpendicular direction 

and shear strain on the specimen. Properties of the composite i 
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the longitudinal and transverse directions are the same as those 
given in Exercise Problem 5.5. 

(b) Calculate off-axis modulus, the Poisson ratio, and cross-coupling 
coefficient for this specimen. Compare these values with the ones 
obtained in Exercise Problem 5.5 by direct transformation. 

5.15. Repeat Exericse Problem 5.14 for a fiber orientation of 30°. 

5.16. Longitudinal axis of an orthotropic lamina makes an angle of 45° with 
the x axis. It is subjected to the following stresses: 

ux = 20 MPa 

Uy = 0 

Txy = 20 MPa 

(a) Draw a neat sketch of the lamina indicating x, y, L, and T axes. 
Also show the applied stresses. 

(b) Calculate stresses along longitudinal and transverse directions. 
(c) Does the lamina fail under these stresses? Use the maximum work 

theory to predict failure and take the following strength values for 
the lamina: 

uw = 500 MPa Urn = 10 MPa 

u~u = 350 MPa u~u = 75 MPa 

TLTU = 35 MPa 

(d) Will your answer change if the direction of applied shear stress is 
reversed? 

5.17. Repeat Exercise Problem 5.16 assuming that the angle between the 
longitudinal and x axes is 30°. 

5.18. A graphite-epoxy lamina shows the foHowing strength properties: 

crLU = 1725 MPa Urn = 40 MPa 

cr~u 1350 MPa u~u = 275 MPa 

TLTu = 95 MPa 

Using the maximum-work theory of failure, estimate off-axis 
strength of the lamina for orientations of 30° and 45°. 
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ANALYSIS OF 
LAMINATED CO POSITES 

6.1 INTRODUCTION 

One of the most important advantages of fibrous composites is that their 
anisotropy or properties can be controlled very effectively; that is, desired 
property values in different directions can be obtained easily by altering the 
material and manufacturing variables. For example, in a unidirectional com
posite, the longitudinal-strength (or stiffness) to transverse-strength (or stiff
ness) ratio can be altered by changing the volume fraction of fibers. The 
longitudinal properties of unidirectional composites are controlled by fiber 
properties, whereas the transverse properties are matrix-dominated. In most 
engineering applications, the transverse properties of unidirectional compos
ites are found to be unsatisfactory. This apparent limitation on the use of 
purely unidirectional composites is overcome by forming laminates from the 
unidirectional layers. A laminate is formed from two or more laminae bonded 
together to act as an integral structural element. The laminae principal ma
terial directions are oriented to produce a structural element with the desired 
properties in all directions. A laminate made up of four laminae with different 
fiber orientations is shown in Fig. 6-1. In this chapter, procedures are dis
cussed for laminate analysis from the known properties of the constituent 
laminae. 

6.2 LAMINATE STRAINS 

Laminates are fabricated such that they act as single-layer materials. The bond 
between two laminae in a laminate is assumed to be perfect, that is, infini
tesimally thin and not shear deformable. Thus the laminae cannot slip over 



214 ANALYSIS OF LAMINATED COMPOSITES 

y~' 

z 

~90° 

Figure 6-1. A four-ply laminate. 

each other, and the displacements remain continuous across the bond. In this 
section, equations are developed that relate the strain at any point in a thin 
laminate undergoing deformation to the displacements and curvatures of its 
geometric midplane. Then, recognizing the fact that the laminate consists of 
several laminae with different directional properties, the variations of stress 
across the thickness of the laminate are discussed. Theoretical developments 
presented in this chapter are often referred to as the classical lamination 
theory. 

Consider the deformation of a section of a laminate in the xz plane, as 
shown in Fig. 6-2. Assume that a line ABCD originally straight and perpen
dicular to the midplane of the laminate also remains straight and perpendicular 
to the midplane in the deformed state. This assumption is equivalent to ne
glecting shearing deformations %, and 'Y,, and is also equivalent to assuming 
that the laminae that make up. the cross· section do not slip over each other. 
Further assume that the point B at the geometric midplane undergoes dis
placements u0 , v0, and w0 along x, y, and z directions, respectively. The dis
placement u in the x direction of a point C that is located on the normal 
ABCD at a distance z from the midplane is given by 

u = u0 - za (E.I: 

where a is the slope of the laminate midplane in the x direction, that is, 



y 

z 

Midplane 

X 

Deformed 
section 

u 
U= U0 -ZCI. 
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X 

ZCI. 

Figure 6-2. Deformation of a line element during bending of the laminate in the xz plane. 

By combining Eqs. (6.1) and (6.2), an expression for the displacement u in 
the x direction of an arbitrary point at a distance z from the midplane is 
obtained: 

ow0 u=uo-7-
~ ax (6.3) 

By similar reasoning, the displacement v in the y direction of an arbitrary 
point at a distance z from the geometric midplane is 

awo 
V = Vo - z-

ay 
(6.4) 

The displacement w in the z direction of any point on ABCD is the displace
ment w0 of the midplane plus the stretching of the normal. It is assumed that 
the stretching (or shortening) of the normal (ABCP) is insignificant compared 
with the displacement Wo, and thus the normal displacement of any point in 
the laminate is taken to be equal to the displacement w0 of the ~or.responding 
point at the midplane. Thus the normal strains Ez are neglected. This reduces 
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the laminate strains to Ex, Ey, and i".ty· These strains can be obtained for the 
derived displacements u and v as follows: 

au auo a2wo 
E =-=--z--

x ax ax ax2 

av avo a2wo 
E =-=--7--

y ay ay '" ay2 
(6.5) 

au av c/U0 av0 2 
i'12Wo 

'Y =-+-=-+-- z--
xy ay ax ay ax ax rJy 

The preceding strain-displacement relation can be written in terms of the 
midplane strains and the plate curvatures as follows: 

where the midplane strains are 

and the plate curvatures are 

auo 
ax 
clv0 

ay 
auo avo -+
ay ax 

6.3 VARIATION OF STRESSES IN A LAMINATE 

(6.6) 

(6.T 

(6.8 

Strains at any point in a laminate can be calculated, using Eq. 6.6, fror 
midplane strains (E~, E~, and r~,,), plate curvatures (kx, ky, and kxz), and i1 
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distance from the midplane. Strains vary linearly across the thickness even 
though the laminate is composed of laminae with different directional prop
erties. This linear strain variation is a result of the assumption that the adjacent 
laminae do not slip over each other. A linear strain variation will produce a 
linear stress variation for a material with identical elastic properties across 
the thickness. However, in a laminate, laminae usually have different ela'>tic 
properties because of different fiber orientations. Therefore, while the stress 
variation across a single lamina thickness will be linear, stress variation across 
the total laminate thickness will be composed of several linear segments. 
Stresses at any point in a lamina (say, k) can be obtained by substituting Eq. 
(6.6) in the stress-strain relation [Eq. (5.94)] for the lamina as follows: 

(6.9) 

or 

Since the lamina stiffness matrix [Q] is a constant for each lamina, Eq. 
(6.9) gives a straight-line stress variation across lamina thickness. Combina
tion of these straight-line variations for all the laminae gives the stress vari
ation for the entire laminate. In general, the stress variation across the 
laminate thickness, is not a single straight line, like the strain variation, but 
is composed of several line segments with one line for each lamina. Whenever 
adjacent laminae have different stiffnesses, there is a stress discontinuity or 
jump in the stress value across the laminae interface, and the stress gradients 
in the two laminae (represented by the slopes of the line segments) are also 
different. Stress and strain variations in an imaginary three-ply laminate are 
shown in Fig. 6-3. 

Laminate Variation 
of strain 

Characteristic Variation 
modulus of stress 

Figure 6-3. Variations of strain and stress in a hypothetical three-ply laminate. 
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6.4 RESULTANT FORCES AND MOMENTS: SYNTHESIS OF 
STIFFNESS MATRIX 

The stresses in a laminate vary from layer to layer. Hence it is convenient to 
deal with a simpler but equivalent system of forces and moments acting on 
a laminate cross section. Therefore, the resultant forces and moments acting 
on a laminate cross section are defined as follows. Resultant force is obtained 
by integrating the corresponding stress through the laminate thickness h: 

f
h/2 

Nx = (TX dz 
-h/2 

f
h/2 

Nv = a-Y dz 
" -h/2 

(6.10) 

Similarly, the resultant moment is obtained by integration through the thick
ness of the corresponding stress times the moment arm with respect to the 
midplane: 

(6.11) 

J
h/2 

Mxy = T~.,,z dz 
-h/2 -

In the preceding equations, Nx, Ny, and Nxy have the units of force per unit 
length (e.g., width of the beam), and M,, My, and M,y have the units of 
moment per unit length. The positive sense of the resultant forces and mo
ments are consistent with the sign convention for stresses, as shown in Fig. 
6-4. Together the six force and moment resultants form a system that is stat
ically equivalent to the stress system on the laminate but that is applied at 
the geometric midplane. By defining these six forces and moments, the load
ing has been reduced to a system that does not contain the laminate thickness 
or z coordinate explicitly. 

Consider a laminate consisting of n orthotropic laminae, as shown in Fig. 
6-5. The force-moment system acting at the midplane of this laminate can 
be obtained by replacing the continuous integral in Eqs. (6.10) and (6.11) 
with the summation of integrals representing the contribution of each layer 
as follows: 
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(b) 

Figure 6-4. Sign convention for resultant forces and moments (all forces and moments shown 
are positive). 

{
Nx} = Jh/2 {(T'} = n Jh' {(T'} 7 Nv crv dz 2: cry d~ 
N. -h/2 . k=I hk-1 

X)' ~,·y 7:t)' k 

(6.12) 

and 

{
Mx}- fh/2 {(T"} _ n l"k {(Tx}- _ My - cry z dz - 2: er_. "' d,:, 
M -h/2 k=I hk-1 

xy TX)' r,y k 

(6.13) 

The stresses in Eqs. (6.12) and (6.13) can be written in terms of midplane 
strains and plate curvatures from Eq. (6.9), and thus the resultant forces and 

Lamina 
number 

2 

Midplane 
h, ho 

h2 

__ l ___ ~--+--,-............... _.___,__.,.. 

k 
hn-1 hn 

n 

z 
Figure 6-5. Description of a multilayered laminate geometry. 

X 
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moments can be related directly to the midplane strains and plate curvatures. 
Substitution of Eq. (6.9) in Eqs. (6.12) and (6.13) gives 

(6.14) 

(6.15) 

Evaluation of Eqs. (6.14) and (6.15) can be simplified by noting that the 
midplane strains and plate curvatures remain constant not only within a lam
ina but also for all the laminae and hence can be taken outside the summation 
sign. Second, the stiffness matrix [Q] remains constant within a lamina and 
hence can be taken outside the integration sign. Thus Eqs. (6.14) and (6.15) 
become 

(6.16) 

(6.17) 
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By introducing definitions of three new matrices, Eqs. (6.16) and (6.17) can 
be rewritten in a relatively simple form as follows: 

t} [A" A12 A"]{'~} [B" B12 B"]t} N,, = A12 A22 A26 Ee + B12 B22 B26 k, 
Ney A16 A26 A66 Y~y B16 B26 B66 k~> 

(6.18) 

t}-[B" B12 B"Jr} [D" D12 D"]t} My B12 B22 B26 E~ + D12 D22 D26 k, 
Mry B16 B26 B66 Y~, D16 D26 D66 kxy 

(6.19) 

where 

11 

Au = L (Qu)/hk - hk-1) 
k=l 

11 

Bij = 1 L (QijMht - hi-1) (6.20) 
k=I 

II 

Du=+ L (QuMhl - hk-1) 
k=l 

Combining Eqs. (6.18) and ( 6.19), the total plate constitutive equation can be 
written as follows: 

{N.} = r ~i~J{~~}-
M LB:D k 

(6.21) 

In Eqs. (6.18)-(6.21), the matrices A, B, and D are called the extensional 
stiffness matrix,, coupling stiffness matrix, and bending st(ffness matrix, re
spectively. The extensional stiffness matrix relates the resultant forces to the 
midplane strains, and the bending stiffness matrix relates the resultant mo
ments to the plate curvatures. 

The presence of the coupling matrix [B] in the plate constitutive equation 
implies coupling between bending and extension of a laminated plate. That 
is, normal and shear forces acting at the midplane of the plate result in not 
only the in-plane deformations, leading to the midplane strains, but also twist
ing and bending, producing plate curvatures. Similarly, bending and twisting 
moments are accompanied by midplane strains. Thus stretching a laminate 
that has nonzero B ij terms will produce bending and/ or twisting of the lam
inate in addition to the extensional and shear deformation. 

Example 6-1: Consider a two-ply laminate with the ply orientations of 0° 
and 45° with the laminate axes as shown in Fig. 6-6. The bottom lamina 
is a 0° layer with a thickness of 5 mm, whereas the 45° top lamina is 3 
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• 
Figure 6-6. Two-ply laminate for Example 6-1. 

mm thick. Evaluate A, B, and D matrices for the laminate if both the 
laminae have identical stiffness matrix Q as follows: 

[

20 0.7 0 ] 
[Q] = 0.7 2.0 0 GPa 

0 0 0.7 

It may be pointed out that the units of the elements in the Q matrix are 
the same as the units of stress (e.g., gigapascals, as indicated in this ex
ample). The units of elements in the A matrix are those of stress times 
length; they are stress times length squared in the B matrix and stress times 
length cubed in the D matrix. In the examples considered here, laminae 
thicknesses are given in millimeters. Therefore, the units of the elements 
in the A, B, and D matrices will be GPa·mm, GPa·mm2

, and GPa·mm3
, 

respectively. These units are not being indicated in Examples 6-1-6-5 be
cause these examples are used only to illustrate calculations that are not 
affected by the units. However, when laminate stresses and strain_s are to 
be calculated ( as in Example 6-7), consistent units must be used. 

Evaluation of matrices A, B, and D requires finding the Q matrices for 
the two layers. For the 0° lamina the Q and Q matrices are the same; that 
is, 

[

20 0.7 0 J 
[QJ0° = [Q]o0 = 0.7 2.0 0 

0 0 0.7 

The Qij terms for the 45° lamina are found by using the transformation 
[Eq. (5.61)]: 
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Q11 = 20(cos 45)4 + 2(sin 45)4 + 2(0.7 + 2 x 0.7)(sin 45)2(cos 45)2 

= 6.55 

Q22 = 20(sin 45)4 + 2(cos 45)4 + 2(0.7 + 2 x 0.7)(sin 45)2(cos 45)2 

= 6.55 

Q12 = ( ~)'\(20 + 2 - 4 X 0.7) + 2 X 0.7] = 5.15 

Q66 = ( ~) \20 + 2 - 2 X 0.7 - 2 X 0.7) + 2 X 0.7] = 5.15 

Q16 = ( ~) \(20 - 0.7 - 2 X 0.7) - (2 - 0.7 - 2 X 0.7)] = 4.50 

Q26 = ( ~) °\(20 - 0.7 - 2 X 0.7) - (2 - 0.7 - 2 X 0.7)] = 4.50 

Therefore, 

[

6.55 5.15 4.50] 
[QL5° = 5.15 6.55 4.50 

4.50 4.50 5.15 

Now the basic terms in Eq. (6.20) are known (h0 = -4.0, h 1 = -1.0, 
and h2 = 4.0, as shown in Fig. 6-6). Thus the terms of the laminate stiffness 
matrices A, B, and D can be calculated as follows: 

n 

Aij = I (QuMhk - hk-1) = (Qij),w[(-1) - (-4)] + (Qij)oc[4 - (-1)] 
k=I 

or 

Thus 
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[ A,, 
A12 

A16 

IB11 l B 12 

B16 

Thus 

A12 A"] [655 5.15 4.50] [20 0.7 
A22 A 26 = 3 5.15 6.55 4.50 + 5 0.7 2.0 
A26 A 66 4.50 4.50 5.15 0 0 

[l 19.65 18.95 13.50] 
[A] = 18.95 29.65 13.50 

13.50 13.50 18.95 

n 

Bij = t L (Qu)ihf - hf_ 1) = t(Qu)45°[( -1 )2 - ( -4)2] 

B12 
B22 
B26 

k=l 

+ t(Qu)(r[(4)2 
- (-1)2] 

= 7.5[ -(Q;}4s' + (Qij)o0 ] 

B"] [[20 0.7 0 J [6.55 B26 = 7.5 0.7 2.0 0 - 5.15 
B66 0 0 0.7 4.50 

[ 100.9 -33.4 ~33.75] 
[B] = -33.4 -34.1 -33.75 

-33.75 -33.75 -33.40 

n 

5.15 
6.55 
4.50 

Du = 1° I (QijMhf - hl-1) = t(Qu)45°[(-1)3 
- (-4)3

] 
k=l 

+ t(Q)o0 [(4)3 
- (-1)3] 

= 2l(Qij)45" + 21.67(Qu)oc 

L] 

4.50]] 4.50 
5.15 

D 16] [6.55 5.15 4.50] [20 0.7 0 
D 26 = 21 5.15 6.55 4.50 + 21.67 0.7 2.0 0 
D66 4.50 4.50 5.15 0 0 0.7 

[

571 
[D] = 123 

94.5 

123 
181 
94.5 

94.5] 
94.5 

123 

Combining the preceding results, the total set of constitutive equatio1 
for this particular two-ply laminate can be written as 
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' 
N, 119.6 18.9 13.5 ' 100.9-33.4-33.8 €~ ' ' 
N, 18.9 29.6 13.5 ' -33.4-34.1 -33.8 e? ' ' ' 

N_~y 13.5 13.5 18.9 ' - 33.8 - 33.8 - 33.4 b 
' 1'xy ' ' -------------------------,-------------------------

MX 100.9 - 33.4 - 33.8 571 123 94.5 kx 
M_, - 33.4 - 34. l - 33.8 123 181 94.5 ky 
Mx.v - 33.8 - 33.8 - 33.4 94.5 94.5 123 kxy 

None of the elements of the A, B, and D matrices is zero for the laminate 
considered in this example. Such laminates are the most general laminates. 

6.5 LAMINATE DESCRIPTION SYSTEM 

Laminate prope1ties and characteristics are influenced directly by the laminate 
makeup. It is therefore necessary to adopt a laminate description system that 
will provide a positive identification of the laminate makeup. A positive iden
tification of a laminate requires the following: 

1. Orientation of each lamina relative to a reference axis (the x axis in this 
text) 

2. Number of laminae at each orientation 
3. The exact geometric sequence of laminae 

A laminate orientation code that provides a positive and concise identification 
of the laminates is described in Appendix 3. Basic features of the code are 
discussed here. 

In the standard laminate code, it is assumed that all laminae are identical 
in thickness and properties. Following are the elements of the code: 

1. Each lamina is denoted by a number representing the angle in degrees 
between its fiber direction and the x axis. 

2. Individual adjacent laminae are separated in the code by a slash if their 
angles are different. 

3. The laminae are listed in sequence from one laminate face to the other, 
starting with the first lamina laid up, with brackets indicating the be
ginning and end of the code. 

4. Adjacent laminae of the same orientation are denoted by a numerical 
subscript. 

5. The laminate possessing symmetry of laminae orientations about the 
geometric midplane requires specifying only one-half the laminate 
stacking sequence. A subscripts to the code signifies that only one-half 
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of the laminate is described, with the other half being symmetric aboul 
the midplane. The following two examples illustrate use of the code: 

Laminate Code 

45° 

45° 

90° [45/0/45/902/30] 

90° 

30° 

90° 

45° 

45° 

90° 

A more detailed description of the laminate orientation code is given in 
Appendix 3. 

6.6 CONSTRUCTION AND PROPERTIES OF LAMINATES 

As explained in an earlier section, a nonzero coupling matrix [B] implies 
coupling between bending and extension of the laminate. That is, in-plane 
normal and shear forces produce plate curvatures (bending and twisting) in 
addition to the in-plane deformations., Similarly, bending and twisting mo
ments produce midplane strains in addition to the plate curvatures. A typical 
coupling can be illustrated by considering deformation of a two-ply laminate 
with the plies oriented at + e and - e angles. When such a laminate is sub
jected to an axial force, with the ends free to rotate, it will exhibit twisting, 
as shown schematically in Fig. 6-7. Ashton et al. [l] demonstrated this cou
pling experimentally through a specimen fabricated with two layers of nylon
fabric-reinforced rubber. 
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Figure 6-7. Twisting of an asymmetric (± 8) laminate by an in-plane axial force: schematic 
representation. 

The coupling between the extension and bending of the laminate, as evident 
mathematically by the presence of a nonzero [B] matrix, is not attributable to 
the orthotropy or anisotropy of the layers but rather to the nonsymmetric 
stacking of laminae. In fact, this coupling exists for a laminate made of layers 
of isotropic materials with different elastic moduli. Bimetallic strips are used 
as temperature-controlling devices because they exhibit this behavior. A bi
metallic strip subjected to a temperature change causes its bending owing to 
unequal thermal strains in the two materials (see Exercise Problem 6.1 at the 
end of this chapter). 

Couplings such as the ones just discussed usually are undesirable because 
they may induce unwanted plate curvatures owing to temperature changes and 
produce unwanted assembly stresses. Therefore, laminates often are con
structed such that some of the couplings are minimized qr eliminated. Con
struction and properties of important classes of laminates are discussed in this 
section. These special laminate constructlons reduce many critical elements 
of the stiffness matrix to zero, which usually simplifies calculations in the 
laminate analysis. 

6.6.1 Symmetric Laminates 

Equations (6.18) and (6.19) show that the bending-stretching coupling occurs 
owing to a nonzero coupling stiffness matrix [B]. This coupling can be elim
inated if the laminate construction' reduces each element of the [B] matrix to 
zero .. To that end, consider the composition of the B;i terms inEq. (6.20). The 
contribution of a lamina to a particular term of the B matrix is given by the 
product of the corresponding term in the Q matrix and the difference of the 
squares of z coordinates of the top and bottom of each ply. The contribution 
of a lamina above the geometric midplane can be nullified by placing an 
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identical (in properties and orientation) lamina an equal distance below th 
midplane. Thus the matrix [B] is identically zero for laminates in which fc 
each ply above the midplane there is an identical ply placed an equal distanc 
below the midplane. The laminates, which are constructed by placing th 
laminae symmetrically with respect to the midplane, are called symmetri 
laminates and represent an important class of laminates. For symmetric larr 
inates, since the [B] matrix is zero, the constitutive equations [Eqs. (6.18) an 
(6.19)] simplify to the following uncoupled equations: 

t'} [A" A12 A"](} NY = A 12 A22 A26 e~ 
Nxy A16 A26 A66 'Y~y 

(6.2: 

r}-[D" D12 D"]t} My D 12 D22 D26 ky 
M,,y D16 D26 D66 kxy 

(6.2'. 

Symmetric laminates are commonly constructed because the bending 
stretching coupling is eliminated, which in nonsymmetric laminates causi 
an undesirable warping owing to in-plane loads. Also, temperature change 
will cause warping, and thus, in the fabrication of a laminate at an elevatt 
temperature, warpage will result when the laminate is cooled to room ten 
perature. This effect is discussed in greater detail in the section on therm 
stresses. 

6.6.2 Unidirectional, Cross-Ply, and Angle-Ply Laminates 

Another possibility is the fabrication of a laminate that behaves· as an orth 
tropic layer with re.speGt to in-plane forces and strains, that is, a laminate 
which there is no coupling between the normal stresses (or forces) and she 
strain. This is possible when A 16 = A 26 = 0. The contribution of a lamina 
a_particular term of the A matrix is given by the corresponding term \in t 
[Q] matrix times the lamina thickness. Thus the contribution of one lami 
to a term Aij can be nullified by another lamina of the same thickness t 
whose corre~onding Qij term is opposite in sign to the Qij term of the fl 
lamina. The Qij terms are obtained from the Qij terms using the transforma.!i 
~uations [E~ (5.95)]. It is apparent from these eqUi:ltions that the Q 
Q22; Qn, and Q66, are always positive in sign and greater than zero in m2 
nitude. Consequent!Y, A 11 , ,iw A12, arid A66 cannot be made equal to ze1 
On the other hand, Q16 and Q26, are zero for orientations of 0~ or 90° and c 
be positive or negative for intermediate orientations. Since Q16 and Q26 i 

odd functions of fJ, for equal positive and negative orientations they are eq1 
in magnitude but opposite in sign. Therefore, the terms A 16 and A26 can 
made equal to zero if for every lamina oriented at a positive angle e in 1 
laminate there exists another lamina of equal thickness and the same ortl 
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tropic properties but oriented at the equal negative angle e. Relative positions 
of the two laminae are immaterial. Hence it is possible to design a laminate 
that will be symmetric (the coupling matrix [B] identically zero) and at the 
same time specially orthotropic with respect to in-plane forces and strains 
(A 16 = A26 = 0). Three different types of orthotropic laminates can be con
structed. These are (1) unidirectional laminate with all the laminae oriented 
in the same direction, (2) cross-ply laminate with laminae oriented at 0° or 
90° only, and (3) angle-ply laminate with equal number of laminae oriented 
at ± e angle. All these laminae can be symmetric also. 

The simplification of the bending matrix [D] also can be considered. The 
contribution of a lamina to a particular term of the [DJ matrix is given by the 
product of the corresponding term in the [Q] matrix and the difference of the 
cubes of the z coordinates of the top and the bottom of the lamina. Since the 
geometric contribution (h? - hf_ 1) is always positive, it follows from the pre
ceding discussion tha1:_P11 , Dw D12, and D66 are always positive. On the. other 
hand, since Q16 and Q26 are odd functions of e, D 16 and D26 can be made 
equal to zero if all the laminae are oriented at 0° or 90° or if for every lamina 
oriented at a positive angle e above the midplane there exists an identical 
lamina placed at an equal distance below the midplane but oriented at a 
negative angle e. However, laminates of the latter type then will not possess 
midplane symmetry, and Bij ::fo 0. Thus D 16 and D26 are not zero for any 
midplane symmetric laminate except for a cross-ply laminate where all the 
laminae are oriented at 0° or 90°. However, if the laminate is constructed by 
stacking alternate laminae at equal positive and negative angles, the D16 and 
D26 terms do become small, particularly if the number of laminae is large. 
This is so because the contribution of the + e laminae is opposite in sign to 
the contribution of the - e laminae, and hence they partially cancel each other 
even though they are located at different distances from the midplane. 

6.6.3 Quasi-isotropic Laminates 

A laminate construction of considerable practical importance is called quasi
isotropic. In a quasi-isotropic laminate, the extensional stiffness matrix [A] is 
isotropic; that is, it has elastic coefficients that are independent of orientation 
in the plane. This will require that there. be only two independent elastic 
constants, like those in the stiffness matrix of an isotropic material. Exten
sional stiffness matrix [A] for an isotropic plate is as follows: 

Et vEt 
0 

1 - v2 1 - v2 

[A]= 
vEt Et 

0 (6.24) ---
1 - vz· 1 - v2 

0 0 
Et 

2(1 + v) 
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where E is the elastic modulus of the material, v is the Poisson ratio, and 
is the plate thickness. It may be noted from Eq. (6.24) that for the isotrop 
plates, 

A11 = A22 

A11 - A12 = 2A66 

A16 = A26 = 0 

(6.2: 

Therefore, the [A] matrix for a quasi-isotropic material also should satisfy Ee 
(6.25). It can be shown that a laminate constructed by meeting the followin 
conditions will be quasi-isotropic: 

1. The total number of layers must be three or more. 
2. The individual layers must have identical stiffness matrices [Q] an 

thicknesses. 
3. The layers must be oriented at equal angles. For example, if the tot: 

number of layers is n, the angle between two adjacent layers should t 
TTln. If a laminate is constructed from identical sets of three or mo1 
layers each, the condition on ·orientation must be satisfied by the laye1 
in each set. 

Since a laminate constructed according to the preceding design is isotrop 
with regard to extensional stiffness matrix [A] and not, in general, with regai 
to coupling and bending stiffness matrices ([B] and [D]), this design is calle 
quasi-isotropic. 

The concept of a quasi-isotropic laminate is very helpful in predicting tJ:
properties of randomly oriented short-fiber composites, as discussed in Chai 
4. A randomly oriented short-fiber composite may be modeled as a lamina1 
having an infinite number of plies with continuously varying orientations. l 
practice, the properties are calculated from a quasi-isotropic laminate cm 
sisting of three or four plies only. It is left to the reader to show that [C 
±60] and [0/ ±45/90] laminates are quasi-isotropic (the modulus an 
strength of randomly oriented short-fiber cbmposites can be analyzed usin 
these types of laminates). 

The reader is advised to attempt relevant exercise problems at the end < 

this chapter to further appreciate properties of quasiisotrQpic laminates. 

Example 6-2: Consider a three-ply laminate as shown in Fig. 6-8. The tc 
and bottom layers are each 3 mm thick and oriented at 45° to the lamina 
reference axis, whereas the 6-mm-thick middle layer is oriented at 0°. Ol 
tain the A, B, and D matrices if each lamina has the same properties 1 

the lamina considered in Example 6-1. 
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• 
Figure 6-8. Three-ply laminate for Example 6-2. 

Stiffness matrices for each lamina are 

[

20 
[Q]i = g.7 0.7 0 ] 

2.0 0 
0 0.7 

[

6.55 5.15 4.50] 
[Q]l = [Qh = 5.15 6.55 4.50 

4.50 4.50 5.15 

For the laminate under consideration. h0 = -6, h1 = - 3, h2 = 3, and h3 

= 6, as shown in Fig. 6-8. Therefore, 

3 

A;j = L (QijMhk - hk-1) = (Qij)i(3) + (Qij)i(6) + (QijM3) 
k=I 

= (Q;)1(6)* + (Qijh(6) 

= [(Qij)l + (Qijh](6) 

Substitution of the values of (Qu) 1 and (Quh will give 

[

159.3 35.1 27.0] 
[A] = 35.1 51.3 27.0 

27.0 27.0 35.1 

3 

2Bij = L (Q;j)ihi - h~-1) 
k=I 

= (Q;)1[(-3)2 - (-6)2] + (Q;)i((3)2 - (~3)2] + CQuMC6)2 - (3)2] 
- -

= [(Qijh - (Qij)1J(27) 
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3 

Dij = t L (QijMhf - hf-1) 
k=I 

= t(Qij)i[(-3)3 - (-6)3] + t(Qij\[(3)3 - (-3)3] 
+ t(Q)3[(6)3 

- (3)3] 

= 126(Q)1 + l 8(Qij)z 

Substitution of values of (Qij) 1 and (Qij)2 will give 

[

1185.3 661.5 567.0] 
[D] = 661.5 861.3 567.0 

567.0 567.0 661.5 

This three-ply laminate does not exhibit bending-stretching coupling be 
cause of the midplane symmetry of the laminate but does exhibit both in 
plane and bending anisotropy because the A 16, A26, D 16, and D26 terms ar 
all nonzero. 

Example 6-3: Consider a four-ply laminate [ ±45]s. Each layer is assume 
to have a thickness of 3 mm and the same orthotropic properties as i 
Example 6-1. 

In this laminate, the stiffness matrices are as follows: 

Thus 

[

6.55 5.15 4.50] 
[Q]l = [Q]4 = 5.15 6.55 4.50 

4.50 4.50 5.15 

[ 

6.55 5.15 -4.50] 
[Q]2 = [Qh = 5.15 6.55 -4.50 

-4.50 -4.50 5.15 

Aij = 3[(Qij)1 + (Qij)z + (Qij)3 + (Qij)4] 

= 6[(Qij)l + (Qij)z] 
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[

78.6 .61.8 0 J 
[A] = 61.8 78.6 0 

0 0 61.8 

Since the laminate possess midplane symmetry, Bij = 0. 

Dij = t{(Qy)1[(-3)3 - (-6)3] + (Qijh[(0)3 - (-3)3] 
+ (QijM(3)3 - (0)3J + (QijM(6)3 - (3)3] l 

= 126(Q)1 + 18(Qij)2 

Substitution of (Qu)1 and (Q;)2 gives 

[

943.2 741.6 486.0] 
[D] = 741.6 943.2 486.0 

486.0 486.0 741.6 

Owing to symmetry, this laminate does not show bending-stretching cou
pling (Bij = 0). Further, since A16 = A26 = 0, it is also free from nor.ma! 
stress-shear strain coupling. 

Example 6-4: The effect of alternating-angle lamination can be illustrated 
by considering the following eight-ply laminates, with each lamina having 
a thickness of 3 mm and the properties the same as considered in Example 
6-1: (a) all laminae at +45, (b) [(45)2/(-45\]s, (c) [(±45)2]s, and (d) 
[± +45]s. 

(a) This laminate is equivalent to a single lamina of thickness 24 mm. The 
stiffness matrices can be easily found to be 

[

157.2 123.6 108.0] 
A = 123.6 157.2 108.0 

108.0 108.0 123.6 

B,1 = 0 

Dij = t(Qy)[(12)3 - E-12)3) = 1152(Qij) 

[

7.55 5.93 5.18] 
[D] = 103 5.93 7.55 5.18 

5.18 5.18 5.93 

D16 = 0.686 
D11 
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(b) The terms A 11 , Aw A 12, and A66 are the same as calculated in case (a; 
anct A 16 and A26 are zero. Thus 

[

157.2 
[A] = 12~.6 

123.6 
157.2 

0 

Calculation of the Dij terms is simplified by noting that because of th, 
symmetry of orientations, the contribution of layers above the mid 
plane is equal J_o the co_g_tributio'!_ of the layers below the midplane 
Further, since Q11 , Q22, Q12, and Q66 are the same for all layers, D 11 

Dw D 12, and D66 remain the same as in case (a). Now 

D 16 = D26 = 2 X t{(4.50)[(12)3 - (6)3] - (4.50)[(6)3 - (0)3]} 

= 3.89 .X 103 

[

7.55 
[D] = 103 5.93 

3.89 

D 16 = 0.515 
D11 

~:~; ~:~~] 
3.89 5.93 

(c) In this case, the [A] and [BJ matrices and the D 11 , Dw D12, and D6t 

terms of the [DJ matrix remain the same as in case (b). Now, D16 and 
D26 are calculated as follows: 

Thus 

D 16 = D 26 = 2 X t((4.5)(123 
- 93) - (4.5)(93 

- 63
) 

+ (4.5)(63 - 33) - (4.5)(33 - 03)J 

= 1.94 X 103 

[

7.55 5.93 
[D] = 103 X 5.93 7.55 

1.94 1.94 

D 16 = 0.257 
D11 

1.94] 1.94 
5.93 
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(d) In this case, D 16 and D26 are also the only terms affected by changing 
the stacking sequence and can be calculated as follows: 

D16 = D26 = 2 X t((4.5)(123 - 93) - (4.5)(93 - 33
) + (4.5)(33 

- 03)] 

= 0.97 X 103 

Thus 

[

7.55 5.93 
[DJ = 103 5.93 7.55 

0.97 0.97 

D 16 = 0.129 
D11 

0.97] 
0.97 
5.93 

This simple example has demonstrated the effect of stacking sequence on 
the [A], [B], and [D] matrices. Stacking sequence has no effect on the [A] 
matrix. If all laminae are oriented at equal positive and negative angles, the 
D11 , Dw D 12, and D66 terms of the [D] matrix also remain unaffected by 
stacking sequence. Stacking sequence has no effect on the [B] matrix as long 
as· the symmetry about the mid plane is maintained. However, if the number 
of laminae forming the laminate is large, it is possible, by selection of the 
proper stacking sequence, to minimize the D16 and D26 terms of the [D] matrix 
without disturbing the laminate symmetry. 

Example 6-5: Using an analysis for a quasi-isotropic laminate [0/ ±45/ 
90] made up of the composite considered in Example 4-1, predict elastic 
modulus, shear modulus, and Poisson's ratio for a randomly oriented fiber 
composite. Compare results with those obtained .earlier. 

The following moduli values were obtained in Example 4-1: 

EL = 16.26 GPa 

Er= 4.53 GPa 

Shear modulus for the aligned-fibers composite can be calculated using 
Halpin-Tsai equation [Eq. (3.53)]. For this purpose, we may assume the 
Poisson ratios of glass fibers and nylon m.atrix as 0.2 and 0.35, respectively, 
so that their shear moduli may be obtai~d as follows: 
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72.4 
Gr = 2(1 + 0.2) = 30.17 GPa 

2.76 
Gm = 2(1 + 0.35) = 1.02 GPa 

From Eq. (3.54), 

= (30.17 I 1.02) - 1 = O 
935 71 (30.17 / l.02) + 1 . 

From Eq. (3.53), 

( 
1 + 0.935 X 0.2) 

GLT = 1.02 1 _ 0.935 x 0.2 = 1.49 GPa 

Poisson's ratio vLT may be obtained from the rule of mixtures [Eq. (3.59)]: 

VLT = 0.8 X 0.35 + 0.2 X 0.2 = 0.32 

Minor Poisson's ratio vTL is obtained through Eq. (3.60): 

VTL = 0.32(4.53/16.26) = 0.089 

Now the stiffness matrix of the laminae•may be obtained from Eq. (5.78): 

16.26 
Qll = 1 - 0.32 X 0.089 = 16--:-14-GPa 

4.53 
Q22 = 1 - 0.32 X 0.089 = 4·66 GPa 

0.32 X 4.53 
Q12 = l - 0.32 X 0.089 = I .49 GPa 

Q66 = 1.49 GPa 
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1.49 0 J 
4.66 0 
0 1.49 

1.49 0 J 
16.74 0 
0 1.49 

Transformation equations [Eq. (5.61)] give 

[

7.585 4.605 3.02 J 
[Qij]450 = 4.605 7 .585 3.02 

3.02 3.02 4.605 

[ 

7.585 4.605 -3.02 J 
[Qij]-450 = 4.605 7.585 -3.02 

-3.02 -3.02 4.605 

Assuming unit thickness of the laminate, the [A] matrix is obtained as 
follows: 

[

0.1425 3.0475 0 J 
[A] = 3.04751 9.1425 0 

0 0 3.0475 

Using the results of Exercise 6-7, the following elastic constants can be 
obtained easily: 

E 
= 9.14252 

- 3.04752 
= 8 13 GP 

R 9.1425 • a 

GR = 3.0475 GPa 

3.0475 
VR = 9.1425 = 0.33 

The values of ER and GR obtained here compare well with those obtained 
in Example 4-1, but the value of vR is lower than that obtained earlier. 
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6.7 DETERMINATION OF LAMINAE STRESSES AND STRAINS 

The aim of the analysis of laminated composites is to detennine the stresses 
and strains in each of the laminae forming the laminate. These stresses and 
strains can be used to predict the load at which failure initiates, that is, the 
load at which the first lamina fails. A step-by-step analysis will be needed to 
predict the loads at which the subsequent laminae will fail. This procedure is 
discussed in Sec. 6.8. In this section only the method of determining the 
laminae stresses and strains for known loads and a given stacking sequence 
in a laminate is discussed. 

The strains in a lamina caused by external loading are functions of the 
laminate midplane strains, plate curvatures, and distance from the geometric 
midplane of the laminate. Equation (6.6) gives the relations among these 
quantities. The lamina stresses can be determined from either the calculated 
lamina strains using stress-strain relations of Eq. (5.94) or directly from the 
midplane strains and curvatures using Eq. (6.9). Thus the first step in deter
mining the stress and strain is to calculate the midplane strains and curvatures. 

Relations between the applied loads and the midplane strains and plate 
curvatures are provided by Eqs. (6.18) and (6.19). The two matrix equations 
represent six simultaneous algebraic equations involving six unknowns that 
are three midplane strains and three plate curvatures. These equations can be 
solved for the unknowns. For a general laminate in which the coupling matrix 
[B] is also nonzero. the solution of these equations requires inverting a 6 x 
6 matrix of Eq. (6.21). However, this inversion can be carried out in steps, 
and complete inversion can be subdivided into the inversion of smaller ma
trices and matrix multiplications. Under certain loading conditions, it will be 
found quite satisfactory to use the intermediate equations with partially in
verted matrices for the purpose of calculation. In the following paragraphs, 
the strains and curvatures are derived as explicit functions of applied loads, 
that is, the stress resultants and moments. 

The general constitutive equations for a laminate have been derived [Eq. 
(6.21)] to be 

{i} = [i+~ ]{ f} 
Consider the equations for N and M separately 

{N} = [A]{e0
} + [B]{k} 

{M} = [B]{1:0
} + [D]{k} 

Solving the first of Eqs. (6.26) for midplane strains gives 

(6.26) 
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[1:0 } = [A- 1]{N} - [A- 1][B]{k} (6.27) 

Substituting Eq. (6.27) in the second relation in Eq. (6.26) yields 

{M} = [B][A- 1]{N} - [[B][A- 1][B] - [D]]{k} (6.28) 

Equations (6.27) and (6.28) can be combined to obtain a partially inverted 
form of the laminate constitutive equation as follows: 

(6.29) 

where (see Appendix 1 for discussion of matrix algebra): 

[A*] = [A- 1] 

[B*] = -[A- 1][B] 

[C*] = [B][A- 1] = -[B*F 

[D*] = [D] - [B][A- 1][B] 

It may be noted that to obtain this partially inverted form of the laminate 
constitutive equation, only one 3 x 3 matrix needs to be inverted and two 
matrix multiplications carried out. 

Now, following the definitions of starred matrices, Eqs. (6.27) and (6.28) 
can be rewritten as 

{ 1:0 } = [A*]{N} + [B*]{k} 

{M} = [C*]{N} + [D*]{k} 

Solving the second of these equations for plate curvatures gives 

{k} = [D*- 1]{M} - [D*- 1][C*]{N} 

Substituting Eq. (6.31) into the first relation in Eqs. (6.30) yields 

(6.30) 

(6.31) 

{ 1:0 } = [[A*] - [B*][D*- 1][C*]]{N} + [B*][D*- 1]{M} (6.32) 

Equations (6.31) and (6.32) can be combined to obtain a fully inverted form 
of the laminated constitutive equations as follows: 
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where 

[A'] = [A*] - [B*][D*- 1][C*] = [A*] + [B*][D*- 1][B*]T 

[B'] = [B*][D*- 1
] 

[C'] = -[D*- 1][C*] = [B']T = [B'] 

[D'] = [D*- 1] 

(6.33) 

Thus a fully inverted form of the laminate constitutive equations is obtained 
by inverting an additional 3 X 3 matrix and carrying out two more matrix 
multiplications. 

The laminate constitutive equations in one of the three forms discussed 
earlier can be used to calculate the laminae stresses and strains. The choice 
of a particular form depends on the loading condition of the laminate. It is 
important to note that each fo!}!l can be obtained through the basic elastic 
properties of the laminae (i.e., Qij matrices) and their stacking sequence. 

For symmetric laminates, the constitutive equations [Eqs. (6.22) and (6.23)] 
can be written as 

{N} = [A]{s0 } 

{M} = [D]{k} 

(6.34) 

(6.35) 

Each of the Eqs. (6.34) and (6.35) is a set of three algebraic equations with 
three unknowns. Solution of these equations is relatively simple. Equation 
(6.34) is solved by premultiplying both sides by [A- 1

], and Eq. (6.35), by 
premultiplying by [D- 1

]. The solutions are 

{ s 0 } = [A- 1]{N} 

{k} = [D- 1]{M} 

(6.36) 

(6.37) 

Thus the inverted form of the constitutive equations for symmetric laminates 
can be obtained by inversion of only two 3 x 3 matrices. 

Example 6-6: Obtain the partially inverted and fully inverted forms of the 
laminate constitutive equations for the laminate considered in Example 
6-1. [A], [B], and [D] matrices for the laminate are 
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[

119.6 18.9 13.5] 
[AJ = 18.9 29.6 13.5 

13.5 13.5 18.9 

[ 

100.9 -33.4 -33.8] 
[B] = -33.4 -34.1 -33.8 

-33.8 -33.8 -33.4 

[

571.0 123.0 94.5] 
[DJ = 123.0 181.0 94.5 

94.5 94.5 123.0 

First, [A- 1
] can befound to be (see Appendix 1 for the procedure): 

[ 

0.95 -0.44 -0.36] 
[A- 1] = [A*J = 10-2 -0.44 5.21 -3.41 

-0.36 -3.41 7.99 

Now the other matrices in the semi-inverted form of the constitutive equa
tions can be obtained easily by matrix multiplications and subtraction as 
follows: 

[ 

0.95 -0.44 -0.36][ 100.9 -33.4 -33.8] 
[B*J = -10-2 -0.44 5.21 -3.41 -33.4 -34.1 -33.8 

-0.36 -3.41 7.99 -33.8 -33.8 -33.4 

[

-1.224 0.044 0.050] 
[B*] = 1.032 0.479 0.475 

1.926 1.415 1.392 

[ 

1.224 -1.032 -1.926] 
[C*] = -[B*F = -0.044 -0.479 -1.415 

-0.050 -0.475 -1.392 

[D*] = [D] - [B][A- 1J[BJ 

= [DJ + [B][B*] 

_ [571.0 123.0 94.5] 
- 123.0 181.0 94.5 

94.5 94.5 123.0 

[ 

100.9 -33.4 -33.8][-1.224 
+ -33.4 -34.1 -33.8 1.032 

-33.8 -33.8 -33.4 1.926 

0.044 0.500] 
0.479 0.475 
1.415 1.392 
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[

347.95 63.61 36.68] 
[D*] = 63.61 115.38. 29.57 

36.68 29.57 58.75 

Thus the partially inverted form of the constitutive equations becomes 

€~ 
0 

€y 

Y~y 

M_, 
My 
M_,y 

0.0095 -0.0044 -0.0036 -1.224 0.044 0.050 
-0.0044 0.0521 -0.0341 1.032 0.479 0.475 
-0.0036 -0.0341 0.0799 , 1.926 1.415 1.392 
------------------------------------------"--------------------------------------

1.224 -1.032 -1.926 : 347.95 63.61 36.68 
-0.044 -0.479 -1.415 ! 63.61 115.38 29.57 
-0.050 -0.475 -1.392 l 36.68 29.57 58)5 

Now, to find the fully inverted form of the constitutive equations, begin with 
finding the inverse of matrix [D*]. 

[D*- 1] = [D'] = -0.0015 0.0106 -0.0044 
[ 

0.0033 -0.0015 -0.0013] 

-0.0013 -0.0044 0.0201 

The other matrices can be obtained by matrix multiplications;and subtractions: 

[B'] = [B*][D*- 1
] 

[

-1.224 0.044 
= 1.032 0.479 

1.926 1.415 

0.050][ 0.0033 -0.0015 -0.0013] 
0.475 -0.0015 0.0106 -0.0044 
1.392 -0.0013 -0.0044 0.0201 

[

-0.0041 0.0021 0.0024] 
[B'] = 0.0021 0.0015 0.0060 

0.0024 0.0060 0.0192 
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[

-0.0041 0.0021 0.0024] 
[C'] = [B']T = 0.0021 0.0015 0.0060 

0.0024 0.0060 0.0192 

[A'] = [A*] - [B*][D*- 1][C*] 

= [A*] - [B'][C*] 

[ 

0.0095 -0.0044 -0.0036] 
= -0.0044 0.0521 -0.0341 

-0.0036 -0.0341 0.0799 

[

-0.0041 0.0021 0.0024][-l.224 
+ 0.0021 0.0015 0.0060 0.044 

0.0024 0.0060 0.0192 0.050 

[ 

0.0148 -0.0065 -0.0053] 
[A'] = -0.0065 0.0578 -0.0196 

-0.0053 -0.0196 0.1197 

1.032 1.926] 
0.479 1.415 
0.475 1.392 

Thus the fully inverted form of the constitutive equation is 

0.0148 -0.0065 -0.0053 . -0.0041 0.0021 0.0024 . . 
-0.0065 0.0578 -0.0196 . 0.0021 0.0015 0.0060 . . 
-0.0053 -0.Ql 96 0.1197 ' 0.0024 0.0060 0.0192 ' . 

' -------------------------------------------:-------------------------------------------
-0.0041 

0.0021 
0.0024 

N, 
N,. 
N~-' 

MX 
M'" 

,M_~.v 

0.0021 0.0024 
0.0015 0.0060 
0.0060 0.0192 

' 0.0033 -0.0015 -0.0013 ' ' ' -0.0015 0.0106 -0.0044 ' ' ' -0.0013 -0.0044 0.0201 ' ' . 

It should be noted that the preceding compliance matrix in the fully in
verted form of the constitutive equation is a symmetric matrix, as should be 
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expected because of the symmetry of the original stiffness matrix. Small er
rors caused by the rounding off of the numbers in the intermediate steps 
should be ignored. It may be pointed out that this compliance matrix could 
be obtained by directly inverting the original 6 x 6 stiffness matrix. 

Example 6-7: Let the three-ply laminate considered in Example 6-2 be 
subjected to the forces Nx = 1000 N/mm, N,. = 200 N/mm, and Nxy = 0, 
as shown in Fig. 6-9. Calculate the stresses and strains in the individual 
plies. 

The extensional stiffness matrix for the laminate was found to be 

[

159.3 35.l 27.0] 
[A] = 35.1 51.3 27.0 

27.0 27.0 35.1 

The coupling matrix [B] for this laminate is zero, as shown in Example 6-
2. Therefore, the given loading would produce only in-plane normal and 
shear strains, and no plate curvatures would be produced. This also implies, 
from Eq. (6.6), that the midplane strains are also the strains for individual 
plies because there is no strain gradient through the thickness. However, 
the stresses in each ply will be different and have to be evaluated by taking 
into consideration the corresponding stiffness matrix. 

To obtain the midplane strains, first, [A- 1
] can be found to be 

[ 

0.00759 
[A- 1] = -0.00356 

-0.00309 

-0.00356 
0.03441 

-0.02373 

-0.00309] 
-0.02373 

0.04911 

Since the coupling matrix [B] is equal to zero, Eq,. (6.36) can be used to 
calculate. tne in-plane stratus as 

Ny 
t t t I t 

-Nx. t 
~;;..::;:::::::=:,,,,. i--t I mm 

...,._ D --,oooN 
Imm+ 

200 N 

Figure 6-9. Definition of applied fo~ces on laminate for Example 6-7. 
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{ €~} [ 0.00759 Ei = 10-3 -0.00356 
1'~y -0.00309 

{ 

0.00685} 
= 0.00332 

-0.00784 

-0.00356 
0.03441 

-0.02373 

-0.00309] { 1000} 
-0.02373 . 200 

0.04911 0 

It may be noted that the factor 10-3 has been placed before the [A- 1] 

matrix to make its units consistent with those of Nx, Ny, and Nxy· The reader 
is advised to verify this. The preceding midplane strains are also the lamina 
strains in the xy reference coordinates. The reference coordinates for each 
lamina are explained in Fig. 6-10. The lamina stresses in the xy coordinates 
can be obtained from the stress-strain relation [Eq. (594)]. Using the [Q) 
matrices obtained in Example 6-2, stresses are found as 

{
<T,} [20 
<T, = 0.7 
7:,y oo ply 0 

0.7 0 ]{ 0.00685} {139.3} 2.0 0 0.00332 = 11.4 10-3 GPa 
0 0.7 -0.00784 -5.5 

{
(TX} [6.55 
<Ty = 5.15 
T·. 4.50 

X) 45° ply 

5.15 4.50]{ 0.00685} {26.7} 
6.55 4.50 0.00332 = 21.7 10-3 GPa 
4.50 5.15 -0.00784 5.4 

The laminae stresses and strains in the xy reference coordinates are rep
resented graphically in Fig. 6-11. 

For purposes of the laminate strength analysis, it is desirable that the 
laminae stresses and strains be obtained along their natural (longitudinal 
and transverse) axes. These now can be obtained easily by using the trans
formation equa,t\ons [Eqs. (5.86) and (5.88)]. For the 0° ply, the lamina 
natural axes coindde ;with the laminate xy coordinates. Therefore, the 
stresses and strains obtained· j.q the preceding paragraphs for t~ ·p0 ply are 
also the stresses and strains in the longitudinal and transverse directions; 
in other words, 

y,T y 

L l:__ T 45°ply 

0 x,L X 

(a) (b) 

Figure 6-10. Reference coordinate axes for (a) 0° lamina and (b) 45° lamina. 
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:~11:~:~:-::fl~(~o· '.::'.~D.'.'.'.·o:'.::'. 
_'!~~p~~~--~~ __ \___ ---- ---- ----

Cix Ciy Txy Ex E y 'rxy 

Figure 6-11. Lamina stresses and strains along the reference axes (Example 6-7). 

{ 
EL} { Ex} { 0.00685} 
ET = Ey = 0.00332 

°YLT o °Yxy· , -0.00784 
0 ply O ply 

and 

{
(J'L} {(]'"} {139.3} uT = uY = 11.4 MPa 
TLT Ooply Txy ooply -5.5 

The lamina stress and strains for the 45° plies in the longitudinal arn 
transverse axes may be obtained using one of two procedures. In the firs 
procedure, both the stresses and strains are transformed using Eqs. (5.86 
and (5.88), whereas in the second procedure, only strains are transformed 
and then the stresses are calculated from the stress-strain relations [Eq 
(5.74)]. Resulting stresses in the two cases will be the same. In problem 
where the stresses in the xy coordinates are not needed, the second pro 
cedure should be preferred because it would save an intermediate step i1 
the calculations. 

The following is the transformation matrix for the 45° orientation: 

[ 

0.5 0.5 
0.5 0.5 

-1.0 1.0 

0.5] -0.5 
0 

The strains are obtained by using Eq. (5.88): 

{ 

C:L } [ 0.5 0.5 
C:T' = 0.5 0.5 

°YLT -1.0 1.0 
45° ply 

0.5]{ 0.00685} { 0.00116} 
-0.5 . 0.00332 = 0.00900 

0 -0.00784 -0.00352 

Similarly, the stresses are obtained by using Eq. (5.86): 
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{ 
(TL} [ 0.5 0.5 
(TT = 0.5 0.5 
TLT -0.5 0.5 

l.0]{26.7} { 29.6} -1.0 21.7 = 18.8 MPa 
0 5.4 -2.5 

The laminae stresses and strains 'in the longitudinal and transverse 
reference coordinates are represented graphically in Fig. 6-12. These 
stress-strain variations can be compared with the allowable stresses and 
strains in each lamina, and thus the load at which the failure initiates in 
one of the laminae may be calculated. The procedure for calculating the 
load at failure initiation and the laminae stresses and strains after failure 
initiation is discussed in the next section. 

6.8 ANALYSIS OF LAMINATES AFTER INITIAL FAILURE 

Prucedures for calculating stresses and strains in individual laminae owing to 
external loads on the laminate were discussed in the preceding section. The 
stresses and strains in each lamina may be compared with the corresponding 
allowable values to predict failure. Commonly employed failure theories were 
discussed in Chap. 5. Thus, for a given load, it may be determined easily 
whether any of the plies in the laminate will fail. Conversely, the load at 
which the first ply failure (FPF) will occur may be calculated. Since the 
strength of a ply is a function of its orientation, it is expected that all plies 
will not fail at the same load. Plies will fail successively in the increasing 
order of strength in the direction of loading. Moreover, the transverse strength 
of unidirectional laminae is known to be much smaller than the longitudinal 
strength, so the plies with fibers perpendicular to the load will fail first. Thus 
the FPF may occur at relatively small loads at which the laminate is in no 
real danger of fracture. Sometimes the effect of the FPF may not be evident 
from the macroscopic response of the laminate, but as the number of ply 
failures increases, the loss of laminate stiffness becomes evident, and the 
overall response of the laminate deviates from its original straight-line be
havior. However, the laminate is still able to carry additional loads, although 

Figure 6-12. Lamina stresses and strains along the longitudinal and transverse axes (Example 
6-7). 
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the additional loads produce larger deflections than those produced by the 
same loads prior to the FPF. Thus the analysis procedures discussed so far 
are no longer directly applicable. The procedures may be modified to calculate 
the maximum load-carrying capacity of the laminate whenever required. In 

. this section an analysis procedure is developed that is applicable over the 
entire range of load. The procedure is developed for a general laminate, and 
its application for a special case (namely, the cross-ply laminate) is illustrated. 

The analysis procedures discussed so far in this chapter are valid when all 
the laminae are intact. As the load is increased, the stresses in a lamina may 
become high enough to cause failure. After the FPF, the laminate response 
will deviate from that predicted by Eq. (6.21) and show a discontinuity in its 
behavior. As the load is increased further, more ply failures will occur, show
ing more discontinuities in the laminate behavior. Thus the complete stress
strain behavior of a laminate up to fracture may be expected to be as shown 
in Fig. 6-13, where each corner or knee in the curve represents a ply failure. 
This change in slope may be difficult to detect if the ply that fails carries 
only a small fraction of the total. load. 

As shown in Fig. 6-13, the response between two discontinuities may be 
assumed to be linear because laminae are assumed to show a linear behavior 
up to fracture. Therefore, the load-strain relationship for each segment (e.g., 
ith) of the curve may be written for incremental load and incremental strain 
as follows: 

(6.38) 

where matrices [A], [B], and [D] are not 1the same as the matrices [A], [B], 
and [D]. The new matrices [A], [B], and [D] have been modified to take intc 
account the fact that some of the plies already have fractured. They are ob
tained- from Eq. (6.20), in which the stiffness matrices [Q] of the fracturec 
plies are appropriately corrected. The exact nature of the correction depend~ 

-0 
0 
0 
...J 

Ply failures 

ty-
Deformation 

Figure 6-13. Load-deformation behavior of a hypothetical laminate. 
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on the mode of fracture of the ply in consideration. For example, when a ply 
fails because of a transverse tensile stress exceeding the transverse tensile 
strength, it cannot support any additional transverse load, and hence its trans
verse modulus should be set to zero. The longitudinal modulus may remain 
unaffected by the transverse failure. However, different failure modes interact 
in many cases so that all the elastic properties of the ply are affected. The 
extent by which the properties are influenced is very difficult to ascertain. As 
a conservative approach, it is sometimes suggested that when a ply fails, all 
its elastic properties should be set to zero. 

The incremental loads and strains as determined from Eq. (6.38) may be 
added to the loads and strains at the previous ply failure (or those at the end 
of the previous segment) to obtain their absolute values as follows: 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

The stresses in the laminae now may be determined from Eq. (6.9). Thus 
the load at which the next ply failure occurs can be calculated. This stepwise 
procedure can be employed until all plies have failed. The load at which the 
final fracture of the laminate occurs also can be calculated. 

The preceding analysis procedure may be illustrated by application of the 
analysis to a cross-ply laminate. Consider a cross-ply laminate made up of n 
identical laminae of which l have fibers along the direction of load and m 
perpendicular to the load (l + m = n). Let the longitudinal and transverse 
moduli of the laminae be, respectively, EL and ET, and their longitudinal and 
transverse fracture strain, Ew and Eru· The composite modulus in the load 
direction can be determined by the rule of mixtures as 

l m 
E=-E +-E n L 11 T 

(6.4})' 
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The initial composite modulus E is sometimes referred to as the primary 
modulus. Equation (6.43) is valid when all the plies are intact. Failure in the 
90° plies occurs when the composite strain is equal to Eru· The composite 
stress at the failure of the 90° plies is 

(6.44) 

When the gross stress on the composite exceeds <TA, the entire load is sup
ported by the 0° plies, and the modulus of the composite is to be calculated 
by considering the 0° plies only. The composite modulus after the failure of 
90° plies, sometimes referred to as the secondary modulus Es, can be calcu
lated as 

l 
E =-E S. n L (6.45) 

Thus the secondary modulus is equal to the modulus of 0° plies corrected for 
the area reduction. The composite fracture occurs when the composite strain 
is equal to Ew. Thus the composite fracture stress is · 

(6.46) 

The complete stress-strain diagram of the composite is shown in Fig. 6-14. 
The point A, where the slope of the curve changes from E to Es, is often 
referred to as the knee of the curve. The experimental stress-strain curves of 
the cross-ply materials, a few of which are given later, do show such behavior. 
The experimental curves usually are nonlinear but can be very closely ap
proximated by two straight lines having slopes equal to the primary modulus 
(E) and the secondary modulus (Es). 

In the preceding analysis, the maximum strain has been assumed to be the 
lamina failure criterion for simplicity. Any other criterion, such as those dis
cussed in Chap. 5, also could be used. However, the main difference among 
these criteria appears only in combined stress and in compression. In the 

O EA=Eru ELu 
Strain 

Figure 6-14. Stress-strain diagram of a cross-ply laminate. 
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present case, when the material is assumed to be linear, the criteria based on 
stress can be converted easily into strain criteria. Moreover, for the uniaxial 
stress considered here, all the criteria yield the same results. 

The preceding analysis has been carried out by assuming that the laminate 
is composed of identical laminae. The analysis can be modified easily if the 
laminae differ in properties and thickness. When the thicknesses are different, 
the relative number of plies in Eqs. (6.43) and (6.45) should be replaced by 
relative cross-sectional areas. When the elastic moduli and strengths of the 
plies are different, the knee occurs at the transverse fracture strain of the 90° 
plies, whereas the composite fracture occurs at the longitudinal fracture strain 
of the 0° plies. It is left to the reader to work out the details of modified 
equations. 

Based on the stress-strain curve shown in Fig. 6-14, the composite strain 
may be written as 

O' 
E = -

E 

It is also desirable to write Eq. (6.48) in a simple form, such as 

(6.47) 

(6.48) 

(6.4~. 

where Ee may be called the effective modulus. Comparison of Eq. (6.49) with 
Eq. (6.48) will give 

E 
E = ------------

e 1 + [(El E5 ) - l][l - (a-A/ a-)] 
(6.50) 

Thus the effective modulus is a function of instantaneous stress u, and it 
relates the instantaneous stress to total strain. 

Equations (6.47)-(6.50) have been written for monotonically increasing 
load. The stress during unloading may not correspond to the loading-path 
stress. The unloading path will depend on whether the maximum stress during 
loading is more or less than the stress at the knee a-A· When the maximum 
stress is less than a-A, unloading retraces the loading path, and Eq. (6.47) 
holds for unloading also. When the maximum stress is more than a-A (e.g., 
point B in Fig. 6-14 ), unloading does not trace the preceding loading path 
[2]. Unloading takes place along a straight line with a slope different from 
the initial slope and results in a residual strain. On reloading, a hysteresis 
loop forms, and eventually the unloading point (B) is recovered. At this point 
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the slope changes to that of the original loading curve. Although this behavi1 
resembles that of common metals in the plastic range, there is one maj1 
difference, specifically that the elastic modulus decreases with degradatic 
(i.e., failure) of the 90° plies almost to the extent that the residual strain c, 
be neglected. Thus the unloading takes place along paths such as BO in Fi. 
6-14. During the unloading, the stress and strain are related through Eq. (6.4< 
with the modification that the effective modulus is not a function of instai 
taneous stress but the maximum stress (cr01), that is, the stress at the point< 
the start of unloading. The effective modulus during unloading and reloadir 
thus becomes 

(6.5: 

In the preceding discussion it has been assumed that the stress-strain cun 
is continuous. The failure (or degradation) of 90° plies is assumed to cause 
change in the slope of the curve but not a sudden jump in the magnitude c 
stress or strain. This means that it has been implicitly assumed that the failm 
does not produce stress relaxation in the 90° plies. If stress relaxation occur 
the stress-strain curve will show a sudden change in the magnitude of strei 
or strain or both, as shown in Fig. 6-15. Thus, instead of path A, the materi; 
may follow a path such as B or C. The actual path will depend on the tyi;: 
of loading. For example, in a load-controlled test, path B will be traverse< 
whereas a displacement-controlled test will trace path C. An intermediate pat 
D is also possible. 

Whether complete stress relaxation in the 90° plies occurs is an importai 
question and needs careful consideration. It should be expected that if th 
plies are independent of one another in the laminate (e.g., when interlamim 
bonds are weak), a significant or complete stress relaxation will occur. 0 
the other hand, when interlaminar bonds are strong, the .adjoining 0° plie 
restrain thtr failure of 90° plies. As a result, the effect of £llilure of a 90° pl 
is localized, and only a partial stress relaxation will occur. The restraint i 

Strain 

Figure 6-15. Possible stress-strain diagrams for cross-ply laminates. 
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maximum when the interaction between plies of different orientations is max
imum (e.g., with alternate layers 0° and 90°). This situation is analogous to 
the breaking of a fiber surrounded by the matrix. The stress at the broken end 
of the fiber reduces to zero but builds up, because of shear-stress transfer, 
away from the end in the presence of strong interfacial bonds (see Chap. 4). 
Thus the influence of fiber breaks in a unidirectional composite loaded in the 
fiber direction becomes evident only gradually. Similarly, when there is good 
interaction between plies, degradation of the 90° plies is gradual. That is, 
when the composite strain is just equal to the transverse fracture strain of the 
90° plies, cracks develop in the 90° plies, but their effect is confined to only 
small lengths, and the composite modulus does not drop instantly to the level 
predicted by Eq. (6.45). More cracks develop as the load is increased, and 
when the cracks are very close to each other, the contribution of the 90° plies 
to the composite stiffness reduces to near zero, and the composite modulus 
eventually drops to the level predicted by Eq. (6.45). The experimental results 
of Hahn and Tsai [2] are quite relevant in the present context. They investi
gated the stress-strain behavior of glass-epoxy cross-ply laminates with two 
different stacking sequences. The [0/901zs laminate consists of eight plies 
with alternate layers being 0° and 90°, whereas the [0/902] 5 laminate has six 
plies with two surface plies 0° and the four inner plies 90°. The stress-strain 
curves for the two laminates are shown in Figs. 6-16 and 6-17 along with 
theoretical predictions [i.e., Eqs. (6.47) and (6.48). The stress-strain curve 
for the [0/90b laminate does not show a distinct knee, whereas the curve 
for the [0/902] 5 laminate shows a distinct knee or obvious change in slope. 
This is what is expected in view of the preceding discussion. Although the 
interlaminar bonds are equally strong in the two laminates, the [0/901zs lam-

100 

Glass-epoxy [0/90] 25 

80 -Theory 

·;:;; 60 
==-
~ 
::: 
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0 0.5 1.0 1.5 2.0 2.5 3.0 

Strain (%) 

Figure 6-16. Experimental and theoretical stress-strain curves for a [0/90]is laminate. (From 
Hahn and Tsai [2].) 
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50 
Glass-epoxy [0/902 ] s 

-- Theory 

40 

0.6 1.2 1.8 2.4 3.0 
Strain (%) 

Figure 6-17. Experimental and theoretical stress-strain curves for a [0/902]. laminate. (From 
Hahn and Tsai [2].) 

inate has interspersed plies, except for the middle plies, so that failure of the 
90° plies is effectively restrained by the 0° layers. In the [0/902] 5 laminate, 
all the 90° plies are bonded together so that the restraint exerted by the oc 
plies is not so effective; consequently, the knee is observed. 

The preceding discussion illustrates how a cross-ply laminate subjected to 
uniaxial stress is analyzed. In this analysis it is sufficient to assume that on 
failure of the 90° plies, their transverse modulus (ET) reduces to zero. Other 
properties, such as the shear modulus (GLT), have not been discussed with 
regard to how they are affected by the failure when the transverse strain in 
the lamina exceeds the allowable strain in that direction. In real situations, 
when angle-ply laminates are subjected to complex stresses, it is important 
to know how the lamina elastic constants are affected when failure in the 
lamina takes place by a single failure mode. Modifications of the laminate 
stiffness matrix [e.g., as in (Eq. 6.38)] can be carried out only when the 
influence of failure on lamina properties is known. A common practice is to 
set all lamina properties equal to zero when failure occurs. This type of anal-
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ysis gives a conservative estimate of the load-carrying capacity of the laminate 
because lamina failure in one direction does not, in general, result in complete 
stress relaxation in all directions. For example, when failure occurs in the 
transverse direction, the lamina stresses in the longitudinal direction may not 
be affected significantly. Some studies [3,4] have been carried out to establish 
experimentally the quantitative influence on lamina properties resulting from 
failure in one direction. These studies are inconclusive, and the rationale in 
reducing elastic constants to specific values has not been established. Thus, 
in the present circumstances, the practice of setting all lamina properties equal 
to zero may be continued. 

Example 6-8: A 5-mm-thick symmetric cross-ply laminate is constructed 
from 15 identical laminae having the following stiffness matrix and 
strengths: 

[

56 
[Q] = 6.6 4.6 0 ] 

18.7 0 GPa 
0 8.9 

crLU = 1050 MPa 

CTru = 28 MPa 

TLTu = 42 MPa 

A uniaxial load is applied, and the laminate construction is such that nine 
laminae are in the load direction. Calculate the load at which the 90° plies 
fail and the load-carrying capacity of the laminate. 

Solution: [Q] matrices for the 0° and 90° laminae can be written as 

[

56.0 
[Q]o0 = ~.6 

4.6 
18.7 
0 

4.6 
56.0 
0 

g ] GPa 
8.9 

g ] GPa 
8.9 

The [A] matrix for the laminate can be obtained if the thicknesses of all 
0° and 90° plies are known. Since all plies have the same thickness, thick
nesses of all 0° and 90° plies are proportional to their number. Therefore, 
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Thickness of 0° plies (9 in number) = i55 X 9 = 3 mm 

Thickness of 90° plies (6 in number) = i55 x 6 = 2 mm 

The terms of the [A] matrix are given by 

Therefore the [A] matrix is obtained as 

[

205.4 
[A] = 2~ 

23 
168.1 

0 
~ ] GPa·mm 

44.5 

For analysis of this cross-ply laminate, we shall use the maximum-strai1 
theory to predict failure of the laminae. Maximum allowable strains cm 
be obtained from the given strength values, and the moduli values can b1 
calculated from the given stiffness matrix. The moduli values are 

EL = 54.87 GPa 

ET = 18.32, GPa 

Fracture strains in the longitudinal and transverse directions become 

1050 X 10-3 = 0 01914 
ew = 54.87 · 

28 X 10-3 

ew = 
18

.
32 

= 0.00153 

Therefore, the 90° plies will fail when ex = 0.00153. The load Nx at failun 
of the 90° plies can be obtained as follows: 

{
Nx} [205.4 0 = 23 
0 0 

23 
168.1 

0 

Solution of this matrix equation gives 

0 ]{0.00153} 0 eY 
44.5 'Yxy 

N_, = 0.3094 GPa·mm = 309.4 MPa·mm 
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The 90° plies will fail when Nx = 309.4 MPa · mm. After failure of the 90° 
plies, the [A] matrix is modified according to Eq. (6.38). The. modified [A] 
matrix is obtained by substituting (Q;)90• = 0. Therefore, 

[

168 13.8 0 J 
[A] = 13.8 56.1 0 GPa · mm 

0 0 26.7 

The laminate will fail at a strain of e .. = 0.01914, that is, an additional 
strain !:,.ex= 0.01914 - 0.00153 = 0.01761. Now, additional load at frac
ture can be obtained from the following: 

0 ]{0.01761} 0 t:..e,. 
26.7 !::,.y~y 

Solutio,1 of this equation gives 

t:..Nx = 2.8987 GPa mm = 2898.7 MPa · mm 

Therefore, the total load at fracture or the load-carrying capacity of the 
laminate is 

Nx = 2898.7 + 309.4 = 3208.1 MPa·mm 

Example 6-9: Following are the elastic constants and strengths of laminae 
in a quasi-isotropic laminate [0/ ±45/90]8 : 

Elastic constants 

EL= 40 GPa ET= 10 GPa 

GLT = 4 GPa VLT = 0.285 

Strengths 

Oiu = 1050 MPa af.u = 650 MPa 

<Tm= 20 MPa <T-i:-v = 140 MPa 

TLm = 65 MPa 

From the laminate, a rectangular specimen with the dimensions 250 mm 
X 20 mm X 2 mm is tested in uniaxial tension. Predict the load elongation 
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curve for the specimen if the grips are initially 200 mm apart. Assume tr 
the laminae fail according to the maximum-stress theory and that all t 
elastic constants of a lamina become zero when it fails. Calculate the fra 
ture load of the specimen. 

Solution: The [Q] matrix for the laminae can be obtained using Eq. (5.7l 

[

40.83 
[Q] = ~.91 

2.91 OJ 
10.21 0 GPa 
0 4 

The [Q] matrices for different ply orientations can be obtained using t 
transformation equations [Eq. (5.95)): 

[ 40.83 2.91 

~] GPa [QJ0° = ~.91 10.21 
0 

[10.21 2.91 

~] GPa [Q]90° = ~.91 40.83 
0 

[ 18.215 10.215 7.655] 
[QLs0 = 10.215 18.215 7.655 GPa 

7.655 7.655 11.305 

[ 18.215 10.215 -7.655] 
[Q]_45° = 10.215 18.215 -7.655 GPa 

-7.655 -7.655 11.305 

Analysis of Initial Behavior The [A] matrix is obtained by using E 
(6.20) and noting that the thickness of each ply is i = 0.25 mm: 

Therefore. 

[

43.735 
[A] = 1~.125 

i3.125 
43.735 
0 

~ ] GPa·mm 
15.305 

Owing to the symmetry of the laminate, the [B] matrix vanishes. init 
stress-strain relation for uniaxial tension (N, = N,, = 0) may be writt 
as 
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{

Nx} [43.735 13.125 
0 = 13.125 43.735 
0 0 0 

O ]{ 
6°} X 

0 ee 
15.305 "Y~y 

Solution of this matrix equation yields 

e~ = -0.3e~ 

N, = e~/0.0254 GPa · mm 

For e~ = -0.3e~, and "Y~.r = 0, stresses in the laminae in the longitudinal 
and transverse directions may be obtained in terms of e~ using Eqs. (5.94) 
and (5.74): 

{
Cli} {39.96 
O"T = -0.153 
TLT 00 0 

{ 
O"L} {-9.339 
O"T = 9.337 
TLT 90' 0 

{
C/"L} { 15.31 
O"T = 4.59 
TLT 

450 
-5.20 

{ 
(TL} { 15.31 
(J"T = 4.59 
TLT -5.20 

-45° 

e~ GPa 
60} 

e~ GPa 
60} 

:f} GPa 
eo 

X 

(Notice that the uniaxial stress on the quasi-isotropic laminate produces 
complex stresses and strains in the constituent laminae.) 

It can be shown easily that for the preceding state of stress, 90° plies 
will fail first when O"r = O"rn· That is, 

9.337e~ = 20 X 10-3 

e~ = 0.002142 

Following are the load and elongation at FPF: 
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Elongation 8 = 200 x 0.002142 = 0.4284 mm 

0.002142 
Nx = 0.

0254 
GPa·mm = 0.08433 kN/mm 

For the 20-mm-wide specimen, the load is 

l! e 20 >< 0.08433 = 1.687 kN 

Analysis during Setspnd Segment After FPF, the [A] matrix is modified 
by neglecting the CC\lntributions of 90° plies. The modified [A] matrix is 
calculated as follow$: 

Thus 

[

38.63 11.67 0 ] · 
[A] = 11.67 23.32 0 GPa · mm 

0 0 13.305 

The load-strain relationship for the second segment can be written as 

{
6.Nx} [38.63 

0 = 11.67 
0 0 

2 ' 

11.67 
23.32 
0 

Solution of the matrix equation gives 

Aei = -0.5 Ae~ 

6.Nx = 32.795 Ae~ GPa · mm 

Incremental stresses in the laminae now may be obtained in tetms of in
cremental strain Ae~ using Eqs. (5.94) and (5.74): 

{
AuL} { 39.375 Ae~} AuT = -2.195 Ae~ GPa 
ATLT oo 0 

{
AuL} { 10.94 Ae~} AuT = 3.28 Ae~ GPa 
ATr;T +6.00 Aex0 

±45° 
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Instantaneous stresses may be obtained by adding these incremental 
stresses to the stresses at FPF. Thi.ls 

{ 
(TL} { 0.0856 + 39.3751 Lle~} 
uT = -0.00033 - 2.195 Lie~ GPa 
7'LT oo 0 

{
(TL} { 0.0328 + 10.94 Lle~} 
uT. = 0.0098 + 3.28 Lie~ GPa 
TLT +0.0111 + 6.00 Llex0 

±45,:, 

It can be shown easily that ±45° plies will fail next when (crT)45, = urn. 
That is 

0.0098 + 3.28 Lie~ = 20 X 10-3 or Lie~ = 0.00311 

The incremental elongation and load at the second ply failure are 

Lio = 200 x 0.00311 = 0.622 mm 

LiP = 20 x 0.00311 x 32. 795 GPa · mm2 = 2.04 kN 

The total load and elongation at the second ply failure are 

P = 1.687 + 2.04 = 3.721 kN 

o = 0.4284 + 0.622 = 1.054 mm 

Analysis during Third Segment During the third segment, only 0° plies 
are acting, and therefore, the analysis can be carried out by assuming it to 
be a unidirectional composite. Failure will occur when 

Therefore, strain at the lamiQ.ate failure will be 

= 1050 X 10-3 = 0 026'>5 
ex 40 . -

Incremental strain at laminate failure will be 

Llex = 0.02625 - 0.002142 - 0.00311 = 0.0210 

Incremental elongation and load are 
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A8 = 200 X 0.021 = 4.2 mm 

AP= 20 X 2 X f X 0.021 X 40 GPa·mm2 

AP= 8.4 kN 

Therefore, 

Load at fracture= 8.4 + 3.721 = 12.121 kN 

Elongation at fracture = 4.2 + 1.054 = 5.254 mm 

The complete load-elongation curve for the laminate is shown in Fig. 6-
18. Each ply failure causes a change in the slope of-that is, produces a 
knee in-the stress-strain curve. Load levels at the ply failure have been 
marked. It may be noted that when 90° plies fail, the change in slope of 
load-elongation curve is hardly noticeable. 

11.921 kN 

8 

4 

1.687 kN 

o~~~~~~~~~'----~~~~~~~--'-~~~~~~~~~ 

0 2 4 6 

Displacement, mm 

Figure 6-18. Predicted load-elongation curve for the quasi-isotropic laminate in Example 
6-9. 
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6.9 HYGROTHERMAL STRESSES IN LAMINATES 

6.9.1 Concepts of Thermal Stresses 

Concepts of hygrothermal stresses are relatively simple. However, mathe
matical formulations for hygrothermal stresses in composite materials may 
appear quite cumbersome and involved owing to a large number of variables 
coming from orthotropy of laminae and their lamination. It is easy to lose 
sight of simple physical concepts as a result of the complicated mathematical 
formulations. Therefore, before we proceed with the mathematical develop
ments for this problem, let us discuss the concept through a simple example 
of thermal stresses in a uniaxial case. 

A temperature change in a body causes a change in its dimensions pro
portional to the temperature change. In other words, a temperature change 
produces thermal strains in the body. These thermal strains are not caused by 
any external force applied to the body and are not accompanied by internal 
stresses. However, if the body is, in any manner, restrained from undergoing 
thermal strains, internal stresses will be produced in the body. Concepts of 
producing these stresses can be explained by considering a one-dimensional 
model of a laminate made up of two layers of aluminum and one layer of 
steel, as shown in Fig. 6-19a. The layers are equal in thickness, bonded, and 
stacked such that the laminate is symmetric. A temperature change in this 
laminate, owing to symmetry, produces only extension or shortening of layers 
but no bending. Initially, the laminate is at temperature T0 • Now consider that 
the temperature is increased to T. If it is assumed that the three layers are 
not bonded together, the strains in the aluminum and steel layers are different, 
as shown in Fig. 6-19b. These strains are called the free thermal strains in 
the layers and are described by a superscript T. However, the aluminum and 
steel layers are bonded together in the laminate and act as a single unit. 
Therefore, the actual strains in the aluminum and steel layers are equal. This 
common strain ( E) is somewhere in-between the free thermal strains in steel 
( EI) and aluminum ( eL), and will depend on the elastic moduli of steel and 
aluminum. Because of the bonding between the aluminum and steel layers, 
the aluminum layers apply a tensile force to the steel layer and the steel layer 
applies compressive forces to the aluminum layers such that the aluminum 
and steel layers have equal strain in the final state. Further, since there is no 
external force applied to the laminate, the internal forces applied by the layers 
on each other balance themselves. That is, the net internal force is zero. These 
internal forces on individual layers are responsible for the difference between 
the final strain (e) and free thermal strains (EL and EI), as indicated in Fig. 
6-19c. The differential strains (ei\ and er) are often called mechanical strains 
that are produced by internal forces and cause internal stresses. These internal 
stresses are called thermal stresses and are proportional to the mechanical 
strains and not the free thermal strains. Note that the thermal stresses in steel 
are tensile, whereas those in aluminum are compressive, such that the resultant 
force on the laminate is zero (see Fig. 6-19d). 



264 ANALYSIS OF LAMINATED COMPOSITES 

(a) Initial state 
(temperature= T0) 

(b) Unbonded layers-final 
final 
(temperature = T) 

(c) Actual final state-strains 
(temperature = T) 

(d) Actual final state
stresses 
(temperature = T) 

(jAI = EA1E~1 

O's=Esf.~ 
O's= 2crA1 

Figure 6-19. Concepts of thermal strains and stresses in a three-ply symmetric laminate. 

These concepts of stresses and strains owing to temperature changes can 
be generalized to develop procedures for calculating hygrothermal stresses 
and strains in composite laminates. There are two important concepts to be 
kept in mind: (1) Since no external forces are applied, the resultant forces 
and moments are zero, and (2) the laminate stresses are caused by the dif
ference in actual strain and strain for free expansion of laminae. Mathematical 
formulations for hygrothermal stresses are described in the next subsection. 

6.9.2 Hygrothermal Stress Calculations 

A change in temperature or moisture content of a body causes a change in 
its dimensions proportional to the change in temperature or moisture content 
and its initial dimensions. Thus thermal and hygroscopic strains develop in 
the body as a result of temperature and hygroscopic changes. The thermal 
strain eT is equal to the product of the coefficient of thermal expansion a of 
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the body and the change in temperature /:;.T, and similarly, the hygroscopic 
strains eH is equal to the product of coefficient of moisture expansion {3 of 
the body and the change in moisture content ,1::,.C: 

(6.52) 

(6.53) 

In the case of an orthotropic material, such as a unidirectional lamina, the 
coefficients of Thermal and moisture expansion, like its other properties, 
change with direction. Thus the hygrothermal changes result in unequal 
strains in the longitudinal and transverse directions given by the following 
equations: 

e[ = aL /:;.T 

e:f = aT ,l::,.T 

er= /3L ,/:;.C 

e~ = f3r 1::,.C 

(6.54) 

(6.55) 

where aL, aT, f3u and {3T are coefficients of thermal and moisture expansion 
in the longitudinal and transverse directions, respectively. The hygrothermal 
strains also can be transformed to an arbitrary coordinate system, such as the 
x and y axes, by means of the transformation equations [Eq. (5.88)]. There
fore, the same transformation law is applicable to the coefficients of hygro
thermal expansions, so 

{~}- ~,r{i} (6.56) 

and 

{::}- ~,r{t} (6.57) 

where axy and /3xy are apparent coefficients of thermal and moisture shear, 
and the [T2] matrix is given by Eq. (5.89). Thus the hygrothermal strains may 
be written directly in terms of the transformed coefficients as 
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(6.58; 

and 

(6.59) 

Hygrothermal 1strains do not produce a resultant force or moment when the 
body is completely free to expand, bend, and twist. Thus, when a laminate 
as a whole is considered, a hygrothermal change does not affect the resultant 
force or moment. However, an individual lamina in a laminate is not com
pletely free to deform. Its deformation is influenced by other laminae. Lamina 
strains can be obtained from the laminate midplane strains and plate curva
tures through Eq. (6.6). The lamina stresses are induced by the constraints 
placed on its deformation by adjacent laminae. The stresses in a lamina are 
produced only by the strains that are in excess of the hydrothermal strains 
for its free expansion given by Eqs. (6.58) and (6.59). The strains that cause 
stresses may be referred to as the mechanical strains and may be denoted by 
{ t-1}. The mechanical strains then are given as 

{e~} { e } { e;} {e~} X 

eM - e eT - eH 
y y ) y 

y!; Yxy y ~. y~. 

(6.60) 

where e are the total lamina strains given by Eq. (6.6). With substitution of 
Eqs. (6.6), (6.58), and (6.59) into Eq. (6.60), the mechanical strains are ob
tained as 

(6.61) 

The lamina hygrothermal stresses can be obtained by substituting Eq. (6.61) 
into Eq. (5.94). 

(6.62) 
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In Eq. (6.62), the midplane strains {e0
} and the plate curvatures {k} are 

unknown but can be evaluated by employing the fact that no external force 
is responsible for these stresses. The resultant forces and moments are ob
tained from Eqs. (6.12) and (6.13). Therefore, by substituting Eq. (6.62) into 
Eqs. (6.12) and (6.13) and integrating and then equating the resulting ex
pression to zero, the following equations are obtained: 

(6.63) 

(6.64) 

(6.65) 

(6.66) 

(6.67) 

(6.68) 

where hk and hk-i define the position of a lamina in a laminate and are shown 
in Fig. 6-5. The forces {NT} and {NH} and moments {MT} and {MH} are 
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apparent forces that produce the mid plane strains { tP} and plate curvature: 
{k} given by Eqs. (6.63) and (6.64). These fictitious forces and moments an 
sometimes called the hygrothermal forces and moments. They are subjectec 
to the same rules as the externally applied forces. Thus a laminate subjectec 
to a hygrothermal change as well as to external forces and moments may be 
analyzed in two ways. First, the stresses induced by the hygrothermal change 
and those induced by the external forces and moments may be evaluatec 
separately and then added to obtain the resulting stresses. Second, the hy· 
grothermal forces and moments may be evaluated by Eqs. (6.65)-(6.68) anc 
added to the external forces and moments. Now the resulting stresses may be 
obtained directly from the analysis of the laminate, as discussed in the pre
ceding section. 

The hygrothermal stresses given by Eq. (6.62) are induced in the laminae 
whenever the hygrothermal state of a laminate differs from its stress-free state. 
The thermal stresses are invariably unavoidable as a result of the fabrication 
of composite laminates caused by temperature changes of several hundred 
degrees between fabrication temperatures and room temperature. The thermal 
stresses produced while cooling the laminate after fabrication at elevated tem
perature are called residual stresses or curing stresses. In some cases, such 
residual stresses may be sufficiently large to influence the failure of the lam
inate and thus should not be neglected in a design analysis. It may be pointed 
out again that the hygrothermal stresses are induced not because laminae 
expand or contract because of hygrothermal changes, but because they are 
not free to expand or contract. The laminates are fabricated such that they 
act as single-layer materials. Thus each lamina influences the expansion or 
contraction of the other because their coefficients of expansion are different. 
It may be noted that residual stresses caused by fabrication are created even 
in a lamina if the matrix and fiber have different expansion coefficients. In 
practically all cases the matrix has a greater expansion than the fiber, which 
subjects the fiber to compressive stress. For most practical volume fractions 
of fibers, the matrix generally will be subjected to a radial compression at 
the fiber-matrix interface and a tangential tensile stress. This radial com
pression acting against the interface is significant in aiding shear-stress trans
fer into the fiber by friction forces even in the absence of good bonding. 
Because of the presence of these internal stresses, which can be calculated 
by micromechanics analyses, the total internal residual stresses in a laminate 
would have to be obtained by superimposing these stresses on those induced 
by lamina restraints, as discussed earlier. 

It may be noted from Eqs. (6.63) and (6.64) that in a general unsymmetric 
laminate, the hygrothermal change will induce not only extensional strains 
but also warping of the laminate represented by the plate curvatures { k}. 
However, in a symmetric laminate, the coupling matrix [B] is zero, and the 
hygrothermal moments given by Eqs. (6.66) and (6.68) are also zero. There
fore, Eq. (6.64) predicts that the plate curvature {k} will vanish. Thus the 
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warpage due to hygrothermal change during fabrication is avoided by the use 
of symmetric laminates. A more specific discussion on the residual stresses 
is given in refs. 5-7. 

Example 6-10: Calculate the residual stresses in the laminate considered 
in Example 6-1 that is fabricated at 125°C and cooled to room temperature 
of 25°C, given 

and 

First, transform the coefficients of thermal expansion in the xy coordinate 
axes: 

0.5 0.5 
-1 

-0.5]{ 7 X 10-6
} 

g.5 23 x
0

10-6 

{ ::} = {_ i~}10-6 

ax.>. 450 16 

Now thermal forces and moments may be calculated by means of Eqs. 
(6.65) and (6.66), where the [Q] matrices for the two plies were obtained 
in Example 6-1. The calculations may be carried out in the following se
quence: 

AT = 25 - 125 = - 100°C 



270 ANALYSIS OF LAMINATED COMPOSITES 

{N;} {-15.61} {-10.35} N; =[(4)-(-1)]10-3 -5.09 +[(-1)-(-4)]10-3 -10.35 
NT O -5.26 

xy 

{N;} {-109.10} N; = 10-3 -56.50 GPa · mm 
NT -15.78 

xy 

{M;} {-15.61} Zf. = +[(4)2 
- c-1)2]10-3 -g.09 

{

-10.35} 
+ -}[(-1)2 - (-4)2]10-3 -10.35 

-5.26 

{M;} {-39.45} M; = 10-3 39.45 GPa·mm 
Ml, 39.45 

The midplane strains and plate curvatures may be obtained from Eqs. 
(6.63) and (6.64). It may be noted, however, that Eqs. (6.63) and (6.64) 
may be written in an inverted form similar to Eq. (6.33) as follows: 

Further, the matrices [A'], [B'], and [D'] have the same meaning as in Eq. 
(6.33), and for the laminate under consideration, these were evaluated in Ex
ample 6-6. Therefore, the midplane strains and plate curvatures can be found 
to be 

{

€

0

} { -814} Ef = 10-4 - 20:20 
1'xy 6.99 

and 

{kx} { 0.58} ky = 10-4 
- 1.00 

kxy -2.35 

The nonzero values of plate curvatures { k} in the preceding calculations 
show that warping of the laminate will occur when the laminate is cooled 
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from the curing temperature (125°C) to room temperature (25°C). Mechanical 
strains that cause the residual stresses are calculated by Eq. (6.61): 

{E~} { -8.14 + 0.58z + 7.0} {-1.14 + 0.58z} 
E~ = 10-4 -20.20 - l.OOz + 23.0 = 10-4 2.80 - I.OOz 
Y.~ 

00 
6.99 - 2.35z + 0 6.99 - 2.35z 

{E~} { -8.14 + 0.58z + 15.0} { 6.86 + 0.58z} 
E~ = 10-4 -20.20 - l.OOz - 15.0 = 10-4 -5.20 - 1.00z 

YM 6.99 - 2.35z - 16.0 -9.01 - 2.35z 
xy 450 

The residual stress distribution may be obtained by substituting the preceding 
strains into Eq. (6.62). Because the strain variation and hence the stress var
iation are linear across the thickness of a ply, it is sufficient to calculate the 
stresses only at the ply surfaces to complete the residual stress distribution. 
The required stresses are calculated as follows: 

0° ply, z = 4 

{ 
1.18} 10-4 -1.20 

-2.41 

{a;} {20 0.7 a; = 10-4 0.7 2 
TT O 0 

xy 

O" ply, z = -1 

{E~} {-1.72} E~ = 10-4 3.80 
Y.~ 9.34 

{
o:;.} {20 0.7 
a_;. = 10-4 0.7 2 
TT O 0 

X)' 

0 }{ 1.18} 0 -1.20 GPa 
0.7 -2.41 

0 }{-1.72} 0 3.80 GPa 
0.7 9.34 

{
(TT} {(J'.T} {-3 17} a} = at = o:64 MPa 
TT ,,..T 0.65 

X)' 'LT 
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45° ply, z = -1 

{E~} { 6.28} Er = 10-4 -4.20 
'Y~ -6.66 

{
o:J} [6.55 5.15 (T; = 10-4 5.15 6.55 
TT 4.50 4.50 

xy 

4.50]{ 6.28} {-1.05} 4.50 -4.20 = 10-3 - 2.51 GPa 
5.15 -6.66 -2.49 

{
(Tr} [ o.5 
<Ti =. 0.5 
T -0.5 TLT 

45° ply, z = -4 

0.5 
0.5 
0.5 

{ 
4.54} 

10-4 -1.20 
0.39 

1]{-1.05} {-4.27} -1 -2.51 = 0.71 MPa 
0 -2.49 -0.73 

[

6.55 5.15 
10-4 5.15 6.55 

4.50 4.50 

4.50]{ 4.54} {2.53} 4.50 -1.20 = 10-3 1.73 GPa 
5.15 0.39 1.70 

{ 
ur} [ o.5 o.5 u+ = 0.5 0.5 
T[T -0.5 0.5 

1]{2.53} { 3.83} -1 1.73 = 0.43 MPa 
0 1.70 -0.40 

The variations of the residual stresses across the laminate thickness ari 
shown in Fig. 6-20 for the xy reference axes, as well as the longitudinal am 
transverse axes. It may be noted from the variations of ux, ay, and Tx.r tha 
the resultant forces Nx, Ny, and Nxy and resultant moments, Mx, My, and Mx 
are zero; that is, the net area in each plot and the moment of the area abou 
any point are zero. This shows the self-equilibrating nature of the residua 
stresses. 

6.10 LAMINATE ANALYSIS THROUGH COMPUTERS 

Laminate analysis procedures were discussed in this chapter. It is assumei 
that the laminae elastic properties are known either through the predictio1 
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Figure 6-20. Residuar stresses (Example 6-10). 

techniques discussed in Chap. 3 or determined by the experimental charac
terization procedures discussed in Chap. 10. The laminate stress-analysis pro
cedure may be summarized as follows: 

1. Calculate the laminae stiffness matrix from the laminae elastic prop-
erties [Eq. (5.78)]. 

2. Transform the stiffness matrix to different ply orientations [Eq. (5.95)]. 
3. Calculate laminate stiffness matrices [A], [B], and [D] [Eq. (6.20)]. 
4. Calculate midplane strains and plate curvatures for the given loads [Eq. 

(6.21) or Eq. (6.33)]. 
5. Calculate laminae strains [Eq. (6.6)]. 
6. Transform laminae strains from arbitrary directions to the longitudinal 

and transverse directions [Eq. (5.88)]. 
7. Calculate laminae stresses [Eq. (5.74)]. 

This procedure is used to obtain complete states of stress and strain in all 
laminae for the applied loads. A flowchart for the laminate stress analysis is 
given in Fig. 6-21, which can be used to streamline calculations or develop 
software. 

The laminate stress analysis may be extended to obtain laminate failure 
load (Sec. 6.8) if the laminae strengths are known through the prediction 
techniques (see Chap. 3) or experimental measurements (see Chap. 10). The 



274 ANALYSIS OF LAMINATED COMPOSITES 

Laminate 
construction 

INPUT 

Laminae elastic 
constants 

Eq. (5.78) 

Applied loads 

Laminae stiffness matrices [OJ 1----1--, 

Eq. (5.95) 

[ Q J for different orientations 

Eq. (6.20) 
Laminate stiffness matrices 
[A]. [8], and [DJ 

Eq. (6.21) or (6.33) 

Midplane strains (E 0
) and 

plate curvatures (k) 

Eq. (6.6) 

Laminae strains (Ex, Ey, 1'xy> 

Eq. (5.88) 

Laminae strains (EL, £y, 1'LT) 

Eq. (5.74) 

Figure 6-21. Flowchart for laminate stress analysis. 

first step in the laminate strength analysis is to carry out laminate stres 
analysis for an assumed load (e.g., a unit load). The complete laminat, 
strength analysis procedure may be summarized as follows: 

1. Carry out laminate stress analysis for a unit load on the laminate. 
2. Select an appropriate failure theory (Sec. 5.4). 
3. Through the failure theory selected in step 2, compare the lamina, 

stresses and strains with the allowable values, and predict the minimun 
load at which one of the plies will fail. Obtain stresses and strains a 
FPF load by multiplying stresses and strains obtained in step 1 by 
suitable factor. 
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4. Modify the laminate stiffness matrices [A], [B], and [D] by assuming 
the stiffness matrix of the failed lamina to be zero [Eqs. (6.38) and 
(6.20)]. 

5. Through laminate stress analysis with modified [A], [B], and [D] ma
trices, calculate incremental stresses and strains in the laminae for an 
arbitrary (or unit) increment in load on the laminate. 

6. Add the incremental stresses and strains to those at the previous ply 
failure. 

7. Through the failure theory selected in step 2, compare the new.laminae 
stresses and strains with the allowable values, and predict the mi:nimum 
load increment at which the next ply fails. 

8. Calculate the laminate load at which the next ply fails by adding the 
load increment obtained in step 7 to the load at which the previous ply 
failed. Also obtain stresses and strains at this ply failure. 

9. Repeat steps 4-8 until the last ply fails, and obtain the laminate failure 
load. 

A flowchart for the laminate strength analysis is given in Fig. 6-22. 
The laminate stress and strength analyses have been illustrated through 

several numerical example problems in this chapter. It is realized that the 
calculations are tedious and time-consuming. In some cases, even rounding 
off of numbers in the intermediate steps can lead to considerable errors in 
the final results. Such will be the case in the calculation of hygrothermal 
stresses. Therefore, great care should be exercised in such calculations for 
accurate results. 

It is apparent from the preceding discussion that laminate analysis calcu
lations should be carried out with the help of computers for accurate results. 
There are two types of software programs available for the calculations. The 
first type of software consists of essentially mathematical tools to carry out 
general calculations. MATLAB and Mathcad are two such software programs. 
Calculations such as matrix inversions and multiplications and obtaining nu
merical values using given formulas can be carried out easily using these 
tools. These software programs are easy to use and relatively inexpensive. 
Their use improves accuracy of results and minimizes the probability of an 
error. 

The second type of software consists of commercial programs/codes to 
carry out complete structural analysis. Nlist of commercial software programs 
is given in Appendix 5. These software progra~s also '1ave several other 
features such as elastic properties and strengths of many commercial materials 
stored in memory, flexibility regarding the use of a failure theory, iterative 
procedure for design analysis and strength calculations, hygrothermal stress 
calculations, finite-element analysis, and graphics. These programs require 
greater training in their application 
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Laminate 
construction 

INPUT 

Laminae elastic 
conslants 

Laminae stress analysis 
for unit load (Fig. 6.21) 

Compare stresses with 
strengths and predict 
load at first ply failure 

Calculate stresses and 
strains at FPF 

Modify [A}, {BJ, and [OJ 
matrices with [OJ = O 
for the failed ply 

Calculate incremental strains A£' 
and Ak for unit incremental load 

Calculate incremental strains 
and stresses in the laminae, A£, Ao 

Obtain new stresses: Add 
incremental stresses to those 
at previous ply failure 

Compare stresses with strengths 
and predict load at the next · 
ply faHure 

I , 

Calculate stresses, strains, ll.nd load 
at the ply failure 

Unfailed plies All plies unfailed 

Laminae strengths 

Figure 6-22. Flowchart for laminate strength analysis. 

For learning purpose, it is recommended that the calculations be carrie, 
out by interactively using mathematical tools (e.g., MATLAB and Mathcad! 
This provides greater appreciation and understanding of the analysis proce 
dure, properties and behavior of laminae in different dil;ections, failure mech 
anisms, etc. Several exercise problems included at the end of this chapte 
require lengthy calculations and are candidates for the use of the mathematic, 
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tools. On the other hand commercial programs are best used for design ap
plications that may require iterative analysis. 

EXERCISE PROBLEMS 

6.1. Determine the extensional, coupling, and bending stiffness matrices of 
a bimetallic strip made of 5-mm-thick layers of steel and aluminum. 
Discuss the significance of the coupling matrix. 

6.2. An angle-ply laminate [ ± 8]5 is subjected to a uniaxial stress er x0· Show 
that 
(a) The laminae stresses along longitudinal and transverse directions 

are 

err( 8) = crT( - 8) = er .x0 sin2 8 - 2 T,.v sin 8 cos 8 

where T .n is the shear stress induced in the laminae. (Notice that 
T" is statically indeterminant.) 

(b) The laminae strains are 

8 (8) = 8 (- 8) = 8° cos2 8 + 8° sin2 8 L L X y 

8 (8) = 8 (- 8) = 8° sin2 8 + e0 cos2 8 T T X y 

:YLT(8) = -yLT(-8) = 2(8~ - 8~) sin 8 COS 8 

where 8_~ and 8~ are the laminate midplane strains. 

6.3. Obtain stresses and strains in the longitudinal and transverse directions 
in Exercise Problem 6.2 for 8 = 45°, Discuss the importance of these 
results with regard to the possibility of using tbe [ ±45]5 laminate to 
evaluate the lamina fa~plane shear properties. (Note: Results of this 
problem will be used in Chap. 1'0.) 

6.4. Show that a balanced cross-ply laminate (with equal number of iden
tical plies in the 0° and 90° directions) is not a quasi-isotropic laminate. 

\ 
6.5. Show that a laminate constructed by placing an equal numbet1 of iden-

tical plies at O°, +60°, and -60° is quasi-isotropic. 

6.6. Show that a laminate constructed by placing an equal number of iden
tical plies at 0°, 45°, -45°, and 90° is quasi-isotropic. 
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6.7. (a) Show that the apparent elastic moduli, shear modulus, and Poisson 
ratios of an orthotropic symmetric laminate (A 16 = A 26 = 0) are 

G = A66 
X)' t 

where t is the laminate thickness. (Hint: Follow the procedure 
adopted in Sec. 5.3.7.) 

(b) From the results obtained in part (a), derive the expressions for 
elastic modulus, shear modulus, and Poisson ratio of a quasi
isotropic laminate. 

6.8. Repeat the analysis in Example 6-5 for quasi-isotropic laminate [0/ 
±60]. 

6.9. Repeat the analysis in Example 6-5 for quasi-isotropic laminate [0/ 
± 30/ ± 60/90]. 

*6.10. A balanced cross-ply laminate possessing midplane symmetry is made 
up of laminae having the following properties: 

EL= 15 GPa GLT = 3 GPa 

ET= 6 GPa VLT = 0.5 

The laminate is subjected to a normal axial stress of 15 MPa and a 
shear stress of 1.0 MPa. Calculate the normal and shear stresses in the 
0° and 90° plies. 

*6.11. The cross-ply laminate considered in Exercise Problem 6.10 is sub
jected to a normal stress of 30 MPa at 45° to the fibers in .the pl,ies. 

*The problems marked with an asterisk require lengthy calculations and should be assignee 
selectively only to students who have access to personal computers and the appropriate software 
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Calculate the normal and shear stresses in the plies in the directions 
parallel and perpendicular to the applied stress. 

*6.12. Two laminates have ply orientations [45/0]5 and [45/0/-45], where 
each ply is 4 mm thick and has the following stiffness matrix referred 
to the longitudinal and transverse axes: 

[
30 1 OJ 

[Q] = 1 3 0 GPa 
0 0 1 

If N, = N, = 4000 N/mm, Nn = 0, Mx = 25,000 N · mm/mm, and 
M, = M.n· = 0, calculate the midplane strains, plate curvatures, and 
sti·esses in the laminae. 

6.13. Derive Eq. (6.50) by comparing Eqs. (6.48) and (6.49). 

6.14. A symmetric cross-ply laminate has seven plies, of which four have 
fibers parallel to the applied load. All plies have the following identical 
properties: 

EL= 40 GPa Er= 8.5 GPa 

GLT = 4.2 GPa VLT = 0.26 

ELU = 2.75% Eru = 0.38% 

Calculate the primary and secondary moduli, composite stress at the 
knee, and effective modulus at 1 % composite strain. Plot th~tress
strain curve by assuming (a) laminate construction [0/90/0/90]5, (b) 
laminate construction [(0)2 / (90V (0)2] and the testing machine main
taining a constant loading rate, and (c) laminate construction as in (b) 
but the test is performed under conditions of controlled strain rate. 

*6.15. Calculate the residual stresses in the cross-ply laminate considered in 
Exercise Problem 6.10 that is fabricated at 125°C and cooled to 25°C. 
Given 

aL = 7.0 X 10-6 /°C and 

how will the residual stresses be affected by interchanging locations 
of the 0° and 90° plies? 

*6.16. Repeat Exercise Problem 6.15 for a balanced cross-ply laminate that 
does not possess midplane symmetry but has all the 0° plies placed 
above the midplane and all 90° plies below it. Properties of the con
stituent laminae are same as given in Exercise Problems 6.10 and 6.15 
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*6.17. Calculate residual stresses in a three-ply quasiisotropic laminate [60/ 
0/-60]. The laminae properties, fabrication temperatures, and so on 
are the same as those given in Exercise Problems 6.10 and 6.15. 

6.18. The stress analysis of a filament-wound cylindrical pressure vessel can 
be carried out using laminate analysis. An angle-ply laminate as
sumption is quite appropriate for the analysis of a symmetric helically 
wound cylinder that has fibers oriented at equal angles on either side 
of the cylinder axis. The analysis procedure will be similar to tha1 
used for Exercise 6.2. However, design analyses of ~lament-wounc 
pressure vessels and pipes often are carried out by assuming that ead 
layer carries load in the longitudinal direction only. That is 

(TL 'F 0 

This greatly simplifies the analysis. Such an analysis is called the 
netting analysis. 
(a) A filament-wound cylinder is represented by a [ ± 0]5 laminate 

where e is the angle the fibers make with the cylinder axis. Usin~ 
the netting analysis, show that the hoop stress in the cylinder ii 
o-L sin2 e and that the axial stress is o-L cos2 e. 

(b) Calculate the resultant shear stress in the axial and circumferentia 
direction. 

(c) If this cylinder is a thin-walled, closed-end pressure vessel, wha1 
is the optimal winding angle e? 

*6.19. An unsymmetric cross-ply laminate [0/9041z, which is originally ir 
the form of a flat plate, is bent and glued at the seam to form a tube 
of 5 cm radius such that the outermost ply has fibers in the hooJ 
direction. Calculate the ply stresses and strains when the tube is sub
jected to a torque of 0.5 N · m. Assume that each lamina is 0.125 mrr 
thick and has the following properties: 

EL= 138 GPa GLT = 7.1 GPa 

ET= 8.96 GPa VLT = 0.3 

(Hint: Use the partially inverted form of the stiffness matrix to obtair 
midplane strains.) 

6.20. A [0/90] asymmetric laminate of material AS/3501 graphite-epox~ 
is cured at 125°C. Assume that both plies are equal in thickness anc 
have the following properties: 
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EL = 138.0 GPa 

Er= 8.96 GPa 

VLT = 0.30 

GLT = 7.10 GPa 

aT = 28.10 X 10-6 /°C 

Calculate the laminate curvatures when it is cooled to room temper
ature (25°C). Sketch the curved shape of the laminate. Also discuss 
how the shape would appear if the thickness-to-width ratio is small 
(i.e., the laminate is thin). 

REFERENCES 

1. J. C. Halpin, Primer on Composite Materials: Analysis, Technomic, Lancaster, PA, 
1984. 

2. H. T. Hahn and S. W. Tsai, "On the Behavior of Composite Laminates after Initial 
Failure," J. Compos. Mater., 8(3), 288 (1974). 

3. S. C. Chou, 0. Oringer, and J. H. Rainey, "Post-Failure Behavior of Laminates: 
I-No Stress Concentration," J. Compos. Mater., 10(4), 371 (1976). 

4. S. C. Chou, 0. Oringer, and J. H. Rainey, "P_ost-Failure Behavior of Laminates: 
II-Stress Concentration," J. Compos. Mater., 11(1), 71 (1977). 

5. H. T. Hahn and N. J. Pagano, "Curing Stresses in Composite Laminates," J. Com
pos. Mater., 9(1), 91 (1975). 

6. H. T. Hahn, "Residual Stresses irt Rolymer Matrix Composite Laminates," J. Com
pos. Mater., 10(4), 266 (1976). 

7. R. B. Pipes, J. R. Vinson, and T. W. Chou, "On the Hygrothermal Response of 
Laminated Composite Systems," J. Compos. Mater., 10, 129 (1976). 



NALYSIS OF LAMINATED 
PL ES AND BEAMS 

7.1 INTRODl:JCTION 

The classical lamination theory (CLT) was developed in Chap. 6 for the anal 
ysis of laminated composites. Equations were derived to obtain strains am 
stresses at ev~ry point in the laminate from the knowledge of midplane strain 
and plate curvatures. Constitutive equations for the laminated composites re 
late resultant forces and moments to the laminate midplane strains and plat, 
curvatures through the synthesized stiffness matrix. Analysis with CLT ca1 
be used to calculate stresses and strains for known resultant forces and mo 
ments. For real structures, this analysis can be used only when the laminat 
is subj~cted to constant in-plane forces and moments in the laminate plane 
Howev~r. practical laminates are subjected to transverse loads (loads perpen 
dicular. to the laminate plane) that produce variation in moments. The analysi 
procedttres developed in Chap. 6 cannot consider this variation in moment! 
Developments in this chapter extend the analysis capabilities using plate the 
ory. 

The plate theory for isotropic materials and its application to various prol: 
lems are well established [1,2]. The basic governing equations (i.e., the equi 
librium equations) for the laminate plate theory are the same as those for th 
isotropic plate theory when written in terms of the resultant forces and me 
ments. However, differences arise whe,i the equations ar~ written in terms c 
midplane displacements. Owing to the cQmplex constitutive equations for th 
laminated composites, the laminated-plaj:e governing equations also becom 
complex. Consequently, methods for Qolving practical problems of laminate 
composites become more involved [3-'-10]. 

In this chapter, equilibrium equations for· plates (isotropic or anisotropi 
material) will be derived first in terms of force and moment resultants. The~ 
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equations then will be expressed in terms of midplane displacements for a 
laminated plate. Application of this laminated-plate theory will be illustrated 
through bending, buckling, and free-vibration problems. Shear deformation 
theories for moderately thick plates are discussed in one section. The plate 
theory is simplified in the last section for application to laminated-beam prob
lems. Example problems are provided throughout the chapter. 

7.2 GOVERNING EQUATIONS FOR PLATES 

7 .2.1 Equilibrium Equations 

Consider a flat plate of thickness h subjected to a distributed load p(x, y), as 
shown in Fig. 7-1. The coordinate plane xy is located at the midplane of the 
plate. The equilibrium equations of the plate are derived by considering equi
librium of a differential element shown in Fig. 7-2. The in-plane force resul
tants (N_,, N,, and NxJ on the element are shown in Fig 7-2a, and the moment 
resultants (Mx, My, and M,) and the shear force resultants (Rx,• R.,z) are shown 
in Fig. 7-2b. The in-plane force and moment resultants were defined by Eqs. 
(6.12) and (6.13), respectively. 

It may be recalled that out-of-plane shear stresses r,2 and r,, were neglected 
in the analysis developed in Chap. 6. However, Txz and Ty: must be considered 
here to balance the applied transverse load p(x, y) on the differential element. 
Therefore, the shear-force resultants R_,z and Ryz are defined in a manner sim
ilar to the definition of force resultants as follows: 

h/2 

Rxz = f T<Z dz 
-h/2 

h/2 

R.v, = f r,, dz 
-h/2 

(7.1) 

(7.2) 

For equilibrium, resultant forces and moments are zero. Therefore, for 
equilibrium in the x direction, 

( 
aNX ) ( aN xy ) --N. dy + Nx + - dx dy - Nx, dx + NX). + -dy dx - 0 

. ~ . ~ 

which reduces to 
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~-x 

y z p(x,y) 

h 

Figure 7-1. A flat plate subjected to transverse load. 

Equation (7.3) is the first equilibrium equation. The second equilibrium equa· 
tion can be obtained similarly by considering equilibrium in the y direction 
It is given by 

aN_,y aNY 
-+-=O 

ax ay 
(7.4; 

For force equilibrium in the z direction, 

( ~ ) ( ~ ) -Rx. dy + R,. + - dx dy - R> .. dx + R> .. + - dy dx + p dx dy 
- · - ax • - ay 

=0 

which reduces to 

aRxz aRyz o -+-+p= 
ax ay 

(7.5) 

Equations (7.3)-(7.5) are the equations for force equilibrium in the x, y, and 
z directions. 

For equilibrium, resultant moment about any axis is also zero. By summing 
the moments about the x axis, we get 
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Ny 

Nxy 
I 

dx 
lil>x 

N,._.. ....... N +aN,dx 
X dX 

dNxy 

I dNxy 
Nxy+axdx 

,I N,v+aydy 

y 
N + aNv dy 

v ay (a) 

(b) 

Figure 7-2. A differential element with (a) in-plane force resultants and (b) moment resultants, 
shear force resultants, and applied transverse forces. 

When higher-order terms are neglected, this equation simplifies to 
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aM_"' aM,. 
--·+-·-R .. =O ax ay >· 

(7.6 

Similarly, the summation of moments about the y axis gives 

aM aM,.-
_x + -·· - R. = O ax ay Xe 

(7.7 

Substitution of Eqs. (7.6) and (7.7) in Eq. (7.5) gives 

(7.8 

Equations (7.3), (7.4), and (7.8) represent three equations of equilibrium fo 
a plate subjected to transverse loading. These equations are valid for isotropi, 
as well as anisotropic or laminated composite plates. 

7.2.2 Equilibrium Equations in Terms of Displacements 

The equilibrium equations [Eqs. (7.3), (7.4) and (7.8)] also can be written ii 
terms of three midplane displacements u0 , v0 , and w0 , using constitutive re 
lations. Since the constitutive relations for plates are material-dependent, th1 
equilibrium equations in terms of displacements will be different for differen 
materials. Equations for the laminated composites are derived in the followinJ 
paragraphs. 

The constitutive equations for a general laminated composite were derive, 
in Chap. 6. Substitution of the constitutive equations [Eqs. (6.18) and (6.19) 
into Eqs. (7.3), (7.4), and (7.8) and rearranging the terms give the followinJ 
equilibrium equations in terms of the midplane displacements u0, v0 , and We 

a2u a2u a2u a2v a2v 
All -f + 2A16 --

0 + A66 -f + A16 -f + (A12 + A66) --0 

ax axay ay ax axay 
a2v a3w a\v a3w 

+ A26 -f - Bll _ _,° - 3B16 ~ - (B 12 + 2B66) __.; (7.9 ay a.,t· ax ay axay 

- B a3wo = 0 
26 ay3 

a2uo a2uo a2uo a2vo a2vo 
A16 --2 + (A12 + A66) -- + A26 --2 + A66 --2 + 2A26 --ax axay ay ax axay 

a2v a3w a3w a3w 
+ A22 -f - B16 _ _,° - (B12 + 2B66) ~ - 3B26--% (7.10 ay a.,t· ax ay axay 

- B a3wo = 0 
22 ay3 



7.2 GOVERNING EQUATIONS FOR PLATES 287 

a4w a4w a4w a4w 
D11 .} + 4D,6 ~ + 2(Dp + 2D66) ~ + 4D26 ----;-

~ · ~~ - ~~ ~~ 

a4wo a3uo a3uo a3uo + D22 -4- - B11 --3 - 3B,6 ~ - (B,2 + 2B66) -. --2 
ay ax ax ay axay (7.11) 

a3u a3v a3v 
- B26 --f - B, 6 _3° - (Bp + 2B66) ~ 

ay ax - ax ay 

- 3B a3vo - B a3vo -
26 axay2 22 ay3 - P 

Equations (7.9)-(7.11) are the equilibrium equations for a laminated plate 
with any stacking sequence. Solution to these differential equations has to be 
obtained for problems involving a general laminate. A complete solution of 
the problem also will satisfy the boundary conditions. Closed-form solutions 
for these equations with arbitrary boundary conditions are not possible. How
ever, closed-form solutions can be obtained for certain laminates whose con
stitutive relations exhibit symmetry ·conditions that permit simplification of 
the equilibrium equations. Two such special cases are discussed below. 

Specially orthotropic laminates These are the laminates that behave like 
a single layer of an orthotropic material. Their constitutive equations 
satisfy the following conditions: 

A,6 = A26 = 0 

Bij = 0 

D,6 = D26 = 0 

(7.12) 

Examples of specially orthotropic laminates are the unidirectional lam
inates with all the plies in 0° or 90° direction and symmetric cross-ply 
laminates. Incorporation of Eq. (7.12) into Eqs.-(7.9)-(7.11) simplifies 
the equilibrium equations for specially orthotropic laminates as follows: 

(7.13) 

(7.14) 

(7.15) 
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Isotropic plates Constitutive relations of an isotropic plate satisfy the fo{. 
lowing conditions and can be written in terms. of the modulus (E), Pois 
son's ratio (v), and the plate thickness (h) as: 

A = (1 v)A 
66 2 

A16 = A26 = 0 

Bij = 0 

Eh3 

D11 = D22 = 12(1 - v2) = D 

D D D 
= (1 - v)D 

12 = V 66 2 

D16 = D26 = 0 

(7.16 

Incorporation of these conditions into Eqs. (7 .13 )-(7 .15) simplifies th1 
equilibrium equations for isotropic plates as follows: 

a2
uo + (1 - v) a2

uo + (1 + v) a2
vo = 0 

ax2 2 ay2 2 axay 

(1 + v) a2u0 + (1 - v) iJ2v0 + a2v0 = 0 
2 axay 2 ax2 ay2 

o4
Wo + 2 B

4
Wo + B

4
Wo = p 

ax4 ax2ay2 ay4 D 

(7.17 

(7.18 

(7.19 

It may be pointed out here that in both the special cases just consid 
ered, there is no coupling between bending and stretching becaus1 
Bij = 0. Therefore, in these cases, bending problems and stretchini 
problems (problems involving in-plane loads only, sometimes calle< 
membrane problems) can be solved separately and the solutions super 
imposed. 

7.3 APPLICATION OF PLATE THEORY 

7 .3.1 Bending 

It was pointed out earlier that for a general laminate, bending and stretchinJ 
are coupled as indicated by the governing equations. Thus bending problem 
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cannot be isolated for general laminates. However, bending of specially or
thotropic laminates is governed by Eq. (7 .15). Methods have been developed 
to obtain solutions of practical bending problems of such laminates. One such 
problem is discussed in the following paragraphs, namely, bending of a spe
cially orthotropic plate with simply supported edges. 

Consider a specially orthotropic, rectangular plate subjected to a transverse 
load p(x, y), as shown in Fig. 7-3. The plate edges are simply supported so 
that the transverse displacements at the edges and resultant moments about 
each edge are zero. These edge conditions, mathematically expressed as fol
lows, are the boundary conditions: 

On edge AD (x = 0) 

Wo(O, y) = M/0, y) = 0 (7.20) 

On edge BC (x = a) 

Wo(a, y) = M,(a, y) = 0 (7.21) 

On edge AB (y = 0) 

Wo(x, 0) = M/x, 0) = 0 (7.22) 

On edge CD (y = b) 

w0(x, b) = M/x, b) = 0 (7.23) 

In order to solve this problem, it will be convenient to write the resultant 
moments in terms of the displacement w0(x, y), using Eq. (6.19), as follows: 

Ai.-~~~-,--.....,...a~~~~~-r 
p(X, y) ----~ X 

b 

I 
y 

z 
Figure 7-3. Rectangular plate geometry for bending problem. 
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-D a2wo - D a2wo 
M, = 11 ax2 12 ay2 (7.24 

(7.25 

A solution to the problem requires obtaining a function w0(x, y) such tha 
it satisfies the governing Eq. (7.15) and the preceding boundary conditiom 
[Eqs. (7.20)-(7.23)]. A closed-bound solution to the problem is not possible 
A series solution can be obtained, however, using the well-known Navier'i 
approach [1,2]. For this purpose, the displacement w0(x, y) and the appliec 
load p(x, y) are represented by double Fourier sine series. The coefficients fo1 
the series representing load (called load coefficients) are related to the appliec 
load, whereas the displacement coefficients are obtained such that the seriei 
satisfies the governing equation [Eq. (7.15)]. A solution of the governinf 
equation that also satisfies the preceding boundary conditions is given by 

( ) ~ ~ . (m1Tx) . (1l7TY) w0 x, y = L.., L.., w11111 sin -- sm -b 
m=l n=l a 

(7.26: 

where 1v,,,
11 

are the displacement coefficients to be determined, and m and 1; 

are positive integers. The transverse load is expressed by a similar series as 

, . , = ~ ~ · (,n 7TX) . (n 7TY) 
p~x, )) ,:f;:t ,;2i p 11"' sm a sm b (7.27: 

where 

a I, 

4 J J . (m7TX) . (n1Ty) p 11111 = ab p(x, y) sm -a- sm b dx dy 
0 0 

0.2s: 

Substitution of Eqs. (7.26) and (7.27) in Eq. (7.15) and comparison of coef
ficients on the two sides give the following displacement coefficients: 

(7.29: 

Substitution of Eq. (7.29) in Eq. (7.26) gives the displacement function: 
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Pmn sin -a- sm b 

Wo(X, y) = :Z-,: :Z-,: [ ( )4 ( )2( )2 ( )4] m=l 11=! 7T4 Du : + 2(D12 + 2D66) ~ ~ + D22 ~ 

. (m r.x) . (n r.y) 

(7.30) 

The transverse deflection w0 at any point (x, y) can be calculated numerically 
by evaluating a sufficient number of terms of the series [Eq. (7.30)]. 

The load coefficients p 11111 can be found for a given load distribution p(x, y) 
using Eq. (7.28). It can be shown easily that for a uniformly distributed load 
[p(x, y) = p0 ], the load coefficients are given by 

where m and n are odd 
(7.31) 

other cases 

Substitution of Eq. (7.31) in Eq. (7.30) gives the transverse deflection of a 
specially orthotropic, simply supported rectangular plate subjected to a uni
formly distributed load as follows: 

16p 
wo(x, y) = -f :Z-,: :Z-.: 7T m=l,3, ... n=l,3, ... 

. (mr.x) . (nr.y) sm -- sm --
a b 

(7.32) 

For an isotropic plate, Eq. (7.32) simplifies to 

sin (,_n_'iTX_) sin (-n_r._y) 
16 "' "' a b Po :Z-,: :Z-,: . 

Wo(X, y) = r.6D m=l,3, ... n=l,3, ... -m-,{~(-~-)-2_+_(-~-)-2]-2 (7.33) 

Example 7-1: A rectangular plate of length 0.5 m, width 0.25 m, and 
thickness 0.005 m, simply supported at all edges, carries a uniformly dis
tributed load p 0 = 10 N/m2

• Determine the maximum displacement and 
stresses in the plate assuming that the plate has a symmetric cross-ply 
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[0/90], lay-up, and is made of the AS4/3501-6 graphite-epoxy laminae 
considered in Example 5-3. 

Elements of the lamina stiffness matrix were calculated in Example 5-3 as 

Q11 = 148.95 GPa 

Q22 = 10.57 GPa 

Q12 = 3.,17 GPa 

Q66 = 5.61 GPa 

The bending stiffness coefficients are calculated using Eq. (6.20) as fol
lows: 

D 11 = 1371.4 N · m 

D 22 = 290.26 N · m 

D 12 = 33.023 N · m 

D66 = 58.44 N·m 

Plate deflections are calculated from Eq. (7.32) by substituting appropriate 
values of x and y and evaluating a sufficient number of terms in the series. 
Since the maximum deflection occurs at the center of the plate, where x 
= a/2 and y = b/2, the maximum deflection is given by the following 
seriesi 

_ _
6 

"' "' (- l)l-l(m+n)/2] 

(Wo)max - 8.67 X 10 L L 4 4 2 2 
,n=! n=I mn(l.14m + 3.87n + m n) 

Terms of the series are evaluated by substituting values of m and n in 
increasing order. It will be noted that the numerical value of terms de
creases as the values of m and n increase. Deflection is obtained by taking 
the sum of a sufficient number of terms in the series such that considering 
additional terms does not change the numerilcal result for the desired ac
curacy. In other words, the result converges to a number. To illustrate this 
point, deflection values have been obtained by taking the sum of different 
numbers of terms. The results are given'in Table 7-1. Deflection is the 
summation of terms, with the ending term corresponding to the values of 
m and n shown. 'For example deflection predfded by only the first term 
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Table 7-1 Maximum deflection (w0 , 10-5 m) predicted by the Navier series solution 

min 3 5 7 9 11 

1 1.4402 1.4313 1.4320 1.4319 1.4319 1.4319 
3 1.4130 1.4060 1.4065 1.4064 1.4065 1.4065 
5 1.4153 1.4079 1.4085 1.4084 1.4084 1.4084 
7 1.4148 1.4076 1.4081 1.4080 1.4080 1.4080 
9 1.4150 1.4077 1.4082 1.4081 1.4081 1.4081 

11 1.4149 1.4076 1.4082 1.4081 1.4081 1.4081 

(m = 1, n = 1) is 1.4402 X 10-6 m, and that predicted by the series 
containing terms up to m = 5 and n = 5 is 1.4085 x 1 o-6 m. This table 
shows that the deflection converges to 1.4081 x 1 o-6 when all the terms 
up to m = 11 and n = 11 are considered. It may be pointed out that a 
term vanishes if either m or n is an even number. The plate defections on 
the plane y = b/2 are plotted in Fig. 7-4, against distance from the plate 
edge. The maximum deflection occurs at the center of the plate. 

Strains are obtained by substituting Eq. (7.32) in Eq. (6.5). It may be 
noted that the strains are also given as a series whose values can be ob
tained by following the procedure just explained. Stresses then can be 
obtained using Eq. (6.9). Bending stresses crx and er,. have been calculated 
on the plane y = b/2. The maximum stress across the laminate thickness 
occurs at the top and bottom of the laminate. The maximum stresses crx 
and er,. are plotted against the distance from the edge in Fig. 7-5. The 
absolute maximum stresses (J'x and cry occur at the center of the plate on 
the top surface, where x = a/2, y = b/2, and z = -h/2. The values are 

E 

i 
C: 
0 u 
Q) 

'li3 
Cl 

1.5 X 10-5 

.._Plate 
edge 

0.5 

0 0.05 0.1 0.15 

Distance from edge x, m 

Plate 
center 
line 

0.2 0.25 

Figure 7-4. Deflection of a simply supported plate subjected to uniformly distributed load. 
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2 X 104 

Plate 
edge 

0.05 0.1 0.15 

Distance from edge x, m 

Plate 
center 
line 

0.2 0.25 

Figure 7-5. Bending stresses (ux and cry) in a simply supported rectangular plate subjected to 
uniformly distributed load. 

a:, = 19,915 Pa 

CT, = 6,058 Pa 

In-plane shear stress r,, at this point is zero. 

7.3.1.1 Bending of General Laminates Plate-governing equations [Eqs. 
(7.9)-(7.11)], derived in Sec. 7.2.2, are applicable to laminated plates with 
any stacking sequence. Their application, however, has been illustrated in this 
section for specially orthotropic laminates to keep the mathematical devel
opment and discussion simple. It was pointed out that a closed-form solution 
of Eqs. (7 .9)-(7 .11) for general laminates is not possible. Therefore, problems 
involving general laminates are solved by approximate numerical mctthods 
such as finite-element analysis (FEA). A detailed discussion on this technique 
is beyond the scope of this book. Numerical results for general laminates 
obtained through FEA are presented in the following paragraphs for a com
parative discussion. 

Analyses have been canied out on square plates of si'rles 0.5 m, thickness 
5 mm, and subjected to a uniformly distributed load p0 = 10 N/m2

• Three 
laminates of AS4/3501-6 graphite-epoxy laminae (Example 7-1), with lay
ups [0/90],, [±45Js, and [30/50] have been analyzed. Displacement and 
stresses CTx, CTy, and Txy at the center of the plate have been obtained. For 
comparison, results on an a1uminum plate (E = 70 GPa and v = 0.33) with 
the same dimensions also have been obtained. In each case, three support 
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conditions have been considered. These are (1) all four edges simply sup
ported (S), (2) all four edges clamped (C), and (3) two opposite edges simply 
supported and the other two clamped. Analyses were performed using a com
mercial FEA software called ABAQUS. 

Numerical results of the analyses are gi'ven in Table 7-2. For each material, 
deflection and stresses are the highest when all edges are simply supported. 
They are the lowest when all edges are clamped. As the plate support con
ditions change, the stresses and deflection change in different proportions for 
different materials. Thus analysis of one lay-up cannot be used to predict 
results of a different lay-up. Similarly, analysis of an isotropic plate should 
not be used to understand the behavior of composite laminates. It also may 
be pointed out tliat shear stress ( rx) develops in the unsymmetric laminate 
[30/50] owing to coupling for all three boundary conditions. No shear stress 
develops under any of the boundary conditions in the aluminum plate or in 
the cross-ply laminate when fibers are parallel to the edges. However, in a 
[ ± 45),. laminate, which is a cross-ply laminate with fibers, oriented at ± 45° 
to the plate edges, a shear stress develops when two opposite.edges are simply 
supported and the other two are clamped. However, no shear stress develops 
for the other two support conditions. 

7 .3.2 Buckling 

In-plane loads on a flat symmetric laminate cause in-plane displacements (u0 

and v0 ) but no out-of-plane displacement (w0). However, it has been known 
that in-plane compressive loads, when high enough, cause out-of-plane de-

Table 7-2 Center deflection and stresses in square plates with different support 
conditions 

Material/ Center 
Stress, Pa 

Support Laminate Deflection 
Conditions Lay-up Wo oo-6 m) (]'x <Ty Txy 

Aluminum 3.11 29,420 29,420 0 s [0/90], 5.18 74,910 6,140 0 sOs [±45], 3.74 42,210 5,230 0 
[30/50] 5.26 60,830 8,850 -350 s 

Aluminum 0.97 14,080 14,080 0 
C [0/90), 1.17 27,580 1,980 0 cOc [±45], 1.41 23,120 2,970 0 

[30/50] 1.89 27,610 4,700 490 
C 

Aluminum 1.47 20,260 15,170 0 
s [0/90), 1.30 30,970 1,340 0 cOc [±45], 2.04 28,770 3,600 -730 

(30/50] 2.48 35,300 4,040 -380 s 
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flections that may be excessive and lead to failure. This is called buckling. 
The load at which excessive out-of-plane deflections occur is called the buck
ling load. The displacements at the onset of buckling exhibit a characteristic 
pattern called the buckling mode. Buckling of plates is of great interest in the 
design of structures. It is discussed in this section. 

In buckling, out-of-plane displacements are caused by in-plane loads. 
Buckling cannot be predicted through the governing equation [Eq. (7.11)] 
because interaction between in-plane loads and out-of-plane displacements 
was suppressed in its derivation. It was assumed that the out-of-plane dis
placements are small such that the resultant forces Nx, N_,, and N_,y act in their 
original direction of action in the .xy plane and do not have a component in 
the z direction. Thus the possibility of these forces producing out-of-plane 
deflections is not considered. Therefore, to study buckling, the governing 
equation should be modified by taking into account the out-of-plane com
ponent (in the z direction) of the resultant forces (Nx, Ny, and N_,_J. Such an 
equation can be derived by assuming the differential element of Fig. 7-la to 
be oriented in a general out-of-plane position such that the in-plane forces 
Nx, Ny, and Nxy contribute a component in the z direction. It can be shown 
that equilibrium of such a differential element in the z direction gives the 
following equation (details of the derivation can be found in ref. 1): 

aRXZ + aRYZ - N azwo - 2N . azwo - N azwo 
x 2 x> y---z+p=O ax ay ax · axay ay 

(7.34) 

Substitution of Eqs. (7.6) and (7.7) into Eq. (7.34) gives 

(7.35) 

Resultant moments Mx, My, and Mxy in Eq. (7.35) can be written in terms of 
transverse displacements using constitutive equation [Eq. (6.19)] to obtain 

(7.36) 

Equation (7.36) permits coupling between in-plane.loads and the transverse 
displacements and is therefore an appropriate governing equation to predict 
buckling of specially orthotropic laminates. 

Consider a specially orthotropic, rectangular plate subjected to uniformly 
distributed normal compressive loads Nxo and Nyo along its edges, as shown 
in Fig. 7-6. No shear force (Nx) or transverse load (p) is applied to the plate. 
For this case, resultant forces and transverse load become 
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jll:, X 

y 
z C 

Figure 7-6. A rectangular plate subjected to in-plane loads. 

(7.37) 

Substitution of Eq. (7.37) into Eq. (7.36) gives 

a4w a4w a4w a2wo a2w 
D11 _.40 + 2(D12 + 2D66) -2 o2 + D22 _40 = -Nxo --2 - N,o -;5l ax ax ay ay ax · ay-

(7 .38) 

If the plate is considered simply supported along its four edges, the boundary 
conditions are the same as in bending considered earlier [Eqs. (7.20)-(7.23)). 
Solution to this problem is also obtained by following the method used for 
solving the bending problem. To that end, assume that the displacement 
Wo(X, y) is given by the following double Fourier sine series: 

~ ~ . (m 'Tl'X) . (n 7rY) 
Wo(X, y) = nf::I ,f;:I Wmn Slll -a- Slll b (7.39) 

where m and n are the number of half sine waves along the x and y directions, 
respectively. 

Substitution of Eq. (7.39) into Eq. (7.38) gives 

7r4
wmn[v11(:r + 2(D12 + 2D66) (:;r + D22(~)4] 

= wmn7r2[ Nxo(:r + Nyo(~rJ 
For a nontrivial solution of Eq. (7.40), we have 

(7.40) 
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1r{D11(:r + 2(D12 + 2D66)(;;y + D22(~rJ 

= [Nxo(:r + Nyo(~rJ (7.4 

Equation (7.41) can be used to predict buckling behavior of specially orth 
tropic rectangular plates for different loading conditions. Two special cas, 
are discussed in the following paragraphs. 

Case I: Buckling under Uniaxial Compression If Nxo = N0 and Nyo 
0, Eq. (7.41) simplifies to 

No(m, n) ±> 1r{ D11 ( :)2 + 2(D12 + 2D66) (~ r + D22(~ r (:rJ (7.4: 

Buckling loads can be obtained for any combination of m and n. The critic 
buckling load is thelowest of all the values. It can be seen by inspection th 
.for any value of m, the smallest value of N0 occurs when n = 1. Thus 

The value of N0 for any value of m depends on the bending stiffness ar 
plate aspect ratio alb. The critical load is obtained by numerical calculation 
For a laminated plate with material properties Dul D 22 = 10 and (D 12 + 2D60 
D 22 = 1, Eq. (7.43) reduces to 

A nondimensional buckling load N may be defined as 

N = - 0
- = 10m2 

- + 2 + -:; q_ N b2 [ (b)2 
I ( )

2

] 1r2D22 a m- b 
(7.4'. 

The nondimensional buckling load N is a function of m and the plate aspe 
ratio alb". N is plotted against alb for different values of m in Fig. 7-7. Eac 
value of m corresponds to a particular buckling mode. For example, m = 
corresponds to the plate buckling into a one-half sine wave in the x directio 
and m = 2 corresponds to a full sine wave in the x direction. For the aspe 
ratio corresponding to the intersection of two buckling load curves for t"' 
consecutive m values, the plate can buckle in two different shapes. For e: 
ample, the buckling curves for m = 1 and 2 intersect at alb = 2.5 (see Fi 
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Figure 7-7. Nondimensional buckling load for rectangular plates. 

7-7). Therefore, a plate with alb = 2.5 can buckle as a half 6r a full sine 
wave. The plate with a I b < 2.5 can buckle only as a half sine wave, and that 
with alb > 2.5 as a full sine wave. 

'The critical buckling load for a square plate is obtained by substituting the 
conditions that m = 1 and a = b in Eq. (7.45): 

(7.46) 

It can be shown that the lowest value of the critical buckling load for the 
considered material properties occurs for alb = 1.78 and is given by 

(7.47) 

For an isotropic square plate under uniaxial compression, the buckling load 
can be calculated by substituting the isotropic properties in Eq. (7.43) and 
using m = 1: 

(7.48) 

Recall that N0 has the units of force per unit length. 
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Case II: Buckling of a Square Plate under Biaxial Compression 
Assume that a square plate is subjected to equal compressive loads on its 
edges such that Nxo = N> 0 = N0 . Substitution of these values and a = b in 
Eq. (7.41) and rearranging terms give 

(7.49) 

It can be shown that the critical buckling load occurs when m = 1, provided 
that D 11 2: D 22 • Under these conditions, the buckling load is given by 

(7.50) 

For D 1JD22 = 10 and (D12 + 2D66)/D22 = l, the critical buckling load occurs 
when n = 1 and is given by 

(7.51) 

For an isotropic square plate under biaxial compression, the buckling load 
can be calculated using the isotropic material properties in Eq. (7.49) and is 
given by 

(7.52) 

The critical buckling load occurs when m = n = 1 and is given by 

(7.53) 

Example 7-2: A rectangular plate of width m and thickness 5 mm is 
simply supported at its edges. Determine and plot the buckling loads for 
different plate lengths when the plate is subjected to uniaxial load and 
equal loads in two directions. Assume that the laminate has the same lay
up and properties as given for the plate in Example 7-1. 

Uniaxial buckling load is obtained from Eq. (7.43). By substitution of the 
stiffnesses obtained in Example 7-1 and b = 1 in Eq. (7.43), the uniaxial 
buckling load can be written as 
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N0 is calculated for different values of m and the plate aspect ratio alb and 
is plotted in Fig. 7-8. 

Biaxial buckling load is obtained from Eq. (7.41). Substitution of b 
1, Nox = N0> = N0 , and the stiffness terms in Eq. (7.41) gives 

Biaxial buckling load is calculated from the preceding equation for dif
ferent values of m, n, and alb. The biaxial buckling load is also shown in 
Fig. 7-8. 

7 .3.3 Free Vibrations 

Vibration characteristics of structures are of considerable interest for their 
design and performance. For example, it is necessary to keep natural fre
quencies of structures well separated from their excitation frequencies in order 
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Figure 7-8. Buckling loads for rectangular plates subjected to uniaxial and biaxial compressive 
loads. 
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to avoid resonance. Free vibration of laminated plates is discussed in tr 
section. 

When a structure vibrates, the displacements change with time. Thus ti 
structure is subjected to inertial forces produced as a result of acceleration 
the structure's mass. Governing equations to study vibration characteristi 
take inertia forces into account. Such a governing equation is time-depende 
and is called the equation of motion. The equation of motion for a special 
orthotropic plate can be obtained from Eq. (7 .15) by replacing the transver 
applied load p with the inertia force given below: 

(7.5 

where t is the time, and p0 is the mass per unit area of the plate given by 

(7.5 

where l the mass per unit volume of the kth ply of the laminate. 
Substitution of Eq. (7.54) into Eq. (7.15) gives the following equation 

motion for a specially orthotropic laminate: 

o4w o4w o4w a2w 
D --0 2(D 2D ) --0

- -L D --0 
--

0 
- 0 11 • 4 + P + 66 __ 2 2 ' 22 • 4 + Po 2 -ax - aray , ay at (75 

It may be noted that Wo in Eq. (7.56) will be a function of x, y, and t. Tl 
solution to Eq. (7.56) is obtained by assuming that the time dependence ar 
spatial dependence of w0 can be represented by separate functions. Furtht 
since free vibration of an elastic continuum causes displacements that a 
harmonic in time, w0 can be assumed to be periodic of the form 

Wo(X, y, t) = W(x, y)eiwt (7.5 

where W(x, y) is the mode shape function, w is the frequency of vibratio 
and i = \/-1. Substitution of Eq. (7.57) into Eq. (7.56) gives 

~w ~w ~w 
Lln --::::i"" + 2(D12 + 2D66) - 2- 2 + D 22 - 4 - p0w2W = 0 (7.5 aA· ax ay ay 

For tbe simply supported plate shown in Fig. 7-3, the boundary conditio1 
can be written in terms 6f W(x, y) as follows: 
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On edge AD (x = 0) 

W(O, y) = M/0, y) = 0 (7.59) 

On edge BC (x = a) 

W(a, y) = Mia, y) = 0 (7.60) 

On edge AB (y = 0) 

W(x, 0) = My(-,, 0) = 0 (7 .61) 

On edge CD (y = b) 

W(x, b) = M/x, b) = 0 (7.62) 

A solution of the equation [Eq. (7 .58)) that also satisfies the boundary con
ditions [Eqs. (7.59)-(7.62)] is given ·by 

~ ~ . ('m7iX) . (n1ry) W(x, y) = ..c., ..c., W11111 sm -- sm -b 
m=l n=l a 

(7.63) 

Substitution of Eq. (7.63) into Eq. (7.58) gives an equation for natural fre
quencies w11111 as 

(7.64) 

A natural frequency can be determined for any combination of m and n. The 
lowest natural frequency, called the fundamental frequency, is usually of 
greatest interest from the design point of view. It can be seen from Eq. (7.64) 
that the fundamental frequency occurs when m = n = 1 and is given by 

(7.65) 

The mod~ shape corresponding to the fundamental frequency is given by 

. (7iX) . (1ry) W(x, y) = sm -;; sm b (7.66) 

For an isotropic plate, the tundamental frequency is given by 
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1T2 JD [(b)2 J 
W1 I = b2 VPo ;; + 1 (7.6~ 

Frequencies of vibration for square plates are given in Table 7-3 for fot 
combinations of m and n. The plates are made of a specially orthotropi 
[D1JD22 = 10, (D 12 + 2D66)/D22 = l] and an isotropic [D 11 /D22 = (D 12 · 

2D66)/ D 22 = I] materials. It may be noted that for the isotropic plate, w 12 • 

w21 , but for the specially orthotropic plate considered here, w21 and w12 a1 
different. The specially orthotropic plate has a different set of the four !owe 
natural frequencies than does the isotropic plate. The corresponding moc 
shapes are shown in Fig. 7-9. The dashed lines denote the lines of ze1 
transverse displacements and are called the nodal lines. It may be noted froi 
Fig. 7-9 that the mode shapes for specially orthotropic plate and isotrop 
plate are identical to each other for the first and second natural frequencie 
but they are different for the third and fourth natural frequencies. 

Example 7-3: Determine the first five frequencies for the simply support<: 
rectangular plate considered in Example 7-1. Assume that the materi 
density p = 1800 kg/m3

. 

The natural frequencies are calculated from Eq. (7.64). The following a 
the plate dimensions and stiffnesses (see Example 7-1): 

a= 0.5 m 

b = 0.25 m 

h = 0.005 m 

Table 7-3 Vibration frequencies of a simply supported square plate 

Specially Orthotropic Isotropic 

W = k 1T

2 /Pi:- 1T2 l 
a2 Po w = k-;;_z Po 

Mode m n k m 11 

First 1 3.62 1 I 2.1 
Second I 2 5.86 1 2 5.1 
Third 1 3 10.45 2 1 5.1 
Fourth 2 13.00 2 2 8.1 
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F;~mooe D D 
Second mode [-------] [-------] 

R OJ·!:: Thirdmode D 

Fo,~ mode OJ [--+-J 
(a) Specially orthotropic (b) Isotropic 

Figure 7-9. Vibration modes for simply supported square plates. Dashed lines represent nodal 
lines. (From Whitney [4].) 

D 11 = 1,371.4 N·m 

D22 = 290.26 N · m 

D 12 = 33.02 N ·m 

D66 = 58.44 N·m 

The area density. p0 is obtained as follows: 

Po= p X h = 1800 X 0.005 = 9.0 kg/,m2 

Substitution of numerical values into Eq. (7.64) gives 

w"'" = 455.71 Yl.14nl4 + m2n2 + 3.87n4 
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The first five frequencies are calculated from the preceding equation by 
substituting combinations of m and n that give the lowest frequencies. 
These combinations and frequencies are given in Table 7-4. The mode 
shape corresponding to a natural frequency is obtained from Eq. (7.63). 
The mode shape corresponding to the first natural frequency (or funda
mental frequency) is shown in Fig. 7-10. 

7.4 DEFORMATIONS DUE TO TRANSVERSE SHEAR 

Experimental evidence is available in the literature [11-13] that supports the 
classical approach to laminated-plate analysis presented in Secs. 7 .2 and 
7.3. Numerical results from exact elasticity solutions also agree with the 
laminated-plate theory for thin plates, that is, the plates with high width-to
thickness ratios. However, the results for thick plates (e.g., width-to-thickness 
ratios < 10) significantly differ from those obtained from the classical theory, 
particularly when the in-plane elastic modulus is much higher than the inter
laminar shear modulus, as is commonly the case with composite materials. 
In particular, maximum plate deflections have been shown to be considerably 
larger than those predicted by classical laminated-plate theory. The discrep
ancies are attributed largely to the plate deformations caused by transverse 
shear [14]. Effects of transverse shear are discussed in this section through 
theories that can be applied to moderately thick plates. 

7.4.1 First-Order Shear Deformation Theory 

In the development of the classical lamination theory in Chap. 6 and the 
classical laminated-plate theory in Secs. 7.2 and 7.3, it was assumed that the 
out-of-plane shear strains 'Y.cz and 1\z are zero. This assumption follows from 
the assumption that plane sections originally perpendicular to the plate mid
plane remain perpendicular to the plate midplane after deformation. Equations 
(6.3) and (6.4) for the displacements and Eq. (6.5) for the strains were derived 
from this assumption. These equations obviously show that the shear strains 

Table 7-4 First five natural frequencies of a simply 
supported plate 

wmn 

Mode m 11 (rad/ s) 

First 1 1 1117.8 
Second 2 1 2331.2 
Third l 2 3733.1 
Fourth 2 2 4471.1 
Fifth 3 l 4680.8 
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Figure 7-10. First mode shape of a simply supported plate. 

'Yxz and 'Yyz are zero. Therefore, the assumption concerning plate deformation 
needs to be modified to consider nonzero shear strains 'Yxz and 'Yyz in the 
laminate. · 

A theory called the first-order shear deformation the01y (FSDT) is based 
on the assumption that plane sections originally perpendicular to the plate 
midplane remain plane after deformation, but they do not remain perpendic
ular to the plate midplane. The displacement field based on this assumption 
is obtained by assuming functions representing rotations of the plate sections. 
Following the procedure of Sec. 6.2, the displacement field for the FSDT can 
be obtained as 

u(x, y, z) = u0(x, y) + z</J/x, y) 

v(x, y, z). = v0(x, y) + z</Jy(x, y) 

w(x, y, z) = Wo(X, y) 

(7.68) 

where </J., and </>y are the rotations about the y and x axes, respectively. The 
displacement field gives the following shear strains: 

awo -v-"'+lxz '+'x ax 

awo '}', .. = <p,. + -,- - ay 

(7.69) 

It may be noted that the shear strains 'Yxz and 'Yyz given by Eq. (7.69) are 
constant over the plate thickness. Consequently, this theory predicts uniform 
out-of-plane shear stresses through the thickness of each lamina. This violates 
the condition that the transverse shear stresses rx, and rxz must be zero on the 
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top and bottom surfaces of the plate. This indicates an inaccuracy in the firs 
order shear deformation theory. Equations relating the shear-force resultani 
Rxz and Ry, to the shear strains 'Yxz and 'Yyz can be written as 

(7.7( 

where 

in which Qij are the transformed stiffness coefficients, and K is the she 
correction coefficient to account for the variation in transverse shear stress1 
through the thickness. A value of 5/6 is used commonly for K. 

It can be shown that for the displacement field given by Eq. (7 .68), ti 
plate equilibrium equations i;:i terms of force and moment resultants do n 
change and are given by Eqs. (7.3), (7.4) and (7.8). However, the equilibriu 
equations in terms of displacements will be different because the plate co 
stitutive equations [Eqs. (6.18) and (6.19)] are no longer valid. Constitufr 
equations relating force and moment resultants and the midplane strains ai 

plate curvatures for this displacement field can be derived in a manner simil 
to the derivation of Eqs. (6.18) and (6.19). Development of this theory for 
general laminate is beyond the scope of this book. Development is carri1 
QUt for a specially orthotropic plate in the following paragraphs. 

Constitutive equations for a specially orthotropic plate with a new displac 
ment field [Eq. (7.68)] still satisfy the conditions stated in Eq. (7.12). 
addition, A45 = 0. It can be shown that in view of these conditions, equili 
rium Eqs. (7.5), (7.6), and (7.7) can be written in terms of the displaceme 
field as follows: 

(7.1 

(7.~ 

A _'l'_x + __ o + A _Y + __ o + p(x, Y) = 0 (
a,l,. a2

w ) (a<f> a2
w ) 

55 ax ax2 44 ay ay2 o: 

Eqs. (7.71)-(7.73) are three coupled second-order differential equati< 
with Wo, <f>x, and </>y as the three unknowns. The reader may verify that s1 



7.4 DEFORMATIONS DUE TO TRANSVERSE SHEAR 309 

stitution of <Px = -(awof ax) and <Py = -(aw0 / ay) in these equations will 
reduce them to Eq. (7.15) obtained in CLPT. An exact solution ofEqs. (7.71)
(7.73) cannot be obtained for arbitrary boundary conditions. However, a 
closed-form series solution can be obtained for a simply supported rectangular 
plate, as was done for the classical laminated-plate theory. The solution is 
discussed below. 

7.4. 1. 1 Transverse Shear Deformation Effects in Bending of a Simply 
Supported Rectangular Specially Orthotropic Plate Consider a rectan
gular specially orthotropic plate simply supported on all four edges and sub
jected to a distributed load p(x, y), as shown in Fig. 7-3. Boundary conditions 
for this plate are the same as those for thin plates [Eqs. (7.20)-(7.23)]. The 
solution technique for this problem is the same as that used for the bending 
of thin plates in Sec. 7.3. l. The following double Fourier series are assumed 
to represent w0 and <Px and <Py: 

Wo(X, y) = f f w,1111 sin(m7TX) sin(wbrry) 
m=I n=l G 

(7.74) 

~ ~ (m 7TX) . (wrry) <Px(x, y) = L., L., xmn cos -- sm -b 
m=l n=l a 

(7.75) 

</Jy(x, y) = f f Y11111 sin(m7TX) cos(n1rby) 
m=] n=l a 

(7.76) 

where w,111" xm11 , and Ymn are the series coefficients to be determined. It may 
be noted that these functions satisfy the boundary conditions of zero trans
verse displacement and zero moment resultant on each edge of the plate. 

The applied transverse load p(x, y) also can be expressed as a double 
Fourier sine wave: 

~ ~ . (m7TX) . (n1ry) p(x, y) = !:i f::i p 11111 sm -;;- sm b (7.77) 

where Pmn is given by Eq. (7.28). 
Substitution of Eqs. (7.74)-(7.77) into Eqs. (7.71)-(7.73) gives the follow

ing matrix equati9n: 

(7.78) 

where the coefficients of the [L] matrix are defined as 
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L23 = A44An 

~ 3 = A44A; + A55A! 

and 

m'Tr 
A=

m a 
1l7T 

A"=b 

Solution of Eq. (7.78) gives the following coefficients: 

(7.79) 

(7.80) 

(7.81) 

(7.82) 

where det L is the determinant of the coefficient matrix [LJ. Substitution of 
these coefficients in Eqs. (7.74)-(7.76) gives series representing Wo, 'Px, and 
<Py· Thus the plate curvatures, strains, and plate deflections can be calculated 
numerically. 

Numerical results for a symmetric cross-ply [0/90], simply supported 
square plate subjected to- a sinusoidally distributed load [p = p0 sin{m:/ a) 
sin( 1ryl a)] have been obtained. The following, laminate properties are csed: 

EL= 175 GPa 

GLT = GLT' = 3.5 GPa Gn .. = lA GPa 

The nondimensionalized maximum deflection [w = Wo(E2h
3 I p 0a4 H}3)] is plot

ted against the side-to-thickness ratio in Fig. 7-11. For comparison, the 
maximum deflection predicted by the classical, laminated-plate theory is also 
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Figure 7-11. Effect of transverse shear on center deflection of a symmetric cross-ply [0/90]. 
laminate subjected to sinusoidally distributed transverse load. (From Whitney [14].) 

given. The first-order shear deformation theory predicts significantly higher 
deflections for low side-to-thickness ratios. 

7 .4.2 Higher-Order Shear Deformation Theory 

It was pointed out in the preceding section that the first-order shear defor
mation theory predicts uniform shear stresses r,z and Tyz through the thickness 
of each lamina. This violates the condition that the transverse shear stresses 
rxz and ryz must be zero on the top and bottom surfaces of the plate. A higher
order shear deformation theory has been developed that satisfies this boundary 
condition. The displacement field based on the higher-order shear deformation 
theory is given by [15] 

4 3 ( aw) U(X, y, z) = Uo{X, y) + Z<f>x(X, y) -
3

h2 Z <px + ax 

_ 4 3 ( aw) v(x, y, z) - v0(x, y) + z<f;/x, y) -
3

h2 z </J,. + ay (7.83) 

w(x, y, z) = Wo(X, y) 

The cubic variation of the displacements u and v predicts a quadratic variation 
of the transverse shear. strains and transverse shear stresses through each layer, 
This satisfies the transverse shear-stress boundary condition at the top and 
bottom surfaces of the plate (shear stresses are zero on these surfaces). This 
also eliminates the shear correction coefficient K used in the first-order shear 
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deformation theory. Derivation of the governing equations based on this 
higher-order shear deformation theory and the solution of plate problems is 
beyond the scope of this book. Discussion on the theory can be found in refs 
9 and 15 through 17. 

It is of interest to compare shear deformations and shear stresses predicted 
by the first-order and higher-order shear deformation theories. Consider the 
plate whose results were discussed in Sec. 7.4.1 and plotted in Fig. 7-11. 
Numerical results based on the higher-order shear deformation theory for the 
nondimensional center deflection w = Wo(E2h

3 I p0a4
) of the plate are shown 

in Fig. 7-12. For comparison, the center deflection w predicted by the exact 
three-dimensional elasticity solution, first-order shear deformation theory, and 
classical laminated-plate theory are also shown. It may be observed that com
pared with the exact elasticity solution, smaller deflections are predicted by 
the classical, first-order, and higher-order theories. However, errors in the 
predictions of the first-order and higher-order theories are much smaller than 
those of the classical theory, particularly when the width-to-thickness ratios 
are small. For very thin plates, errors in the predictions of all the theories are 
negligible. 

Results also have been obtained for transverse shear stresses Txz and Tyz for 
this plate. Variations of the nondimensional transverse shear stresses ;:.x, = 
Tx/hlpoa) and Tyz = TY/hlp0a) as predicted by the first-order and higher-order 
theories are compared in Figs. 7-13 and 7-14. It may be noted that the higher
order theory predicts a parabolic transverse shear stress variation through the 
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Figure 7-12. Comparison of center deflection of a symmetric cross-ply [0/90]. laminate pre· 
dieted by different theories. (From Reddy [9].) 
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Figure 7-13. Qomparison of transverse shear stress, Txz predicted by the first-order and higher
order t~eories. (From Reddy [9].) 
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thickness of each lamina, whereas the first-order theory predicts a constan 
transverse shear over a lamina thickness. The higher-order theory satisfies th 
boundary condition that the transverse shear stresses vanish at the top anc 
bottom surfaces of the laminate. The results of the first-order theory do no 
satisfy this condition. 

7.5 ANALYSIS OF LAMINATED BEAMS 

7.5.1 Governing Equations for Laminated Beams 

A beam is a basic structural element. For composite materials, beam-typi 
laboratory specimens are used frequently for determining their properties 
Thus it is of. interest to develop theories to study the behavior of laminate< 
beams. Such beam theories are developed in this section. 

Consider a laminated beam of length L; width b, and thickness h, as show1 
in Fig. 7-15. The laminated-beam governing equations can be obtained di 
rectly from the plate governing equations developed in Sec. 7 .2 through ap 
propriate simplifications based on the beam geometry [5,18]. Development 
in this section are limited to the symmetdc laminates in which Bij = 0. 

Since the beam has a high length-to-width ratio (Lib>> 1), displacement 
and stresses are considered uniform across the width, that is, independent o 
the y coordinate. Therefore, some variables in the governing equations ma: 
be redefined to include the width b for simplification. The resultant force Nt 
resultant moment Mb, resultant shear force Rb, and applied transverse loa, 
p(x) for the beam are defined as follows: 

y 
/ 

Nb= bNX 

Mb= bMX 

Rb= bRXZ 

p(xJ = bp(x, y) 

Figure 7-15. A beam under transverse loading. 

(7.84 
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In the beam analysis, moment resultants My and Mxy are considered zero. 
In view of all the assumptions ~tated here, the following beam equilibrium 
equations in terms of the force and moment resultants are obtained from Eqs. 
(7.5) and (7.7): 

dR 
_1, + p(x) = 0 
dx 

dM1,_R =O 
dx " 

Substitution of Eq. (7.86) into Eq. (7.85) gives 

d 2M ro/ + p(x) = 0 

(7.85) 

(7.86) 

(7.87) 

The beam equilibrium equation in terms of transverse displacement Wo is 
obtained from Eq. (7.11): 

-l4 u W0 
bD11 dx4 = p(x) (7.88) 

Equations (7 .85)-(7 .88) are the governing equations used to predict beam 
behavior. Application of this beam theory is illustrated through the problems 
of bending, buckling, and vibration in the following subsection. 

7 .5.2 Application of Beam Theory 

7.5.2.1 Bending Consider the laminated beam with symmetric lay-up, as 
shown in,Fig. 7-15. The beam carries a uniformly distributed load p(x) = p0 . 

The transverse beam deflection can be obtained by integrating Eq. (7 .88) as 
follows: 

(7.89) 

The four constants of integration C1, C2, C3, and C4 are determined to 
satisfy boundary conditions at the two ends of the beam. Beam curvature (kx), 
strain, and stresses can be obtained by following the procedure outlined in 
Chap~ 6. 

It is important to point out the limitation of the assumption that the trans
verse displacement w0 , is a function of x only and the;inaccuracy produced 
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in the solution. The constitutive equation for bending of the symmetric beam 
(with M> = Mx,- = 0) can be obtained from Eq. (6.21) as 

(7.90) 

It may be written in the inverted form as 

(7.91) 

where the [D*] matrix is the inverse of the [D] matrix in Eq. (7.90). The [D*] 
matrix in Eq. (7.91) is different from that used in Eq. (6.29). 

Equation (7.91) relates the plate curvatures kY and kxy to the resultant mo
ment Mx as follows: 

a2w 
ky = - ayz = Df2M_, (7.92) 

a2w 
kxy = -2 -- = Df6M, 

axay · 
(7.93) 

Thus the deflection w cannot be independent of y. Even in homogeneous 
isotropic beam theory, the one-dimensional assumption is not strictly correct 
owing to the effect of Poisson's ratio Df2 in Eq. (7 .92). The effect is negligible 
if the length-to-width ratio is moderately large. This effect can be significant 
in laboratory flexural specimens made of symmetric angle-ply laminates in 
which the length-to-width ratio is not large. The twisting curvature induced 
by the Df6 term in Eq. (7.93) can cause the specimen to lift off its supports 
at the corners. This effect should be considered for the accurate characteri
zation of composites in the laboratory. 

Example 7-4: Obtain the deflections of a beam simply supported at both 
ends as shown in Fig. 7-16a. Assume that the beam has a symmetric lay
up and carries a uniformly distributed load p0• 

Deflections of a beam in bending are given by Eq. (7.89). The constants 
of integration are determined from the end conditions. At the simply sup
ported edges, deflections and bending moments are zero. Therefore, at x 
= 0, L: 
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r L •I 

z 

(b) 

Figure 7-16. A uniformly loaded beam: (a) simply supported and (b) clamped at both ends. 

W 0 = 0 

Substitution of the preceding end conditions into Eq. (7 .89) gives the con
stants of integration as 

pof.,2 
C3 = 24bD 

11 

(7.94) 

Substitution of these constants into Eq. (7 .89) gives the following equation 
for the transverse deflection of the beam: 

(7.95) 

It can be shown easily that the maximum deflection occurs at x = L/2 and 
is given by 
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(7.9E 

Example 7-5: Obtain the deflections of a beam clamped at both ends a 
shown in Fig. 7-16b. Assume that the beam has a symmetric lay-up an 
carries a uniformly distributed load p 0• 

At a clamped edge of the beam, deflection (w0 ) and slope (dwof dx) ar 
zero. Therefore, the end conditions in this case at x = 0, L can be writte 
as 

lV0 = 0 

dw0 -=0 
dx 

(7.97 

Substitution of these end conditions into Eq. (7.89) gives the followinJ 
constants of integration: 

(7.98 

Substitution of these constants into Eq. (7.89) gives the following equatim 
for the transverse deflection of a beam clamped at both ends: 

(7.99 

It can be shown easily that the maximum deflection occurs at x = L/2 anc 
is given by 

(7.100: 

Comparison of Eq. (7.100) and Eq. (7.96) shows that the maximum bearr 
deflection of an end-clamped beam is smaller than that of a simply sup
ported beam. 

7.5.2.2 Buckling The buckling of plates was discussed in Sec. 7.3.2. 
Beams also will buckle when a large compressive load is applied in theii 
length direction. Like plates, buckling of beams cannot be predicted from the 
equilibrium equation [Eq. (7.88)], which does not account for the z-direction 
contribution of the in-plane force. An appropriate equation to predict buckling 
of beams may be derived in a manner similar to the derivation of Eqs. (7 .34 )
(7 .36) for plates. 
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It can be shown that the governing equation for the buckling of a simply 
supported beam with symmetric lay-up (Fig. 7-17), is given by 

(7.101) 

where Nb = bN, as defined in Eq. (7.84). For the beam considered here, N1, 
= -N0 • The governing equation [Eq. (7.101)] becomes 

(7.102) 

For a simply supported beam, the following series will s.atisfy the governing 
equation (Eq. (7.102)] as well as the boundary conditions: 

~ . (m7TX) 
Wo(X) = ,'f::1 Wm sm L (7.103) 

Substituion of Eq. (7.103) into Eq. (7.102) gives 

(7.104) 

The critical buckling load, the smallest value of N0 , occurs when m = 1 and 
is given by 

(7.105) 

The corresponding buckling mode is 

Wo(x) = sin( 7) (7.106) 

7.5.2.3 Free Vibrations The equation of motion for laminated beams can 
be derived in a manner similar to the derivation of the equation of motion 
for plates [Eq. (7.56)]. It is 

L 

Figure 7-17. A simply supported beam under axial compressive load. 
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(7.1( 

where p is the mass per unit volume, and A is the cross-sectional area of t 
beam. 

Solution of Eq. (7 .107) may be obtained by representing transverse d 
placement w0 by the following periodic function: 

w0(x, t) = W(x)eiwr (7.1( 

where w is the frequency of vibration. Substitution of Eq. (7.108) into :E 
(7 .107) gives 

b 
d4W 2 

Dll dx4 - pAw W = 0 (7.1( 

For a beam simply supported at both ends, the function W(x) is given by 

~ . (nl1TX) 
W(x) = n"f::1 Wm sm L (7.11 

Substitution of Eq. (7 .110) into Eq. (7 .109) gives 

(7.1] 

A natural frequency can be determined for any value of m from Eq. (7.11 
and the corresponding mode shape from Eq. (7 .110). The fundamental f 
quency, that is, the lowest natural frequency, occurs when m = 1 and is gi'v 
by 

(7.1 l 

The mode shape corresponding to the fundamental frequency is 

W(x) = sin(;) (7.1: 

EXERCISE PROBLEMS 

7.1. A 5-mm-thick laminated plate is made of E-glass-epoxy with the pre 
erties given in Table A4-1. Calculate 
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(a) Stiffness matrix [QJ for the unidirectional laminae. 
(b) Bending stiffness matrix [DJ for the plate when lay-up is (i) [0]4 

and (ii) [0/90),. 
(c) Center deflection and stresses in the center of the bottom layer of 

the plates with the preceding lay-ups. Assume that each plate is 
square with sides of 0.5 m, simply supported on all four edges, and 
carrying a uniformly distributed load of 25 Pa. 

7.2. Repeat Exercise Problem 7 .1 if the plates are 10 mm thick and have I
m-long sides. 

7.3. Repeat Exercise Problems 7.1 and 7.2 if the plates are made of Kevlar 
49-epoxy with the properties given in Table A4- l. 

7.4. Repeat Exercise Problems 7.1 and 7.2 if the plates are made of carbon
epoxy (T300/N5208) with the properties given in Table A4-l. 

7.5. Repeat Exercise Problems 7.1 to 7.4 if the plates are rectangular with 
dimensions l m x 0.5 m. 

7.6. Obtain two uniaxial buckling loads for each plate considered in Exer
cise Problems 7.1 to 7.4. Note that even for a specially orthotropic 
symmetric square plate, buckling load will depend on the direction of 
load application owing to stacking sequence. 

7.7. Obtain uniaxial buckling loads for the plates considered in Exercise 
Problem 7.5 when the load is applied parallel to the long edge of the 
plate. 

7.8. Obtain biaxial buckling loads for the plates considered in Exercise 
Problems 7.1 to 7.5 when equal (per unit length) loads are applied on 
all edges. 

7.9. Determine the first five frequencies and corresponding mode shapes for 
the plates·considered in Exercise Problems 7.1 to 7.5. 

7 .10. A rectangular specially orthotropic laminated plate of iength a and 
width b is simply supported on all edges and is subjected to a loading 
p(x, y) given by 

( ) 7 · (1TX)' . (37Ty) 4 . (57T.X) . (27Ty) p x, y = sm -; sm b - sm -;;- sm b 

Find the displacement function w(x, y) in the Navier form [Eq. (7.3<')]. 
(Hint: Note that the load is nonzero only for two combinations of ,.1 
and n. Therefore, the displacement function will have two terms only.) 

7.11. A specially orthotropic beam of length L, width b, and thickness h is 
clamped at one end (x = 0) and simply supported at the other (x = L). 
If it carries a uniformly distributed load p0 , obtain an expression for 
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the deflection curve w(x) for the beam in terms of bending stiffnesi 
D11· 

7.12. Repeat Exercise Problem 7.11 if the beam is free at the other end (x = 
L). , 

7.13. Determine the first three frequencies of vibration and the corresponding 
mode shapes for 1-m-Iong, 50-mm-wide, and IO-mm-thick beams o1 
materials considered in Exercise Problems 7.1, 7.3, and 7.4. Assume 
that the beams are simply supported at both ends. 

7.14. Determine the critical buckling loads for the beams considered in Ex
ercise Problem 7.13. Assume that the beams are clamped at both ends. 
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ADVANCED TOPICS IN 
FIBER COMPOSITES 

8.1 INTERLAMINAR STRESSES AND FREE-EDGE EFFECTS 

8.1.1 Concepts of lnterlaminar Stresses 

The classical lamination theory (CLT) described in Chap. 6 provides a simpl 
and direct procedure for calculating stresses and strains in a laminate. Th 
analysis is quite adequate to predict overall behavior of the laminate. How 
ever, this analysis has limitations owing to underlying assumptions. In som 
cases, the assumptions may lead to inaccurate results that may be critical t· 
predicting failure initiation. This section deals with an important area c 
stresses at free edges and their influence on failure initiation. 

The CLT is essentially a generalized plane stress analysis and predicts in 
plane stresses for given forces and moments. However, in some areas c 
laminates, three-dimensional stresses must be present for boundary equilit 
rium. This fact can be demonstrated easily through a simple example. Cor 
sider a multiply laminate (Fig. 8-1) subjected ~o a uniaxial load in the 
direction (Nx = N0). Assume the remaining in-plane loads to be zero (Ny = 

N_,y = 0). The midplane strains and plate curvatures can be obtained from Ee 
(6.33), and then the lamina stresses can be calculated according to Eq. (6.9 
Since the laminate is subjected to a uniform loading, stresses will be indf 
pendent of x and y coordinates. In general, each lamina will experience nor 
zero in-plane stresses ux, ay, and Txy even though only a uniaxial load i 
applied in the x direction. Thus aY and T,y will be nonzero on the free bounc 
ary y = ±b (see Fig. 8-1). However, nonzero aY o.r Txy produce an unbalance 
force on the boundaries y = ± b because applied forces (Ny and Nx) on the~ 
boundaries are zero. It can be shown that for boundary equilibrium, out-o: 
plane stress components a,, 7:", and Ty, also must be present, although CL 
does not predict them. 
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Figure 8-1. A four-ply laminate subjected to a uniaxial force in the x direction. 

The stresses crz, Txz' and ,-yz are called interlaminar stresses and are pro
duced primarily as a result of a mismatch of Poisson's ratios and cross
coupling coefficients of adjacent plies. They exist on the lamina surface in 
contact with the other lamina and within the lamina. However, their magnitude 
is largest at the lamina interface. It is also large at or near the free edges. 

· The interlaminar stresses are negligible in the regions away from the free 
boundary. In many cases the interlaminar stresses, especially the shear stress, 
may be quite large near the edge and may influence fallure initiation of the 
laminate. A large interlaminar shear strain at the laminae interface may pro
duce matrix cracks on the free edge. These cracks start free-edge delamination 
and subsequent delamination growth, as shown in Fig. 8-2. This delamination 
failure mechanism initiated at a free edge is unique to composite laminates 
and is particularly significant for fatigue loading, in which damage initiation 
greatly influences fatigue life and fatigue strength. The methods of evaluation 

Figure 8-2. Representation of free-edge delamination. 
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of the interlaminar stresses and their influence on the ultimate laminate failure 
are discussed in this section. 

8.1.2 Determination of lnterlaminar Stresses 

The subject of interlaminar stresses at the free edge of a finite-width angle
ply laminate has been developed by many investigators in recent years. 
Although some of the related· studies, which later lead to important 
developments on the subject, were reported by Pagano (1-3] and Whitney 
[4,5], the first direct approach to the problem seems to have been made by 
Puppo and Evensen [6], who evolved an approximate formulation in which 
each of the anisotropic laminae of the laminate was represented by a model 
that contained an anisotropic plane-stress layer and an isotropic shear layer. 
Each anisotropic layer was assumed to carry only in-plane loads and to exist 
in a state of generalized plane stress, whereas the isotropic shear layers were 
assumed to carry the interlaminar shear stress. The interlaminar normal stress 
was assumed. to vanish throughout the laminate. 

A second solution was developed by Pipes and Pagano [7], who considered 
a four-ply symmetric laminate with the plies oriented only at ± e to the lon
gitudinal laminate axis (Fig. 8-3). The exact equations of elasticity were de
rived for a uniform axial extension by assuming that the stress components 
are independent of x. The finite-difference method was employed to obtain 
numerical results for the ±45° laminate with the following laminae properties 

Fiber 
orientation 

z 
Interface 

Figure 8-3. Model of a symmetric angle-ply laminate used for calculating interlaminarstresses. 
(From Pipes and Pagano [7).) 
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typical of a high-modulus graphite-epoxy system and the gebmetric relation 
b = 8h0 : 

EL = 20 x 106 psi (l 38 GPa) 

ET = 2.1 x 106 psi (14.5 GPa) GLT = 0.85 x 106 psi (5.8 GPa) 

The stress distributions across the width of the specimen are shown in Fig. 
8-4. The stresses in the center of the cross section are the same as those 
predicted by the lamination theory discussed earlier: However, as the free 
edge is approached, a:, decreases, r,,. goes to zero, and most significantly, rx, 
increases from zero to infinity (a singularity exists at y = ± b ). The stresses 
cry, o-z, and ryz also increase near the free edge, but their magnitudes are quite 
small. Numerical results on [±et laminates with different ply orientations 
( 0) also have been obtained [7]. The results show that rx, is the most signif
icant interlaminar shear stress in these angle-ply laminates. Further, the max
imum value of rx, depends on the ply orientation (0). Maximum -r:,,, 
normalized with the highest rx, for any ply orientation (0)1 is shown as a 
function of e in Fig. 8-5. The stress rx, has the highest value fpr.(l, = 35° and 
zero for e = 0°, 60°, and 90°. 

5.00 

z 
4.50 

~· 4.00 ~-ho 

3.50 lrllll"x y 2ho 
"[ 8, 

"' 3.00 Ox al 
I 
~ 2.96 1 ~ 

X 2.50 ~ 
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~," fl 
8 = +45° C: 

2.00 "' .. ·e ~"' lo C: (/), c:= .:J 
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1.15 

1.00 Lamination theory 
a Txy Tyz 

0.50 2.. = 2.96psi, -= 1.15psi 
Ex Ex 

00 0.25 0.50 

y/b 

Figure 8-4. Stress variations across the width of the laminate shown in Fig. 8-3. (From Pipes 
and Pagano [7].) 

*For the purpose of numerical calculations, Vr.T and i;,. have been assumed equal by the in)le's
tigators [7]. This is, however, practically inadmissible (see Chapter 5). 
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Figure 8-5. Dependence of interlarninar shear stress on ply orientation (IJ) in angle-ply larni· 
nates. (From Pipes and Pagano [7].) 

Through the analyses of laminates with different geometries it was estab· 
lished that the width of the region in which the stresses differ from those 
predicted by lamination theory is approximately equal to the thickness of the 
laminate. Thus the interlaminar stresses or the deviations from laminatior 
theory can be regarded as an edge effect only. They are sometimes also re· 
ferred to as a boundary-layer phenomenon. It also must be expected that tht 
edge effects will be observed at cutouts or holes in laminates that providt 
internal free edges. 

The theoretical results of Pipes and Pagano [7] were confirmed experi 
mentally by Pipes and Daniels [8]. The surface displacements of the sym 
metric angle-ply laminate subjected to axial extension were examined b~ 
employing the Moire techniques. The experimental observations are compare< 
with the theoretical results in Fig. 8-6. The experimental study also confirm 
that the interlaminar stresses can be regarded as an edge effect only becausi 
their effect is confined to a region whose width is approximately equal to th• 
laminate thickness. 

8.1.3 Effect of Stacking Sequence on lnterl~minar Stresses 

Pagano and Pipes demonstrated i)? a later study [9] that the interlarnina 
stresses can be influenced significantly by the laminate stacking sequence 
and thus the stacking sequence may be important to a designer. Their wor: 
was motivated by observations of Foye and Baker [10] on the tensile fatigu 
strength of combined angle-ply,'(± 15/ ±45), and (±45/ ± 15)5 , boron-epox 
laminates. Foye and Baker reported that fatigue strength of laminates wit 
th,e former stacking sequence is about 25,000 psi (175 MPa) lower than th, 
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Figure 8-6. Comparison of experimentally measured and theoretically calculated surface dis
placements in the laminate shown in Fig. 8-3. (From Pipes and Daniel [8].) 

for the latter stacking sequence. Pagano and Pipes contended that the inter
laminar normal stress <Tz changes from tension to compression by changing 
the stacking sequence and thus accounts for the difference in strengths. The 
explanation seems quite reasonable in view of the fact that Foye and Balcer 
observed delamination and stated that progressive delamination was the fail
ure mode in fatigue. Whitney [11, 12] also has suggested that the interlaminar 
normal stress <T, strongly influences the delamination process during failure. 
During fatigue tests on graphite-epoxy laminates, he observed that a speci
men that developed a tensile value of interlaminar stress showed delamination 
much prior to the fracture of the specimen, whereas another specimen that 
developed a compressive value of interlaminar stress at the free edge from 
change in the stacking sequence showed very little evidence of delamination 
even when fracture occurred. A similar dependen,ce of both sta~ic and fatigue 
strengths on laminae stacking sequence also has been reported by other ex
perimental investigators. A more elaborate discussion on the subject can be 
found in Whitney [12] and Pipes et al. [13]. 

Interlaminar stresses for two cross-ply laminates and for two [ ±45/0], 
laminates with gla:,s and carbon fibers are shown in Figs. 8-7 and 8-8, re
spectively (adapted from ref. 14). In cross-ply laminates, the normal stress er, 
and shear .stress Ty, are more significant than the shear stress T xz• which is the 
more significant interlaminar stress in the angle-ply laminates (see Figs. 8-4 
and 8-5). Further, in cross-ply laminates, when stacking sequence is changed 
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Figure 8-7. Influence of changing lay-up in cross-ply laminates on interlaminar shear stressei 
(Adapted from ref. 14.) 

from [90/0), to [0/90],, interlaminar stresses change significantly. Of partic 
ular importance is the fact that u, is tensile on the [0/90], laminate free edge 
whereas it is compressive for [90/0], laminate. A tensile interlaminar norma 
stress uz may promote edge delarnination, as discussed in the preceding par 
agraphs. For [ ±45/0), laminates, fiber type (glass or carbon) strongly influ 
ences interlaminar stresses (see Fig. 8-8). Since interlaminar stresses ari 
affected by various parameters, actual stress distribution should be used t< 
assess their influence on the laminate performance. 

8.1.4 Approximate Solutions for lnterlaminar Stresses. 

Because of the importance of interlaminar stresses in the failure of laminate 
having free edges, many numerical techniques and approximate solutions have 
been developed. Isakson and Levy [15) developed a finite-element mode 
similar to that of Pipes and Pagano [7] that incorporated nonlinear interlam 
inar shear response. Rybicki [16] employed a three-dimensional finite-elemen 
technique based on a complementary energy formulation in the analysis of : 
finite-width laminate. Pagano [17] developed an approximate method for de 
fining the distribution of the interlaminar normal stress uz along the centra 
plane of a symmetric finite-width laminate. The method takes into consider 
ation the influence of the pertinent material and geometric parameters on the 
shape of the stress distribution. Pipes and Pagano [18) developed an approx 
imate elasticity solution for the response of a multilayered symmetric angle 
plied laminate under uniform axial strain. The results of the · approximate 
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Figure 8-8. Influence of fiber type (carbon or glass) on interlaminar stresses in [45/-45/0]. 
laminates: (a) shear stresses Txz and Trz and (b) normal stress u,. (Adapted from ref. 14.) 
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solution exhibit excellent agreement with their earlier numerical results of th1 
exact elasticity equations [7]. Tang [19] has obtained an analytical solutio1 
for bending of a rectangular composite plate subjected to uniform transvers1 
loading. 

Whitney [12] has developed an approximate solution based on the numer 
ical results of Pipes and Pagano [7] for an exact elasticity formulation. Whit 
ney's approximate solution is quite simple to apply and compares reasonabl: 
well with an exact elasticity solution [7]. It is therefore discussed in the 
following paragraphs. 

Consider a tensile specimen of length a, thickness h, and width 2b, when 
b = 4h. A standard x, y, z coordinate system is located at the midplane o 
the free edge (Fig. 8-9). Equilibrium equations for this problem are (see Ap 
pendix 2) 

aTxy . a<ry aTl. 
- +- +-·- = 0 
ax ay az 

(8.1 

a'T_,z + a'Tyz + a<r, = Q 
ax ay az 

If the origin is in the gauge section (i.e., away from the ends where tht 
load is applied), the stresses can be assumed to be independent of x. Ther 
the equilibrium equations take the form 

.. 
0. 
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Figure 8-9. Whitney's approximate solution for interlaminar stresses compared with an elas
ticity solution. (From Whitney [12].) 
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acr, aT,.. 
-·+-'=0 
ay az 

(8.2) 

aT,.. acr 
-·' +~= 0 
ay az 

The interlaminar stresses Tx,, Ti-z' and <rz can be obtained by integrating Eq. 
(8.2) as follows: · 

z 

f aTxy 
-dz 
ay 

-h/2 

z 

f au,, 
- -· dz 

ay 
-h/2 

z 

f aTyz 
u = - - dz 

z a 
-h/2 y 

(8.3) 

Integrations of Eq. (8.3) can be carried out when variations of Txy and cry With 
y and z are known. Whitney's approach to an approximate solution involves 
obtaining separate functions representing variations with respect to y and z. 
Functions representing variations with z are obtained from classical lamina
tion theory [Eq. (6.9)] and called cr/z) and Tx/z). Functions representing 
variations with y are obtained by fitting curves to the numerical results of 
Pipes and Pagano [7]. Whitney suggested the following form of cry and Txy in 
the free-edge interval O s; y s; h: 

where 

cr.,(z) '( k - k - - J <r. = -·- 1 - e- 1TY - (sin wrry + cos wrry) 
> C 11 

T-',.(z) k - _ 
Txy = -- (J - e- 1TY COS 111ry) 

C 

k>O 

(8.4) 
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Where n is a positive integer, o/z) and rxy(z) are determined from laminatic 
theory [Eq. (6.9)]. Substituting Eq. (8.4) into Eq. (8.3) and then integratir. 
with respect to z yields the remaining stresses: 

- 1rr (z)e-ky . - -
Txz = xz (n SIIl ny + k COS ny) 

nc 

1r2er_(z)(n2 + k2)e-ky - . -
er. = " [n cos ny - k sm ny] 

• nc 

(8.: 

where ry/Z), a'y(z), and rxy(z) are obtained from integration of Eq. (8.3) a 
follows: 

z 

[ Ty,(Z), er,(z), rx/z)] = - J [ery(z), Ty,(Z), Txy(z)],y dz 
-h/2 

Thus Eqs. (8.4) and (8.5) exactly satisfy the equilibrium equations as wel 
as the free-edge boundary conditions. In addition, lamination theory is exactl: 
recovered at (y/ h) = 1.0. Compatibility, however, is violated. The accurac: 
of these approximate functions is illustrated in Fig. 8-9, where they are com 
pared with the numerical results obtained by Pipes and Pagano [7] (alsi 
shown in Fig. 8-4). The approximate results were obtained with n = 1 and, 
= 2. Whitney suggested that since the character of the soiution is reasonabl: 
approximated· with these values of n and k, in the absence of other informa 
tion, they should be used for general application. 

8.1.5 Summary 

In view of the preceding discussion, the following general conclusions car 
be drawn regarding the interlaminar stresses: 

1. The interlaminar stresses are very high (sometimes singular) at the fret 
edge of a laminate (as the edges on sides of a laminate, cutouts, holes 
etc.). 

2. The interlaminar normal stress er, has a very steep gradient near tht 
free edge. A tensile value of er2 at the free edge may initiate delarni· 
nation and thus accelerate the failure process. 

3. The stacking sequence in a laminate affects the magnitude as well m 
the nature of the interlaminar stresses. Thus a difference in tensile static 
and fatigue strengths may be observed when the stacking sequence i~ 
altered, even though the orientations of each layer do not change. 



8.2 FRACTURE MECHANICS OF FIBER COMPOSITES 335 

4. The interlaminar stresses can be regarded as an edge effect only because 
their effect is confined to a narrow region close to the edges. Predictions 
of the lamination theory are quite accurate in the regions away (e.g., a 
distance equal to the laminate thickness) from the edges. 

Delamination initiation at an edge may strongly influence the performance 
of a laminate. It is therefore important to consider edge-delamination
suppression concepts. Since the interlaminar stresses may cause edge delam
ination, efforts should be made to reduce them at the design stage. Since 
stacking sequence affects the interlaminar stresses, the stacking sequence 
should be selected to minimize the interlaminar stresses. As a general rule, a 
stacking sequence that produces lower values of D16 and D26 without affecting 
other stiffness matrix elements should be selected (see Example 6-4). Free
edge delamination may be actively suppressed by strengthening edges or by 
modifying edges to reduce the severity of interlaminar stresses. Examples of 
delamination-suppression concepts are shown in Fig. 8-10. An overview of 
the effectiveness of these delamination-suppression concepts is given by Jones 
[20]. 

8.2 FRACTURE MECHANICS OF FIBER COMPOSITES 

8.2.1 Introduction 

8.2.1.1 Microscopic Failure Initiation In Chap. 5, composite materials 
were treated as homogeneous anisotropic bodies. A continuum analysis of 
anisotropic materials has led to the formulation of stress-strain relations for 
composite materials. In. a continuum approach, the influence of a local het-

Edge strengthening 

~ 
Edge cap 

Edge modification 

Ply termination 

Edge stitching 

Edge notching 

Interleaved 
adhesive layer 

Tapering 

Figure 8-10. Free-edge delamination-suppression concepts. 
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erogeneity and microscopic flaws is neglected. Quantitatively, microscopi 
flaws are imperfections whose sizes are small compared with the characteristi 
dimensions of the body. The imperfections in composites may include voidi 
fiber ends, delaminations, and irregularities in fiber packing. The prediction 
of continuum analysis regarding deformational response of composites hav 
prm·ed to be accurate because the deformation is an averaged property an 
is not influenced by local heterogeneity. However, the applicability of a con 
tinuum approach cannot be taken for granted in a process such as failure th, 
is initiated by localized conditions. 

The discussion in Chap. 5 on strength theories or failure criteria did nc 
consider the mechanisms responsible for the failure process. It has been as 
sumed implicitly that the material is free from flaws. Microscopic flaw nu 
cleation is assumed to take place over the major portion of the life of th 
sample, and on nucleation into a macroscopic crack, fracture is assumed t 
occur instantaneously. The strengths are evaluated by conducting tests o 
geometrically smooth specimens in which no sharp stress gradients are pres 
ent. Thus the failure criteria, such as Eqs. (5.102)-(5.109), provide a ratiom 
estimate of the general structural integrity of a composite. However, experi 
ence with fracture of metals suggests that the occurrence of failure in th 
presence of sharp stress gradients ( or flaws) is different from that in a rela 
tively slow-varying stress field. Moreover, in practical structures, macroscopi 
cracks, which produce sharp stress gradients, can accrue during the variou 
manufacturing processes as well as in service. The study of quasistatic crac 
growth therefore can provide useful information on the flaw sensitivity of th 
material and for establishing inspection requirements to determine the criti 
cality of cracks. Fracture mechanics is the discipline concerned with failur 
by crack initiation and propagation. Its relevance and applicability to corn 
posite materials are discussed in this section. 

8.2. 1.2 Fracture Process in Composites The fracture mechanics disci 
pline essentially has been developed to predict fracture of homogeneous ma 
terials by crack initiation and propagation. However, the fracture process i 
composites is significantly different from and more complex than that in he 
mogeneous materials such as metals and polymers. Therefore, to better un 
derstand and appreciate the applicability of fracture mechanics concepts t 
composite materials, it is necessary to understand ·the f~acture process an 
crack propagation in composites. 

It can be assumed that failure in a fiber composite, just as in metals, em 
anates from small, inherent defects in the material. These defects · may b 
broken fibers, flaws in the matrix, or debonded interface. After initiation, th 
failure propagation or fracture process can be described using the simpl 
model shown in Fig. 8-11. The model shows several possible local failur 
events occurring during the fracture of. a fiber composite. At some distanc 
ahead of the crack, the fibers are intact. In the high-stress region near the tir 
they are broken, although not necessarily along the crack plane. Immediate! 
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Fracture process zone 

Fiber pull-outs Debonding 
,,.---·----.,--A--, 

-- - - Direction of 
> 

.... crack propagation - ~ -

Figure 8-11. A model of fracture-process zone shows local failure events near the crack tip. 

behind the crack tip, fibers pull out of the matrix. In some composites, the 
stress near the crack tip could cause the fibers to debond from the matrix 
before they break. It is also possible for a fiber to be left intact as the crack 
propagates. When brittle fibers are well bonded to a ductile matrix, the fibers 
tend to snap ahead of the crack tip, leaving bridges of matrix material that 
neck down and fracture in a completely ductile manner. In addition to these 
local failure mechanisms, on reaching the interface of two laminae in a lam
inated composite, a crack can split and propagate along the interface, thus 
producing a delamination crack. 

Different failure mechanisms involved in fracture propagation as just dis
cussed account for the total energy absorbed in the fracture. However, some 
mechanisms play a dominant role in one system of matrix material and fibers, 
whereas a different set of mechanisms may be dominant in another system 
of fibers and matrix material. No single mechanism can account for the ob
served toughness of composites. A more detailed discussion of each of the 
failure events and the factors influencing the energy associated with them is 
given in the section on impact in Chap. 9. 

The most important difference in the mechanism of crack propagation in 
isotropic materials and composites arises from the factthat isotropic materials 
such as metals or polymers often exhibit self-similar crack growth; that is, 
the crack growth occurs by a simple enlargement of the initial crack without 
branching or directional changes. In composites, self-similar crack growth is 
not likely to occur even for unidirectional or symmetric angle-ply laminates. 
Self-similar crack growth may be expected in unidirectional composites only 
when the initial crack is parallel to a principal material direction. In laminates, 
the direction of crack growth generally is expected to be different in plies 
with different fiber orientations. Randomly oriented fiber composites are con-
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sidered to be macroscopically isotropic, but even in these types of composites 
self-similar crack growth does not take place because of local heterogeneity 
ahead of the crack. Therefore, one really cannot define a unique crack length 
for composite materials, and it may be more meaningful to consider a damage 
zone ahead of the crack. A typical damage zone formed ahead of the crack 
tip in a short-fiber composite is shown in Fig. 8-12. It is possible to control 
the general direction of growth of damage zones in. various tests, but it is not 
a planar fracture of the type observed in isotropic materials. Within the dam
age zone, there are such energy-absorbing processes as debonding of fibers 
from the matrix and fiber pullout, in addition to the fracture of fibers and the 
matrix. It should be noted that this damage zone is comparable to the zone 
of plastic deformation accompanying crack growth in metals or polymers. 

The preceding discussion on crack initiation, damage propagation, and the 
general fracture process in composites always should be considered while 
considering applicability of fracture mechanics concepts to composite mate
rials. 

8.2.2 Fracture Mechanics Concepts and Measures of 
Fracture Toughness · 

Fracture mechanics of materials has been studied using different concepts that 
hypothesize crack initiation and propagation in materials. Mathematical tech-

Figure 8-12. Photograph of a damage zone formed ahead of the crack tip in a short-fiber 
composite. 



8.2 FRACTURE MECHANICS OF FIBER COMPOSITES 339 

niques have been developed to predict fracture of materials according to these 
concepts. Three techniques that are widely used to predict fracture of metals 
and other homogeneous materials are discussed in this subsection, including 
their applicability to composites. These techniques are the strain-energy re
lease rate, stress-intensity factor, and J-integral. Each technique leads to a 
measurable material property that controls crack initiation and propagation. 
These properties generally are accepted as the measures of fracture toughness 
of a material. Experimental determination of fracture toughness is discussed 
in Chap. 10. 

8.2.2. 1 Strain-Energy Release Rate (G) The stability of a flaw or crack 
in a continuum can be examined by considering the energy balance. Griffith 
(19] was the first to provide an expression for crack instability, that is, failure 
by uncontrolled crack growth. His reasoning was based on the hypothesis that 
the free energy of a cracked body and applied forces should not increase 
during crack extension. This criterion can be used to derive conditions for 
formation of new crack surfaces, as is done in the following paragraphs. 

Consider two states of a solid body subjected to external forces, as shown 
in Fig. 8-13. In state A, there is no macrocrack in the body. Let the total 
energy of the body in state A be UA. State B is obtained by introducing a 
crack C prior to loading. External forces are now applied such that the de
formations under the forces are the same as in state A. One may imagine that 
state B is obtained from state A by introducing a crack and simultaneously 
removing some of the load to keep the deformations under the loads unchan
ged so that no work is done on the body by the external forces as it goes 
from state A to state B. The difference in energies of states A and B appears 
only in surface energy and strain energy. Because of the formation of the 
crack, the surface energy increases by an amount S, and because of the pres
ence of the crack, the strain energy stored in the body decreases by an amount 
U. This is so because smaller loads are required to cause the same defor
mations in the body. Thus U is the strain energy released owing to the intro-

(al (b) 

Matrix 

Fiber 

Figure 8-13. A solid body (a) without a crack and (b) with a crack subjected to external forces. 
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duction of a crack in the body. Summing these, the total energy of the body 
in state B is 

(8.6) 

When a body with a crack is loaded, crack propagation (growth, enlarge
ment, or extension) begins at a specified load. Depending on the initial crack 
length, the crack propagation may be stable or unstable. When crack propa
gation occurs under increasing load, it is stable, and it causes the total energy 
U8 to increase. Thus, for stable crack propagation, 

aua o --> ac 

Substitution of Eq. (8.6) into Eq. (8.7) gives 

au as 
-<ac ac 

(8.7) 

(8.8) 

During stable crack growth, the strain-energy release rate is less than the 
rate of increase in surface energy. Therefore, additional energy must be pro
vided to the body for crack propagation by increasing external loads. Stable 
crack growth can be arrested by keeping the loads constant or decreasing 
them. 

Crack propagation is unstable when it causes the total energy U8 to de
crease or remain constant. That is 

Substitution of Eq. (8.6) into Eq. (8.9) gives 

au as 
->ac - ac 

(8.9) 

(8.10) 

Thus, for crack instability, the strain-energy release rate should be greater 
than the rate of increase in surface energy. 

When a body with a small crack is loaded, crack propagation may occur 
in two stages. Initial crack propagation may be stable; that is, it may occur 
at increasing load. However, when the crack becomes sufficiently long, un
stable crack growth occurs to cause fracture. This instability commences when 
the strain-energy release rate is equal to the rate of increase in surface energy, 
as indicated in Eq. (8.10). For ideal homogeneous isotropic materials, the sur
face energy is a physical property. Consequently, unstable crack propagation 
also will occur at a constant value of strain-energy release rate independent 
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of position, direction, and initial length of crack. This value, called the critical 
strain-energy release rate, is often used interchangeably to denote fracture 
toughness of the material. The strain-energy release rate may be evaluated 
theoretically or experimentally using a mechanics approach. 

For real solids, suiface energy is not a good choice of words because it 
has been found that the total energy required to create fracture surfaces is 
much greater than the theoretical surface energy. The additional work required 
to create fracture surfaces in homogeneous isotropic materials results from 
plastic deformation or other irreversible deformation of the crack tip. Thus 
fracture-swface work is considered a more appropriate term. Further, in com
posite materials, crack extension is complex and may involve all or any of 
the matrix, fibers, or fiber-matrix interface. Therefore, the surface-energy 
term in Eq. (8.10) should be a multiparameter function consisting of the 
properties of fibers, matrix, and interface. 

8.2.2.2 Stress-Intensity Factor (K) Irwin [22] and others have shown 
that the strain-energy release rate can be correlated with the stress distribution 
in the neighborhood of the crack tip. Consider a plate containing a crack of 
length 2c and subjected to an arbitrary plane loading that is resolvable in (T 

and T components of stress away from the crack, as shown in Fig. 8-14. The 
classical theory of elasticity can be employed to obtain the following stress 
distribution near the crack tip (r «; c) in a homogeneous isotropic plate. 

Vc 8 ( . 8 . 38) Vc . 8 ( 8 38) 
(Tr= (T-- COS - 1 - Slll - Slll - - T-- Slll - 2 + COS - COS -· V2r 2 2 2 V2r 2 2 2 

'1.-

(T_ = (T Vc cos!!_ (1 + sin!!_ sin 
38

) + T Vc sin!!_ cos!!_ cos 
38 

(8.11) 
> V2r 2 2 2 V2r 2 2 2 

Vc . 8 8 38 Vc 8 (· . 8 . 38) 
T,y = (T V2r sm 2 cos 2 cos 2 + T V2r cos 2 l - sm 2 sm 2 

Figure 8-14. Definition of loading and coordinate system for stress analysis of a plate with a 
crack. 
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The preceding stress distributions indicate that (1) the stress singularity 
all components is of the order 1 /Vr and (2) the stress distribution depe 
only on r and e. The influence of the type of specimen and loading, as , 
as the magnitude of loading, can be considered through what are definec 
the stress-intensity factors (not stress-concentration factor). The two stn 
intensity factors k1 and k2 are 

(8. 

The stress-intensity factor k1 is symmetric and is associated with the open 
mode of crack extension (Fig. 8-15a), whereas the skew-symmetric k2 is 
sociated with the shear mode (see Fig. 8-15b). These stress-intensity fac1 
in general depend on the applied loads, the geometry of the body, and 
crack length. It has been established [23] that regardless of the nature of 
plane loads, the stress distribution around the crack tip always can be se 
rated into the symmetric and skew-symmetric components even for an 
tropic materials, and they differ only in magnitude according to 
stress-intensity factors. Irwin has shown that if the direction of crack ex1 
sion is colinear with the plane of the crack, the strain-energy release. rati 
is related to the stress-intensity factor k1 by the following expression: 

(8. 

Equation (8.13) is valid for the opening mode of crack extension unde 
plane-stress state. Similar relations for other crack-extension modes and pl 
strain also can be obtained. Thus Eq. (8.13) provides ameans for a theoret 
prediction of the strain-energy release rate in an iscitropit material. 

The stress analysis ahead of a crack tip in a composite material is extrerr 
difficult. The local heterogeneity of the material prohibits obtaining a clc 

CY T 

CY T 

(al (bl (cl 

Figure 8~15. Modes of crack extension: (a) opening mode (mode I), (b) shear mode (mod 
/:ind (c) antiplane strain or tearing mode (mode Ill). 
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bound solution. However, a close-bound solution is possible to obtain by 
assuming composites to be homogeneous anisotropic materials. With this as
sumption of homogeneity, the following stress distribution near the crack tip 
can be obtained [23] by following Lekhnitskii's formulation [24]: 

(8.14) 

where 

t/11 = cos e + S1 sin e 

t/12 = cos e + S2 sin e 

and S1 and S2 are the roots of the characteristic equation that is obtained if 
the equations of stress equilibrium and strain compatibility are represented in 
terms of Airy's stress function. In general, the roots are complex and can be 
written in the form 

S1 = a1 + i/31 

S2 = a2 + i'/32 

(8.15) 

It should be noted from Eq. (8.14) that the stress distribution is'Controlled 
not only by the parameters uVc and TVc but .also by the roots S1 and S2• 

The roots S1 and S2 are functions of the elastic constants of the material and 
orientation of the crack with respect to the principal planes of elastic sym
metry. It may be pointed out that the stress components resulting from normal 
and shear loads can be separated just as in the case of isotropic materials. 
But, for an arbitrary orientation of the crack, there exists a coupling between 
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normal stress and shear strain and vice versa, and thus normal load produ 
displacements associated with the crack-opening mode, as well as the forw 
shear mode of crack extension. Similarly, the shear load also produces b 
types of displacement. Therefore, the stress-intensity factors defined by 
(8.12) cannot be related to the strain-energy release rate through Eq. (8.: 
Thus it is questionable whether the stress-intensity factors defined in · 
manner can be used as material property parameters. The question can o 
be resolved by experimental investigations. However, for specific crack , 
entations, the crack-extension kinematics may decouple so that the stn 
intensity factors [Eq. (8.12)] for anisotropic materials also may become 
meaningful as those in isotropic materials. Such is indeed the case when 
direction of the crack coincides with one of the material symmetry m 
Under these conditions Q16 = Q26 = 0, and the roots S1 and S2 fall into c 

of the following categories: 

a 1 = a 2 = 0 

a 1 = a2 = 0 

/31 =/= /32 

/31 = /32 

/31 = /32 

(8. 

In each of these cases, the normal load produces displacements associa 
only with the crack-opening mode, and the shear force produces displa 
ments associated only with the forward shear mode of crack extension. Tl 
in these cases the crack-tip stress distribution may be examined with 
further concern for the crack-tip displacement. Using the crack-tip str 
analysis, Wu [25] has fonmulated a phenomenological failure criterion : 
established that crack propagation can be characterized by failure withi1 
critical volume. He showe~ that the general multidimensional crack probl 
can be predicted by incorporation of the failure criterion into the crack 
stress analysis. However, the formulation is quite involved and, as such, 
yond the scope of this text. Besides Wu's approach, the problem of predict 
the fracture stress of a composite material containing macroscopic defects I 
been studied by many investigators using different approaches. Some of th 
will be discussed in a later section. 

As indicated earlier, the strain-energy release rate G and stress-intern 
factor Kean be calculated using linear elastic stress analysis. Application 
G or K as a failure criterion therefore is limited to a class of problems, the 
of cracked bodies with small-scale yielding where the crack-tip plastic reg 
is at least an order of magnitude smaller than the physical dimensions of 
component [26] .. It is also desirable to have a failure criterion that co 
predict fracture in structures in cases of both small- and large-scale plastic 
One such parameter, namely, the I-integral, is defined and discussed in 
next se~tion. 
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8.2.2.3 J-lntegral The I-integral is an energy-line integral defined for 
two-dimensional problems and is given by [27) 

J = r w dy - r(au) ds Jr ax (8.17) 

where r is any contour surrounding the crack tip, as shown in Fig. 8-16, W 
is the strain-energy density given by 

(8.18) 

Tis the traction vector defined by the outward normal n along r, T; = <T;/lj, 

u is the displacement vector, ands is the arc length along r. 
It has been shown [28-30] that the plastic stress and strain singularities at 

the crack tip are related to the I-integral. Thus the I-integral is a parameter 
that can be used as a failure criterion for the case of large-scale plasticity at 
the crack tip. 

Rice [27) has proved the path independence of the I-integral. Therefore, 
the ]-integral can be calculated accurately by using an integration path some
what removed from the crack tip. Also, an experimental evaluation of the ]
integral can be accomplished quite easily by considering the load-deflection 
curves of identical specimens with varying crack lengths. 

Body 
/ 

Figure 8-16. An arbitrary line contour for J-integral. 
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Begley and Landes [30-32) demonstrated its applicability as a fracture 
criterion to metals for the case of large-scale plasticity at the crack tip. 
Through experiments on an intermediate-strength rotor steel, they showed that 
the ]-integral at failure for fully plastic behavior is equal to the linear elastic 
value of strain-energy release rate at failure for extremely large specimens. 
Thus the ]-integral approach eliminates the necessity of testing very large 
specimens. For composites, it has an additional advantage in that it does not 
require measurement of instantaneous crack length, which is difficult to define 
or measure owing to the complexities of crack propagation. 

8.2.3 Fracture Toughness of Composite Laminates 

The fracture behavior of composite laminates has been investigated by a very 
large number of researchers over the years (33-55). These studies focus on 
subjects such as initiation and growth of crack-tip damage, critical-damage
zone size, notch sensitivity, fracture toughness, failure modes on the micro 
and macro scales, and crack-arrest mechanisms using various theoretical and 
experimental techniques. There are several reasons for employing so many 
different techniques to the study of fracture mechanics in composites. First, 
different composite systems exhibit different failure modes and damage mech
anisms and may require correspondingly different analytical tools and exper
imental techniques. Second, there is no consensus yet regarding the proper 
set of failure criteria. A number of analytical techniques, ranging from com
prehensive numerical methods to simplified semiempirical fracture models, 
have been developed to suit different failure models and the corresponding 
complexity of failure processes in composite laminates. This situation is un
desirable from the viewpoint of developing uniform design procedures against 
catastrophic failure of composite laminates, which is essential for application 
of composites to load-carrying structures. However, the situation seems in
evitable owing to a large number of variables involved that may influence 
fracture behavior (toughness and notch sensitivity) of composites. These var
iables include intrinsic variables such as constituent properties, fiber volume 
fraction, fiber-matrix interface, laminate configuration, stacking sequence, 
and fabrication procedures and extrinsic variables such as specimen geometry, 
test temperature, moisture content, loading function, rate, and history. 

A large amount of experimental data is available on the fracture toughness 
and notch sensitivity of composite laminates. Experimental fracture-toughness 
values of some composites are given in Table 8-1 along with the values- foi: 
structural metals. However, becaµse of the large number of variables involved, 
fracture-toughness test results for one type of laminate may not be useful in 
the design of other types of laminate. Moreover, despite the recognized im
portance of these variables, in most studies key information such as fiber 
volume fraction, constituent properties, fabrication procedures, and environ
mental test conditions are not reported. Consequently, unnotched and notched 
strength data may vary ~ignificantly among different publications even for 
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Table 8-1 Experimental fracture toughness values of some composites and 
structural metals 

Material and Construction 
of Composite 

[0/ ±45]5 

Quasi-isotropic 
Cross-ply 

[0/ 45/90/-45]2s 

Unidirectional 
Quasi-isotropic 
Cross-ply 

Random short fibers 
2024-T6 aluminum 
7075-T6 aluminum 
Ti-6Al-4V, condition A 
HP9Ni-4Co-0.30C (steel) 

Graphite-Epoxy 

32.l-36.9 
22.4-55.7 
42.8-54.l 

Graphite-Polyimide 

37.0-40.5 

Boron-Aluminum 

55.7-107.0 
28.2-34.9 
34.4-41.5 

Glass-Epoxy 

18.9-28.5 
80.2 
58 

· 215 
235 

Tensile Strength 
(MPa) 

540-660 
454-609 
637-763 

423 

1014-2012 
348-409 
678-755 

441 
496 
896 

1516 

seemingly identical laminate configurations and material systems. For the pur
pose of analyzing the complex fracture behavior of notched composite lam
inates and for generalizing the results obtained for specific composite 
laminates to other types of laminate, several simplified fracture models have 
been proposed in recent years [46-55]. The model parameters are expected 
to be related to and used as measures of the notch sensitivity of composite 
laminates. A good understanding of fracture models and their correlation with 
the experimental results will be of great help to a designer in assessing notch 
sensitivity of composite laminates. 

A highly detailed review of several of the fracture models has been pub
lished by Awerbuch and Madhukar [56]. They have critically reviewed com
monly used semiempirical fracture models that are easy to operate as 
predictive tools by the designers. Experimental results also have been re
viewed and compared with all fracture models. The various parameters as
sociated with the fracture models were determined for all the experimental 
data sets reviewed. The fracture-model parameters were correlated with the 
notch sensitivity of composite laminates, and their applicability as a measure 
of notch sensitivity has been evaluated. Even though the review was published 
in 1985, the major conclusions. are still valid. These are 
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1 1. Most of the experimental studies on notched strength of composi1 
laminates are limited to two types of notch geometry: circular hole 
and straight cracks and subjected to uniaxial quasi-static loading. 

2. Practically all laminates are highly notch-sensitive. The strength drof 
sharply with the introduction of the smallest discontinuity. For man 
cases, the notch reduces strength by as much as 50% for notch lengtt 
width ratios of 0.2-0.3. 

3. Notch sensitivity of composite laminates may be affected by a variet 
of intrinsic and extrinsic variables. However, a comprehensive evalu 
ation of the effects of these variables on the notch sensitivity of com 
posite laminates is still lacking. 

4. Also, any comparison among the notch sensitivities of different lami 
nates obtained from different sources is of questionable value becaus, 
very few publications report fiber volume fraction, constituent (fiber 
properties, fabrication conditions, environmental test conditions, arn 
similar, all of which may affect the results. 

5. Very good agreement between all fracture models reviewed and al 
experimental notch-strength data can be established provided that tht 
parameters are determined properly. 

6. These parameters strongly depend on laminate configuration and ma 
terial system, as well as on a variety of intrinsic and extrinsic variables 

7. Among the various parameters associated with the fracture models 
only the characteristic dimensions of the Waddoups-Eisenmann
Kaminski model [46) and the Whitney-Nuismer model [47,48) can be 
related to notch sensitivity such that the larger they are, the less noter 
sensitive the subject laminate is. 

8. It seems, therefore, that the characteristic dimensions can serve as 2 

relative measure of notch sensitivity of composite laminates. This re
lationship remains qualitative, however, until there is a more precise 
identification of the effects of all the variables affecting notch sensi
tivity. 

9. Since strength does drop sharply with the introduction of a small notch 
in almost all laminates, the "average stress" criterion of the Whitney
Nuismer fracture model does fit the data better in the small-notch-size 
range. 

10. None of the parameters associated with the other fracture models, in
cluding the critical stress-intensity factors, could be related to the notch 
sensitivity. 

11. Although a large body of notched strength data is available in the 
literature, only a few definite conclusions can be made regarding the 
effect of the many variables affecting notch sensitivity because of var
ying objectives in different investigations. 

From the preceding discussion and conclusions it is clear that a compre
hensive understanding of fracture toughness and notch sensitivity of compos-
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ite laminates, including the effect of different variables, is still lacking. 
Further, the large body of notch-strength data available in the literature from 
different investigations can be most appreciated and best utilized in design 
processes through a fracture model. Very good agreement between all the 
fracture models and experimental notch-strength data establishes that their 
predictions for notched strength are, for all practical purposes, identical. How
ever, the fracture models proposed by Whitney and Nuismer are probably the 
simplest to operate, and the parameters associated with these fracture models 
can be related to the notch sensitivity and fracture toughness of composite 
laminates. The Whitney-Nuismer fracture models therefore are discussed 
next. 

8.2.4 Whitney-Nuismer Failure Criteria for Notched Composites 

The investigations of Whitney and Nuismer [47,48] were motivated by what 
is known as the hole-size effect [46]; that is, for tension specimens containing 
various-sized holes, larger holes cause greater strength reductions than do 
smaller holes. One of the explanations of the hole-size effect is based on the 
normal stress distribution ahead of a hole. Although the stress-concentration 
factor is independent of hole size, the normal stress perturbation from a uni
form stress state is considerably more concentrated near the hole boundary 
in the case of a smaller hole. Intuitively, therefore, one might expect the plate 
containing a smaller hole to be stronger because greater opportunity exists in 
this case to redistribute high stress. By considering the stress distribution 
ahead of a circular hole, Whitney and Nuismer developed two criteria for the 
strength of notched composite materials. The first criterion is based on the 
stress at a point a fixed distance away from the notch and may be referred to 
as the point-stress criterion. The second criterion is based on the average 
stress over some fixed distance ahead of the hole and is referred to as the 
average-stress criterion. The Whitney-Nuismer failure criteria are concep
tually similar to Wu's criterion, in which failure of the composite is assumed 
to be governed by the failure within a critical volume ahead of\the notch or 
a macroscqpic defect. Wu's criterion does predict a multidirectional crack 
growth, which is not the case with the Whitney-Nuismer criteria. However, 
the latter are much simpler and thus readily adaptable in design procedures. 
The two criteria can be extended to the case of a sharp crack in place of 
smooth holes. The criteria are developed in the following paragraphs. 

Consider an infinite orthotropic plate with a hole of radius R and subjected 
to a uniform stress er parallel to the y axis at infinity (Fig. 8-17). If the axes 
x and y are assumed normal to the planes of elastic symmetry, the normal 
stress cry along the x axis in front of the hole can be approximated by 

where k-r is the ortnotropic stress-concentration factor for an infinite-width 
plate and can be determined from the following relationship [57]: 
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Figure 8-17. A plate with a circular hole of radius R. 

k _ l J-3_ (V!f.I _ A . AllA22 - Af2) 
T - + A II 22 12 + 2A 

22 66 

(8.20) 

where Aii are the in-plane laminate stiffnesses as determined from laminated
plate theory discussed in Chap. 6. For a unidirectional composite or lamina, 
Aii in Eq. (8.20) may be replaced by Qii introduced in Chap. 5. The subscript 
1 denotes the direction parallel to the applied stress at infinity. In terms of 
effective elastic moduli, Eq. (8.20) becomes 

kT = 1 + ·( ~ ) 2 /£ + V12 v 22 

(8.21) 

For an orthotropic composite loaded in the longitudinal direction, Eq. (8.21) 
becomes 

(8.22) 

The point-stress criterion assumes failure to occur when <Ty at some fixed 
distance d0 ahead of the hole first reaches the unnotched tensile strength of 
the material <T0 , that is, when 

<Ty(R + d0 , 0) = <To (8.23) 

Substitution of Eq. (8.19) into Eq. (8.23) yields the ratio of notched to un
notched strength: 
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<T0 2 + PT + 3pi - ("1: - 3)(5pf - 7p~) 
(8.24) 

where 

(8.25) 

and uN equals the applied stress u at failure or uN is the notched strength of 
the infinite-width laminate. It may be noted that for very large holes, p 1 --+ 

1, and the classical stress-concentration result, ( uN I u 0 ) = (11 "1: ), is recovered. 
On the other hand, for vanishingly small hole sizes, p 1 --+ 0, and the ratio 
(uN/ u0) - 1, as would be expected. 

The average-stress criterion assumes failure to occur when the average 
value of uY over some fixed distance a0 ahead of the hole first reaches the 
unnotched tensile strength of the material, that is, when 

1 fR+ao 
- u/x, 0) dx = u0 a0 R · 

(8.26) 

Substitution of Eq. (8.19) into Eq. (8.26) yields the ratio of notched to un
notched strength: 

where 

R 
P2 = R + a 

0 

(8.27) 

(8.28) 

and uN is again the notched strength of the infinite-width laminate. It can be 
seen easily that the expected limits of uN/ u0 are again recovered for very 
small and very large holes. 

The two failure criteria [Eqs. (8.23) and (8.26)] can be applied to crack 
problems in a similar manner. Consider an infinite plate with a crack of length 
2c and subjected to a uniform stress u parallel to the y axis at infinity (Fig. 
8-18). The exact elasticity solution for the normal stress ahead of crack when 
the axes x and y are normal to the planes of elastic symmetry is given by 
Lekhnitskii [57]: 
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y 

r X =-c C 

Figure 8-18. A plate with a crack of length 2c. 

x>c (8.29) 

where k1 is the stress-intensity factor given by k1 = uv'"m and not by Eq. 
(8.12). Substitution of Eq. (8.29) into each of the failure criteria [Eqs. (8.23) 
and (8.26)] yields, respectively, 

(J"N = v'I 
O'o 

- p~ (8.30) 

where 

C 
(8.31) 

p3 = C + do 

and 

(J"N _ JI -p4 

O"o 1 + P4 
(8.32) 

where 

C 
(8.33) 

p4 = c + ao 

The effect of crack size can be better visualized by writing Eqs. (8.30) and 
(8.32) in terms of the measured value of the fracture toughness kQ: 
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'r- 1 - p4 kQ = <TN V 1TC = <To 1TC -
1 
-- (8.35) 
+ p4 

respectively. In both Eqs. (8.34) and (8.35), the expected limiting value of kQ 
= 0 for vanishingly small values of crack lengths is reached, whereas for 
large crack lengths, kQ asymptotically approaches a constant value. For the 
point- and average-stress criteria, these asymptotic values are, respectively, 

(8.36) 

(8.37) 

At this point it should be recalled that the entire basis (or usefulness) of 
the models lies in the assumption that the characteristic distance d0 or a0 

remains constant for all hole or crack sizes in at least a particular laminate 
of a particular material system. In such a case, the characteristic distance can 
be determined through one test on one hole or crack size. It is also clear that 
the utility of the model would be incre.c1sed greatly if d0 or a0 can be shown 
to be constant for all laminates of a particular material system, and an even 
greater utility would be achieved if they were shown to remain constant for 
all laminates of all fiber-reinforced-resin matrix composites. There is some 
evidence [47] that such may be the case, at least for what may be called 
"fiber- or filament-dominated" laminates in glass-epoxy, boron-epoxy, and 
graphite-epoxy systems. 

Nuismer and Whitney [48] have carried out experiments to examine the 
effect of changes in the material system, the laminate fiber orientations, and 
the notch shape and size on the model predictions. Experimental data have 
been obtained on two material systems, glass-epoxy and graphite-epoxy, in 
conjunction with orientations of fiber-dominated laminates, (0/ ±45/90b and 
(0/90)45 containing through the thickness circular holes and sharp-tipped 
cracks of several sizes. Experimentally measured notched strengths of glass
epoxy laminates with the orientation (0/ ±45/90b are compared with the 
predictions of the two failure criteria in Figs. 8-19 and 8-20. The measured 
and predicted values of fracture toughness for the same laminate are shown 
in Fig. 8-21. The predictions were made by assuming characteristic distances 
as d0 = 0.04 in. and a0 = 0.15 in. It may be pointed out that the values of 
characteristic distances were not picked for the best fit of the experimental 
results but were adopted from an earlier study [47]. It may be noted from the 
figures that the agreement between the experimental results and predictions 
of both the models is quite good. Predictions of the two models are quite 
close to each other, and neither model shows consistently better agreement 
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Figure 8-19. Comparison of experimentally measured and theoretically predicted strengths 1 

[0/ ±45/90b glass-epoxy lamin?tes containing circular holes. (From Nuismer and Whitne 
[48].) 

with the experimental results. The results are typical of the various laminate 
used in the investigation. However, the experimental data do show a larg 
scatter. Moreover, the agretment between experimental results and theoretic, 
predictions for a graphite-epoxy system is not as good. In view of this, Nuii 
mer and Whitney [48] have pointed out that a definite conclusion regardin 
the constancy of the characteristic lengths must await more data resultin 
from carefully accomplished studies. Experimental results of Brinson an 
Yeow [58,59] compare favorably with the predictions of the Whitney 
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Figure 8-20. Comparison of experimentally measured and theoretically predicted strengths 1 

[0/ ±45/90]28 glass-epoxy laminates containing sharp cracks. (From Nuismer and Whitm 
[48].) 
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Figure 8-21. Comparison of experimentally measured and theoretically predicted fracture 
toughness of [Of ±45/90)25 glass-epoxy laminates. (From Nuismer and Whitney [48].) 

Nuismer models. Although no conclusive statement about the accuracy of the 
models can yet be made, there are sufficient indications that the models may 
become useful design tools. 

8.3 JOINTS FOR COMPOSITE STRUCTURES 

In the design of structures using composite materials, the stiffness and 
strength (particularly with respect to weight) of these materials are an im
portant consideration. An equally important consideration for the complete 
design of practical structures is the development of attachment methods, joint 
designs, and the problems of load introduction in composite structures. With
out proper joints, it is not possible to take full advantage of the high stiffness 
and strength of composites. This section describes various fastening methods 
commonly employed with composite materials, the type of joint failure, and 
the kind of problems that arise in the joint design because of the heteroge
neous and anisotropic nature of composite materials. 

Basically, there are two types of joints commonly employed with compos
ite materials: adhesively bonded joints and mechanically fastened joints. 
These two types of joints are discussed in the following paragraphs. 

8.3.1 Adhesively Bonded Joints 

8.3. 1.1 Bonding Mechanisms Adhesive bonding occurs as a result of 
three types of interactions between the adhesive and adherend at their inter
face. These are chemical bonding, mechanical interlocking, and secondary 
bonding, or electrostatic bonding. These bonding mechanisms are shown 
schematically in Fig. 8-22. In chemical bonding, adhesive and adherend mol-
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Chemical 
connection 

Adherend 

••••••••--Adhesive 
Adherend 

(b) 

I •• • . !-~h.e~e.n~ •••• I 
1- .· ·. -~Adhesive r ... ~~;e;:n~ •••• , 

(c) 

Figure 8-22. Adhesive bonding mechanisms: {a) chemical bonding, {b) mechanical interlock
ing, and (c) electrostatic bonding. 

ecules are chemically connected to each other. It is frequently enhanced by 
the use of coupling agents, as discussed in Chap. 2. Chemical bonding pro
vides cohesive strength ·to the bond and is primarily responsible for bond 
durability. Mechanical interlocking occurs when adhesive fills the micropores 
on the adherend surface. It is enhanced by surface roughness and provides a 
micromechanism to mechanically inhibit separation of adhesive and adherend. 
Secondary bonding forces occur owing to electrostatic forces between the 
adhesive and adherend molecules. These forces resist shear deformation at 
the interface and thus provide some shear strength to the bond line. In view 
of the adhesive bonding mechanisms discussed here, it is obvious that ad
herend surface conditioning is very important for obtaining an effective ad
hesive bond. 

8.3.1.2 Joint Configurations Several simple bonded joint constructions 
are sho,wn in Fig. 8-23. In the development of bonded joints for structures, a 
simple joint can be fabricated first and tested for its suitability in structures. 
The size of the joint can be estimated from a knowledge of the part sizes to 
be joined, the allotted space for the joint, and a general idea of how much 
overlap is required to carry the load. With such knowledge, preliminary jcint 
designs can be made that can be refined using an iterative analysis procedure. 

Adhesive joints are natural to consider for polymeric matrix composite 
materials because many matrix resins are also good adhesives. For example, 
epoxies are used as adhesives for fiber-reinforced epoxy laminates as well as 
for many other materials. When the matrix material of the laminates is also 
used as the adhesive in the joint, excellent adhesion can result. 
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Single lop Step lop 

Double lop Modified double lop 

Scarf Double scarf 

Figure 8-23. Adhesively bonded joint constructions. 

8.3.1.3 Joint Failure Modes The allowable loads on a joint are the l°fds 
at which micro mechanical damage first occurs that eventually will lead' to 
macromechanical damage. Thus the micromechanical damage can be the basis 
for the selection of ultimate-load-prediction techniques and the prediction of 
failure modes of the joints. The micromechanical damage may initiate in the 
adhesive layer, at the interface, or even in the adherends forming the joint. 

Modes of micromechanical damage at the joint are shown in Fig. 8-24 and 
can be summarized as follows: 

(a) Cohesive failure: peel 

(c) Bond line failure: peel 

+--8\~----...._______,-f-. 
(e) Adherend failure in tension 

.+._~=::......_ 
'-----']-. 

(b) Cohesive failure: shear 

I
I 

+--\---,___~~--
'------'d-+ 

(d)Bond line failure: shear 

Figure 8-24. Adhesively bonded joint failure modes. 



358 ADVANCED TOPICS IN FIBER COMPOSITES 

1. Cohesive failure of adhesive layer by peeling (Fig. 8-24a) 
2. Cohesive failure of adhesive layer by shear (Fig. 8-24b) 
3. Interface (bond line) failure by peeling (Fig. 8-24c) 
4. Interface (bond line) failure by shear (Fig. 8-24d) 
5. Adherend (laminate) failure in tension (Fig. 8-24e) 
6. Adherend (laminate) delamination (Fig. 8-24f) 

In addition to these failure modes, the matrix material in the laminae, adjacen 
to the adhesive, may fail, resulting in cracks in the transverse or longitudina 
direction by the mechanisms discussed in Chap. 3. 

The cohesive failure within the adhesive layer or in the surface layer o 
the adherend matrix may occur by brittle fracture or by a rubbery tearin! 
depending on the type of adhesive used. This results in cracks perpendiculrn 
to the load and causes a reduction in the load-transferring capability of the 
joint. This situation is analogous to the cracks in the 90° plies of a cross-pl) 
laminate. The adhesive-adherend interface failure occurs on a macroscah 
when processing or material quality are poor. This mode of failure generall) 
is not considered in the analysis of joints because it is expected that the 
necessary quality-control procedures will be used to prevent its occurrence 
Interlaminar failure in the laminate (not related to edge effects) may be causec 
by poor processing, voids, delaminations, or thermal stresses. The last three 
types of failures are lrnmina failures, which were discussed in Chap. 3. 

8.3. 1.4 Stresses in Joints A joint, even when made properly, representi 
a discontinuity in the material, and resulting high stresses often initiate joirn 
failure. Therefore, the joint must be analyzed crnrefully. There are many usefu 
studies on the analysis of bonded joints [ 60-72]. Analyses have been carriec 
out for various joint configurations and for different properties of the adher
ends and adhesives. Results have been obtained in closed form or as numerica 
values. It is beyond the scope of this introductory text to discuss the detaih 
of the analyses or their specific results. Important results are discussed here 
qualitatively, and the conclusions affecting the joint design are also discussed. 

The primary function of a joint is to transfer load from one structural 
member to another. In most bonded joints, the load transfer takes place 
through interfacial shear. The interfacial shear gives rise to high interlaminm 
stresses in the adhesive layer. A qualitative variation of interlaminar normal 
and shear stresses for a single-lap joint is shown in Fig. 8-25. The actual 
magnitude of the stresses depends on many geometric and material property 
parameters, such as the thickness and length of the adhesive layer compared 
with the corresponding values for the adherend material, flexibility of adhe
sive, and type of load to be transferred. It can be observed in Fig. 8-25 tha1 
both interlaminar normal and shernr stresses have a large stress concentration 
near the end of the joint. In the remainder of the joint they are distributed 
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Distance x 

Figure 8-25. lnterlaminar normal and shear stresses in a single-lap joint. 

uniformly. Because of this high stress concentration in the adhesive layer, 
high stresses are produced in the adjacent plies of the adherend laminates. 
Therefore, failure may initiate in these plies. Berg [61] suggested that an 
effective way to reduce the local high stresses in the plies adjacent to the 
adhesive layer is to interleave the plies of the adherend laminates so that 
adhesion takes place in many layers, and consequently, stresses are distributed 
in many plies. Interleaving is particularly desirable when the number of plies 
in the laminates is large. 

Based on the different types of joint failures discussed in the preceding 
paragraphs, joint-analysis procedures and joint-design allowables may be de
veloped. Some of the details can be found in Grimes and Greimann [65]. 

8.3. 1.5 Advantages and Disadvantages of Adhesively Bonded Joints 
Advantages and disadvantages of adhesively bonded joints are given in Table 
8-2. 

Adhesively bonded joints are used routinely in most advanced structural 
applications in aerospace, marine, transportation, and infrastructure industries. 

Table 8-2 Advantages and disadvantages of adhesively bonded joints 

Advantages 

Relatively lightweight joint 
Negligible stress concentration in 

adherends 
Smooth external surface 
Superior damping characteristics 
Excellent fatigue properties 

Disadvantages 

Requires a cure cycle for joint fabrication 
Limited adherend thickness 
Inspection is difficult 
Cannot be disassembled 



360 ADVANCED TOPICS IN FIBER COMPOSITES 

8.3.2 Mechanically Fastened Joints 

Attachments between two composite laminates or between a laminate and : 
metal part also can be made by means of bolts, rivets, and pins. The me 
chanically fastened joints are a logical carryover from the existing practict 
of joints in metal structures using bolts, screws, pins, and rivets. Composit< 
materials do have some capability to withstand loads introduced by this typt 
of joint; however, unlike isotropic materials, the design of the material itsel 
strongly influences the allowable load transfer of the joint. 

8.3.2. 1 Failure Modes of Mechanically Fastened Joints The principa 
faiiure modes of mechanically fastened joints are shown in Fig. 8-26. The~ 
are 

1. B.earing failure of the matertal. In this type of f.ailure, the bolt holt 
elongates, as shown in Fig. 8-26a. 

2. Tension failure of the material in the reduced cross section through th, 
hole {Fig. 8-26b). 

3. Shear-out or cleavage failure of the material (Fig. 8-26c,d). This typ, 
of failure actually is induced by transverse tension failure of the ma 
terial. 

4. Shear failure of the bolt. 

Composite materials have low bearing strength and low in-plane shea 
strength. The bearing failure in the joints may be avoided by the use of thi1 
metal shims evenly located in the laminate in the hole area. The shims ari 
quite effective in enhancing the bearing strength in the joint area. The tensi01 
strength of the material in the reduced cross section can be improved b: 

(a) (bl 

(c) (d) 

f,igure 8-26. Mechanically fastened joint failure modes: (a) bearing, (b) tension, (c) shear-cu 
and (d) cleavage. 
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increasing the spacing between bolts and transferring the load through several 
rows of bolts so that the net shear area of the bolts is sufficient. 

The low in-plane shear strength of the composite presents quite a few 
problems. Unidirectional composites have low shear strength in the longitu
dinal direction and result in the shear-out mode of joint failure. An improve
ment for this mode of failure can be made by the use of ±45° fiber 
orientation, but this results in typically low net tension capability. The use of 
a so-called isotropic fiber orientation, 0°, 60°, 120°, combines improved shear 
strength and tension strength but at the same time reduces considerably the 
efficiency of the material. 

Besides the preceding problems related to conventional strength criteria, 
there are problems peculiar to composite materials. The holes in the laminates 
cause stress concentrations that vary with the fiber orientation relative to the 
load direction. The stress-concentration factors sometimes may be well above 
those occurring in a similar metal structure. Composite materials do not plas
tically deform, so stresses are not redistributed easily around the stress con
centration and are thus a cause of concern. The holes also give rise to the 
edge effects discussed in a previous section of this chapter. The edge effects 
promote the tendencies of local interlaminar failures that may become critical 
in the presence of a corrosive environment. 

8.3.2.2 Advantages and Disadvantages of Mechanically Fastened 
Joints Advantages and disadvantages of mechanically fastened joints are 
given in Table 8-3. 

Looking at the problems that they pose, mechanically fastened joints 
should be avoided in. critical or primary structural applications. However, for 
secondary and noncritical applications, this type of joint functions satisfac
torily and usually is less expensive. The functioning of the joint is further 
improved by following proper fabrication and installation procedures and by 
providing close tolerances. 

8.3.3 Bonded-Fastened Joints 

For higher reliability and better performance, joints sometimes are bonded as 
well as mechanically fastened. The bonding results in a reduction of the 

Table 8-3 Advantages and disadvantages of mechanically fastened joints 

Advantages 

No limit on adherend thickness 
Easy to inspect joint 
Can be disassembled easily 

Disadvantages 

Fastener holes may become failure-initiation 
sites owing to large stress concentration 

Poor fatigue properties 
Prone·to corrosion 
Fastener holes can damage the adherend 
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tendency of mechanical joints to shear .out. The mechanical fastening de
creases the tendency of debonding because of interfacial shear in bonded 
joints. Thus the combination joints may show better performance than either 
the adhesive-bonded joints or the mechanically fastened joints. 

A detailed discussion on joints design practices for composite structures 
can be found in the literature (73,74]. 

EXERCISE PROBLEMS 

8.1. Two laminates are constructed with stacking sequences (0/ ±45/90b 
and (0/90)45• The lamina properties are 

EL= 147.5 GPa GLT = 5.3 GPa 

ET= 11.0 GPa VLT = 0.29 

Calculate the orthotropic stress-concentration factors for infinite-widtl: 
plates using Eq. (8.20). 

8.2. Repeat Exercise Problem 8.1 for the following lamina properties: 

EL= 38.6 GPa GLT = 4.1 GPa 

ET= 8.3 GPa 

8.3. Using the Whitney-Nuismer failure criteria for notched composites, con 
struct plots of the notched-strength-unnotched-strength ratio as a func 
tion of the hole radius for the laminates <.:onsidered in Exercise Problem: 
8.1 and 8.2. Assume that the characteristic distances are d0 = 1 mm anc 
a0 = 4 mm for the point-stress and average-stress criteria, respectively 
The hole radius ranges from 0-15 mm. Note that for one laminate, pre 
dictions of the two criteria should be plotted on the same graph paper. 

8.4. Repeat Exercise Problem 8.3 for the sharp cracks with the half-cracl 
length ranging from O to 15 mm. 

8.5 .. Using the Whitney-Nuismer-failure criteria for notchedi:;omposites, con 
struct plots of the fracture-toughness-unnotched-strength ratio, kQ/ o-0 a 
a function of half-crack length. Characteristic distances are the same a 
those given in Exercise Problem 8.3, and the half-crack length range 
from 0-15 mm. 
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PERFORMANCE OF 
FIBER COMPOSITES: 

FATl·GUE, IMPACT, 
AND ENVIRONMENTAL 

EFFECTS 

The superior strength and stiffness of composite materials can be used to full 
advantage in structural applications only when the behavior of these materials 
under different loading and environmental conditions is properly understood. 
Any uncertainty in this regard results in the underutilization of the material 
properties by the use of unusually large margins of safety in actual design. 
Keeping this in mind, the behavior of fiber composite materials subjected to 
cyclic and impact loading is discussed in the first two sections of this chapter. 
The third section is devoted to the understanding of material behavior under 
various environmental conditions, such as exposure to water, water vapor, or 
other corrosive environments; temperature extremes; and long term physical 
and chemical stability. 

9.1 FATIGUE 

9.1.1 Introduction 

It is well known that when materials are subjected to repeated fluctuating or 
alternating loads, they may fail even though the maximum stress may never 
exceed the ultimate static strength of the material. In other words, load cycling 
reduces the strength of a material, or the fatigue strength of a material is 
lower than its static strength. This is true of almost all existing materials, 
including metals, plastics, and composite materials. In service, fatigue loads 
usually are unavoidable. For this reason, recent designs do not specify static 
strength alone as a primary design criterion but also include fatigue analysis. 
The demand for improved performance of structural materials in transporta
tion industries, particularly in aircraft, makes fatigue analysis an important 
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consideration. With this view, the fatigue of composite materials has been 
studied by a large number of investigators. Clear design criteria, similar to 
the ones that exist for fatigue of metals, have not yet been established, but 
many important aspects of the fatigue of composites are now well understood. 

Unidirectional continuous-fiber-reinforced composites are known to pos
sess excellent fatigue resistance in the fiber direction. This is so because the 
load in a unidirectional composite is carried primarily by the fibers, which 
generally exhibit excellent resistance to fatigue. In real structures, however, 
composites are used mostly in the form of laminates. Because of the differ
ences in orientation of each ply, some plies are weaker than the others in the 
loading direction and show physical evidence of damage much before the 
final fracture. The evidence of damage may be in one or more forms, such 
as the failure of the fiber-matrix interface, matrix cracking or crazing, fiber 
breaking, and void growth (i.e., separation of plies or delamination). In metals, 
the appearance of detectable damage (e.g., a crack) generally is considered 
unsafe because it grows rapidly to final fracture. In composite materials, how
ever, this is not necessarily so because although initial damage may appear 
very early in the fatigue life, its propagation may be arrested by the internal 
structure of the composite. It should be noted that in critical applications, 
design loads should be less than those required to cause any damage within 
the composite. The damage in individual plies generally causes a lowering of 
elastic properties of the laminate and eventually could lead to its structural 
failure (e.g., excessive deformation). However, this may happen long before 
the laminate is in danger of fracturing. Thus the definition of failure in com
posite materials may change from one application to another. In an application 
where deformation or a change in stiffness has to be limited, loss of stiffness 
by a fixed percent of the original stiffness may be the failure criterion rather 
than complete rupture. In the case of metals, the two criteria practically co
incide because they exhibit little change in stiffness unless cracking is exten
sive. For these obvious reasons, a successful design procedure with composite 
materials for -fatigue applications cannot be a simple extrapolation of the 
procedures used with metals. In the absence of well-developed design pro
cedures, a designer has to use his or her judgment with a proper degree of 
caution. However, a good understanding of various aspects of the fatigue 
behavior of composites definitely will aid the design engineer. The presen
tation in this section has been made with this view in mind. Initiation and 
propagation of fatigue damage and its influence on composite properties are 
discussed first. Then the influence of material variables such as matrix ma
terial, ply orientation, fiber contents, and fiber finish and testing variables 
such as mean stress and frequency are discussed. A brief discussion on the 
trend in developing empirical relations for predicting fatigue damage and 
fatigue life is also presented. The last two sections are devoted to the fatigue 
behavior of high-modulus fiber-reinforced composites and fatigue of short
fiber composites. 
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9.1.2 Fatigue Damage 

9. 1.2. 1 Damage I Crack Initiation There have been several studies [ l -1 
on the mechanism of damage initiation and propagation during fatigue c 
composite laminates. It has been established that the damage first initiates b 
the separation of fibers from the matrix (called debonding) in the fiber-ric 
regions of the plies in which the fibers lie perpendicular or at a large angl 
to the loading direction. Large stress and strain concentrations at the fiber 
matrix interface are responsible for the initiation of these cracks. After init 
ation, the crack usually propagates between fibers primarily along the fiber 
matrix interface. A typical cross-ply crack is shown in Fig. 9-la. The crac 
is generally perpendicular to the direction of load and extends over the entir 
width of the ply. The cross-ply cracks can appear during the first cycle c 
loading, provided that the applied stress exceeds the local ply strength, whic 
might happen at applied stresses as low as 20% of the ultimate stress de 
pending on the laminate construction [4]. The number of cross-ply crack 
increases with either the number of cycles or an increase in the stress leve 
Multiple crack formations in the cross-plies are shown in Fig. 9-1 b. 

The initial damage in randomly oriented fibrous composites commences i 
a similar manner. In a tensile test on a thin laminate made from chopped 
strand mat, the first signs of damage have been observed [2] at about 30% o 
the expected ultimate tensile strength. In this case also the initial damage i 
associated with the strands lying perpendicular to the line of load. The initi 
ation of damage can occur at any point along the length of the strand and i 
not particularly associated with the ends. Damage is seen to be in the forr 
of debonding within a strand. Thus the first stage of damage in a composit 
laminate is formation of debonding cracks along the fibers lying perpendicula 
or at the largest angle to the direction of load. 

9.1.2.2 Crack Arrest and Crack Branching The cross-ply cracks prop 
agate through the entire width of the ply but are unable to propagate into th 
adjacent ply, particularly if it is a ply having fibers aligned in the directio 
of load. Thus the cross-ply cracks terminate at the interface of two plies. Thi 
feature of crack termination is well illustrated in Fig. 9- lb. However, the crac 
tip produces a stress concentration ahead of itself. The resulting high inter 
laminar stresses produce favorable conditions for starting a delamination crac: 
alopg the ply interfac.e. Figure 9-2 shows such a delamination crack bein: 
started at the tip of a cross-ply crack. More delamination cracks start an1 
propagate as the number of cycles increases. At the time when delaminatiOi 
cracks appear, another type of damage is also observed. The fibers in th 
longitudinal plies also may start fracturing, and debonding a.nd cracks in th 
longitudinal plies begin to appear. A longitudinal-ply crack as seen in th 
cross section of the laminate is shown in Fig. 9-3. The longitudinal-ply crack 
do not follow any set path, unlike the cross-ply cracks, which generally ar, 
perpendicular to the line of load. 
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Figure 9-1. Fatigue failure initiation: (a) single cross-ply crack and (b) multiple crack formation 
in cross-plies. 
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Figure 9-2. A delamination crack initiated at the tip of a cross-ply crack. 

Figure 9-3. Longitudinal-ply crack appears in a cross section. 
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9. 1.2.3 Final Fracture The composite undergoes final fracture when it is 
sufficiently weakened by longitudinal-ply cracks and delamination cracks. 
The longitudinal-ply cracks weaken the longitudinal plies that are responsible 
for carrying a larger part of the load. The presence of delamination cracks 
prevents load distribution between plies, and the composite is essentially re
duced to a number of independent longitudinal plies acting in parallel to 
support the applied load. The weakest of these longitudinal plies fails and 
triggers failure of the remaining longitudinal plies. Evidence of extensive 
delamination in the region adjacent to the failure zone is shown in Fig. 9-4. 
However, the delarnination cracks, which are responsible for final fracture of 
the material, are clearly marked only at a late stage of the fatigue test, for 
example, after about 90% of the fatigue life. This observation was first made 
by Broutman and Sahu [4] and later confirmed by Dally and Agarwal [7]. 

9.1.2.4 Schematic Representation The initiation of cracks resulting 
from fiber fracture and the propagation of cracks through the composite in 
fiber-reinforced materials are shown schematically in Fig. 9-5. A discontinuity 
produced by a fiber fracture causes high shear stress at the fiber-matrix in
terface and produces favorable conditions for a shear crack to grow, as shown 
in Fig. 9.Sa. Depending on the relative values of bond strength and matrix 
strength, the shear crack may grow in the interface region or in the adjacent 
matrix material. In a composite with a weak interface, tensile splitting at 
interfaces may take place ahead of a fatigue crack in the matrix (see Fig. 

Figure 9-4. Extensive delamination observed in a cross section near a fracture surface. 
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Figure 9-5. Modes of fatigue-crack growth in fiber-reinforced materials: (a) shear-crack initi
ation at fiber break, (b) tensile splitting of interface ahead of matrix crack, (c) matrix crack 
bypassing strong fiber, (d) crack initiation in ductile fiber ahead of matrix crack, and (e) fracture 
of brittle fiber ahead of matrix crack. 

9-5b). Crack branching (see Fig. 9-5a) and tensile splitting (see Fig. 9-5b) 
relieve some of the stress concentration in the vicinity of the crack and en
hance the fatigue life of the material as a consequence of a weak fiber-matrix 
interfacial bond. Plastic flow in a low-yielding stress matrix also blunts the 
crack tip and thus impedes crack growth. 

When a fatigue crack in the matrix approaches a fiber, it may grow essen
tially in three ways, as shown in Fig. 9-5c,d,e. With a weak interface and 
strong fibers, the crack can bypass the fiber by an antiplane-strain mode of 
crack growth (see Fig. 9-5c). When the interface is strong, high stresses ahead 
of the crack tip affect the fibers. Ductile fibers are particularly sensitive to 
the high crack-tip stresses, and fatigue-crack growth is rapid (see Fig. 9-5d). 
Brittle fibers ahead of the crack fail· abruptly because of the large crack-tip 
stresses (see Fig. 9-5e). The modes of fatigue-crack growth illustrated by Fig. 
9-5d,e generally result in poor fatigue resistance of composites. 

9.1.2.5 Damage Charact!fJrization The extent and character of internal 
cn;cking damage have been studied by investigators using different methods. 
Optical microscopy on an internal section p,olished by metallographic tech
niques is a direct method and probably the most popular technique. This 
method is very effective in visualization and presentation of damage charac
teristics. The. photoi:nicrographs shown in Figs. 9-1 to 9-4 · have been obtained 
using this tet1hnique. The extent of damage may be represented quantitatively 
using this method by obtaining the average number of cracks in a specified 
area. Weight gain from water immersion was employed as a measure of in
ternal damage by early investigators, such as McGarry [l], but is not always 
found suitable. Nondestructive inspection techniques are now being developed 
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for detection of fatigue damage [8]. These techniques include ultrasonics, 
holographic interferometry, and x-ray radiography. Changes in structural 
properties such as static or dynamic modulus and temperature rise during 
fatigue loading are also considered indicative of internal damage. However, 
no clear quantitative correlation between structural properties and internal 
damage measurements has as yet been established. 

9.1.2.6 Influence of Damage on Properties Internal cracking results in 
lowering of the stiffness and strength of composite materials. Broutman and 
Sahu [ 4] have related the changes in residual strength and modulus to the 
development of cracks in a glass-epoxy cross-ply material (Fig. 9-6). The 
residual strength and stiffness decrease with the increasing crack density. It 
also has been pointed out that the stress-strain curve of a virgin cross-ply 
material can be approximated by two straight lines giving two elastic moduli 
for the material. The two moduli are referred to as primary and secondary 
moduli (see Chap. 6). The material exhibits a higher (primary) modulus at 
the beginning of the test because there are no cracks present, and both the 
longitudinal plies and the cross-plies contribute fully to the stiffness of the 
composite. As the load increases, the cross-ply cracks appear, and thus the 
contribution of the cross-plies to the composite stiffness decreases, causing a 
reduction in modulus. In fatigue tests, the modulus decreases first in the pres
ence of cross-ply cracks and then longitudinal-ply cracks and delamination 
cracks. Therefore, with fatigue exposure, the stress-strain curve of the ma
terial becomes linear with a modulus close to the secondary modulus of the 
virgin material. The modulus may become less than the secondary modulus 
of the material when the longitudinal-ply cracks and delamination cracks de
velop owing to fatigue loading. Dally and Agarwal [7] developed a quanti
tative relationship between modulus change and crack density for an E-glass
epoxy cross-ply laminate. This relationship is shown in Fig. 9-7, in which the 
crack pitch is defined as the average distance between two consecutive cracks 
in the cross-plies. 

There is a gradual decrease in the static strength of the material as it is 
subjected to an increasing number of cycles at a given stress level. It is 
obvious from Fig. 9-6 that much of the strength reduction occurs in the first 
25% of the fatigue life, beyond which the rate of decrease in static strength 
is reduced until the fatigue life is reached and failure occurs. Once again, the 
reason for the initial loss of strength is the failure of the cross-plies. Devel
opment of longitudinal-ply cracks and delarilination cracks is slow, and hence 
the loss of strength in the later part of the fatigue life is slow. Rapid loss of 
strength occurs in the last few cycles of fatigue life when the stronger plies 
fail. Prior to this rapid loss of strength, individual plies do become weakened, 
but the overall strength reduction is slow. The curves shown in Fig. 9-6 are 
typical of cross-plied materials. Tanimoto and Amijima [9,10] have studied 
fatigue of glass-cloth-reinforced polyester resins. Their results are very similar 
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Figure .9-6. Increase in the number of cracks and loss of strength and modulus of a cross
ply laminate during fatigue. (From Broutman and Sahu [4].) 

to ,those of Broutman and Sahu [4], as shown in Fig. 9-6. In addition, they 
have reported that the residual strength in interlaminar shear follows the same 
trend as the residual tensile strength. Hahn and Kim [11], while studying 
fatigue of glass-epoxy angle-ply laminates, observed that the secant modulus 
of the material decreases with exposure to fatigue loading and indicated that 
the decrease in secant modulus is related to internal damage. 

Besides internal cracking damage, a rise in temperattire also causes a de
crease in properties of the material. Dally and Broutman [12] observed that 
a significant rise in temperature takes place during the fatigue of a cross-ply 
material, particularly when the frequency is high. Cessna et al. [13] performed 
constant-deflection flexural tests on glass-reinforced polypropylene and mon-
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Figure 9-7. Loss of modulus as a function of crack pitch. (From Dally and Agarwal [7].) 

itored the load decay (proportional to modulus decay) with cycles (Fig. 9-8). 
They also monitored the temperature rise caused by viscoelastic energy dis
sipation, which is common for polymer-matrix composites. In addition to 
indicating progressive fatigue damage, the temperature rise also helps to 
weaken the material and shorten its fatigue life. By cooling their specimens 
to maintain isothermal conditions, Cessna et al. were able to extend both the 
cycles to onset of stiffness change and the fracture life by one order of mag
nitude. 
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Figure 9-8. Load decay and temperature rise during constant-deflection flexural fatigue. (From 
Cessna et al. [13].) 
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9.1.3 Factors Influencing Fatigue Behavior of Composites 

Results of fatigue tests typically are presented as a plot of applied stress (S 
against number (N) of cycles to failure. This graph is called an S-N curve 
The ordinate generally is the stress or strain amplitude or the maximum stres 
or strai'n in a cycle and is plotted on a linear scale. The abscissa is the numbe 
of cycles to failure for a fixed stress cycle and is plotted on a logarithmi1 
scale. Complete separation of the specimen has been taken as the criterio1 
for failure by most investigators. However, another approach is to recorc 
fatigue data as loss of stiffness against number of cycles and to present curve: 
of stress versus number of cycles for fixed percent changes in stiffness [14] 
The S-N curves for all materials including metals, polymers, and composite: 
have a negative slope. That is, the number of cycles to failure ( or the fatigw 
life) increases as the stress decreases. The exact shape of the curve di ff er: 
from material to material. For composites, the curve is influenced by variow 
material and testing variables as fol'lows: (1) matrix material (type of resin) 
(2) ply orientation, (3) volume fraction of reinforcement, (4) interface prop· 
erties, (5) type of loading, (6) mean stress, (7) frequency, and (8) environment 
The first four factors are material variables, whereas the remaining are tes 
variables. 

Boller [15] has investigated the effect of matrix materials on the fatigue 
strengths of glass-reinforced plastic laminates. The S-N curves are shown ir 
Fig. 9-9, and all the resins were reinforced with style 181 E-glass fabric. Thii 
fabric produced a balanced lamina such that EL is approximately equal to Er 
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Figure 9-9. Effect of matrix material on fatigue strength of glass-reinforced plastic laminates. 
(From Boller [15].) 
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These measurements were made before 1955, and since then, improved glass
coupling agents have been developed for some of the specific resins shown 
in Fig. 9-9. These composites may have improved strength values compared 
with those shown in Fig. 9-9, but the trends shown remain the same. Strikingly 
similar results have been shown by Davis et al. [16). Of the various ther
mosetting resins used commonly in glass-fiber laminates, the best fatigue 
properties are obtained with the epoxy resins. Superiority of epoxy resins is 
attributed to their inherent toughness and durability. In addition, they have 
high mechanical strength and low shrinkage during cure and form an excellent 
adhesive bond to glass fibers. 

The effect of fiber orientation is complex. Although the tensile strength of 
unidirectional composites is maximum in the fiber direction, in fatigue the 
unidirectional construction is not optimal, as seen in Fig. 9-10. The poor 
performance of 0° unidirectional laminates occurs because of splitting in the 
fiber direction resulting from their relatively low transverse strength and im
perfect testing or gripping conditions. It has been shown [15,16) that the 
splitting problem may be overcome and the fatigue strength improved by 
providing some of the plies in the 90° direction. Typical S-N curves for 
various types of construction are shown in Fig. 9-11. It may be noted that the 
cross-ply nonwoven laminates with 50% 0° and 50% 90° plies give much 
better fatigue strength than does the glass-fiber fabric even though both lam
inates have the same reinforcement pattern. In general, nonwoven materials 
are superior to woven materials in fatigue because fibers in nonwoven ma
terials are straight and parallel and do not get crimped as in the fabric 

0'------'10 ____ ....... _____ 1~0
3
,----..._----,·o~5 ----~----',o1 

Cycles to failure 

figure 9-10. Effect of fi6er orientation on fatigue strength. (From Boller [15].) 
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Figure 9-11. S-N curves for different laminate constructions. (From Davis et al. [16].) 

construction. Thus nonwoven materials possess optimal static and fatigue 
properties. 

Besides the orientation of plies, the stacking sequence also influences the 
fatigue life. Foye and Baker [17) observed that when positions of the plies ir. 
a [ ± 15 / ± 45]5 laminate were changed, a difference in fatigue strength oJ 
about 25,000 psi occurred. This was explained by Pagano and Pipes [18: 
through analysis of interlaminar stresses. They showed that the interlaminru 
stress normal to the laminate changes from tension to compression by chang
ing the stacking sequence, and this accounts for the difference in fatigue lofic 
capability. Delamination was observed to occur in the specimens that devel
oped tensile interlaminar stress. Whitney [19,20] has made similar observa
tions on the influence of stacking sequence on the fatigue strength and failure 
mode of composite laminates. 

Amijima and Tanimoto [9,10,21] have studied the influence of glass con
tent on fatigue properties of laminated glass-fiber composite materials. Theil 
results (Figs. 9-12 and 9-13) clearly show that the fatigue strength of glass
cloth-reinforced polyester resin increases with increasing glass content in bott 
axial fatigue (Vr range 29.3-54.2%) and rotating bending fatigue (Vr range 
11.8-30.4% ). This increase in fatigue strength occurs with the increase ir 
static strength of the composite as a result of increased fiber volume fraction 
Earlier studies by Boller [ 15] and Davis et al. [ 16] indicated that. the fatigm 
strength is not related to fiber content because it varies from 63-80% in , 
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Figure 9-12. Influence of glass content on axial fatigue strength. (From Tanimoto and Amijima 
[10].) 

glass-cloth-reinforced epoxy. It appears that an optimal fatigue strength may 
be achieved with 70% by weight of glass fibers in the case of fabric laminates. 

The effect of interfacial bond strength between the matrix and the rein
forcement on the fatigue strength of composites has been studied by Hofer 
et al. [22]. They studied the fatigue behavior of glass-fabric composites having 
four different finishes, including an untreated surface and surfaces treated with 
Volan A, A-1100, and S-550 finishes (organosilane coupling agents). The 
untreated glass exhibited the highest fatigue strength in a dry environment, 
but it also was the most severely affected in a humid environment. As a result, 

20.--------------------------------~~,----, 

-o- 0.304 
-<>- 0.228 
-41-0.118 

Number of cycles to failure N 

Figure 9-13. Influence of glass content on rotating bending fatigue strength. (From Amijima 
and Tanimoto [21].) 
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all fabrics tested showed a similar resistance to fatigue when tested in a hum 
environment. Thus, when laminates are fatigued in real environments, it 
difficult to demonstrate the effectiveness of various surface treatments. Th 
is partially a result of the stress system, which is usually such that the con 
posite properties are fiber-dominant and not greatly dependent on the interfac 
strength. 

Like static strengths, fatigue strengths of composites in longitudinal tensic 
and shear are quite independent. Shear fatigue has been studied recently t 
many investigators [23-26]. Pipes's [23] results on a unidirectional glass 
epoxy composite are shown in Fig. 9-14. These results indicate that the f: 
tigue strength of glass-epoxy in interlaminar shear is superior to that i 
longitudinal tension when compared with the ultimate static strength. Th 
trend of the fatigue strengths of glass-epoxy composites is different from th, 
of high-modulus boron- or graphite-fiber-reinforced composites, in which tr 
longitudinal fatigue strength has been observed to be superior to the she, 
fatigue [23] (Fig. 9-15). This observation is highly dependent on the specifi 
composites tested and their interfacial properties, and thus the results shoul 
not be generalized and must be used with caution. With a view of developin 
a failure theory to predict fatigue strength under multiaxial stress systems, th 
fatigue behavior of unidirectional composites in a transverse direction als 
has been studied [26,27]. No theory has yet been developed that can be ar 
plied with confidence. The flexural-fatigue results of Agarwal and Joneja [2'i 
on a unidirectional glass-epoxy composite indicate that when the composit 
is subjected to cyclic loading that produces stresses in the transverse directior 
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Figure 9-14. Shear fatigue strength of unidirectional glass-epoxy composite. (From Pipe 
[23].) 
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Figure 9-15. Shear fatigue strength of unidirectional boron-epoxy composite. (From Pipes 
(23].) 

there is a sudden and drastic loss of transverse stiffness (to about 30% of its 
value in the first load cycle) in the initial stage of fatigue cycling (before 5% 
of the expected fatigue life is spent). This sudden loss of stiffness occurs 
when the bond between the fibers and matrix in the transverse surface layers 
of the specimen fails. 

The influence of mean stress on fatigue strength has been studied by many 
investigators [2,3,9,21,28]. The influence of mean stress is usually presented 
through a plot of permissible stress amplitude as a function of mean stress 
for a fixed cyclic life. A master diagram consisting of several such plots for 
different fatigue lives is constructed from the S-N curves obtained for differ
ent mean stresses. A typical master diagram for a glass-polyester composite 
is shown in Fig. 9-16 for four different cyclic lives (namely, 103 , 104, 105 , 

and 106 cycles). The results indicate that for a fixed cyclic life, the permissible 
stress amplitude decreases as the mean stress increases. For a negative mean 
stress (i.e., a compressive mean stress), the stress amplitude is larger than that 
for a zero mean stress. For a given mean stress, cyclic life decreases as the 
stress amplitude increases. The influence of mean stress on the fatigue be
havior of composites is similar to that of metallic materials. It is observed 
that like metals, the stress amplitude in composites is related to the mean 
stress through a linear relationship. The Goodman-Boller relationship, which 
is usually found to be in good agreement with the experimental results, as
sumes that for a fixed fatigue life, the decrease in stress amplitude normalized 
by the fatigue strength (or stress amplitude) at zero mean stress is equal to 
the mean stress normalized by the stress-rupture strength, defined as the 
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Figure 9-16. Master diagram showing influence of mean stress on fatigue strength. (Fro 
Owen et al. [3].) 

constant stress that will produce fracture of the composite in a time cc 
responding to the fatigue life (i.e., the duration of fatigue cycling). Tl 
Goodman-Boller relationship can be written as 

(9. 

where SA and SM are stress amplitude and mean stress, respectively, SE is tl 
fatigue strength at zero mean stress for equal cyclic life, and Sc is the stres: 
rupture strength for the time corresponding to the cyclic life. Limited expc 
imental results [21] indicate that at elevated temperatures, the influence 
mean stress may be different from that predicted by the Goodman-Boll 
relationship. 

Dally and Broutman [12] have shown that the frequency of stress cycli1 
significantly influences the temperature rise of specimens during fatigue te: 
ing. However, the fatigue life of both cross-ply and isotropic materials is on 
modestly influenced by frequency effects. As the frequency and temperatu 
rise are increased, the fatigue life decreases. Insensitivity of the fatigue li 
to the frequency and resulting temperature rise is probably due to the f, 
that the properties of glass fibers, which for the composites tested are t 
primary load-bearing member in the composites, remain unaffected at the 
temperatures. 
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9.1.4 Empirical Relations for Fatigue Damage and Fatigue Life 

An almost infinite variety of laminates can be used for structural applications. 
Once it has been decided to use a specific laminate, its fatigue characteristics 

1 may be obtained through experiments. It is, of course, not practical to ap
proach the design problem in the inverse way-that is, to characterize all 
possible laminates to select the proper one. It is desirable, however, to evolve 
some simple equations that can be used in design analysis. 

Broutman and Sahu [29] have proposed a theory to predict loss of strength 
during fatigue. According to their theory, loss of strength is a product of the 
difference between static strength and fatigue strength and the applied-load
cycles-expected-fatigue-lifo ratio. This theory is useful in predicting cumu
lative fatigue damage when the load cycle changes from time to time, as 
actually happens in the real structures. However, this theory cannot be applied 
for design analysis because it requires determination of separate S-N curves 
for different materials. Mandell [30,31] has related the rate of crack propa
gation to the maximum stress-intensity factor. In this case also the fatigue 
strength has not been related to the fatigue life in a way that can be used for 
design purposes. 

Hashin and Rotem [32] have suggested the following correlation between 
the fatigue strength and the static strength of ..composite materials: 

CTt = crsf (R, N, n, 8) (9.2) 

where CTr and CT5 are fatigue and static strengths, respectively, f (R, N, n, 8) is 
a function of R, stress ratio in fatigue cycling, N is the fatigue life, n is the 
frequency of load cycling, and 8 is the fiber orientation for unidirectional 
composites. However, the function f has to be evaluated experimentally. This 
is therefore a limitation for its applicability to design analysis. Unless a simple 
way can be found to evaluate this function, Eq. (9.2) cannot be used xery 
effectively. 

It has been observed that the S-N curves of composite materials often can 
be represented by straight lines with the equation [33] 

AS - = m log N + b (9.3) 
(Tu 

where AS is the stress range, cru is the ultimate tensile strength, and m and b 
are material constants. Some investigations [11,33] show that the values of m 
and b may be close to 0.1 and 1.0, respectively. However, there are not suf
ficient experimental data to suggest that these values may be used with con
fidence for design applications. 

Another useful relationship to represent fatigue data is a power law: 
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(9.4) 

where AE is the strain range, and k and c are material constants. This equation 
has been found to be very useful for predicting fatigue life of metallic ma
terials [34,35]. For most metals, k is known to vary from 0.5 to 0.6, and the 
value of c is related to the ductility of the material. In this manner it is possible 
to predict the fatigue behavior of metals from their static properties. Results 
of Agarwal and Dally [33] and Hahn and Kim [11] do follow Eq. (9.4), but 
the constants k and c are not universal constants for composite materials. 
Further, it has not yet been possible to relate these constants to the static 
properties of materials. Such a correlation may be evolved in the future so as 
to make Eq. (9.4) as well as Eq. (9.3) very useful in design procedures. 

9.1.5 Fatigue of High-Modulus Fiber-Reinforced Composites 

High-modulus fiber-reinforced composites are of special interest in applica
tions where weight saving is at a premium. For example, graphite fibers offer 
very attractive properties of high modulus, high strength, and low density. 
Graphite-fiber-reinforced polymer composites have a specific gravity of about 
1.5 while achieving a tensile modulus close to that of steel. Thus the specific 
modulus of the composite is four to five times greater than that of steel. 

High-modulus fiber-reinforced composites such as Kevlar-, boron-, and 
graphite-reinforced polymers display excellent fatigue resistance when tested 
in directions such that the properties are fiber-controlled. In other words, 
although the transverse tensile fatigue resistance of a unidirectional graphite 
composite will not differ from that of a glass-fiber composite, the longitudinal 
fatigue resistance will be much better. In general, it can be stated that the 
excellent fatigue resistance of these materials results from the environmental 
stability of the high-modulus fibers and their low strains to failure, which as 
a result produce low strains in the matrix, such as during fatigue of a unidi
rectional composite in the fiber direction. 

Graphite fibers can be obtained from the pyrolysis of continuous poly
acrylonitrile (PAN) fibers or rayon fibers. Although a continuous spectrum of 
fiber strength and modulus values can be obtained by varying the process 
details, especially the maximum temperature and stretching force during py
rolyzing, graphite fibers usually are available either as high-modulus or high
strength fibers. Tensile strength and modulus of some carbon fibers already 
have been given in Chap. 2. Graphite fibers are highly anisotropic. The ani
sotropy in strength, modulus, and thermal expansion coefficients resulting 
from the graphite structure is particularly important and is reflected in the 
properties of the composites. 

Graphite-fiber-reinforced composites are much newer materials compared 
with glass-fiber-reinforced composites. Their commerical use is still very lim
ited. Consequently, although their fatigue properties have been studied in 
laboratory tests, extensive field experience is not yet available. Early inves-
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tigations [36] showed that the axial fatigue properties of high-modulus 
graphite-fiber composites in both unidirectional and cross-ply forms are ex
cellent and relatively insensitive to attack by moisture or oil at ambient tem
perature. Typical S-N curves for a unidirectional composite and a [04 / ± 452 

/90] laminate of graphite-epoxy are shown in Figs. 9-17 and 9-18, respec
tively. The curves show several unusual features. The curves are far more flat 
than the S-N curves for other common structural materials, including glass
fiber-reinforced polymers. Fatigue failure appears to have occurred in only 
those specimens that were loaded at stresses nearly equal to the static strength, 
probably within the range of the static-strength scatter band. The specimens 
loaded at stress levels only just below the scatter band survived 106 cycles 
and in some cases even 107 cycles. This fatigue behavior of graphite-fiber
reinforced composites is well documented and has been observed by many 
investigators [37-39]. The fatigue strength of these unidirectional composites 
remains unaffected when the tests are carried out at 350°F instead of room 
temperature (see Fig. 9-17). The fatigue strength of the [0/ ±452/90] lami
nates is only modestly lowered when the tests are carried out at 260°F instead 
of room temperature. The excellent fatigue resistance of graphite-fiber
reinforced epoxy composites results largely from their environmental stability. 
For example, longitudinal stress-rupture curves for the unidirectional com
posite are shown in Fig. 9-19. The rupture strengths at elevated temperatures 
are shown for an "as received" composite, for a composite after exposure to 
98% relative humidity at 120°F for 100 h, and for a composite after a 500-h 
exposure to 350°F. These results indicate that the elevated temperature rupture 
strength of the graphite composite, even at long exposures to stress, is nearly 
as high as the corresponding static strength. Whereas a preexposure of the 
composites to 350°F for 500 h has negligible influence on the rupture strength, 
preexposure to 98% relative humidity seemed to improve the rupture strength. 

Owen and Morris [37] have indicated that the graphite-fiber-reinforced 
composites do not show any significant temperature rise even at the high test 
frequency of 7000 cycles per minute, at which structural steels become very 
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Figure 9-1?. S-N curve for a unidirectional graphite-epoxy laminate. 
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Figure 9-18. S-N curve for a [04 / ± 452 /90] graphite-epoxy laminate. 

hot. Liber and Daniel [38] observed that these materials do not exhibit any 
significant deterioration of mechanical properties such as loss of stiffness and 
strength during fatigue loading. This observation is quite different from that 
for glass-fiber-reinforced polymers, in which the fatigue damage is known to 
be progressive. Compressive strengths of these materials have. been found to 
be much lower than the tensile strengths, and hence their flexural fatigue is 
controlled by the compressive strength. The fatigue effect has been found to 
be much more significant under conditions of shear loading, both interlaminar 
and torsional [25,40,41]. 

Fatigue properties of a unidirectional boron-epoxy composite are shown 
in Fig. 9-20. The S-N curves have been given for different loading conditions 
and temperatures. It can be observed that for testing in alternating tension 

, and compression (R = -1), at room temperature, the S-N curve (103-107 

cycles) is a horizontal straight line, indicating that the fatigue strength does 
not decrease with increasing cyclic life. In other words, all fatigue failures 
occur at the same stress level, and if the tests are carried out below this stress 
level, the specimens will survive 107 cycles. This fatigue behavior is similar 
to that of graphite-epoxy composites discussed earlier. When testing is car
ried out in fluctuating tension (R = 0.1), the room-temperature fatigue 
strength decreases with increased cyclic life. The fatigue strength at elevated 
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Figure 9-19. Longitudinal stress-rupture curves for unidirectional graphite-epoxy composite 
under different environmental conditions. 
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Figure 9-20. S-N curves for unidirectional boron-epoxy composite. 

temperatures is lower, but the elevated-temperature S-N curves (for R = 0.1) 
are flatter than the corresponding room-temperature S-N curve. The S-N 
curve for a [0/ ±45/90] boron-epoxy laminate is shown in Fig. 9-21. It is 
observed that the fatigue strength of this laminate is not as good as that of 
the unidirectional composite. 
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Figure 9-21. S-N curves for [0/ ±45/90] boron-epoxy laminate. 
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Comparison of the fatigue behavior for some unidirectional composites 
with that for aluminum is shown in Fig. 9-22. It can be observed that Kevlar
epoxy and boron-epoxy composites display far superior fatigue properties 
than the glass-epoxy composites and aluminum. Of course, the graphite
epoxy composites would be comparable with the Kevlar or boron fiber com
posites and are not shown in Fig. 9-22. An approximate comparison of the 
fatigue behavior of several reinforced plastics is shown in Fig. 9-23 [42]. This 
diagram also shows the superiority in fatigue behavior of the high-modulus 
fiber-reinforced polymers over the glass-fiber-reinforced plastics. 

9.1.6 Fatigue of Short-Fiber Composites 

Compared with continuous-fiber-reinforced composites, short-fiber compos
ites of all kinds are much less resistant to fatigue damage because the weaker 
matrix is required to sustain a much greater proportion of the cyclic load. 
Local failures in the matrix are initiated easily. Fatigue damage in randomly 
oriented short-fiber composites is initiated by debonding of those fibers that 
lie perpendicular to the loading direction. In aligned short-fiber composites, 
the fiber ends and weak interfaces can become sites for fatigue crack initia
tion. Another important source of damage in reinforced plastics is thermal 
degradation from the heat dissipated in the material as a result of the large 
hysteresis loss per cycle and low thermal conductivity of most plastic mate
rials. An important aspect of fatigue of short-fiber composites is that local 
failures in the matrix and at the interface can destroy the integrity of the 
composite even though the fibers remain undamaged. 

A number of research ,studies have been performed on the fatigue of short
fiber composites ·by Owen and associates on glass chopped-strand mat (CSM) 
and polyester resin (PR) combinations, and the results have been reported in 
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Figure 9-22. Fatigue characteristics of unidirectional composites compared with aluminum. 
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Figure 9-23. Approximate fatigue behavior of several reinforced plastics. Note that CSM refers 
to chopped-strand mat (curve G), which generally has 5-cm-long randomly oriented fibers, and 
DMC refers to dough-molding compound, which has less than 1-cm-long randomly orientated 
fibers. (From Harris [42].) 

a number of publications [2,3,5,43-55]. Important results and conclusions of 
these studies were discussed by Owen in a publication [56] in 1982. Some 
of the results are presented here. 

The static and fatigue strengths of CSM-PR composites under both uni
axial and biaxial loading were studied. Failure processes, cumulative damage, 
macroscopic crack propagation, and fracture mechanics were considered. Fa
tigue test results on CSM-PR composites are presented as conventional S-N 
curves in Fig. 9-24. The effect of mean stress is presented in Fig. 9-16 as a 
conventional constant-life diagram showing the relationship between mean 
stress and stress amplitude. In every case the criterion of failure was sepa
ration of the specimens. The most important conclusion from the master di-
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Figure 9-24. Fatigue data for CSM-PR specimens at zero mean stress. (From Owen and Smitt 
[2].) 

agrqm is that the Goodman law, commonly used for structural materials, i: 
unconservative forCSM-PR. By carrying out fatigue loading for various frac 
tions of the expected mean fatigue life and then carrying out stress-rupture 
tests, they showed that the prior fatiguing produced a marked reduction in the 
subsequent stress-rupture life. It is this effect, Owen suggested, that undoubt 
edly makes the Goodman law unconservative in expressing the mean-stress
stress-amplitude relationship for CSM-PR. 

Owen et al. [ 49] produced S-N curves. that showed the onset of transvers, 
fiber debonding and the onset of resin cracking (Fig. 9-25). They also showe1 
that the onset of debonding under a single application of tensile load occurre, 
at approximately 0.3% strain for a wide variety of random glass-reinforce 
plastics (GRPs) and, furthermore, that at the onset of debonding, S-N curve 
for widely differing GRPs were almost superimposed on a strain basis. 

Effect of a stress concentrator on static and fatigue properties of CSM-Pl 
composites is shown in Fig. 9-26 through static-strength scatter bands and S 
N curves for the three states of failure for specimens with and without hole: 
Owen and Bishop [48] concluded that a small hole in a CSM-PR composit 
was not a fully effective stress concentrator. They also suggest that, for mo: 
purposes, the onset of debonding at a hole was uneconomical as a failm 
criterion. They further pointed out that the S-N curves between 103 and 1 ( 
cycles usually can only be represented as a straight line that extrapolates t 
zero stress at a finite life. Thus it is very difficult to use the S-N curves fc 
predicting safe loads for long lifetimes. 

Fatigue data on short-fiber-reinforced thermoplastic resins have been re 
ported only rarely in the published literature. Typical results for some glas 
reinforced thermoplastics are shown in Figs. 9-27 to 9-29 [57]. It has bee 
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Figure 9-25. The onset of transverse fiber debonding and resin cracking in fatigue under zero
mean-stress conditions. (From Owen, Smith and Duke [44].) 
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Figure 9-27. Fatigue endurance of glass-fortified polyacetal and polystyrene. (From Theberge 
[57].) 

pointed out by Theberge (57] that fatigue endurance for many low-cost glass· 
fortified resin systems exceeds values obtained with "fatigue resistant" un 
reinforced thermoplastics. Dally and Carrillo [58] studied the fatigue behavio 
of glass-fortified thermoplastics with matrix materials having different due 
tilities. It was observed that fatigue damage was initiated by debonding o 
fibers in all cases, but the propagation of fatigue cracks was controlled by tht 
toughness of the matrix materials. In the case of a brittle matrix (polystyrene) 
cracks could propagate easily into the resin-rich areas. In the case of a highl; 
ductile matrix (polyethylene), no cracks were found in the matrix, and failur1 
occurred by massive debonding. In the case of a matrix material with higl 
strength and intermediate ductility (nylon), a limited crack propagation inti 
the matrix was observed. 

10.0 ...---------------,-------, 

7.5 

X 

·13. 5.0 

~~ 40% Glass-fortified polycarbonate 

vi 2.5 

o.___-'--___ ..,_ _____ _._ _____ _, 
104 105 106 107 

Cycles to failure 

Figure 9-28. Fatigue endurance of glass-fortified rigid polyvinylchloride, polypropylene, ar 
polysulfone. (From Theberge [57].) 
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Figure 9-29. Fatigue endurance of glass-fortified polycarbonate, 6/10 nylon, and 6/6 nylon. 
(From Theberge [57].) 

9.2 IMPACT 

9.2.1 Introduction and Fracture Process 

High-strain-rate or impact loads are expected in many engineering applica
tions of composite materials. The suitability of a composite for such appli
cations therefore is determined not only by its static strength considerations 
but also by its impact behavior or energy-absorbing properties. Frequently, an 
attempt to improve the tensile properties results in a deterioration of impact 
properties. For example, high-modulus fiber composites are more brittle and 
absorb less energy during fracture than the lower-modulus glass-fiber com
posites. Thus it is important to have a good understanding of impact behavior 
of composites for both safe and efficient design of structures and to develop 
new composites having good impact properties as well as good tensile prop
erties. Discussion in this section is aimed at developing such an understand
ing. 

The impact behavior of a material is greatly influenced by the fracture 
process induced by the impact loading. Thus it is important to understand the 
fracture process in composites to better understand their impact behavior. The 
fracture process in composites is much more complex than that in homoge
neous materials such as metals or plastics because a number of microfailure 
events can occur during fracture propagation in a composite. A typical com
posite fracture process and various rnicrofailure events were discussed in 
Chap. 8. However, because of its importance to impact properties, the dis
cussion is being repeated in the following paragraph. 

It can be assumed that failure in a fiber composite, just as in metals, em
anates from small, inherent defects in the material. These defects may be 
broken fibers, flaws in the matrix, or debonded interfaces. After initiation, the 
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failure propagation or fracture process can be described using the simpl 
model shown in Fig. 9-30. The model shows several possible local failur, 
events occurring during the fracture of a fiber composite. At some distanc, 
ahead of the crack, the fibers are intact. In the high-stress region near the tip 
they are broken, although not necessarily along the crack plane. Immediate!: 
behind the crack tip, fibers pull out of the matrix. In some composites, th1 
stress near the crack tip could cause the fibers to debond from the matri; 
before they break. It is also possible for a fiber to be left intact as the cracl 
propagates. When brittle fibers are well bonded to a ductile matrix, the fiber: 
tend to snap ahead of the crack tip, leaving bridges of matrix material tha 
neck down and fracture in a completely ductile manner. In addition to thes( 
local failure mechanisms, a crack, on reaching the interface of two lamina( 
in a laminated composite, can split and propagate along the interface, thm 
producing a delamination crack. 

Different failure mechanisms involved in the fracture process, as just dis
cussed, account for the total energy absorbed in the fracture. However, the 
mechanisms playing a dominant role in one system of matrix material anc 
fibers may be different in another system of fibers and matrix material. Ne 
single mechanism can account for the observed toughness of composites. 
Individual energy-absorbing mechanisms during failure of composites are dis
cussed in the next subsection. 

9.2.2 Energy-Absorbing Mechanisms and Failure Models 

When a solid is subjected to any kind of loading, static or dynamic, it can 
absorb energy by two basic mechanisms: (1) material deformation and (2) 
creation of new surfaces. The material deformation occurs first. If the loading 
supplies a sufficient amount of energy, a crack may initiate and propagate, 

Fracture process zone 

Fiber pullouts Debonding 
--~-----~--...,...--"--, 

--- ,_ - Direction of 

crack propagation - ~ 

Figure 9-30. A model of fracture-process zone shows local failure events near crack tip. 
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creating new surfaces, which is the second source of energy absorption. The 
material deformation continues ahead of the crack tip during crack propaga
tion. Brittle materials such as glass and ceramics undergo only a small amount 
of deformation, and the energy absorbed is small. Additional energy is ab
sorbed as new surf aces are created during fracture. The energy associated 
with fracture surface creation is also relatively small. Thus brittle materials 
exhibit low energy-absorbing capability or low toughness. In ductile metals, 
plastic deformations cause large energy absorption. This results in the high 
fracture toughness of ductile materials. 

It can be deduced easily from the preceding discussion that energy
absorbing capability or toughness of a material can be enhanced by increasing 
its plastic deformation capability or by increasing creation of new surf aces 
during fracture. In metals, the former mechanism is used frequently, and met
allurgical processes are developed to enhance toughness. The toughness of a 
composite can be enhanced by replacing a low energy-absorbing constituent 
with a greater energy-absorbing constituent. For example, glass fibers are 
introduced into carbon-fiber composites to produce tougher hybrid compos
ites. However, for a composite with a fixed system of matrix material and 
reinforcing fibers, the failure events taking place in the fracture process zone, 
and the fracture energies associated with them, should be studied carefully 
and analyzed for modifying material-impact behavior or toughness. Different 
failure events and associated energies are discussed in the following para
graphs. 

9.2.2. 1 Fiber Breakage Whenever a crack has to propagate in the direc
tion normal to the fibers, fiber breakage eventually will occur for complete 
separation of the laminate. Fibers will fracture when their fracture strain is 
reached. Brittle fibers such as graphite have a low fracture strain and hence 
have a low energy-absorbing capability. The energy required per unit area of 
the composite for fracture of fibers in tension is given by the following ex
pression [59]: 

(9.5) 

where Vr is the fiber volume fraction, o-ru is the ultimate strength of fibers, Er 
is the fiber modulus, and l is the fiber length. Beaumont [60] has proposed a 
similar expression (with fiber length replaced by fiber critical length) for the 
energy-release rate caused by fiber breakage during the fracture process. Such 
similarity should be expected because the factors that cause an increase in 
the impact energy also result in the increase of fracture. toughness of com
posites. 

It may be mentioned here that although the fibers are responsible for im
parting high strength to the composites, the fracture of fibers accounts for 
only a very small fraction of the total energy absorbed. It has been observed 
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experimentally [60] that the number of fibers fractured has little influence o 
the total impact energy. It should be remembered, however, that the presenc 
of fibers very significantly influences the failure modes and thus the tota 
impact energy. 

9.2.2.2 Matrix Deformation and Cracking The matrix material sur 
rounding the fibers has to fracture to complete the fracture of the composite 
Thermosetting resins, such as epoxies and polyesters, are brittle materials arn 
can undergo only a limited deformation prior to fracture. However, meta 
matrices may undergo extensive plastic deformation. Although cracking anc 
deformation of the matrix material both absorb energy, the energy requirec 
for plastic deformation is considerably higher than the surface-energy contri 
bution. Thus the contribution of metal matrices to the total impact energy o 
composites may be significant, whereas the contribution of polymer matricei 
may be relatively insignificant. 

The work done in deforming the matrix is proportional to the work done 
in deforming the matrix to rupture per unit volume Um times the volume o1 
the matrix deformed per unit area of the crack surface [62]. Based on the 
equation derived by Cooper and Kelly [63] for the volume of matrix affectec 
by fracture, the energy required for matrix fracture per unit area of composite 
is given by 

(1 - V)2 d _ fCTmulj 
u - vf ~ m 

(9.6) 

where crmu is the tensile strength of the matrix, dis the fiber diameter, and 1 

is the interfacial shear stress. 
In the metal matrix composites, the contribution indicated by Eq. (9.6) to 

the total impact energy may be quite significant. However, in the case of 
brittle polymer matrices, Um is small, and thus the energy required for matrix 
deformati<;>n may be only a negligible fraction of the total energy. 

The total:--wergy absorbed by matrix cracking (i.e., separation alone) is 
equal to the product of the surfsi(:e energy and the new area produced by the 
crack. A typical matrix crack is shown in Fig. 9-31. When a crack propagates 
in one direction only, the new area produced is small, producing small fracture 
energy. Large crack areas may be produced by crack branching, in which case 
the cracks run in the direction normal to the general direction of fracture.,For 
example, when a matrix crack encounters a strong fiber placed perpendicular 
(or at a large angle) to the direction of crack propagation, the crack may 
branch to run parallel to the fiber. In many cases the surface area produced 
by the secondary cracks is much larger than the area parallel to the primary 
cracks. This may increase the fracture energy many times and may be an 
effective way of increasing the toughness of composites or the total energy 
absorbed during fracture. 
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Figure 9-31. Photograph of a matrix crack formed in a glass-epoxy composite (900x). 

9.2.2.3 Fiber Debonding During the fracture process, the fibers may be
come separated from the matrix material by cracks running parallel to the 
fibers (debonding cracks). In this process, the chemical or secondary bonds 
between the fibers and the matrix material are broken. This type of cracking 
occurs when fibers are strong and the interface is weak. A debonding crack 
may run at the fiber-matrix interface or in the adjacent matrix depending on 
their relative strengths. In either case, a new surface is produced. If debonding 
is extensive, a significant increase in the fracture energy may be obtained. An 
increase in impact energy may be observed with a decrease in interface 
strength because it promotes extensive debonding or delamination [64]. De
bonding cracks also may be regarded as secondary matrix cracks branching 
off from the primary cracks, as already discussed. 

Values of the work of debonding for a number of materials have been 
given by Kelly [65]; they are usually =s500 J/m2 and on the order of the 
interface shear strength times the failure strain of the resin. No other way of 
theoretically estimating the debonding energy from the properties of the com
ponents and of the interface has been given. Kelly [62] also has shown that 
the energy of debonding cannot be equated to the elastic energy stored in the 
fibers after debonding, as had been done by Outwater and Murphy [66]. 

9.2.2.4 Fiber Pullout Fiber pullouts occur when brittle or discontinuous 
fibers are embedded in a tough matrix. The fibers fracture at tlieir weak cross 
sections that do not necessarily lie in the plane of composite fracture. The 
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stress concentration in the matrix produced by the fiber breaks is relieved b) 
matrix yielding, thus preventing a matrix crack that may join the fiber frac
tures at different points. In such cases, the fracture may proceed by the broker 
fibers being pulled out of the matrix rather than fibers fracturing again at the 
plane of composite fracture. This is particularly true of those fibers whose 
ends are within a small distance {less than half the critical fiber length) ol 
the particular cross section at which failure occurs. A typical example ol 
pulled-out fibers and holes remaining on a fracture surface from pulled-oui 
fibers is shown in Fig. 9-32. 

An analysis originally derived to account for the energy dissipated durinf 
extraction of discontinuous fibers of length le may be used to approximate 
the pullout energy of a continuous-fiber composite with a distribution of fibe1 
strengths by assuming that the mean fiber pullout length is equal to V 4 
Therefore, the pullout energy per unit area is given by [60] 

(9.7: 

Figure 9-32. Photograph of fibers pulled out of matrix in a glass-epoxy composite (600X). 
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The difference between fiber debonding and fiber pullout may be clarified 
at this point. The fiber debonding takes place when a matrix crack is unable 
to propagate across a fiber, whereas fiber pullouts are a result of the inability 
of a crack initiated at a fiber break to propagate into the tough matrix. The 
fiber pullouts usually are accompanied by extensive matrix deformation, 
which is absent in fiber debonding. Thus fiber debonding and fiber pullout 
may appear to be similar phenomena because of failure taking place at the 
fiber-matrix interface in both cases, but they are caused by mutually exclusive 
conditions. However, both phenomena do significantly enhance fracture en
ergy. 

9.2.2.5 De/amination Cracks A crack propagating through a ply in a 
laminate may get arrested as the crack tip reaches the fibers in the adjacent 
ply. This process of crack arrestment is similar to the arrestment of a matrix 
crack at the fiber-matrix interface. Because of high shear stress in the matrix 
adjacent to the crack tip, the crack may branch: off and start running at the 
interface parallel to the plane of the plies. These cracks are called delami
nation cracks, and whenever present, they are responsible for absorbing a 
significant amount of fracture energy. Delamination cracks frequently occur 
when laminates are tested in flexure, as is the case in Charpy and Izod impact 
tests. Delaminations occurring during the impact of glass-reinforced epoxy 
beams are shown in Fig. 9-33. 

Based on the energy-absorbing mechanisms discussed in the preceding 
paragraphs, the energy-absorbing capabilities of composite materials can be 
explained. It is clear from the preceding discussion that the 'influence of ma
terial variables on tensile and impact properties may be mutually opposing. 
For example, a decrease in interface strength that adversely affects tensile and 
shear strengths can result in an increase in impact strength. The high-modulus 
fiber composites (because of lower fracture strain of fibers) absorb less energy 
and are more brittle than the lower-modulus glass-fiber composites. It is thus 
obvious that a compromise in properties can be achieved by combining both 
glass fibers and higher-modulus fibers in the same composite. These hybrid 
composites are discussed in a later section. 

9.2.3 Effect of Materials and Testing Variables on Impact Properties 

The study of impact behavior of fibrous composite materials did not receive 
much attention until the mid-1960s. The early published results on the subject 
were obtained with a standard Charpy impact machine without any attempt 
to study the phenomenon of impact [67,68]. For a fiber-reinforced polymer, 
it is expected that the impact behavior will be time-dependent, that is, depen
dent on the velocity of the hammer when striking the specimen. In conven
tional impact-testing machines there is no provision for studying this 
important aspect of impact behavior. Rotem and Lifshitz [69] showed that the 
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Figure 9-33. Delaminations in a composite during an impact test. Three successive frames 
(at a speed of 6000 frames per second) are shown. (From Broutman and Rotem [61].) 

ultimate strength of a glass-fiber-reinforced plastic increases as a function of 
the rate of loading in the fiber direction. Later Broutman and associates 
[61,64,70-72] performed extensive impact studies on a specially built drop
weight impact-testing apparatus in which several experimental parameters 
could be varied easily. 

Current practices of impact testing of composite materials are described in 
Chap. 10. The discussion explains various parameters mentioned in this sec
tion and how they can be varied and measured. 

Broutman and associates [61,64,70-72] performed their studies on glass
fiber-reinforced epoxy and polyester resins and on hybrid graphite-Kevlar
glass composites. In either system, unidirectional as well as cross-ply lay-ups 
were used. Experimental parameters, which were varied, included fiber ori
entation, interface strength, velocity of impact, drop weight, and specimen 
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dimensions. Through high-speed photography, important observations on the 
phenomenon of fracture and associated energy-absorbing mechanisms were 
made. Important aspects of the results on glass-fiber-reinforced polymers are 
discussed in this subsection along with relevant results of other investigators. 
The results on hybrid composites are discussed in a later section. 

Fiber orientation is an important parameter influencing the impact behavior 
of composites. The effect of fiber orientation angle on the impact properties 
of off-axis composites was investigated by Mallick and Broutman [71] on E
glass-epoxy laminates. The exact configuration of what has been designated 
as unidirectional laminate is [0/90/04 /0]s; that is, the unidirectional laminate 
aotually has two layers at 90° to the others and placed ben~ath each surface 
layer. Configuration of the cross-plied laminate is [(0/90h/0]5. Both systems 
contain 13 plies, each 0.01 in. thick. Rectangular specimens were cut from 
the laminates so that fibers in the outer layers made angles of O°, 15°, 45°, 
75°, and 90° with the longitudinal-beam axis. This angle is referred to as the 
fiber orientation angle ( 8). In all cases, the load was applied normal to the 
lamination plane, as shown in Fig. 9-34. The impact energy absorbed per unit 
width in breaking the unidirectional specimens is shown in Fig. 9-35. The 
lowest value is observed at 8 = 60°. At 8 = 60° the impact energy increases 
in the presence of the 90° layers (beneath surface layers), in which fibers are 
oriented at small angles of (90° - 8) to the longitudinal-beam axis and thus 
are capable of absorbing higher energy. However, Agarwal and Narang's [73] 
Charpy impact test results on composites with all unidirectional fibers indicate 
that the impact energy decreases continuously with increasing fiber orienta
tion. Minimum impact energy is observed at 8 = 90°. The results of Mallick 
and Broutman [71] for cross-ply specimens are shown in Fig. 9-36. In this 
case, the curve for the energy absorbed is symmetric about 8 = 45°, at which 
the lowest impact energy is observed. Also shown in Fig. 9-36 is the impact 
energy of unidirectional specimens for the same drop height and specimen 
dimensions. The impact energy absorbed by the cross-ply specimens is con
sistently higher than that for the unidirectional specimens except at 8 = 0°, 
at which the unidirectional specimens absorb higher energy. Lifshitz [74] also 
has recently determined the impact strength of angle-ply composites. 

Another important material parameter is interface strength, which strongly 
influences the failure mode in composites. Yeung and Broutman [64] varied 
the interface conditions by changing the surface treatment of the glass fabric 

Figure 9-34. Impact test arrangement. (From Mallick and Broutman [71].) 
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Figure 9-35. Influence of fiber orientation on energy absorbed by a unidirectional glass-epox~ 
composite. (From Mallick and Broutman [71].) 
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9.2 IMPACT 405 

(style 181). Polyester and epoxy resins were used as the matrix material. The 
apparent shear strength as determined from a short-beam shear-strength test 
was used as a measure of the interface strength. In the case of polymer lam
inates it was observed that interface strength could be varied over a large 
range by changing the coupling agent on the fiber surface. However, interface 
strength of epoxy laminates could not be varied over the same range btcatise 
the epoxy resin is capable of establishing a strong bond with the glass surface 
even in the absence of a coupling agent. Polyester and epoxy laminates were 
tested in an instrumented Charpy impact-testing machine so that initiation 
energy (E), propagation energy (Ep), and .total impact energy (£1) could be 
obtained. The results are shown in Figs. 9-37 and 9-38, in which the values 
of energies per unit area [ui = (EJbh), uP = (E/bh), and u, = (E,lbh)], where 
b and h are specimen width and thickness, respectively] are plotted as a 
function of laminate shear strength. In these experiments, the laminate is 
impacted on its surface (not on the edge), as shown in Fig. 9-34. 
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Figure 9-37. Influence of interface strength on impact energy of a glass-polyester composite. 
(From Yeung and Broutman [64].) · 
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Figure 9-38. Influence of interface strength on impact energy of a glass-epoxy composite. 
(From Yeung and Broutman [64].) 

It can be seen that u;, the initiation energy, increases with increasing shear 
strength for both polyester and epoxy laminates. As the shear strength in
creases, the flexural strength of these fabric laminates also increases, reflecting 
better interfacial bonding and greater values of intralaminar strengths\. par
ticularly interlaminar tensile strengths. The initiation impact energies are 
much greater for the epoxy laminates, again reflecting their greater flexural 
strengths. 

In the case of polyester laminates, the curves for propagation and total 
impact energy appear to have a minimum. Above a critical value of interlam
inar shear strength, the total impact energy increases with increasing shtar 
strength. Below the critical value of shear strength, the impact energy de
creases with increasing shear strength. As indicated in Fig. 9-37, delamination 
appeared to be the dominant failure mode below the critical value, whereas 
fiber failure was the dominant mode above the critical value of shear strength. 
Thus, in the case of polyester laminates, the total impact resistance can be 
maximized by reducing the interfacial bonding. It is thus observed that the 
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greatest value of impact strength is achieved when the shear strength is lowest. 
It should be noted that the initiation of failure requires less energy when the 
interfacial bond is poor and the large value of total impact energy is achieved 
during the delamination phase occurring after failure initiation. The specimen 
supports less load during propagation but ,absorbs more energy because of the 
large deflections that the specimen can sustain. In the case of epoxy laminates, 
the interfacial bonding is not reduced to a sufficiently low value to induce 
severe delamination. Thus, as in the case of polyester laminates · above the 
critical shear-strength value, the impact energy increases with increasing shear 
strength. It is interesting to note that the maximum impact energy observed 
for a high-shear-strength epoxy laminate is nearly identical to the impact 
energy for a low-shear-strength polyester laminate. The failure mode for the 
epoxy laminate is predominantly fiber failure, whereas it is delamination for 
the low-shear-strength polyester laminate. It has been pointed out by Yeung 
and Broutman [64] that the surface treatment does not have a significant effect 
on the interlaminar fracture surface work. Thus the increase in impact energy 
caused by the reduction of interface strength is a result of more extensive 
delamination as opposed to changing the work of delamination. 

The high energy-absorbing capability of laminates with poor interfacial 
bonding is of particular interest in the applications of fiber-reinforced plastics 
as armor materials. In such applications, high impact resistance (total energy 
absorbed) is most essential. Therefore, in these applications, a low interface 
strength may be very effective because of the increase in total energy ab
sorbed. 

9.2.4 Hybrid Composites and Their Impact Strength 

In recent years, high-modulus fibers such as boron and graphite have been 
used widely in many aerospace applications because of their exceptionally 
high modulus-weight ratios. However, the impact strength of high-modulus 
fiber composites generally has been found to be relatively low compared with 
conventional steel and aluminum alloys, as well as compared with glass-fiber
reinforced composites. Comparative results obtained from a standard notched 
Charpy impact tests are given in Table 9-1 [75]. An effective method of 
enhancing the impact properties of graphite-fiber-reinforced composites is to 
add to them a small percentage of a low-modulus high-strength fiber, which 
results in higher impact performance. Glass fibers are used frequently for this 
purpose. Besides improving impact performance, the incorporation of glass 
fibers, which is relatively inexpensive compared with graphite fibers, reduces 
cost, which is a limitation for the application of .graphite-fiber composites. 

The incorporation of two or more fibers within a single matrix is known 
as hybridization, and the resulting material generally is referred to as a hybrid 
composite or simply hybrid. There are basically two ways in which different 
types of fiber can be combined to formulate a hybrid composite. In the first 
method, different types of fiber are intimately mixed. throughout the resin, 
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Table 9-1 Typical impact-energy values for various materials-standard Charpy V 
notched impact tests . 

Material Description 

Modmor II graphite-epoxy <Vr = 55%) 
Kevlar-epoxy <Vr = 65%) 
S-Glass-epoxy <Vr = 72%) 
Nomex nylon-epoxy <Vr = 70%) 
Boron-epoxy <Vr = 60%) 
4130 Steel alloy (UTS 100-160 ksi) 
4340 Steel alloy [Rockwell (43-46)] 
431 Stainless steel (annealed) 
2024-T3 Aluminum alloy 
606 l -T6 AlumiEum alloy 

(solution treated and precipitation hardened) 
7075-T6 Aluminum alloy 

(solution treated and precipitation hardened) 

Impact Energy 

kJ/m2 

114 
694 
694 
116 
78 

593 
214 
509 

84 
153 

67 

ft-lb/in2 

54 
330 
330 
55 
37 

282 
102 
242 
40 
73 

32 

with no intentional concentration of either type. However, obtaining a uniform 
blend is a fabrication problem. In the second method, only one type of fiber 
is placed in a single layer, and then the different fiber plies are dispersed 
through the laminate. Proper selection of the orientations of these plies offers 
an additional means of controlling the anisotropy of the laminate. The lay'-up 
of hybrid laminates is almost exclusively symmetric with respect to the neutral 
axis; otherwise, temperature changes would lead to bending-stretching cou
pling and cause undesirable warping. Analysis of hybrid laminates can be 
carried out using the methods discussed in Chap. 6. Hybrid composites are 
relatively new, and only limited experimental data are available on them. A 
review of the literature on carbon-fiber- and glass-fiber-hybrid-reinforced plas
tics is presented by Surnmerscales and Short [76]. Important aspects of impact 
performance of hybrid composites are discussed in the following paragraphs. 

As indicated earlier, the total impact energy £ 1 provides only limited in
formation about the fracture behavior of a material. Instrumented impact tests 
are used to obtain the complete load history during impact so that the energy 
absorbed during different phases of fracture can be obtained. Through the 
analysis of the load history, it is observed that the total impact energy is the 
sum of the initiation energy E; and the propagation energy EP. Two materials 
having equal total impact energies may have completely different proportions 
of initiation a.'ld propagation energies. For example, a brittle, high-strength 
material will have a large initiation energy and a small propagation energy. 
Coaversely, a low-strength (but high-enf?rgy-absorbing) material will have a 
small initiation energy and a large propagation energy. For specimens having 
similar geometries, the relative percentage of energy absorbed in fracture 
initiation and propagation provides an indication of the ductility or energy-
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absorbing capability of a material. Beaumont et al. [77] defined a dimension
less parameter called the ductility index (DI), which is found useful for 
ranking the impact performance of different materials with similar geometries. 
The DI is defined as the propagation-energy-initiation-energy ratio: 

E 
DI= _e 

E; 
(9.8) 

Low values of DI would mean a low value of propagation energy, and hence 
this is an indication of the brittleness of the material. Along with the total 
impact energy and maximum stress, the DI is a convenient parameter for 
ranking materials tested in a Charpy test when specimens have similar ge
ometries. All these parameters are conveniently measured in an instrumented 
Charpy test. 

Notched Charpy test results for several composites as reported by Toland 
[78] are shown in Fig. 9-39. The total energy absorbed during impact has 
been separated into initiation and propagation energies. This chart shows that 
the major distinction between different composites is in the propagation en
ergies. Impact properties of several unidirectional laminates based on the re
sults of Broutman and Mallick [72] are given in Table 9-2. E-Glass-epoxy 
laminates exhibit the highest energy absorbed per unit area, whereas graphite 
(GY-70) fiber-epoxy exhibits the lowest energy-absorption capability. Graph
ite GY-70 fiber-epoxy laminates exhibit a very brittle behavior, as is reflected 
in extremely low impact energy and a zero DI value for the material. Thomel 
300-epoxy laminates exhibit a higher impact energy and a higher DI value 
than the GY-70 laminates because in this case the fracture was accompanied 
by some fiber pullout and delamination from layer to layer, The low DI value 
for the E-glass-epoxy laminates results because of the very high initiation 
energy. caused by a high strain-energy-absorbing capability of the E-glass 
fibers. Kevlar 49-epoxy laminates also exhibit some fiber pullout and yielding 

40 0 Initiation energy ( Ei l 

z 30 ~ ~ Propagation energy (Epl 

~ -,.:: 
~ *' 20 Etotol "E; + Ep 

C 
Q) 

~ g 10 ?a r 
$·Gloss- Kevlar- Boron- HT Graphite-
epoxy epoxy epoxy epoxy 

Figure 9·39. Initiation and propagation energies for several composites. (From Toland [78].) 
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'Table 9-2 Impact properties of unidirectional fiber-epoxy composites 

Dynamic 
Flexural 
Strength E, 

Fiber L/Jia (103 psi) (ft-lb) 

E-Glass 16.1 281 14 
Graphite (Thornel 300) 14.6 229 4.8 
Graphite (GY-70) 12.6 70 0.35 
Kevlar 49 10.5 98 8.9 

"Span-depth ratio of beam. 
hDuctility index= (E/E;) = (U/U;) = (U, - UJU;). 

Source: Broutman and Mallick [72]. 

u, 
(ft-lb/in. 2) 

296 
89 
5.85 

113.6 

uj 
(ft-lb/in.2) 

222 
40.8 

5.85 
36.2 

DJl 

.3~ 
1.2 
0 
2.2 

on the compression side, and the spe.cimens do not fracture completely. Beau
mont et al. [77] also have reported very high DI values for Kevlar 49-epox) 
laminates. 

A number of investigators have reported that the incorporation of fiben 
with high strains to failure (e.g., glass or Kevlar 49) in graphite-epoxy com· 
posites has produced materials having significantly higher Charpy impact en
ergies. In hybrid composites, there are many variables that influence the 
material properties. The following variables influence the behavior of hybric 
composites: (1) volume and weight fraction of each component fiber relative 
to both the entire hybrid laminate and the individual ply, (2) lay-up sequence 
and orientation, (3) relevant properties of resin and fibers and interlaminai 
shear strength between plies, and (4) extent and nature of any voids or othe1 
quality defects. 

Glass fiber is the most common choice for incorporation in graphite-fiber
reinforced plastics, but Kevlar 49 fiber also has been found suitable for the 
purpose. The variation in impact energy of a unidirectional composite is 
shown in Fig. 9-40 as a function of S-glass stratified in a carbon-fiber
reinforced plastic composite {79]. The ~arbon fibers involved are high tensile 
strength and exhibit high fiber-matrix bond strength. Figure 9-40 shows a 
significant (500%) increase in impact energy for inclusion of approximately 
40% S-glass. The 10-20% range of glass inclusion produces approximately 
a 100% increase in impact energy. This latter range is probably more repre
sentative of most structural applications. However, in designing for improved 
impact resistance, due consideration has to be given to the influence of hy
bridization on other composite properties. The improved impact resistance of 
carbon-fiber-reinforced plastics from the addition of glass fibers is attributed 
to the increase in the area of fracture surfaces created by the increased number 
of fracture modes available. and the increased capability to store strain energy 
in a glass-fiber core in a sandwich composite. Beaumont et al. [77] found 
that unidirectional Kevlar 49-epoxy hybrid composites had significantly 
higher impact energies and ductillty indices than had graphite-epoxy speci-
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Figure &-40. Influence of adding glass fibers in a graphite-epoxy laminate on its impact en
ergy. (From Toland (79].) 

mens with no loss in maximum stress. Broutman and Mallick [72] also have 
reported an increase in impact energies and ductility index by the incorpo
ration of glass and Kevlar 49 fibers into graphite-fiber composites. They also 
reported that sandwich-type construction, in which all-glass or Kevlar 49 plies 
are placed in the core and only the skin or shell plies are of graphite fibers, 
are more effective in improving the impact resistance than are the stratified 
laminates in which alternate unidirectional layers are of graphite and E-glass 
or Kevlar 49 fibers. 

Adams and Miller [75] have presented a procedure for analysis of the 
impact behavior of hybrid composite laminates. The analysis is based on 
fracture mechanics concepts. Calculated elastic strain energies at maximum 
impact load are compared with measured fracture-initiation energies. Corre
lation (and probably a better correlation) of such calculations for more ex
perimental data and better understanding of linear elastic fracture mechanics 
(LEFM) concepts with respect to their applications to composites should be 
awaited before such involved procedures can be recommended. 

9.2.5 Damage Due to Low-Velocity Impact 

The discussion of impact behavior of composite materials in the preceding 
sections has considered situations where impact by a foreign object causes 
penetration of the impactor through the material. The penetration or puncture 
occurs when the impact velocil:b' is sufficiently high to cause through-the
thickness fracture of the materia1, at least locally. There are many practical 
situations where an impact does !)Ot result in puncture of the material but 
causes damage to the material and results in a loss of the laminate strength, 
although the damage may not be clearly visible. The impacts that do not 
cause through-the-thickness fracture are usually termed low-velocity impact. 
When a composite structure undergoes such impacts, it is important to know 
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the level of damage by taking into consideration the residual strength after 
impact. Metals, because of their ductility, are more able to absorb these im
pacts effectively, and the impacts do not significantly influence residual prop
erties. 

The behavior of composite materials subjected to low-velocity repeated 
impact has been investigated by many researchers [80-91]. The studies have 
considered various aspects such as damage initiation and propagation, type 
of damage, effect of damage on subsequent material behavior, and theoretical 
predictions about damage propagation. Experimental studies are carried out 
on rectangular or square specimens of different sizes and with different end 
conditions (e.g., clamped or simply supported on two or four sides). Impactors 
of different weights and shapes have been used. The impactor shapes include 
spherical, hemispherical, flat cylindrical, blunt-edged, and cantilever ball. The 
impactor is accelerated by a pressurized air gun or a free fall (drop-weight 
test). The damage is examined visually or using other techniques such as 
optical and electron microscopy, ultrasonic C-scanning, and acoustic imaging. 

The damage modes of an impacted composite plate can be classified as 
fiber breakage, delamination, and matrix cracking. It is well known that 
penetration-induced fiber breakage is one of the major damage modes in 
high-velocity impact. In low-velocity impact, however, delamination accom
panied by matrix cracking has been found to be the major damage mode. The 
delamination at the interface of two adjacent laminae is caused by mismatch 
in their stiffnesses as a result of their different orientations. Delamination in 
four three-lamina cross-ply plates subjected to impacts at different velocities 
is shown in Fig. 9-41 [83]. It is observed that the delamination areas depend 
on the impacting energy. As the impacting energy increases, the interface 
delamination area increases. 

Matrix cracks in an impacted composite plate are a result of stress con
centrations at the fiber-matrix interface and are produced by tensile stress. 
The higher the tensile stress, the longer and the denser are the cracks. The 
matrix cracking patterns in impacted plates have been observed to be com
pletely different from quasi-statically loaded plates as a result of flexural stress 
waves created during impact. The degree of matrix cracking can be used as 
an indicator of the degree of impact and the degree of damage. It also has 
been shown that matrix cracking and delamination are associated phenomena 
in a low-velocity impact. Therefore, it may be possible to estimate the internal 
delamination by investigating the external matrix cracking patterns. External 
matrix cracking patterns on impacted and nonimpacted surfaces of a plate are 
shown in Fig. 9-42 [83]. 

The damage produced by low-velocity impact reduces residual strength of 
a composite plate. Results of Wyrick and Adams [81] showing reduction in 
tensile and compressive strengths of a carbon-epoxy composite subjected to 
repeated impacts are given in Figs. 9-43 and 9-44. The extent of strength 
reduction depends on impact energy and the number of impacts. The follow-
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Figure 9-41. Delamination in cross-ply plates impacted at different velocities. (From Liu and 
Malvern [83].) 

ing general comments can be made on the strength reduction owing to re
peated impact: 

1. Repeated impact progressively increases the damage to the composite. 
Impacts at higher energy levels produce more degradation than a num
ber of lighter impacts. 

2. A plate punctured at a higher energy level sustains less damage in the 
surrounding area than a plate punctured in a larger number of impacts 
with less energy per impact. 

3. There appears to be a threshold impact energy required to cause a re
duction in tensile strength of a laminate. This threshold will be different 
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Figure 9-42. Matrix cracking patterns on (a) impacted surface and (b) surface opposite t, 
impact. (From Liu and Malvern [83].) 



ro 
a. 
::ii 

700 

.i: 500 
0, 
C: 

~ 400 
"' .!!I 
-~ 300 
$ 

i 200 30 J 

3J 

Baseline (unimpacted) 

£ 100 'Perforated 
Perforated 

5 10 
Number of impacts 

9.2 IMPACT 415 

50 100 

Figure 9-43. Influence of repeated impacts (with different impact energies) on residual tensile 
strength of a graphite-epoxy laminate. (From Wyrick and Adams [81].) 

for different laminates and will depend on such parameters as the lam
inate thickness, type of fibers, and matrix material. 

4. The residual tensile strength decreases as the impact energy or the num
ber of impacts increases. Even below the threshold impact energy, deg
radation in residual strength may begin after a number of impacts. 

5. The residual compressive strength also decreases with an increasing 
impact energy, and this drop appears significant for even very light 
impacts. 

6. For the material investigated by Wyrick and Adams [81], the threshold 
impact energy for compressive-strength reduction appears to be much 
smaller than that for tensile-strength reduction. 
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Figure 9-44. Influence of repeated impacts (with different impact energies) on residual com
pressive strength of a graphite-epoxy laminate. (From Wyrick and Adams [81].) 
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7; The residual compressive strength decreases with an increase in the 
number of impacts, the largest degradation occurring as a result of th1 
first impact. 

9.3 ENVIRONMENTAL-INTERACTION EFFECTS 

The material behavior under cyclic and impact loading has been discussed ir 
the preceding two sections. It is equally important to understand the materia 
behavior under various environmental. conditions, such as exposure to water 
water vapor, or other corrosive environments; low and high temperatures; anc 
long-term physical and chemical stability. This section is devoted to a dis
cussion on the degradation of composite materials by various environmenta 
factors. 

The degradation of composite materials may result from several factors 
(1) loss of strength of the reinforcing fibers by stress corrosion, (2) loss oJ 
adhesion and interfacial bond strength from degradation of the fiber-matrix 
interface, (3) chemical degradation of the matrix material, (4) dependence oJ 
the matrix modulus and strength on time and temperature, and (5) accelerated 
degradation caused by combined action of temperature and chemical envi
ronment. 

As a result of these factors, the utility of composite materials is terminated 
when the stiffness is reduced sufficiently to cause structural instability, and/ 
or failure or rupture is induced. Environmental factors influence the fibers, 
matrix material, and interface simultaneously. Thus the degradation of com
posites occurs not only with the degradation of the individual constituents but 
also with the loss of interaction between them. The influence of environmental 
factors on the fibers, matrix material, and interface is discussed in the follow
ing subsections. 

9.3.1 Fiber Strength 

9.3.1.1 Features of Stress Corrosion In principle, the strength of ma
terials is limited by the magnitude of forces that bind atoms together. In 
practice, however, the strength of most solids is found to be much smaller 
than the theoretical strength. The discrepancy in theoretical and experimental 
strengths is attributed to the presence of imperfections or flaws in the material. 
Moreover, it is observed experimentally that in the presence of appropriate 
environments, many hard amorphous or crystalline solids exhibit delayed fail
ure, in which the strength is markedly influenced by the time during which 
the load is applied. For example, it is a fact that humid atmospheres reduce 
the breaking strength of silicate glasses, andJhe strength of many plastics is 
impaired when .immersed in detergent solutfons and solvents. Most studies 
have concluded that the delayed failure under constant load is caused by the 
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growth of flaws under the influence of a reactive environment to a critical 
size at which the state of stress at the most critical flaw is sufficient to cause 
a spontaneous failure. In glasses and other amorphous solids, the important 
flaws are surface cracks or other flaws that can grow under the influence of 
stress and chemical attack. However, the criticality of a flaw depends on the 
state of stress and the bulk properties of the material. A noncritical flaw may 
become critical through flaw growth, stress increase, or time-dependent 
changes in bulk properties. 

In general, details of the stress-corrosion mechanism for different materials 
and environments are not well understood. However, all systems do exhibit 
some common features: 

1. In inert environments or at low temperatures, where the reaction rate 
of the corrosion processes should be negligibly slow, the breaking 
strengths of materials become independent of the duration of load ap
plication and always maintain a relatively high value. Equivalently high 
strengths are observed at high loading rates that do not provide sufficient 
time for the corrosion process to take place. 

2. Exposure of these materiali. to reactive environments before, but not 
during, a test has less effect o\rl test results, suggesting that the corrosion 
rate is accelerated by the stress. 

3. Exposure of these materials to reactive environments during a test leads 
to delayed rupture at loads substantially lower than features 1 and 2 
(above). 

4. There is a continuous influence of temperature on the relationship be
tween the time of loading and the failure stress. In general, a continuous 
loss of strength occurs with increasing temperatures. 

9.3.1.2 Static Fatigue and Stress-Rupt,.,fe of Fibers The most com
mon fibrous reinforcement material is glass. Glass is known to exhibit delayed 
failure under static loads. At room temperature there are no indications, prior 
to failure, such as creep, but most investigators agree that moisture promotes 
the growth of preexisting flaws under a constant load. When the flaw becomes 
critical in size, the failure occurs instantly. Extensive data are available on 
glass and glass fibers. A review article on glass fibers is given by Lowrie 
[92]. 

Static fatigue tests on E-glass fibers at room temperature and elevated tem
peratures were conducted by Otto [93]. His results are shown in Fig. 9-45. 
There is considerable scatter in the results, particularly at the lower temper
atures, but reasonable approximations of the fatigue rate can be obtained. The 
time range covered in the experiments is from 1 min to 20 h, and the decrease 
in strength over this period is 40,000-65,000 psi (280-435 MPa). The glass 
fibers also lose their strength as the temperature increases. A large fraction 
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Figure 9-45. Static fatigue test results for E-glass fibers. (From Otto [93].) 

of their short-term strength is lost at higher temperatures. At room tempera
ture, the fibers lose about 3% of their short-term strength for every tenfold 
increase in duration of load application. 

Boron and graphite filaments are being used in reinforced composite ma
terial applications where high modulus and high strength are required even 
at elevated temperatures. An early review of boron filaments was written by 
Wawner [94]. Comparatively little work has been done on the stress-rupture 
properties of boron filaments. Cook and Sakurai [95] reported some results 
of stress-rupture tests on single boron filaments at 900°F (Fig. 9-46). The 
tests were conducted in air and in an argon atmosphere, and the boron fila
ments showed a sharp decrease in stress level when the load_ duration in
creases from 3-5 h. The boron filaments showed an improved characteristic 
when tested at the same stress level and temperature but in an inert atmo-
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Figure 9-46. Stress-rupture properties of boron fibers. (From Cook and Sakurai [95].) 
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sphere. The sharp decrease in stress level occurred at a load duration of 10-
20 h, as shown in Fig. 9-46. The results of a tensile test (short-term strength) 
showed almost no difference between the air and argon atmospheres up to 
900°F (Table 2 in Wawner [94]), whereas the results in Fig. 9-46 seem to 
indicate that an appreciable decrease in strength takes place even at short load 
duration in air. There is no information for stress-rupture tests in air at a load 
duration greater than 20 h. The results shown in Fig. 9-46 indicate that 
strength degradation under a constant load at 900°F is very severe, and the 
filaments lose about 75% of their original strength in less than 100 h in an 
argon atmosphere and in 10 h in an air atmosphere. 

The use of brittle high-strength fibrous materials is limited by a time
dependent distribution of flaw sizes. If, in a fibrous composite, only strength 
degradation of the fibers occurs, the longitudinal strength of a unidirectional 
composite will be seriously affected, whereas the transverse and shear 
strengths will be only marginally affected. The coatings placed on fibers or 
their incorporation into a matrix material provides an effective means of ex
ploiting the properties of these high-strength reinforcement materials. The 
coating or "coupling agent" protects the fibers from abrasion or other sources 
of surface flaws during fabrication. The coupling agent, along with the matrix 
material, provides a barrier between the aggressive environment and the re
inforcement. High-strength reinforcements also are developed with specific 
efforts devoted to achieving a chemical composition that is inert with respect 
to the anticipated service environment. 

9.3.1.3 Stress Corrosion of Glass Fibers and GRP The environmental 
stress-corrosion cracking of glass-fiber-reinforced plastics (GRP) has become 
an important consideration for applications involving exposure to corrosive 
environments. Many GRPs fail catastrophically after a critical time when ex
posed to acids. The catastrophic failure of GRPs occurs as a result of the 
time-dependent degradation of glass fibers that are highly susceptible to attack 
by acidic environments. Degradation of glass and GRP owing to corrosive 
environments is discussed in the following paragraphs. 

High-strength glass fibers (10 µ,m in diameter) containing alkali metals 
decrease in strength with time when immersed in acidic solutions. It is now 
widely accepted that the mechanism responsible for strength reduction is an 
ion exchange between hydrogen ions in the surrounding medium and alkali 
ions, in particular sodium, in the glass [96-98]. The ion-exchange mechanism 
can be explained as follows. 

Sodium ions (Na+) in glass are held by only a single electric charge to the 
structure, whereas ions such as calcium (Ca2 +), which are doubly charged, 
are bonded more firmly. Exchange between singly charged sodium ions and 
singly charged hydrogen ions can occur most readily. For this to occur, the 
extremely small hydrogen ions penetrate the glass fibers from the surrounding 
environment until they find sodium ions. The sodium ions migrate back to 
the surface and leave the glass. A chemical equation may be written as 
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Glass structure = Si-0-Na + H+ ,= glass structure = Si-0-H + Na+ 

The arrows indicate that this reaction can go either way. When large numbers 
of hydrogen ions are available, as in the case of an acidic environment, the 
reaction takes place rapidly. 

The ion exchange occurs within the glass, only a few atom layers below 
the surface. The volume of each hydrogen ion is much smaller than that of 
the sodium it replaces. This leads to a contraction of molar volume to an 
extent depending on the availability of hydrogen ions in the surroundiQ.g me
dium and the initial alkali-metal content of the glass. As a result of molru 
contraction, the affected surface layer wants to shrink but is pr~vented from 
doing so by the bulk of the glass fiber, whose core is unaffected by the ion 
exchange. This produces tensile stresses on the surface layer, which can cause 
failure, particularly if the fiber is already under stress. The photograph in Fig. 
9-47 shows a fracture surface of a GRP exposed to sulfuric acid under stress. 
The spiral cracks that develop on the surface of a glass fiber exposed to ar 
acidic environment can be seen easily. Ends of fibers shown in the figure alsc 
demonstrate the delamination of the surface layers owing to the volume 
changes that occur. 

The strength of E-glass fibers in various pH solutions compared with theii 
strength in air is shown in Fig. 9-48 [97]. As can be seen, even short time 
exposures in strong acids can lower the fiber strength. Since the ion-exchange 
process is time-dependent, glass fibers subjected to decreasing values of strair 
or stress still will fail eventually, although the time will be increased, as showr 
in Fig. 9-49. 

Figure 9-47. Photograph of fracture surface of a GRP exposed to sulfuric acid under stress 
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Figure 9-48. Strength of E-glass fibers in various pH solutions. (From Metcalfe and Schmitz 
[97].) 

The degradation of glass fibers owing to environmental attack can severely 
affect the performance of GRP laminates. The fibers in GRP laminates are 
protected from the environment by the resin matrix. The degree of protection 
depends on the permeability of the resin to the diffusion of active species 
from the environment and then the ability of the resin and interface to resist 
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Figure 9-49. The stress-corrosion failure time (t1) of single E-glass fibers under varying applied 
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premature cracking, which would allow the environment to come into direc 
contact with the fibers. There are significant data in the literature [99-1 OT 
on the stress corrosion of GRP. Typical results of stress corrosion, shown ir 
Fig. 9-50, illustrate the dependence of time to failure on stress parallel to the 
fibers for a pipe with a range of resin types tested in 0.65 M HCI at 20°( 
[100]. The effects of corrosion on a GRP laminate can be minimized by the 
use of an appropriate chemically resistant resin. The resin should be post
cured, and a nonstructural barrier should be provided. The typical barrie1 
layers consist of a gel-coat layer (resin reinforced with a C-glass or organic 
fiber veil) backed by a number of low-fiber-volume-fraction chopped-stranc 
mat plies. The size and binder on the glass fibers also should be appropriate 
to minimize debonding and blister formation. Laminates that fracture as c: 

result of stress corrosion can be distinguished by the nature of their fracture 
surfaces. For example, Fig. 9-51 shows a comparison of samples fractured ir 
air and in acid. Typically, the laminates exposed to a severe stress-corrosior 
environment produce relatively plane or flat fracture surfaces as comparec 
with the more normal "broomlike" fractures when failed or tested in air. 

9.3.2 Matrix Effects 

9.3.2. 1 Effect of Temperature and Moisture Changes in the properties 
of the matrix owing to environmental exposure are important considerations 
for polymer composites. Variations in temperature and moisture content are 
the most frequently encountered conditions that influence the properties of 

A, Beetle 870 
B, Atlac 382-0SA 
C, Crystie 600 PA 
D, Derakane 411-45 
E,Jmpolex T500 
F, Crystie 272 
G, Crystie 272 + 30% 586 
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Figure 9-50. Dependence of time to pipe failure in 0.65 M HCL at 20°c on stress parallel to 
fibers and type of resin. 
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Figure 9-51. Photographs of fracture surfaces of GRP samples fractured in (a) air and (b) 
acid. 

polymer matrices. Exposure to ambient temperature and moisture influences 
the distributions of temperature and moisture concentration; inside the material 
as a function of both position and time. These distributions, in turn, influence 
the performance of the material. Analytical means are often used to obtain 
temperature and moisture concentration distributions in the material. Changes 
in performance resulting from these distributions can be determined experi
mentally. Environmental effects on composite materials have been inv~sti
gated by a large number of researchers. Results from a large number of stw!lies 



424 PERFORMANCE OF FIBER COMPOSITES 

have been compiled by Springer [108-110]. Detailed analytical development 
of the problem are beyond the scope of this book. Some important experi 
mental results will be discussed in this subsection. 

The temperature distribution in a material depends on its thermal conduc 
tivity, besides the environmental conditions, and the moisture concentratio 
distribution on mass diffusivity. Prediction methods for thermal conductivit 
and mass diffusivity were discussed in Chap. 3. For many composite mate 
rials, the thermal conductivity is 104-106 times larger than mass diffusivit~ 
Thus the temperature equilibrates much faster than the mass concentratior 
A typical variation in moisture content of a four-ply carbon-epoxy composit 
(Fig. 9-52) shows that an equilibrium (saturation) level is attained after seven 
days of exP9s,llre [111]. 

The effect of moisture and temperature has been explored for many pe1 
fdrmance parameters, including tensile and shear strengths, elastic modul 
fatigue behavior, creep, stress rupture, response to dynamic impact, electric, 
resistance, and swelling (dimensional changes). Of these parameters, tensil 
and shear strengths and elastic moduli have been studied in detail. Data o 
other parameters are more limited and, in most eases, are inadequate to eithe 
demonstrate quantitatively the changes in these parameters or provide a da 
tabase sufficient for design purposes. 

A summary of the effects of moisture and temperature on the ultimat 
tensile strength of coml?osites is given in Table 9-3 and on the elastic modulu 
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Figure 9-52. Moisture absorption in a carbon-epoxy lam(nat'e at 24°C. 
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Table 9-3 Summary of experimental data on the effect of moisture and temperature on the tensile strength of composites 

Laminate Lay-up Orientation 

Composite Material 
oo QIL 90° 

System and Reference Moist. Temp. Moist. Temp. Moist. Temp. 

Graphite-Epoxy 
112" L N L N s s 
113 ,N N N N s s 
114 N N N - s s 
115 - N - N - s 
122 - - N N 
116 L . L N L s s 
117 - - - - s L 
118 N L N L s s 
I 18 N N N N s s 
119 - - L s - -
119 - - N N 
119 - - L N 
121 - - - - s s 
119 - - N s - -
115 - N - N - N 
119 - - - L 

Boron-Epoxy 
118 L N L L s s 
123 - L - - - s 
119 - - N N 

Kevlar 49-Epoxy 
120 - L 

0 N = negligible effect; S = strong effect (<30%); L = little effect (<30%); QIL = quasi-isotropic lamina. 
h Reference number at the end of the chapter. 

Source: G. S. Springer [108]. 

Remarks 

Limited data (2-3 points) 
Two data points for 90° laminates 

Very scattered data for 90° laminates 
Only two data points for temperature 

Only two data points for temperature 
Only two data points for 90° laminates 
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in Table 9-4. On the basis of these data the following general conclusions 
can be drawn: 

1. Temperature effects 
a. Temperature in the range -40 to l 90°C has a negligible effect on 

the strengths of the 0° laminates and quasi-isotropic laminates (QILs) 
regardless of the moisture content of the material. There may be a 
slight decrease in strength ( <20%) as the temperature increases from 
190 to 230°C. 

b. Temperature iri the range -40 to 230°C has a negligible effect on 
the elastic modulus of 0° laminates and QIL regardless of the mois-
ture content. · 

c. The strength and modulus of the 90° laminates decrease significantly 
as the temperature increase,s from -40 to 230°C. 

2. Moisture effects 
a. Moisture content · below 1 % has negligible effect on the strength of 

0° laminafes .and QILs. When moisture content is above 1 %, the 
strength of these laminates decreases with increasing moisture con
tent. This reduction in strength seems to be insensitive to the tem
perature of the material. 

b. Moisture content, regardless of temperature in the range -40 to 
230°C, has very little effect on the modulus of 0° laminates and QILs. 

c. Strength and modulus of the 90° laminates decrease significantly with 
increasing moisture content. 

From the preceding discussion a general conclusion may be stated that the 
moisture content and elevated temperature (up to about the glass-transition 
temperature of the polymer matrix) do not have a significant effect on fiber
dominated properties but may reduce matrix-dominated properties. Other 
studies have shown that the exposure history ( cycling or spiking) also does 
not have a major influence on fiber-dominated properties. 

9.3.2.2 Degradation at Elevated Temperatures In general, organic ma
terials are unstable at elevated temperatures and undergo a chemical break
down resulting from degradation. If the degradation reactions persist for a 
sufficiently long time or are sufficiently rapid, substantial degradation will 
occur such that the matrix material is removed by volatilization in a gaseous 
form. Such drastic degradation severely affects the mechanical integrity of 
composite syste:ms and limits the temperatures at which they can be used. 
The degradation can be characterized by measuring the amount of volatiles 
given off by the material as a function of time and temperature or by recording 
the weight loss. Suen data [124] are shown in Fig. 9-53 for a phenolic-glass 
system. At temperatures of 300°F and above, decomposition of the matrix is 
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Table 9-4 Summary of experimental data on the effects of moisture and temperature 
on the elastic modulus of composite materials 

Laminate Lay-up Orientation" 

Composite Material 
oo QIL 90° 

System and Reference Moist. Temp. Moist. Temp. Moist. Temp. 

Tension Test 

Graphite-Epoxy 
113b L N L N s s 
114 N N N s s 
115 N N 
116 N N N N N N 
117 s s 
118 N N N N s s 
118 N N N N N s 
119 N s 
119 N N 
119 N L 
121 N s 
119 N s 
115 N N 
119 L 

Boron-Epoxy 
118 N N N N s s 
119 N N 

Kevlar 49-Epoxy 
120 s 

Compression Test 

Graphite-Epoxy 
114 N N L s 
116 L N N N L N 
118 N N N N s s 
118 N N N N s s 

Boron-Epoxy 
118 N N N N s s 

aN = negligible effect; S = strong effect (>30%); L = little effect ( <30%); QIL = quasi-isotropic 
laminate. 
hReference number at the end of the chapter. 

Source: Springer [108]. 
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Figure 9-53. Thermal degradation of glass-phenolic system. (From Boller [124].) 

occurring at a rate that is uniformly accelerated with increasing temperature 
It is observed that the weight-loss curves at different temperatures have thi 
same shape. Therefore, it may be concluded that the temperature influence: 
only the rate constant and that a time-temperature superposition applies tc 
these data. A master curve obtained (125] by shifting all the data to the 300°I 
curve is shown in Fig. 9-54, in which log a0 represents the distance by whicl 
the data obtained at different temperatures are shifted on the log t scale, anc 
t is the time of the process. 

The matrix decomposition leads to a loss in stiffness and strength with the 
loss of matrix integrity. Boller [124] has obtained data in tension, compres
sion, and flexure for the phenolic-glass composite samples that were exposec 
at the same temperatures presented in Fig. 9-53 for different periods of time 
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Figure 9-54. Master curve for decomposition of a phenolic-glass system. (From Tsai [125].) 
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Figure 9-55. Master curve for stiffness and strength of a phenolic-glass system. (From Tsai 
[125].) 

The data generally show the same trends as presented in Fig. 9-53. The results 
from Tsai [125] are shown in Fig. 9-55, where it also can be seen that the 
mcc.hanical property loss follows the same rate law as the decomposition 
reaction. Using the experimental data of Stevens [126] on fatigue of phenolic
glass composite at elevated temperatures, Tsai [ 125] has shown that the time
temperature superposition is applicable for fatigue strength also. 

From the preceding discussion it can be seen that the maximum design 
temperature of a high-strength fiber composite generally will be limited by 
the properties of the matrix. Thus composites for applications at elevated 
temperatures (e.g., >200-250°C) are at present made of metal and ceramic 
matrices or carbon-carbon composites. 

9.3.2.3 Stress-Rupture Characteristics at Modest Temperatures Poly
mer matrix degradation at elevated temperatures results in severe deterioration 
of all composite properties, whether they are fiber-dominated or matrix
dominated. However, polymer-matrix composites display good stress-rupture 
characteristics at modest temperatures. 
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Figure 9-56. Stress-rupture behavior of unidirectional graphite-epoxy composite subjected to 
transverse load. 
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Figure 9-57. Stress-rupture behavior of unidirectional boron-epoxy composite subjected to 
transverse load. 

Stress-rupture curves for unidirectional graphite-epoxy composites are 
given in Fig. 9-19. It was noted that when the composites are loaded in the 
fiber direction, they exhibit excellent stress-rupture characteristics, which is 
evident from a negligible drop in strength even for 1000 h of loading time 
(see Fig. 9-19). A transverse rupture diagram of the same unidirectional 
graphite-epoxy composite is shown in Fig. 9-56. The transverse strength of 
the composite is much smaller than the longitudinal strength. However, at the 
temperatures considered, the stress-rupture characteristics in the transverse 
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Figure 9-58. Stress-rupture behavior of [±45] boron-epoxy laminate. 
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direction are also good. The drop in strength for long exposures to stress is 
only modest, but there is a larger scatter. Stress-rupture diagrams for a uni
directional boron-epoxy composite in the transverse direction and for [ ±45] 
laminates are shown in Figs. 9-57 and 9-58, respectively. As is clear from 
these figures, boron-epoxy composites also display good stress-rupture char
acteristics at room temperature. 

EXERCISE PROBLEMS 

9.1. Describe the progression of fatigue damage in the following laminates: 
[0]8 and [0/ ±45/901,. Assume cyclic stress in tension (R = 0.1) equiv
alent to 75% of the laminate ultimate strength. 

9.2. Fatigue strengths with zero mean stress of a glass-polyester composite 
at 103

, 104, 105, and 106 cycles have been found to be 84, 70, 60, and 
52 MPa, respectively. Stress-rupture strength of the same composite fol
lows the relationship 

Sc = 21.8 - 4 log t 

where t is the time in minutes, and Sc is the stress rupture strength in 
megapascals. Using these data and the Goodman-Boller relationship 
[Eq. (9.l)]r construct a master diagram showing the influence of mean 
stress on permissible stress amplitude at different cyclic lives. Assume 
that the fatigue tests were performed at 2000 cycles per minute. 

9.3. If the laminate whose fatigue characteristics are shown by Fig. 9-6 is 
interrupted after 20,000 cycles and subjected to a tensile strain of 2%, 
calculate whether it will fracture at this strain level. 

9.4. Explain why a high-modulus unidirectional graphite-fiber-reinforced 
epoxy beam fractured in impact breaks cleanly into two halves without 
delamination and with little fiber pullout, whereas an equivalent glass
fiber composite exhibits considerable delamination on failure. 
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EXPERIMENTAL 
CHARACTERIZATION 

OF COMPOSITES 

10.1 INTRODUCTION 

Experimental characterization here refers to the determination of material 
behavior and properties through tests conducted on suitable material speci
mens. Experimental characterization serves various purposes, for example, 
providing data needed for analysis and design, understanding the material 
response under different loading and environmental conditions, ensuring qual
ity control of fabrication procedures and incoming materials, assessing ma
terial uniformity, and allowing comparison of different candidate materials. 
In the case of composite materials, it also serves as a tool to verify and 
validate micromechanics analysis models and procedures through which com
posite properties are often predicted from the constituent (fibers and matrix) 
properties. Physical and mechanical characterization of composite materials 
is discussed in this chapter. 

Elastic constants and strengths are basic mechanical properties of materials. 
For a unidirectional lamina or composite, there are four independent elastic 
constants-the elastic moduli (EL and Ey) in the longitudinal and transverse 
directions, the shear modulus (GLT), and the major Poisson ratio (vLT)-and 
five independent strengths, namely, tensile and compressive strengths (aLU, 
aru, a'w. a-i:-v) in the longitudinal and transverse directions and in-plane shear 
strength ( TLru). In the case of composite laminates, the interlarninar shear 
strength determines an important mode of failure, namely, the delamination 
failure. It is usually consid~red a basic property. These basic properties are 
established for minimum chanrcterization of a un1directional lamina. They are 
generally established by subjecting suitable material specimens to in-plane 
loads. However, since composite material structures often are subjected to. 
bending loads, it is desirable to establish flexural properties in addition to the 
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properties just mentioned. It is desirable that all the properties be established 
for a single ply or lamina of the composite material that is the basic building 
block for composite structures. Then laminate theory, as discussed in Chaps. 
5 and 6, can be used to calculate the properties of laminates. However, prac
tical considerations often prevent the construction of single-layer test speci
mens. Thus it becomes necessary to conduct tests on multilayer specimens 
and use approximate laminate theory to reduce the results in terms of lamina 
properties. If the laminates are unidirectional, of course, their behavior sim
ulates the lamina behavior. In addition to the basic properties of composites, 
fracture toughness and impact properties are also important to predict per
formance of composite structures in various applications. Measurement pro
cedures for fracture toughness and impact properties are also discussed in this 
chapter. 

It is well known that during load application, damage in composites can 
commence at very low loads and grow progressively until fracture. This dam
age accumulation affects the stress-strain behavior as strain increases. For an 
efficient use of composites through advanced analysis procedures, their actual 
stress-strain behavior with accruing damage may be used in analyses. It is 
therefore helpful to identify and characterize damage in composite materials. 
One section in this chapter has been devoted to the discussion of nondestruc
tive evaluation techniques commonly employed for damage identification and 
characterization. 

The test procedures commonly employed for evaluating various composite 
properties are described in this chapter. Discussions on different tests include 
their advantages, limitations, and considerations that go into the designing of 
specimens, loading mechanisms, and measuring techniques. Methods of re
ducing the experimental data also are discussed. However, the details of spec
imen preparation, instrumentation, and measuring techniques are omitted, and 
the discussion is limited to only static properties. A more detailed discussion 
can be found in other literature [1-20]. Standard procedures for the testing 
of composites and determination of the properties from these tests have been 
adopted by various standard-setting bodies such as the American Society for 
Testing and Materials (ASTM) in the United States. These standards should 
be consulted for detailed test protocols. Relevant ASTM standards are cited 
in the discussions of this chapter. Standards are updated periodically to in
corporate new developments in materials, analyses, instrumentation, and mea
suring- techniques. 

10.2 MEASUREMENT OF PHYSICAL PROPERTIES 

10.2.1 Density 

The density of a material is defined as its mass per unit volume. The procedure 
for measuring the density of a composite material is same as that used fo1 
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any other solid and is based on ASTM Standard D792-00. The procedure 
involves obtaining weights of a suitable size specimen in air (wa) and in water 
(ww). The density can be calculated from these weights and the densities of 
air and water. The density of air is assumed negligible, whereas that of water 
is 1 g/cm3

• The density of composite Pc is then 

(10.1) 

10.2.2 Constituent Weight and Volume Fractions 

The constituent weight and volume fractions are very important physical char
acteristics of composite materials that influence their properties. The constit
uent weight fractions can be obtained by following the methods of ASTM 
Standard D3 l 71-99. In these methods, the matrix material is physically re
moved from a composite specimen while the reinforcement remains essen
tially unaffected. The matrix material is removed either by dissolving it in a 
hot-liquid medium or by its combustion in a furnace. The matrix-dissolution 
method, also called the matrix-digestion method, requires a careful selection 
of the medium that will dissolve the matrix but will not attack the fibers. 
When the matrix is dissolved in the medium, the residue containing the fibers 
is then filtered, washed, dried, cooled, and weighed. The fiber weight fraction 
now can be calculated from the initial weight of the composite specimen and 
the weight of the fibers. The matrix weight fraction is obtained by subtracting 
the fiber weight fraction from one. 

The combustion method, often called the bumoff method, can be used only 
with polymer-matrix composites and with fibers that are not affected by high
temperature environments. In this method, a preweighed composite specimen 
is heated in a furnace to a temperature compatible with the composite system 
that will burn off the matrix and not affect the reinforcement. The remain
der after burnoff is cooled to. room temperature and weighed to obtain fiber 
and matrix weight fractions. This method is used widely with glass-fiber
reinforced polymer composites. The burnoff method is essentially the same 
as the ignition loss of cured reinforced resin described in ASTM Standard 
D2584-02. 

The equations for converting weight fractions to volume fractions and vice 
versa were discussed in Chap. 3. The conversions require a knowledge of the 
constituents' densities. The void volume, if not negligible, also will have to 
be determined, as discussed in the next section, before weight fractions can 
be converted to volume fractions. 

Fiber volume fraction of a unidirectional composite also can be measured 
by an optical method. In this method, a cross section of the composite per
pendicular to the fibers is polished and photographed in a microscope such 
as those shown in Fig. 3-2. The ratio of the total fiber area to the total 
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composite area as determined from the enlarged photograph is taken as th 
fiber volume fraction CVr). The total fiber area can be determined either b 
using a computerized image-analysis technique or by manually counting th 
number of fibers and multiplying it by the average fiber cross-sectional arei 

10.2.3 Void Volume Fraction 

Polymeric- and ceramic-matrix composites typically have voids after fabr: 
cation. A well-fabricated composite may have a void volume of 1 % or les: 
and a poorly made composite can have a much higher void content. The voi 
content of a composite can affect its properties and performance. Thus it i 
important to know the void content for assessing fabrication quality. 

Void content of a composite can be measured using the method of ASU 
Standard D2734-94 (reapproved 2003). In this method, the densities of th 
resin, the fibers, and the composite are measured separately. The resin an 
fiber weight fractions are obtained as discussed in Sec. 10.2.2. The theoretic, 
density of the composite with no voids is then calculated using Eq. (3.4 
This is compared with the measured composite density. The difference in th 
densities indicates the void content as follows: 

V = Pct - Pee 
V 

Pct 

where Vv = void volume fraction 
Pc, = theoretical density of composite with no voids 
Pee = experimentally measured density of composite 

10.2.4 Thermal Expansion Coefficients 

(10.2 

The coefficient of linear thermal expansion of isotropic materials is mea~ure 
by measuring elongation of a rod with temperature. Unidirectional composite 
have, as discussed in Chap'. 3, two principal coefficients of thermal expansio 
in the longitudinal direction aL and in the transverse direction aT- The coe1 
ficients aL and aT are determined using a rectangular specimen of dimension 
50 mm x 50 mm made with eight plies. The specimen is heated in an ove 
at a rate of about 1 °C/min. The temperature is monitored with a thermocoupl 
or a temperature sensor. In place of measuring length changes in the spec 
men, it has been found more convenient and appropriate to record strains wit 
the help of strain gauges. For this purpose, two strain gauges are mounted i 
the longitudinal and transverse directions. From the measured strains an 
temperatures, the coefficients aL and aT can be determined using Eq. (6.5L 
as follows: 
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eL = aL D.T 

er= aT D.T 
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(10.3) 

Since moisture induces dimensional changes in many resin systems, it is im
portant to dry the specimens before measuring the thermal strains. 

There is no ASTM standard exclusive to the measurement of coefficients 
of thermal expansion of composite materials. However, ASTM Standards 
E289-04 and E83 l -03 may be useful. 

10.2.5 Moisture Absorption and Diffusivity 

Moisture absorption and desorption characteristics of polymer-matrix com
posites are of considerable practical importance. Studies on the effects of 
moisture content on composite laminates require diffusivities of a unidirec
tional composite in the longitudinal and transverse directions and the equilib
rium moisture content [or parameters a and b in Eq. (3.80)]. The diffusivity 
of the matrix material can be determined experimentally and the diffusivities 
of composites calculated using Eqs. (3.81) and (3.82). 

In most engineering applications, moisture diffusion is through a large 
surface area with very few edges. As a result, diffusion through the thickness 
is of primary interest. For such a case, thin composite specimens are used for 
diffusion measurements with edges sealed with an impermeable coating or 
foil. 

Diffusion tests consist of measuring weight gain as a function of time when 
the specimen is exposed to a constant temperature and humidity environment. 
The specimens are dried completely in a desiccator before starting the mois
ture absorption test. The moisture content C is plotted as a function of Vt. 
A relationship between C and Vt is shown schematically in Fig. 10-1. The 

Square root of time 

Figure 10-1. Moisture-absorption curve for diffusivity measurement. 
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diffusivity D is calculated from the initial linear relationship. For this purpose 
Eq. (3.78) can be approximated by the following relationship for short times 

- C - Co - (!!.!_)112 
G - Cm - Co - 4 1rS2 

(10.4; 

Now two moisture contents C1 and C2 corresponding to times t 1 and t2, re
spectively, are chosen from the linear region of the curve and substituted in 
Eq. (10.4). It can be shown easily that the diffusivity D is 

(10.5) 

The equilibrium moisture content Cm, as shown in Fig. 10-1, depends on the 
relative humidity of the environment. Therefore, tests may be conducted with 
different relative humidities. Constants a and b of Eq. (3.80) are determined 
by plotting Cm as a function of relative humidity. 

ASTM Standard D5229/D5229M-92 (reapproved 1998) describes the pro
cedure for evaluating moisture absorption properties and diffusivity. 

10.2.6 Moisture Expansion Coefficients 

A coefficient of moisture expansion f3 has been defined in Sec. 3.7.2 as the 
change in linear dimension of a body per unit initial length per unit change 
in moisture concentration (moisture concentration being defined as the weight 
of moisture present per unit weight of the body). Like thermal expansion 
coefficients, there are two principal coefficients of moisture expansion for 
unidirectional composites, ~ in the longitudinal direction and {3T in the trans
verse direction. However, as discussed in Sec. 3.7.2, the longitudinal moisture 
expansion coefficient f3L is often taken to be zero for the high-modulus 
inorganic-fiber-reinforced polymer-matrix composites. The transverse mois
ture expansion coefficient {3T then is related to the moisture expansion coef
ficient of the matrix /3m through Eq. (3.71). Therefore, moisture expansion 
coefficients for such composites can be obtained by measuring the moisture 
expansion coefficient of the matrix. 

Moisture expansion coefficients of composites can be determined directly 
by measuring the strains in the principal directions as a function of moisture 
concentration. For this purpose, oven-dried specimens are immersed in a wa
ter bath at a moderately high temperature, for example, 50°C (120°F). Spec
imen expansion or swelling may be measured by a micrometer or a caliper 
gauge. The application of strain gauges, as used for measuring thermal ex
pansion coefficients, is questionable for two reasons. First, the presence of a 
gauge on the specimen surface will locally interfere with the moisture dif-
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fusion, and second, the strain gauge adhesive may be attacked by moisture 
and may compron;iise the accuracy of the strain measurement. However, both 
these problems may be solved by the use of encapsulated strain gauges and 
embedding them in the midplane of the specimen. With this technique, the 
strain gauge does not interfere with the moisture diffusion because the gauge 
is located at a plane of symmetry. Further, the encapsulated gauge does not 
require additional adhesive and thus provides accurate strain values. In this 
technique, two specimens of identical size are prepared, one with and the 
other without the embedded strain gauges. The specimens are dried and then 
immersed in a water bath inside an oven at 50°C (120°F) so that both spec
imens are exposed to the same environment. The specimen without the gauge 
is removed periodically from the water and weighed to determine moisture 
concentration. The embedded strain gauges in the other immersed specimen 
are monitored continuously to obtain strain values. These data provide a re
lationship between moisture concentration and expansions of the composite 
owing to moisture. The moisture expansion coefficients then can be calcu
lated. 

10.3 MEASUREMENT OF MECHANICAL PROPERTIES 

10.3.1 Properties in Tension 

The static uniaxial tension test is probably the simplest and most widely used 
mechanical test. This test is conducted to determine elastic modulus, tensile 
strength, and Poisson's ratio of the material. In the case of composite mate
rials, the tension test generally is performed on flat specimens. The most 
commonly used specimen geometries are the dog-bone specimen and the 
straight-sided specimen with end tabs, as shown in Fig. 10-2. A uniaxial load 
is applied through the ends by providing a pin-type or serrated-jaw-type end 
connection as shown in Fig. 10-3. 

The dog-bone specimens may fail at the neck radius, particularly when 
testing uniaxial specimens, because of stress concentrations and poor axial 
shear properties of the specimen. The pin-type end connections also tend to 
fail at low loads by shear. A single pin-type end connection is sometimes 
replaced by multihole-type end connections, particularly in research work, to 
provide a uniform distribution of load. However, it is not normally used in 
full-scale experimental characterization work. The straight-sided specimen 
with end tabs (see Fig. 10-2b), along with the serrated-jaw-type end connec
tions (see Fig. 10-3b), relieves these problems. 

The ASTM standard test method for tensile properties of fiber-resin com
posites has the designation D 3039/D 3039M-OO. It recommends that the 
specimens with fibers parallel to the loading direction be 12.7 mm wide and 
made with 6-8 plies and that the specimens with fibers perpendicular to the 
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(a) (b} 

Figure 10-2. Tension-test specimens: (a} dog-bone and (b) straight-sided with end tabs. 

load be 25 .4 mm wide and be made with 8-16 plies. Length of the test sectio 
in both cases should be 153 mm. End tabs made from unidirectional nor 
woven £-glass fibers (balanced cross-ply laminate) have proved to be safo 
factory. The tabs should be at least 38 mm long and have a thickness 1.5-
times the thickness of the test specimen. 

The data recording in a tension test consists of measuring the applied loa 
and strain both parallel and perpendicular to the load. The applied load i 
usually measured by means of a load cell that generally is provided with th 
testing machine. The strains can be measured by means of an extensometc 
or an electrical-resistance strain gauge. Extensometers, mechanically attachec 
tend to slip at times, although they are quite simple to use. Strain gauges ma 
be used for a more accurate measurement of strains. From these data take 
until, failure, a stress-strain curve can be plotted easily for the material an 
the required material properties determined. If the applied load is in the Ion 
gitudinal direction, the initial slope of the stress-strain curve gives the lon 
gitudinal modulus (EL). Similarly, the transverse modulus (ET) can b 
determined by applying the load in transverse direction. Ultimate longitudim 
and transverse tensile strengths (uw and uru) are obtained from the know! 
edge of load at fracture in the two tests. The Poisson's ratio (vLT) is obtaine1 

{a) (b) 

Figure 10-3. End connections for tension-test specimens: (a) pin type and {b) serrated-ja\ 
type. 
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from the strains parallel and perpendicular to the load measured at the same 
axial load. 

While testing a unidirectional composite in the longitudinal direction, it 
should be ensured that the load direction does coincide with the fiber direc
tion. Misalignment by only a few degrees may result in considerably lower 
values of elastic modulus and ultimate tensile strength. This problem is not 
as critical for tests in the transverse direction. 

Another problem that is sometimes encountered during the determination 
of longitudinal tensile strength of high-strength unidirectional composites 
concerns the transfer of load through the end tabs, which requires a good 
adhesive bond. Therefore, longer tabs and better adhesives may be necessary 
for longitudinal specimens. Dog-bone specimens with a large radius of cur
vature also may be used. 

Since the elastic constants and strengths of composite materials change 
with direction, the elastic constants in an arbitrary direction may be calculated 
from the four constants in the longitudinal and transverse directions. Trans
formation equations for this purpose were derived in Chap. 5. A knowledge 
of the shear modulus is required, and the measurement techniques are de
scribed later. It may be of considerable interest to obtain off-axis elastic con
stants and strength directly by conducting tension tests on specimens in which 
fibers are oriented to the load direction at angles other than 0° or 90°. Con
ducting tension tests on off-axis specimens, however, require greater care 
because the coupling between normal stress and shear strain presents prob
lems in obtaining uniform states of stress and strain. The problems can be 
best illustrated by considering states of stress and strain near the specimen 
ends. A clamped end, which is normally used in tension tests, produces the 
following state of strain in its vicinity: 

(10.6) 

where the direction parallel to the load (also perpendicular to the edge of the 
clamp) has been denoted as the x axis. Boundary conditions for the clamped 
end are 

(TX -:j. 0 and 7:ty -:f:. 0 (10.7) 

Since the net force is applied only in the direction of the x axis, the shear
stress distribution is such that the net force produced by it will be zero. Now 
it can be seen easily from Eq. (5.20) that in the presence of Txy• the ratio 
a:J Ex does not represent Ex but represents Q11 , as given in Eq. (5.94). Further, 
it should be noted that in this case E_, cannot be evaluated from Eq. (5.20) 
because the magnitude of rxy is unknown. This difficulty in conducting off
axis tension tests is overcome either by the use of a long ( compared with 
width) specimen when the ends are clamped or by making the ends free to 
deform in the manner shown in Fig. 10-4a. In a specimen with free ends and 
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(a) (b) 

Figure 10-4. Effects of end constraints in off-axis tension test (effect shown exaggerated): (a 
grips free to rotate in-plane and (b) grips restrained from rotating. 

at sections away from the clamped ends in the case of a long specimen (St 
Venant principle), the following state of uniaxial stress exists: 

(IO.s: 

Equation (5.20) gives strains as 

(10.9: 

Therefore, by measuring Ex, Ey, and Y.,y, Ex and vxy can be evaluated, as wel 
as mx if EL is already known. Richards et al. [21] showed that satisfactor; 
results can be achieved for 45° specimens by having a value of 12 for the 
ratio of the specimen length between the grips to its width. A more detailec 
discussion on the end effects and the corrections necessary for shear couplin.€ 
is presented by Pagano and Halpin [22] and Wu and Thomas [23]. 

It may be pointed out that besides influencing the state of stress, the 
clamped ends can result in unusual deformations in an off-axis specimer 
because of coupling between in-plane shear and tension, as shown in exag
geration in Fig. 10-4b. 

The tensile properties of composites can be determined by using , 
sandwich-beam specimen subjected to bending·in which a thin layer of com 
posite material is bonded to the top and bottom of a thick substrate such ai 
an aluminum honeycomb core [2,24,25]. The composite on one side is loadec 
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in tension, and that on the other side, in compression. Thus a single specimen 
can be used to determine both the tensile and compressive properties. An 
additional advantage of a sandwich-beam specimen is that it can be used 
conveniently for determining off-axis properties and transverse properties, as 
shown by Lantz [25]. Also, sandwich beams using composites as faces are 
commonly employed structures in the aerospace industry and can be readily 
fabricated and simulate end-use application. 

In the early days of the development of filament-wound composites, it was 
recognized that it would be more realistic to use filament-wound specimens 
for characterization than to use flat specimens made by hand lay-up. There
fore, filament-wound tubes and the rings cut from the tube have been used 
as test specimens (ASTM D 2290). However, their use has been limited be
cause of the complex loading mechanism involved. Moreover, filament
winding facilities are not available in many laboratories. 

10.3.2 Properties in Compression 

Static uniaxial compression tests are similar to the tension tests but present 
many more problems. The biggest problem is the necessity to prevent geo
metric buckling of the specimens. This requirement is particularly relevant to 
thin, flat specimens and usually is met by providing multiple side supports 
that prevent the specimen from buckling out of its plane. The use of side 
supports can be avoided by using a block- or bar-type specimen rather than 
a plate. However, the block-type specimens are more difficult to prepare. 

Compression tests on unidirectional composites pose one more problem. 
When the composite is subjected to compressive loads in the fiber direction, 
premature failure occurs by localized "brooming" at the ends, as shown in 
Fig. 10-5. This problem can occur with metal-matrix composites as well as 
polymer-matrix composites and is present even with the block-type speci
mens. One means of reducing end-brooming action is to embed the ends of 
the specimens into either a polymer or a low-melting-point metal alloy. A 
more successful method of eliminating brooming is to clamp the ends. Various 
designs are available for end-clamping methods [26,27]. 

Brooming 

Figure 10-5. End brooming under compressive loading represents premature failure. 
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A number of loading fixtures and specimen configurations have been de
veloped to measure the compressive strengths of composites [28]. Alignment 
of the test fixture and specimen is an essential consideration in any compres
sion test. The most common test fixture, the IITRI test fixture, developed by 
the Illinois Institute of Technology Research Institute [29], is shown sche
matically in Fig. 10-6. A relatively short (gauge length 12.7 mm), unsupported 
test specimen is used with this fixture. The fixture employs linear bearings 
and hardened-steel shafts to ensure colinearity of the loading direction. The 
IITRI fixture mounted in a loading frame is shown in Fig. 10-7. ASTM Stan
dard D 3410/D 3410M-03 describes the test method for compressive prop
erties of polymer-matrix composite materials with an unsupported gauge 
section by shear loading such as the method using the IITRI test fixture. A 
newer ASTM standard (D 6641/D 6641M-01) describes the test method for 
determining the compressive properties of polymer-matrix composites using 
a combined loading compression (CLC) test fixture. This loading mechanism 
has some advantages over the shear loading. 

The data recording in compression tests is also similar to that in tension 
tests. The strain in the direction of loading may be measured by a compres-

I 

,,.,>- - - -,, -- -

L 2 0 Strain guag1 

l 

Composite specimen 

Specimen Dimensions 

L1,mm L2, mm * w. mm 

12.7 :!: I 127:!:l.5 12.7 :!: 0.1 or 
6.4 :!: 0.1 

Figure 10-6. Modified IITRI compression test fixture and specimen dimensions. 
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Figure 10-7. Photograph of an IIRTI compression test fixture. (From Hofer and Rao [29].) 

someter or electrical-resistance strain gauges. The testing-machine head 
movement is not a reliable measure of strain because some error may result 
from crushing of the specimen ends. The strain in the direction perpendicular 
to the load is measured using strain gauges only because of space limitations. 
From these measurements, the elastic moduli and Poisson ratios of the ma
terial in compression can be determined and the stress-strain curve in com
pression plotted. A straight-sided specimen is well suited for elastic moaulU$ 
and Poisson ratio determination. For compressive-strength determination, 
reduced-center-section specimens often are used to ensure that failure does 
not occur near the end of the specimen. Again, it should be mentioned that 
composite pi;operties in compression also may be determined by using 
sandwich-beam specimens (ASTM D 5467 /D 5467M-97 (reapproved 2004)]. 
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10.3.3 In-Plane Shear Properties 

The tests in which shear distortion takes place entirely in the plane of the 
composite material sheet are termed in-plane shear tests. The properties tha1 
are determined through these tests are the shear modulus and shear strength. 
In these tests, a material specimen is subjected to loads that produce a· pure 
shear state of stress, and the resulting strains are measured. 

10.3.3.1 Torsion Tube Test The easiest way to produce a state of pure 
shear is to subject a thin-walled circular tube to a torque about its axis, a~ 
shown schematically in Fig. 10-8. This produces a uniform shear on the sur
face of the tube. The relationship between the torque T and the shear stres~ 
Txy is given as 

T 
T =--

xy 27TT2t (l0.10: 

where r is mean radius, and t is the thickness of the tube. Since the wal 
thickness is small compared with the mean radius, the shear-strain variatior 
through the thickness may be neglected. Therefore, the torsion tube is ~ 

widely used specimen for in-plane shear tests. Pagano and Whitney [30] have 
shown that the torsion tube is the most desirable shear test specimen from ar 
applied mechanics standpoint. However, care should be taken to ensure tha' 
only pure torque is applied to the specimen. The specimen must be mountec 
concentrically and free to move axially so that bending moments and axia 
forces are not developed if coupling exists because of laminate constructior 
or fiber angle. 

The test requires means for accurate measurement of applied torque anc 
the resulting shear strain. The shear strain generally is measured by means o: 
electrical-resistance strain gauges. Since the strain gauges cannot measun 
shear strain directly, the normal strains at 45° to the tube axis are measured 
from which the shear strain can be calculated by use of the Mohr strain circle 
ASTM Standard .D 5448/D 5448M-93 (reapproved 2000) provides mqre de 
tails of this test procedure. 

Two additional precautions for the test are to prevent failure of the bone 
between the specimen and the end attachment through which the torque i: 
applied and to prevent buckling of the specimen. The former is achieved b~ 

Figure 10-8. Torsion tube for shear test. 
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providing a long adhesive joint bonded on the inside and outside surfaces of 
the tube. The buckling may be avoided by either providing sufficient wall 
thickness or keeping the length small. 

Given the difficulties associated with the fabrication and testing of tubular 
specimens, other test methods are employed for determination of the in-plane 
shear properties of unidirectional composites. Among them, the Iosipescu 
shear test, the ±45° laminate test, and the off-axis tensile test are currently 
the. most commonly employed methods. These and some other tests are de
scribed in the following subsections. 

10.3.3.2 losipescu Shear Test The Iosipescu shear test specimen is 
shown schematically in Fig. 10-9 along with the associated shear-force and 
bending-moment diagrams. A state of pure shear is achieved at the specimen 

Pb 
a·b 

h w ' 

Pa 
a·b 

t._L-1:-: =----J :! 
I 
1 

Pb 
• a·b 

• .!.!!.. 
a·b 

Shear-force diagram 

Bending-moment diagram 

Figure 10-9. Schematic representation of the losipescu shear test method and associated 
shear-force and bending moment diagrams. · 
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rnidlength by application of two counteracting moments produced by two 
. force couples. In the middle section of the test specimen, a constant shear 

force of magnitude P is induced. The bending moments exactly cancel at the 
rnidlength of the specimen, producing a pure shear. An Iosipescu test fixture 
(Fig. 10-10) is designed to restrain each end of the test specimen from rotat
ing. The 90° notches on each edge of the specimen produce a constant shear
stress distribution between the two notches instead of a parabolic shear-stress 
distribution for a constant-cross-section beam. Therefore, the value of shear 
stress T for the test shown in Figs. 10-9 and 10-10 is given by the shear force 
divided by the net cross-sectional area: 

p 
-r=-

wt 
(10.11) 

where w is the net width between the two notches, and t is the thickness of 
the test specimen. An Iosipescu shear test fixture is shown in Fig. 10-11. 
ASTM Standard D 5379/D 5379M-98 describes the test method for measur
ing shear properties employing this procedure. 

Details regarding the development of the Iosipescu test for composites can 
be seen in various publications of Adams and Walrath [31-34]. A typical 
specimen for the Iosipescu test is 51 mm long and 12.7 mm wide. A 90° 
notch is cut to a depth of 2.5 mm on each edge of the specimen at the 
midlength. In general, the specimen thickness should be about 2.5 mm to 
avoid buckling-induced failures. Very thin materials may be tested by bonding 
several layers together or by using reinforcing tabs in the loading regions. 
Shear strain in the test section is obtained by measuring normal strains at 

Figure 10PIO. losipescu shear test loac;llng,meQhanism. 



10.3 MEASUREMENT OF MECHANICAL PROPERTIES 455 

Figure 10-11. Photograph of an losipescu shear test fixture. (Courtesy of Wyoming Test Fix
tures, Inc.) 

± 45° to the longitudinal axis of the specimen. For this purpose, two strain 
gauges oriented at ± 45° to the longitudinal axis of the specimen and centered 
between the notches are used. Other methods of measuring shear strains so 
far have not produced satisfactory results. 

The Iosipescu shear test is relatively easy to use. Specimens are small, easy 
to fabricate, and easy to install in the test fixture. Both shear modulus and 
shear strength can be determined through the test. However, for highly ortho
tropic materials (i.e., large value of Ed ET), there is a nonuniformity in the 
stress distribution in. the test section, which introduces an error in the deter
mination of property values. Pindera et al. [35] have suggested correcting the 
property values by incorporating a factor obtained through finite-element anal
ysis. Adams and Walrath [31] suggest using a cross-ply laminate, [0/90]5, 

instead of a unidirectional composite. In theory, shear properties of the cross
ply laminate are the same as those of the unidirectional composite. 

10.3.3.3 [ ±45Js Coupon Test In-plane shear .properties of a unidirectional 
composite can be determined by oonducting a tension test on a [ ± 45]5 lam
inate (Fig. 10-12). The test results are interpreted using laminate stress anal
ysis. It can be shown (see Exercise Problems 6.2 and 6.3) that for an applied 
stress o-x, the laminae stresses are 



456 EXPERIMENTAL CHARACTERIZATION OF COMPOSITES 

Fiber direction 

Figure 10-12. Tension test on [±45]5 coupon for shear modulus measurement. 

<TL = !(O:., + 2-r.,:y) 

aT = Max - 2-r.,,) (10.12) 

where. -r X)'' the shear stress induced in the laminae, is not known. The lamina 
strains are related to the laminate strains .as follows: 

e = 1.(e0 + e0) L 2 x y 

e = 1.(e0 + e0) T 2 x y (10.13) 

"' = (eo - eo) ILT y X 

These results show that for the [±45]s laminate, the laminae shear stress rL1 
and the corresponding shear stra'in 'YLT can be obtained from laminate stress 
and strains. Thus the results of a tension test on a [ ± 45]s laminate can be 
employed to establish shear stress-strain response of the lamina. This test 
method is quite suitable for determination of shear modulus ( Gd but not fot 
shear strength ( TLru) because the lamina is in a state of combined stress rathe1 
than pure shear. This test procedure was suggested by Rosen [36], and details 
are presented in ASTM Standard D35l8/D3518M-94 (reapproved 2001). 

10.3.3.4 Off-Axis Coupon Test The off-axis tension test is used often tc 
determine the in-plane shear response of unidirectional. composites. The tes1 
is shown schematically in Fig. 10-13. For an applied stress ax, the stresses 
along the longitudinal and transverse directions can be written as 

(10.14: 

rLT = -ux sin O cos () 
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Figure 10-13. Tension test on off-axis coupon for shear-stress-strain response. 

It can be shown that the strains along the longitudinal and transverse di
rections are related to the strains in the x and y directions and the strain in a 
direction oriented at 45° to the x axis: 

eL = cos O(cos 8 - sin 8)ex + sin O(sin 8 - cos 8)ey + 2 sin 8 cos 8 e45 

eT = sin O(cos 8 + sin O)ex + cos O(sin 8 + cos 8)ey - 2 sin 8 cos 8 e45 

'YLT = -(cos2 8 + 2 cos 8 sin 8 - sin2 8)ex 

- (cos2 8 - 2 sin cos 8 - sin2 O)e>' + 2(cos2 8 - sin2 8)e45 (10.15) 

Equation (10.15) shows that the strains along the longitudinal and tran$
verse directions can be obtained from the strains (ex, ey, e45) measured using 
a rectangular three-element strain-gauge configuration. Thus, the off-axis ten
sion test can be used to obtain the shear stress-strain response of the unidi
rectional composite. Quite often 8 = 45° is used .for off-axis specimens. In 
this case, the shear stress and shear strain can be written as 

(10.16) 

(10.17) 

By combinihg Eqs. (10.16) and (10.17) and using the stress-strain relations, 
it can be shown that for a 45° off-axis specimen, 

(10.18) 

Pindera and Herakovich [37] have suggested the use of 45° off-axis specimen 
for the measurement of GLT· In the case of low off-axis configurations such 
as the 10° off-axis coupon, a specimen with very high aspect ratio must be 
employed. The 45° off-axis specimen is not suitable for measurement of shear 
strength owing to the presence of <TL and <Tr- Charnis and Sinclair [38] rec-
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Figure 10-14. Picture frame test for in-plane shear properties. 

ommended the use of the 10° off-axis test to minimize the effects of aL anc 
ar on the shear response. 

10.3.3.5 Other Tests Besides the tests described in earlier sections, othe1 
tests are employed for determination of the in-plane shear properties. Fo1 
example, a thin, square plate is loaded at its edges by means of a loadin! 
fixture called a picture frame, as shown in Fig. 10-14. The loading fixture ii 
bonded or bolted to the edges of the specimen. This type of loading producei 
a state of pure shear near the edges, but the state of stress in the centra 
portion deviates substantially from pure shear. Hence this method may bf 
used for determinit_1g shear strength but not the shear modulus. 

The rail shear type of test shown schematically in Fig. 10-15 has been usec 
widely to measure the thickness properties of various sandwkh-core materi· 
als. This type of test may be used for in-plane shear properties also. AST.IV 
Standard D 4255/D 4255M-01 describes this test procedure. 

Whitney et al. [39] concluded through a theoretical stress analysis that i 
is a valid test for determining shear modulus, provided that the length-widtl 
ratio is at least 10. However, an additional requirement should be satisfied fol 
determining shear strength: The major Poisson ratio with respect to the spec
imen edges should be less than unity. If this condition is not met, as in ~ 
± 45° laminate made from unidirectional laminae, a severe stress concentra· 
tion is developed, which results in an excessively low value of shear strength 

t. A pp lied load 

Specimen 

Figure 10-15. Rail shear test. 
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The four-point loaded flat plate and sandwich cross-beam specimens also 
have been used [2,40] for determining in-plane shear properties. In the central 
portion of a sandwich cross-beam, a uniform pure shear is produced at 45° 
to the specimen edges, as shown in Fig. 10-16. However, because of stress 
concentration at the comers of the cross, a uniform stress state is approached 
in the very center of the cross, whereas failure initiates at the corners. Thus 
the cross-beam test is no longer regarded as an adequate test for measuring 
shear strength and shear stiffness. The flat-plate test also has not been used 
widely. 

10.3.4 Flexural Properties 

The two most popular flexural tests, the three-point and four-point bending 
tests, are shown schematically in Figs. 10-17 and 10-18, respectively. In these 
tests, a flat specimen is simply supported at the two ends and is loaded by 
either a central load (three-point bending) or by two symmetrically placed 
loads (four-point bending). The shear-force and bending-moment diagrams 
for the two tests are also shown in Figs. 10-17 and 10-18. Variations across 
the beam thickness of normal stress (often called bending stress) owing to 
bending moment and shear stress resulting from shear force are shown in Fig. 
10-19, where the cross section of the beam has been assumed rectangular. 
Material properties also have been assumed uniform through the thickness, 
as in unidirectional composites or iostropic materials (bending stresses in 
laminated composites were discussed in Chap. 6). The normal stress varies 
linearly from maximum compression on one surface of the beam to an equal 

ttttlfl 

~l~ = ~~ = - -111111.1 
Figure 10-16. Sandwich cross-beam test. 
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Figure 10-17. Three-point bending test and associated shear-force and bending-moment di
agrams. 

tensile value on the other surface, being zero at the midplane or neutral axis. 
The maximum normal stress is given by 

(10.19) 

where M is the bending moment on the cross section, b is the specimen width, 
and h is the specimen thickness. The shear stress has a parabolic distribution 
with maximum value at the midplane and zero on the outer surf aces of the 
beam. The maximum shear stress is given by 

(10.20) 

where Fs is the shear force on the section. Flexural response of the beam is 
obtained by measuring applied load and corresponding strain. The strain may 
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Figure 10-18. Four-point bending test and associated shear-force and bending-moment dia
grams. 
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Figure 10-19. Normal-stress and shear-stress variations across thickness of a homogeneous 
rectangular-cross-section beam during bending. 
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be measured using a strain gauge bonded to the beam on the tension side 
that is, the surface opposite to the applied load. 

The bending moment M is determined from the measured load and spec 
imen geometry, and the stress then is calculated from Eq. (10.19). Thus th 
complete stress-strain behavior in bending can be obtained. 

The three-point and four-point bending tests differ from each other wit] 
respect to the state of stress and may give slightly different results. In a three 
point bending test, the bending moment on the beam varies linearly from zen 
at the supports to a maximum value at the center (see Fig. 10-17). The shea 
force and therefore the interlaminar shear stress [Eq. (10.20)] at the midplani 
are uniform all along its length. This may promote interlaminar shear failure 
In four-point bending (see Fig. 10-18), the bending moments increase linearl; 
from zero at the supports to a maximum value under the load. The bendini 
moment remains constant between the loads. In this case, the shear force anc 
consequently the interlaminar shear stress between the loads are zero, anc 
thus this portion of the beam is subjected to a pure bending moment. Thus 
from the standpoint of state of stress, a four-point bending test is more de 
sirable; whereas the three-point bending test is easier to conduct. 

Flexural strength is the theoretical value of stress on the surface of the 
specimen at failure. It is calculated from the maximum bending moment b) 
assuming a straight-line stress-strain relation to failure. Thus, for a beam o: 
rectangular cross section, it is calculated using Eq. (10.19), where M is the 
bending moment corresponding to the failure load. 

To obtain the correct value of flexural strength, it should be ensured tha1 
the failure takes place by breaking of fibers .and not by interlaminar shear 
This is accomplished by providing a large span-depth ratio. This can be 
explained by considering the influence of span on normal stress and inter
laminar shear stress. The span of the beam does not influence the interlamina1 
shear, whereas a larger span results in higher bending moment and thus ar 
increased tendency for longitudinal failure. However, the larger span-depth 
ratios result in larger deflections, which, in turn, make it necessary to accounl 
for the horizontal forces developed at the supports in the calculation of bend
ing moment. Most standard methods for three-point bending suggest a span
thickness ratio of 16. ASTM Standards D 790-03 and D 6272-02 describe 
the methods for three-point and four-point bending tests, respectively. 

The problems associated with flexural testing of off-axis fiber-reinforced 
composites have been studied by Halpin et al. [41] and Whitney and Dauksys 
[ 42]. The bending, twisting, coupling, or warping effects in such specimens 
(as discussed in Chap. 6) tend to partially lift the specimen off at the supports. 
However, if the lift-off is suppressed using double knife edges at the supports, 
additional twisting moments are induced in the specimen. It is possible to 
minimize the lift-off effects by using a sufficiently narrow specimen and a 
high span-thickness ratio. 
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10.3.5 Measures of In-plane Fracture Toughness 

Fracture toughness of a material refers to the resistance offered by the ma
terial to its failure by crack initiation and propagation. Three different ap
proaches to crack initiation and propagation were discussed in Chap. 8. Each 
of these approaches assumes the existence of a measure of fracture toughness 
that controls failure by crack initiation and propagation. These measures are 
the critical strain-energy release rate ( Ge), critical stress-intensity factor or 
crack-growth resistance (KR), and critical ]-integral (Jc). Experimental mea
surement of these measures of fracture toughness is discussed in the following 
paragraphs. It may be pointed out that discussion is limited to crack-opening 
mode (mode I). The remaining two failure modes can be treated in a similar 
manner. 

10.3.5.1 Critical Strain-Energy Release Rate (Ge) Consider a plate 
(Fig. 10-20) that contains a centrally located crack of length 2C subjected to 
a load P. The strain energy stored in the plate is 

U = fPo (10.21) 

where 8 is the elongation between the load points. Consider now the strain
energy release rate G per unit crack extension assuming that the position of 
the grips through which the load is applied is fixed; that is, 8 is constant. 
Thus 

G = _ au = _ _!_ 8 aP 
ac 2 ac (10.22) 

The spring constant k of the plate may be defined by 

tp 
~ p 

t.c t.c 
l c:=:, 

2C 

ip 
Figure 10-20. Tension test on a plate with a crack to measure G10• 
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o=!:_ 
k 

It follows that for the fixed-grip case, 

i!o = ! i!P + p i!(llk) = O 
ac k ac ac 
i!P = -P·k ii(llk) 
ac ac 

Substituting Eqs. (10.23) and (10.24) into Eq. (10.22) gives 

G =_au= .!.p2 a(llk) 
ac 2 ac 

(10.23 

(10.24 

(10.25 

Equation (10.25) provides a convenient means for measuring strain-energ 
release rate G. The load P at crack initiation is directly measurable, and th 
spring constant k or the compliance 1 / k can be obtained from a complianc 
curve, that is, a diagram of l / k as a function of crack length C. It can b 
shown easily . that the same relationship for G can be derived if instead o 
fixed grips the load is assumed to be constant. 

It should be noted that this experimental technique is applicable for iso 
tropic as well as anisotropic materials. HQwever, for composite materials, th 
strain-energy release rate, as already mentioned, depends on many facton 
such as the orientation of the initial crack with respect to loading and materi, 
axes, the geometry of crack extension, the type of loading, and other variablei 
These parameters are not significant for homogeneous isotropic materials. 1 

more detailed discussion of the fracture process in composite materials i 
given in Sec. 8.2.1.2 

10.3.5.2 Critical Stress-Intensity Factor or Crack Growth Resistanc, 
(KR) The critical value of the stress-intensity factor is determined throug 
tension or bend tests on notched specimens. The notch is provided on one c 
both edges of the specimen in the case of a tension test and on the tensio 
side in the case of a bend test, as shown in Fig. 10-21. Load-elongation dat 
are recorded in the tension or bend test. For calculating the stress-intensit 
factor in a tension test, applied stress is calculated as the load divided b. 
cross-sectional area and as the maximum flexure stress in a bend, test. Ho'.v 
ever, Eq. (8.12) cannot be used for calculating the stress-intensity factor be 
cause this equation is applicable when loading and the edges of the plate ar 
far (infinitely) away from the crack. The following relationship, incorporatin 
a correction factor to account for the finite width of the specimen, is used t 
calculate the stress-intensity factor: 
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Figure 10-21. Fracture toughness testing specimens: (a) single-edge notched (SEN), (b) 
double-edge notched (DEN), and {c) notch bend test specimen. 

K = Y(!_)Vc 
I fW 

(10.26) 

where t and w are specimen thickness and width, respectively, P is applied 
load, c is crack length, and Y is the width correction factor, called the K
calibration factor. The Y can be obtained experimentally. Quite often the 
values of Y are taken to be the same as the ones used for isotopic materials 
given below for the three types of specimens shown in Fig. 10-21: 

For SEN specimens: 

For DEN specimens: 

(10.28) 

For notched-bend t~sts: 

Y = 1.93 - 3.07(;) + 14.53(; r -2s.11(; r + 25.80(; r (10.29) 
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The applied stress-intensity factor K 1 tends to extend the crack, and there
fore, K, is often referred to as the crack-extension or crack-driving force. 11 
is opposed by the internal material resistance called the crack-growth resis
tance KR. This resistance can be calculated from knowledge of the applied 
force in equilibrium with an instantaneous crack length Ci and is given by 

(10.30) 

The crack growth resistance is an experimentally determined value of the 
resistance offered by the material to the applied stress intensity-factor and 
therefore is calculated from the actual values of load and corresponding in
stantaneous crack length observed in a fracture test. The expression for KR is 
identical to that for K 1, but K, may be calculated for any practical or im
practical combination of load and crack length, whereas KR is calculated for 
equilibrium values of load and crack length. 

A plot of crack growth resistance against crack length is referred to· as a 
crack-growth-resistance curve (R curve). A plot of crack extension force, for 
a constant load, against crack length is a crack extension-force curve (K1 

curve). 
A typical R curve and several K 1 curves for different loads are shown in 

Fig. 10-22. One of the K1 curves is tangent to the R curve. Beyond the point 
of tangency ([), crack extension causes a larger increase in crack extension 
force K, than the crack-growth resistance KR, and consequently, crack growth 
can occur without increasing applied load. In other words, unstable crack 
growth starts at this point. Or the point of tangency is the point of instability 
on the R curve. The crack growth resistance corresponding to point I is critical 
and is related to the fracture toughness ( critical strain-energy release rate) of 
the material. Thus experimental determination of the R curve for a notched 
specimen provides a means of experimental measurement of fracture tough
ness. 

ASTM Standard E 1922-97 provides a test method for translaminar fracture 
toughness of laminated polymer-matrix composite materials under some re
stricted conditions. It may be pointed out that since the fracture process in a 
composite can be greatly influenced by a small change in material parameters, 
a single test method cannot be expected to cover measurement of fracture 
toughness of different types of composites. Discussion in this section may be 
helpful in understanding the factors influencing the measurements and in de
signing the tests. 

The R curve for a material is obtained· by testing a notched specimen and 
measuring instantaneous crack length with increasing load. In the case of 
homogeneous materials, the crack is distinct, well defined, and easily meas
urable at any instant. However, the fracture process in composite materials 
does not proceed by a simple enlargement of the original crack. It progresses 
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Crock lenglh c 

Figure 10-22. An R curve and K, curves ror constant loads. 

by the formation and growth of a damage zone in front of the crack tip caused 
by a large number of microcracks owing to debonding, matrix cracking, and 
fiber breaks (see Fig. 8-12). An instantaneous crack length is difficult to define 
or measure. Consequently, a procedure for estimating instantaneous crack 
length may be adopted. A procedure involving matching of the compliance 
of a damaged specimen to that of a fresh specimen, generally referred to as 
the compliance-matching procedure, has been used extensively by researchers 
to transform the test data (e.g., the crack-opening displacement, COD) into 
an estimated crack length [43-53]. The procedure is explained in the f9llow
ing paragraphs. 

Typical load-COD curves fol'. single-edge notched (SEN) specimens of a 
composite material in tension are shown in Fig. 10-23 for different initial 
crack lengths. In the compliance-matching procedure, initial compliance (ob
tained from the curves in Fig. 10-23) is first plotted against crack length (Fig. 
10-24). This plot is referred to as the compliance curve or the crack-length
estimation curve. To estimate instantaneous crack length at points P 1, P 2 , and 
P3 on a load-COD curve (Fig. 10-25), compliances Ci, C2, and C3 of the 
lines joining P 1, P 2, and P 3 to the origin are obtained, and then the crack 
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t 

0 0.25 0.5 0.75 1.0 

COD,mm 

Figure 10-23. Load-COD curves for different initial crack lengths. 

lengths are estimated from the crack-length-estimation curve (Fig. 10-24} cor
responding to the compliances C1, C2, and C3• 

The compliance-matching procedure assumes that the damaged specimer: 
behaves like an undamaged specimen having a machined crack of lengtt 
equal to the estimated crack length. This underlying assumption has beer 
examined by Agarwal et al. [54l for short-fiber composites by studying the 
behavior of damaged specimens. It has been established that use of the 
compliance-matching procedure is justified for estimating instantaneous crad 
length in short-fiber composites. 

To obtain the fracture toughness of composite materials, the complett 
load-COD curve is transformed to an R curve through estimation of instan· 
taneous crack length, as explained earlier. Location of the point of instabilit) 
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Figure 10-24. Crack-length-estimation curve for 25-mm-wide specimens. 
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Figure 10-25. Instantaneous compliance-evaluation procedure. 
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on the R curve gives fracture toughness of the materials. The transformation 
process is tedious, time-consuming, and consequently, error-prone. It has been 
established mathematically by Agarwal et al. [55] that the peak load point on 
the load-COD curve corresponds to the instability point on the R curve. Thi5 
result eliminates the necessity of transforming the entire load-COD curve tc 
an R curve. Thus fracture toughness can be measured more easily and accu
rately by knowing the peak load and estimating the corresponding instanta
neous crack length. It also has been pointed out that in order to make use oJ 
this result more effectively, displacement-controlled fracture tests should be 
preferred over load-controlled tests. 

10.3.5.3 Critical J-lntegra/ (JJ A method for experimental measuremen1 
of Jc has been suggested by Begley and Landes [56-58]. It is usually mea
sured through the energy-rate interpretation of the ]-integral given by Rice 
[59]. He showed that the ]-integral may be interpreted as the potential-energ) 
difference between two identically loaded bodies having neighboring crad 
sizes. This is stated mathematically as 

]= 
au 
ac (10.31: 

where U is the potential energy, and c is the crack length. In the linear elastic 
case, as well as for small-scale yielding, J therefore is equal to G, the crack
driving force. For any nonlinear elastic body, J may be interpreted as the 
energy available for crack extension. 

The potential energy per unit thickness of a two-dimensional elastic bod) 
of area A with a boundary S is given by 

U = f W dx dy - J. T(u ds) 
A Sr 

(10.32: 

where W is the strain-energy density and ST that portion of the boundaFy ove1 
which the traction T is prescribed. When the displacements are prescribed 
the negative term in Eq. (10.32) drops out because ST then is nonexistent. Tot 
potential energy then is equal to the strain energy, the area under the load
deflection curve. This energy-rate interpretation permits the experimental de
termination of the ]-integral. 

In order to determine the ]-integral experimentally, several notched spec
imens with neighboring crack lengths are tested, and load-displacement (a 
the point of load application) curves are obtained. Areas under the load
displacement curves are obtained for different displacements. A typical load
displacement curve (Fig. 10-26a) shows that for an initial crack length C1, A, 
is the strain energy at displacement S1, and (A 1 + A2), at S2 • These values o 
strain energies are plotted against crack lengths for constant displacement: 
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Figure 10-26. (a) Determination of strain energies at different displacements, and (b) energy 
curves at constant displacements. 

(see Fig. 10-26b). These curves usually are referred to as the energy curves. 
Slope of an energy curve gives aU!ac for a constant displacement, and thus 
the I-integral ( - a U I ac) is obtained. In many cases energy curves are ap
proximated, for simplicity, by straight lines. A plot of the ]-integral against 
displacement is a J curve. The critical value of the ]-integral Jc is obtained 
corresponding to the critical displacement beyond which the load• decreases 
monotonically. 

10.3.6 lnterlaminar Shear Strength and Fracture Toughness 

The stresses acting on the interface of twQ adjacent laminae are called inter-
. laminar stresses. The interlaminar stresses are illustrated in Fig. 10-27, where 

crT, is the interlaminar normal stress on plane ABCD, and TT'L and TT'T are the 
interlaminar shear stresses. These stresses cause relative deformations be
tween the laminae 1 and 2. If these stresses are sufficiently high, they may 
cause failure along plane ABCD (see Chap. 8 for details). A tensile interlam
inar normal stress may cause a tensile failure at the laminae interface. The 
stress required to cause this failure mode usually is taken to be the same as 
the transverse tensile strength of the unidirectional lamina. Large interlaminar 
shear stresses may cause delarnination failure, which is an important failure 
mechanism for composite laminates. It is therefore of considerable interest to 
evaluate interlaminar shear strength through tests in which failure of laminates 
initiates in a shear mode. 

It was pointed out in the preceding section that a large span-depth ratio 
in a flexural test increases the maximum normal stress without affecting the 
interlaminar shear stress and thereby increases the tendency for longitudinal 
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T' 

T 

Figure 10-27. Representation of interlaminar shear stresses. 

failure. Thus, if the span is short enough, failure initiates and propagates by 
interlaminar shear failure, and the test can be used to evaluate interlaminar 
shear strength. A flexural test with a short span is therefore called a short
beam shear test and is the most widely used test to evaluate interlaminar 
shear strength. ASTM Standard D 2344/D 2344M-OO provides further details 
of this test method. As was pointed out in an earlier section, maximum shear 
stress in a beam occurs at the midplane. Therefore, in a short-beam shear test, 
failure consists of a crack running along the midplane of the beam so that 
the crack plane is parallel to the lamination plane. It may be emphasized that 
a short-beam shear test becomes invalid if the tensile failure of fibers precedes 
the shear failure or if tensile failure and shear failure occur simultaneously. 

Another type of test used for evaluating interlaminar shear (sometimes 
called thickness shear) strength is a notched-plate test. This test is shown 
schematically in Fig. 10-28. In this test, two notches are provided in the 
thickness direction from the opposite faces of the specimen, and the specimen 
is tested in tension or compression. The distance between the notches is ad
justed such that the failure load corresponding to interlaminar shear failure 
between the notches is smaller than the failure load corresponding to tensile 
failure of the notched cross sections. ASTM Standard D 3846-02 provides 
further details of this method. The rail shear test, which was discussed earlier 
(see Fig. 10-15), is also used to evaluate inter-laminar shear strength. How
ever, the short-beam shear test is much simpler to perform than the notched
plate test or the rail shear test and .hence is very widely used. 

Because of the importance of the delamination failure mode in laminated 
composite structures, the static interlaminar fracture toughness of unidirec
tional composites is determined. The double-cantilever-beam (DCB) test used 
commonly for this purpose is shown schematically in Fig. 10-29'. ASTM 
Standard D 5528-01 provides details of this test method. The specimen i~ 
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lnterlaminar 
shear failure--+--

Figure 10-28. Tension test on staggered two-notch specimen for interlaminar shear-strength 
determination. 

made of an even number of layers. A starter crack at one end of the specimen 
is introduced by placing a 0.025-mm-thick Teflon film at the rnidthickness 
during fabrication. The specimen is usually 3 mm thick, 38 mm wide, and 
229 mm long. At the crack end of the specimen, two hinges are mounted for 
load application. The load-displacement curve during loading is recorded on 
a chart. The displacements are measured from an extensometer or linear volt
age differential transformer (LVDT) attached to the specimen. The loading is 
stopped when the crack extends about 10 mm. The actual crack length is 
measured using a traveling microscope or a precision-dial caliper and is 
marked on the chart for identification. The specimen is unloaded and then 
reloaded. This procedure is repeated for 10-mm crack extensions each time 
until the crack is approximately 150 mm long. A typical complete load-

p 

Figure 10-29. Double-cantilever-beam (DCB) specimen for fracture toughness measurement. 
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displacement record for a DCB specimen is shown in Fig. 10-30. The critical 
strain-energy release rate is obtained following the derivations in Chap. 8 and 
is discussed further in the following paragraphs. 

The strain-energy release rate is given by Eq. (10.25). For the specimen, 
the compliance (1/k) is given by 

1 o 2C3 

-=-=-
k P 3EI 

(10.33) 

where Eis the elastic modulus and I= /2 W(h/2)3
• 

The following strain-energy release rate per unit width of the specimen 
now can be obtained by combining Eqs. (10.33) and (10.25): 

The critical strain-energy release rate G1c is determined for P = Pc: 
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Figure 10-30. Load-displacement behavior of DCB specimens with different crack lengths. 
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The constant (3 EI/2) in Eq. (10.33) is obtained by plotting (l / k) against C 
on a log-log scale, and the constant (YWG,cEI) in Eq. (10.35) is obtained 
by plotting Pc against C on a log-log scale. Thus the critical strain-energy 
release rate can be obtained. A more detailed data-analysis procedure is given 
in ref. 60. 

The critical strain-energy release rate can be determined directly through 
the area method from the definition of energy-release rate [61]: 

(10.36) 

where AA is the area indicated in Fig. 10-31, and C2 - C1 is the crack growth 
from A to B. Values of G1c are obtained from all the loading and unloading 
curves shown in Fig. 10-30, and an average G,c is determined. The two meth
ods may give slightly different values of G1c owing to nonlinear load
displacement behavior and the inaccuracies in determining the displacements 
at the onset of crack growth and arrest. 

10.3.7 Impact Properties 

A very common way to evaluate impact properties is to determine material 
toughness by measuring the energy required to break a specimen of a partic
ular geometry. The well-known Charpy and Izod impact tests developed for 
isotropic materials are used widely for this purpose. The test ar;angements 
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,:J 
0 
0 
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Figure 1Q-31. Area method for evaluation of G1c. 
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are shown schematically in Fig. 10-32. In a Charpy test, the beam specime1 
is simply supported at the two ends and struck by a pendulum at the midspan 
In an Izod test, the specimen is fixed at one end as a cantilever beam am 
struck by a pendulum at the free end. For homogeneous isotropic materials 
the tests usually are performed on specimens with a notch on the tension side 
The notch produces a high stress concentration and thus minimizes the energ~ 
required for initiation of fracture. The total measured energy required fo 
fracture then is essentially the energy for propagation of the fracture. 

The Charpy and Izod impact tests are very useful for a comparative stud) 
of different materials and, for thrs purpose, are quite adequate for studyin! 
impact behavior of isotropic metals or polymers. However, for composites, ir 
which the fracture phenomenon is much more complex, conventional impac 
tests may not be sufficient for providing data of basic physical significance 
The particular mode of fracture determines various energy-absorbing mech· 
anisms operative during material failure under impact. The mode of fractun: 
and thus the energy absorbed are influenced by various test variables such ai 
fiber orientation, specimen geometry, velocity of impact, and other test ar
rangements. For a better understanding, Charpy and Izod impact tests fre
quently are instrumented to record the load history during the impact event 
In conventional impact tests, however, such test variables as velocity of impac1 
and available impact energy are held constant. This has resulted in the de
velopment of other types of impact-testing systems, described in the followinf 
paragraphs. 

A test used increasingly for studying the impact behavior of composit~ 
materials is the drop-weight impact test, where the specimen is placed or 
rigid supports and a known weight is dropped on the specimen from a desirec 
height. The drop height can be adjusted to achieve the desired impact velocity 
Provisions usually are made to change the shape of the striking edge and/01 
to alter its weight so that the amount of available impact energy can be varied. 
The specimen supports sometimes are instrumented so that they also serve as 

0 
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Figure 10-32. Impact test arrangements: (a) Charpy test and (b) lzod test. 
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load cells [62,63]. In other testing systems [64,65], the tup or striking edge 
itself, rather than the support, is instrumented. It is usually more effective to 
instrument the tup. In either case, the load history during the impact event 
can be recorded. In addition, the load signal can be integrated to produce a 
second signal that will be proportional to the area under the load-time curve. 
By adjustment for an appropriate velocity, the second signal can be used to 
calculate the energy absorbed at any instant during the impact loading of the 
test piece. This same information also can be obtained in the instrumented 
Charpy and Izod impact tests. 

ASTM Standard D 3763-02 describes ,a test method for high-speed punc
ture properties of plastics using load and displacement sensors. This test 
method also may be used for composite materials. 

A typical load history in an impact test is shown schematically in Fig. 10-
33. The load-time history can be divided into two distinct regions, a r~gion 
of fracture initiation and a region of fracture propagation. As the load in
creases during the fracture-initiation phase, elastic strain energy is accumu
lated in the specimen, and no gross failure takes place, but failure mechanisms 
on a microscale-for example, microbuckling of the fibers on the compres
sion side or debonding at the fiber-matrix interface-are possible. When a 
critical load is reached at the end of the initiation phase, the composite spec
imen may fail either by a tensile or a shear failure depending on the relative 
values of the tensile and interlaminar shear strengths. At this point the fracture 
propagates either in a catastrophic "brittle" manner or in a progressive man
ner continuing to absorb energy-at smaller loads. The total impact energy 
E1 as recorded on the impact· machine or on the energy-time curve on the 
oscilloscope thus is the sum of the initiation energy E; and propagation energy 
EP. Since a high-strength brittle material-which has a large initiation energy 
but a small propagation energy-and a lvw-strength ductile material-which 
has a small initiation energy but a large propagation energy-may have the 
same total impact energy, knowing the value of E1 alone is not ·sufficient to 

Initiation 
phase 

Time t 

E = f Pvdt 

E 1= Ei +Ep 

Figure 10-33. Typical load histor i during impact test on composite laminates. 
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interpret the fracture behavior of the material. An oscilloscope recordin1 
showing the load-time trace and the integrated energy-time trace is show1 
in Fig. 10-34 for a Charpy impact test. 

The energy absorbed by the specimen (E) at any time is given by tht 
following equation: 

(10.37 

where P and v, respectively, represent instantaneous load and velocity. How
ever, the energy signal usually recorded on the energy-time curve on the 
oscilloscope (see Fig. 10-34) is the product of impulse (area under the load
time curve, f P dt) and initial impact velocity (v0 ). Therefore, this energ) 
signal Ea is given by 

Energy 

Load 

Time (0.5 m/div) 

Figure 10-34. Load and energy histories during impact on a glass-epoxy laminate co,ained 
from an instrumented Charpy test. Tested specimen is also shown. 
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Ea = V0 JP dt (10.38) 

Thus it should be observed that to obtain the actual energy absorbed by the 
specimen (E), Ea must be corrected for the reduction in velocity of the tup 
during contact with the specimen. As an approximation, the right-hand side 
of Eq. (10.37) can be replaced by the product cf average tup velocity (v) and 
impulse, so that 

E = v JP dt (10.39) 

where v = !(v0 + Ur), and vf is the velocity at the specific instant for which 
Eis to be calculated. Using the principles of impulse and momentum, it can 
be shown easily that 

(10.40) 

where E0 is the maximum available impact energy defined by 

(10.41) 

where m is the mass of the drop weight. Combining Eqs. (10.37), (10.39), 
and (10.40) yields 

E = E (1 - Ea) 
a 4Eo 

(10.42) 

Equation (10.42) is the relationship employed most commonly for reduction 
of instrumented impact data. 

These corrections to the recorded energy-absorbed curves become signifi
cant when there is a reduction in velocity of the impacting head as it fractures 
the specimen. An example of the use of the preceding equations is given in 
studies performed by Aleszka [64] on damage done to graphite-epoxy lam
inates when the laminate surface is impacted (low-level impacts) with a 0.5-
lb weight (hemispherical head). Load-time and energy-time traces are shown 
in Fig. 10-35 for an impact when the weight was dropped from 0.5 ft. The 
available energy E0 was 0.22 ft-lb. At point 1 in Fig. 10-35, yvhich corresponds 
to peak load, the energy absorbed by the specimen is also 0.22 ft-lb, thereby 
indicating that at the time of peak load the specimen has absorbed all the 
available energy. At point 2, the absorbed energy is zero; thus all the available 
energy has been returned to the drop weight, and none has been retained by 
the specimen. This implies that the specimen has not suffered any damage or 
permanent deformation from this impact. 
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Figure 10-35. Load and energy histories during low-energy impact on a graphite-epoxy lam
inate. (From Aleszka [64].) 

Figure 10-36 is a load-time and energy-time trace produced when the 
weight was dropped from 7 ft onto a panel. The available energy was 2.22 
ft-lb. At point 1, the energy absorbed by the specimen is 0.71 ft-lb. The 
oscillations on the load-time trace at this point indicate visible incipient dam· 
age. At peak load (point 2), the absorbed energy is 1.75 ft-lb. The absorbec 
energy at point 3 is 2.22 ft-lb, which is equal to the initial impact energy 
The· indenter is stopped at this point, and the specimen has incurred majo1 
damage. At point 4, the absorbed energy calculated from Eq. (10.42) is 1 .9( 
ft-lb. This result indicates that 0.32 ft-lb, the difference between the available 
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Figure 10-36. Load and energy histories during high-energy impact on a graphite-epoxy lam 
inate. (From Aleszka [64].} 
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impact energy £ 0 and the final absorbed energy E has been returned to the 
indenter. 

10.4 DAMAGE IDENTIFICATION USING NONDESTRUCTIVE 
EVALUATION TECHNIQUES 

Damage or defects in a material affect its performance. In fiber composites, 
defects or flaws can accrue during various manufacturing processes, as well 
as in service. Because of their heterogeneity, the damage in composites in the 
form of voids, fiber breaks, interface failure, matrix cracking, and delamina
tion can occur more readily than in homogeneous materials. It is therefore of 
considerable interest to identify damage in composite materials. The damage 
identification can be used to determine the material quality or adequacy of 
the fabrication process and its control, the effects of defects on performance 
of the composite, establishment of inspection requirements for acceptance or 
rejection of material, and repair procedures for service-induced flaws. Non
destructive evaluation (NDE) techniques can be used for such damage iden
tification in composite materials. 

The NDE techniques of identifying damage involve directing energy into 
the structure and analyzing the response to obtain information regarding size, 
location, and orientation of damage or cracks. NDE techniques differ from 
each other in the form of energy transmitted to the structure and receiving 
and analyzing the energy after it interacts with the structure and any defects 
therein. Tapping thin composite structures or adhesive bonds with a coin and 
listening to the sound frequency is one of the oldest methods of nondestructive 
examination. Some of the NDE techniques currently employed for composite 
materials are discussed briefly in the following subsections. 

10.4.1 Ultrasonics 

In this technique, a high-frequency sound wave (1-25 MHz) is generated by 
a transducer in periodic short bursts of a few cycles and transmitted into the 
material being examined. A coupling medium such as water is often used to 
minimize energy losses in air between the transducer and material surface. 
The wave, as it travels through the specimen, is reflected by the discontinuities 
in the material such as voids, delaminations, and cracks, as well as the far 
surface of the component. The reflected wave retums to the transducer wnen 
the waves are traveling normal to the specimen surface, and the transmitting 
transducer acts as the receiver as well (Fig. 10-37). If the waves are directed 
to the surface at some other angle, the reflected waves are received by a 
second transducer (usually of the same type as the transmitter) called the 
receiver (Fig. 10-38). The former method is called the pulse-echo method, 
and the latter, the pitch-catch method. In another method, the waves trans
mitted through the specimen are received by a second transducer on the far 
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Figure 10-37. Ultrasonic pulse-echo method. 

side of the specimen (Fig. 10-39). This method is called the through 
transmission method. 

The information contained in the attenuated pulse emerging from the spec 
imen is processed electronically and displayed for the evaluation of presence 
size, and location of damage. The amplitude of the emerging wave displayec 
by an oscilloscope as a function of time for one position of the transducer i 
called the A-scan in NDE terminology. A comparison between the A-scan 
from a test specimen and a standard (unflawed) specimen provides informa 
tion regarding the defect at that location. A-scans are included in Figs. 10 
37 and 10-39. A number of A-scans are obtained at points along a line, an< 
a new scan, called a B-scan, is constructed that gives a cross-sectional viev 
of the material and the defects present in the cross section. The scan con 
structed from A-scans made across a two-dimensional grid on the specime1 

T - Transmitting transducer 
R - Receiving transducer 
s-Specimen 

Figure 10-38. Ultrasonic pitch-catch method. 
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Figure 10-39. Ultrasonic through-transmission method. 

is called a C-scan. The C-scan produces a plan view of the material and an 
image of the defect in it. A typical C-scan of a graphite-epoxy specimen is 
shown in Fig. 10-40. A flaw in the form of a square film patch was purposely 
embedded between two plies in the specimen to represent a delamination. The 
specimen had other natural defects as well. 

ASTM Standards E 114-95 (reapproved 2001) and E 214-01 describe stan-
dard practice for ultrasonic examinations. 

10.4.2 Acoustic Emission 

An acoustic emission is a transient elastic wave generated by the rapid release 
of energy within a material. It sometimes can be audible to the unaided ear, 

Figure 10-40. AC-scan of a graphite-epoxy laminate. The blank spaces indicate defects. 
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for example, the creaking of timber subjected to loads near failure or th 
sound produced by the failure of rocks. The latter have been used to dete, 
the impending failure of mine shafts and the onset of land slides. In composi1 
materials, the easily recognizable sources of acoustic emissions of practic: 
importance are fiber fracture, matrix cracking, fiber-matrix interface failun 
and delamination. The acoustic event is detected with appropriately designe 
equipment (transducer and associated instrumentation).· However, the even1 
are abrupt and discontinuous and are characterized by high-frequency trar 
sient acoustic signals. The information regarding the· signal source may b 
obtained by amplitude and frequency analysis of the detected signals. 

In a standard experiment, the acoustic emissions emanating from the tei 
section are recorded in such a way that their numbers and distributions ca 
be correlated with the test parameters, such as applied load in a tension tes 
A schematic diagram of a typical experimental setup is presented in Fig. 1 C 
41. The cut-ins marked (a) and (b) indicate the appearance of a single ever 

Load 

Piezo-
Extensometer transducer 

Signal Load 
· conditioners ~_J·"---t 

X-Y-Y 
Recorder 

Figure 10-41. Diagram of an acoustic emission-system. 
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as it might be viewed on an oscilloscope. In addition, (b) shows a typical 
bias level to which the electronic counter might be set (this acoustic emission 
would register two counts). In modern acoustic emission equipment, all the 
components beyond the bandpass filter are replaced by a cathode-ray oscil
loscope (CRO). The bandpass filter is used to suppress low-frequency noises. 
The signals usually are recorded in a microcomputer interfaced with the CRO 
and can be analyzed using appropriate software. The parameters recorded in 
an acoustic emission experiment include peak amplitudes, rise time during 
events, ring-down counts, and duration of an event. The records of these 
parameters are analyzed to relate them to specific failure events, such as a 
fiber break or matrix cracking. A distinct correlation between the acoustic 
emission parameters and the failure events has not yet been established. How
ever, it is generally accepted that the fracture of individual fibers results in 
high-amplitude events. 

The acoustic emission technique, although still requiring further improve
ments, is very convenient to study damage initiation and progression during 
fatigue loading because it does not require interruption of the test for NDE 
examination, unlike ultrasonic C-scanning or x-radiography. 

Acoustic emission (AE) monitoring has been adopted as an NDE technique 
for inspecting new and in-service fiberglass-reinforced plastic storage tanks 
and booms in aerial man-lift devices [66,67]. This procedure involves mount
ing AE sensors at key locations and proof-loading the structure by a pre
scribed loading sequence. The sensors detect AE signals generated by defect 
propagation within the structure. These signals are transmitted to an AE anal
ysis instrument that processes the data to determine the type of defect present 
and its approximate location. For each type of structure and application, an 
acceptance criterion related to the AE parameters for the loading sequence is 
first established. 

10.4.3 x-Radiography 

Intensity of a monochromatic (one wavelength) beam of x-rays as it propa
gates through any matter decreases because of absorption. The relationship 
between the intensity I and the distance traveled x is given by 

(10.43) 

where /0 is the initial intensity of the beam, and µ, is the linear absorption 
coefficient, which depends on the wavelength of the beam and on the material. 
Absorption coefficients of some elements for x-rays of interest in composite 
materials are given in Table I 0-1. 

In the x-radiography (NDE) technique, an x-ray beam is passed through 
the material, and the emerging beam exposes a photographic film. The ex
posure patterns on the film provide information about the material. The highly 
exposed areas are indicative of material with smaller absorption coefficients, 
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Table 10-1 Absorption coefficients for 0.098-A 
wavelength x-rays 

Material µ, (cm- 1) 

Boron 0.35 
Carbon 0.33 
Aluminum 0.42 
Titanium 0.98 
Tungsten 56.00 

and vice versa. Thus voids and delaminations in the material can be distir: 
guished from defect-free areas. 

A parameter useful for comparing absorption by different materials is th 
thickness at which the incident intensity is reduced by one-half, that is, I = 
tf0 • This thickness x112 can be obtained easily using Eq. (10.43) as 

0.69 
X112 = --

µ, 
(10.44 

The half-thicknesses for some materials of interest to composites, irradiate 
with x-rays of three different wavelengths, are given in Table 10-2. The larg 
difference between half-thicknesses of composites such as carbon-fibe1 
reinforced polymers (=3 cm) and air, effectively infinity for short-wavelengt 
x-rays, is used for the detection of voids in composite materials. To enhanc 
the contrast at defects/that emerge at the external surface, the defects may b 
filled with radiopaque material such as barium salt. This technique, calle 
penetrant-enhanced radiography, provides contrast between the composit 
and a heavy metal rather than that between the composite and air. 

ASTM Standard E 94-04 provides guidelines for general radiographic e) 

arnination. 

10.4.4 Thermography 

Thermography is an inspection technique that makes use of one of the fo 
lowing facts: (1) The thermal conductivity of a material at a flaw location • 

Table 10-2 Thickness of material at which x-ray intensities are reduced to half the 
inci~ent intensity 

X112 (cm) 

Material l=O.lA.' I= 0.7 A. I= 2.0 

Air 410 26 
Polymer (cellophane) 4.3 0.4 0.05 
Carbon 2.l 
Aluminum 1.6 0.05 0.002'. 
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different from that at a location without a flaw, and (2) heat is generated at 
flaws under cyclic loading. These two material characteristics influence ther
mal patterns on the inspection surface when the material is heated either by 
an external source (active heating) or by the internal heat generation at the 
flaws during cyclic loading (passive heating) [68,69]. 

A few different approaches to thermographic inspection using active heat
ing are possible. In one approach, the component is suddenly heated by flash 
lamps that pulse for few milliseconds to provide heat to the surface. High
voltage tungsten-halide lamps are used frequently that raise the surface tem
perature by 10-30°F. The temperature of the heated surface is monitored using 
an infrared imaging system. Since a defect beneath the surface does not con
duct as much heat as the bulk material does, the surface directly above it will 
remain warmer than the surroundings. A typical inspection arrangement is 
shown schematically in Fig. 10-42. This method may be called a pulse-echo 
thermographic inspection. In another approach, the temperature on the other 
side of the heated surface is monitored (through-transmission thermographic 
inspection). Cooler regions in an otherwise essentially homqgeneous temper
ature field indicate defects underneath the surface. Yet another possibility is 
to heat the entire component to a homogeneous temperature in an oven and 
then monitor its heat loss on cooling; a relatively warmer region indicates a 
subsurface defect. 

Heat source 

(:'-\:::: 
.,,:,,\/_<:·,, 

' ' ' ' ' ' ', ', 
'· 

Infrared camera / 
/// .,,, 

/ /,:,. ........ -
~ ................ __ --
·=---~est specimen 

D 
= 

, Data acqu\sition 

Figure 10-42. A typical therrnography inspection arrangement. 
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With passive heating, the component is subjected to cyclic loads that makt 
the walls of flaws within the component rub against each other to generatt 
heat through friction. Although technically possible, passive heating is no 
common except for monitoring damage propagation in fatigue tests. 

In comparison with ultrasonic and radiographic inspection, thermographic 
inspection provides poor resolution [70]. However, it is a relatively fast anc 
noncontact inspection technique that has a wide coverage area. It can be usec 
to detect delaminations, impact damage, water ingression into a honeycomb 
inclusions, and density variations [71]. 

10.4.5 Laser Shearography 

Shearography is essentially an optical method of surface-strain measurement 
The subsurface defects are detected by the presence of concentrations of sur 
face strain owing to an applied stress or stresses. This method may be ex 
plained as follows: When an object is illuminated by a laser beam, it produce1 
a characteristic granular appearance on the object surface, usually referred t< 
as the speckle effect. This speckle pattern changes when the object is stressed 
The changes in the speckle pattern from the unstressed state to the stressec 
state of the object are used to determine the change in displacement gradient1 
or the strains. In the application of a shearographic inspection technique, 1 

reference image of the unstressed object is obtained first using a shearographi< 
video laser interferometer and stored electronically. A typical system config 
uration is shown schematically in Fig. 10~43. A uniform stress then is appliec 
to the object by means of vacuum, pressure, vibration, sound, or heat. AI 
image of the object under stress is obtained and compared with the referenct 
image. When the two images are overlapped, the composite image yields 1 

fringe pattern that depicts loci of displacement gradients. A typical shearo 
graphic fringe pattern of a strain concentration appears as a double bulls-eyl 
or butterfly pattern, as shown in Fig. 10-44. The outer periphery of the fring1 
pattern provides the size, shape, and location of a subsurface defect, wherea: 
the number of fringes provides information concerning the depth and type o 
defect [72]. 

Laser shearography is a very sensitive, rapid, full-field inspection tech 
nique. A shearography camera imaging 700 square inches can detect surfacl 
deformations of 2 x 10-5 in. per fringe (half a wavelength of laser light) o 
40 microstrains (i.e., 10-6 in.fin.). It provides video images of flaws in nea 
real time. It has been found to be particularly suited to detection of delami 
nation flaws in composites [73-76]. 

10.5 GENERAL REMARKS ON CHARACTERIZATION 

The present discussion of experimental characterization of composites ha 
only a limited objective of familiarizing readers with the most common typ 
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Figure 10-43. A typical laser shearography system configuration. 

of tests that are performed on composite materials. The tests described herein 
are only static tests conducted to evaluate static properties. The discussion on 
static tests is also by no means complete. There are many static tests that are 
performed to evaluate properties needed in design under certain circumstances 
but have not been discussed here; for instance, tests often are performed to 
evaluate properties in the thickness direction. Moreover, the discussion is 
more qualitative in nature, and specific details of specimen size and shape, 
instrumentation and data recording, and data analysis have not been given. 

Figure 10-44. Typical "butterfly" fringe patterns of a.strain concentration obtained by shear
ography (Courtesy of Laser Technology, Inc.) 
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This is partly because widely acceptable test standards have not yet bee1 
evolved. Composite materials are relatively new and more complex compare1 
with homogeneous and isotropic metallic materials. Their characterizatio1 
poses many problems that are not present with isotropic materials. Experienci 
with these materials also is limited. The American Society for Testing am 
Materials (ASTM) organizes many conferences that are devoted solely to th, 
subject of testing and design of composite materials. The special technica 
publications (STP) [6-20] based on the proceedings of the conferences ari 
very helpful in understanding various tests, test variables, and their influenci 
on the material properties. It is suggested that any particular test proceduri 
for characterization of composites ,should be selected only after a carefu 
review of the literature on the test procedure under consideration. 

EXERCISE PROBLEMS 

10.1. Show how you think a dog-bone, pin-ended specimen of a unidirec 
tional composite would fail in a tension test. 

10.2. Assume that straight-sided off-axis specimens (12.5 mm x 4 mm) o 
the composite considered in Exercise Problem 5.14 are tested in uni 
axial tension with ends clamped. An axial force of 500 N produces 
strain 0.0926% near the clamped end in a 30° specimen, 0.105% in 
45° specimen, and 0.150% in a 60° specimen. Calculate the apparen 
off-axis elastic modulus in each case. Compare your results with th 
corresponding moduli values obtained by transformation in Exercis 
Problem 5.13. Explain discrepancies, if any. 

10.3. Derive Eq. (10.15). 

10.4. The variables Ex and ~,y are the elastic modulus and Poisson ratio o 
a [ ± 45]5 laminate obtained in a tension test. Show that the shea 
modulus GLT of the constituent laminae is given by Eq. (10.18). 

10.5. The values of Ex and vx, of a boron-epoxy [ ± 45]5 laminate, measure 
in a tension test, are 20.98 GPa and 0.69, respectively. The two prof 
erties of a [45]n laminate of the same material are 15.87 GPa and 0.2f 
respectively. Calculate the shear modulus GLT of the constituent larr. 
inae in both the cases. Comment on the differences in values of 1 
and vxy in the two cases. 

10.6. Derive an expression for failure load in terms of in-plane she, 
strength and specimen dimensions for a rail shear test. 

10.7. Discuss why flexural strength determined from a four-point bend te1 
is always less than that determined from a three-point bend test. 

10.8. A three-point bend test is conducted on a beam of unidirectiorn 
graphite-epoxy composite. The beam is 100 mm long, 12.5, mm wid1 
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and 3 mm thick and deflects 5.1 mm for a load of 1 kN. Calculate 
the longitudinal modulus of the composite. 

10.9. Derive Eq. (10.25) by assuming that the load remains constant during 
crack extension. 

10.10. Derive an expression for span-depth ratio in terms of tensile and in
terlaminar shear strengths to ensure that a short-beam shear specimen 
will fail as a result of interlaminar shear. From properties of glass and 
graphite composites shown in Chap. 3, choose appropriate span-depth 
ratios. 

10.11. Derive an expression for the maximum distance between two notches 
(for a notched tension test) in terms of plate thickness and its tensile 
and interlaminar shear strengths to ensure that the specimen will fail 
as a result of interlaminar shear. 

10.12. Derive Eq. (10.40). 

10.13. In an impact testing system, an instrumented tup weighing 2 kg freely 
drops through a height of 3 m before making contact with the speci
men. An energy signal proportional to the product of impulse and 
initial impact velocity is recorded continuously on a storage oscillo
scope during the impact. In a certain test, values of this signal at the 
peak contact load between the tup and the specimen and at fracture 
of specimen were recorded to be 6.38 and 7.91 N · m, respectively. 
Calculate initiation energy, propagation energy, and total impact en
ergy for the specimen. 

10.14. In the impact testing system described in Exercise Problem 10.13, a 
smaller tup weighing 0.25 kg is used without altering the drop height. 
If the values of the recorded energy signal at peak load and at fracture 
are 6.38 and 7.91 N · m, respectively, calculate initiation energy, prop
agation energy and total impact energy for the specimen. 

10.15. In a drop-weight impact experiment on a fiber composite beam, the 
drop weight passes completely through the beam, and the ratio of final 
impacter velocity to initial velocity is 0.8. What error is involved in 
using the value Ea rather than E to describe the energy-absorbing ca
pability of the beam. 
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EMERGING 
COMPOSITE MATERIALS 

11.1 NANOCOMPOSITES 

Nanocmnposites are materials filled with nano-sized particles, that is, particles 
with at least one dimension in the nanometer scale (a nanometer is 10-9 m, 
or a billionth of a meter). There are two types of nanoparticles that are used 
most often for this purpose, platelets and nanotubes, although spherical par
ticles are also being considered. The platelets are obtained from a layered
silicate clay, an inexpensive natural silicate mineral. The individual sheets in 
the silicates generally are stacked together and are not compatible with the 
organic-matrix polymers. Therefore, the layered silicates are modified by an 
ion-exchange reaction to make them compatible with the polymer matrix. 
When this modified clay is placed in a polymer matrix, polymer fills the 
spaces between the individual sheets or the platelets. This increases the dis
tance between the platelets and causes the clay to swell. Further swelling 
causes the platelets to· be exfoliated and dispersed throughout the polymer. 
The platelets thus obtained are ultrathin with a specific surface area (ratio of 
the surface area to volume) much larger than the conventionally sized rein
forcement (a typical platelet may be 1 nm thick and 70-150 nm across). One 
of the most commonly used clays in the nanocomposites is.montmorillonite. 

The large surface area of the platelets and their high strength impart en
hanced properties to the nanocomposites. Their dispersion in the polymer 
matrix and the interfacial bonding between the individual sheets and the poly
mer matrix facilitate stress transfer to improve mechanical properties. The 
platelets' dispersion hinders diffusion pathways and makes nanocomposites 
exhibit lower permeability to moisture, gases, and hydrocarbons. The plate
lets' constraining effects cause improvements in thermal stability and flame 
retardancy. 
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Carbon nanotubes, discovered in 1991, can be visualized as a sheet of 
graphite (i.e., a single layer of hexagonally arranged carbon atoms) rolled into 
a cylindrical tube and welded together. They derive stiffness and strength from 
the C-C bond. Nanotubes exist as either single-walled or multiwalled struc
tures. The multiwalled carbon nanotubes (MWCNTs) are simply composed 
of concentric single-walled carbon nanotubes (SWCNTs). 

Primary synthesis methods for single and multiwalled carbon nanotubes 
include arc-discharging, laser ablation, and gas-phase catalytic growth from 
carbon monoxide and chemical vapor deposition (CVD) from hydrocarbons. 
For their application in composites, large quantities of nanotubes are required. 
The gas-phase processes tend to produce nanotubes with fewer impurities and 
more amenable to large-scale processing. Thus gas-phase techniques, such as 
CVD, offer the greatest potential for the scaling up of nanotube production 
for the manufacturing of nanocomposites. 

Selected properties of SWCNTs are given in Table 11-1. The modulus of 
nanotubes is reported to be extremely high, greater than l 000 GPa. Tensile 
strength is predicted. to reach higher than the reported value. In addition to 
their exceptional modulus and strength. the carbon nanotubes possess superior 
thermal and electrical properties: thermally stable up to 2800°C in vacuum, 
thermal conductivity about twice as high as diamond, and electric-current
carrying capacity about 1000 times higher than copper wires. 

Nanocomposites formed of polymer reinforced with exfoliated clays and 
carbon nanotubes are considered for applications such as interior and exterior 
automotive accessories, structural components for electronic portable devices, 
and film for food packaging. An attractive feature for nanocomposites is that 
they provide improvement in a variety of properties with only a small amount 
of reinforcement. Typical loadings in nanocomposites are in the range of I
I 0% by weight. 

Nanocoinposites are still a nascent technology. Some of the critical issues 
hindering realization of _their full potential include dispersion and alienment 
of nanotubes and clay platelets and bonding at the particle-matrix interface. 
Owing to the nano size of the reinforcement, some of the micromechanics 
analysis models may not be valid. Therefore, much work remains to be done 
in developing and validating theoretical models with experimental data. Some 
recent publications are listed at the end of this chapter. 

Table 11-1 Properties of single-walled carbon 
nanotubes 

Property 

Young's modulus 
Tensile strength 
Electrical resistivity 
Thermal conductivity 

Value 

-1000 GPa 
30 GPa 

10-4 fl-cm 
-2000 W/mK 
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The development of nanostructural materials creates tremendous opportu
nities for the design of multifunctional material systems. Composite matrix 
resins can be modified with nanoparticles to optimize properties of interest. 
The modified resin acts as the matrix material for advanced composites. Thus 
nanocomposites can be used in conjunction with conventional fillers, such as 
glass fibers and talc, to achieve customized property sets. A nanocomposite 
with 6% nanoclay by weight that also contains 10-12% glass fibers can have 
a property set similar to that of a 30% straight glass-filled composite material 
but at a lower specific gravity and part weight. 

The nanocomposites appear positioned to compete with a wide range of 
materials, including filled and reinforced compounds, flame-retardant com
pounds, and barrier materials. Packaging, primarily for beer, carbonated bev
erages, food, and condiments, is expected to be a major growth market for 
nanoclay compounds, which can improve moisture-barrier and odor-barrier 
characteristics, whereas carbon nanotubes can increase strength and electro
static dissipation. Growth is also expected from increased demand for con
ductive compounds and miniaturization of electronic components. 

11.2 CARBON-CARBON COMPOSITES 

Carbon-carbon composites are ultra-high-temperature composites that use 
carbon fibers in a carbon matrix. They are especially valued for high-abrasion 
and high-temperature environments, such as heat shields, aircraft brakes, and 
engine turbines. Their primary advantage lies in their ability to withstand high 
temperatures ( s3300°C). Actually, their strength increases with temperatures 
up to about 2050°C and begins to decline above 2200°C, but they still can 
serve as a heat shield. They have extremely low creep at high temperatures, 
several orders of magnitude less than ceramics. In high-temperature applica
tions, they do not require external cooling liquids. They resist thermal· shock 
without cracking or distorting. They can withstand temperature cycling from 
subzero temperatures to 1500°C. 

Carbon-:-carbon composites are lightweight, only half the density of alu
minum. They tend to have low shear strength but good tensile and compres
sive strengths. They are self-lubricating and resist abrasion, wear, and fatigue. 
They can be machined, drilled, or sawed. They are less' sensitive to flaws or 
impact than ceramics. 

Carbon-carbon composites are commonly produced by two methods: liq
uid impregnation and chemical-vapor deposition (CVD). In liquid impreg
nation, phenolic resin is infiltrated into carbon fibers and then pyrolyzed. 
Phenolic resin is chosen because it has a high-carbon yield. In CVD, the 
matrix is built up layer by layer. With both liquid impregnation and CVD, 
liquid or vapor must be added several times to fill in the pores, each time 
pyrolyzing to increase density. 
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CVD tends to produce a porous structure because carbon that deposits on 
the surface of the skeleton preform tends to seal off the interior. Liquid im
pregnation costs less and is better suited for thicker parts than CVD. However, 
in liquid impregnation, the liquid shrinks when it is carbonized, resulting in 
residual stresses. In CVD, these stresses are smaller, leading to higher str~ngth 
and modulus; CVD, on the other hand, produces a highly anisotropic matrix. 
At present, manufacturing carbon-carbon composites is an extremely time
consuming process, requiring slow pyrolyzing to drive off gases without 
cracking the matrix. 

Unprotected carbon-carbon ·composites will react with oxygen, burning 
rapidly at temperatures around 450°C. Therefore, a carbon-carbon composite 
is coated with ceramics to protect it from oxidizing. The coatings include 
SiC, silicides, boron carbide, boron nitrate, phosphates, and alumina. 

Carbon-carbon composites are fabricated from both two-dimensional lam
inates and three-dimensional fiber preforms. The latter are important because 
the carbon matrix is inherently brittle, and a three-dimensional preform adds 
toughness. Carbon-carbon composites have been used in rocket nozzles and 
nos,e cones, brakes, wear guides, and many other industrial and high-speed 
applications. 

11.3 BIOCOMPOSITES 

A product that is derived from renewable resources, stable in its intended 
lifetime, but would biodegrade after disposal in composting conditions gen
erally is considered to be a biobased product or simply a bioproduct. Thus 
biocomposites consist of biofibers and biomatrix and are expected to be bio
degradable. There are very few composites that are truly biodegradable and 
can be used in engineering applications. However, composites containing bio
fibers are being used in many engineering applications. Important aspects of 
biofibers and bioresins are discussed in this section. 

11.3.1 Biofibers 

In recent years, there has been mounting interest in the use of natural fibers 
from renewable sources for the reinforcement of plastics. Such fibers have 
their origin in plants. The advantages of these fibers over the manmade fibers 
such as glass and carbon are low cost, low density, acceptable specific strength 
properties, high toughness, good thermal properties, reduced dermal and res
piratory irritation, low energy content, and biodegradability. Plant-fiber com
posites are finding use in building products, infrastructure, transportation, 
industrial, and consumer applications. 

Biofibers may be classified in two broad categories: wood fibers and non
wood fibers. Wood fibers and wood-fiber composites will be discussed in a 
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separate section later. Important nonwood fibers are kenaf, flax, jute, hemi 
coir and sisal. Straw and grass fibers are also attracting attention as reinforcin. 
fibers. 

It is well known that the tensile strength of plant fibers is lower than th 
tensile strength of E-glass fibers. However, the specific strength of some c 
the natural fibers is more comparable with that of glass fibers because th 
density of E-glass is much higher than the density of most of the natun 
fibers. Strength, modulus, and density of common plant fibers are given i 
Table 11-2 along with the properties of E-glass fibers for comparison. 

The disadvantages of plant fibers are their water reactivity, finite lengt 
and large diameter, and variability. Plant fibers strongly attract water, and th 
resulting sorption adversely affects their performance in a composite. Thi 
problem can be overcome either by encapsulating water-reactive fibers in 
water-resistant matrix to keep water out or by reducing water reactivity c 
fibers by chemical modification. However, both methods have their advar 
tages and disadvantages with respect to cost, performance, and reliability. Th 
plant fibers are small in length and large in diameter, which makes ther 
inefficient as reinforcing material. Short fibers (2-5 mm long) are difficult t 
align, which is essential to maximize strength of a product. Plant fibers var 
widely in chemical composition, structure, and dimensions, and original 
from different parts of the plant. Therefore, properties of plant fibers var 
considerably. This makes it difficult to produce parts with consistent strengtl 
The traditional approach to variability in properties is to overdesign and allo' 
for a worst-case scenario. This results in considerable inefficiency. Howeve 
this has proved viable commercially with a number of existing plant-fibe 
reinforced products. 

Plant fibers possess excellent sound absorption efficiency, are more shattc 
resistant, and have better energy-management characteristics than glass fibeJ 
in their respective composite structures. These characteristics make them sui 
able for automotive parts. Because biofibers are derived from renewable re 
sources, material cost can be reduced markedly with their large scale us 

Table 11-2 Properties of various natural fiber reinforcements 

Tensile Specific Tensile Specifi 
Density Strength Tensile Modulus Tensil 

p O"u Strength E Moduli 
Fiber (g/cm3) (MPa) aJ p (GPa) Eip 

Flax 1.5 1100 733 27 18 
Kenaf 1.5 900 600 22 15 
Hemp 1.5 700 467 22 15 
Sisal 1.45 600 414 18 12 
Jute 1.5 500 333 23 15 
Coir 1.2 150 125 5 4 
E-glass 2.54 3500 1378 72.4 28.5 
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The ecofriendly nature of these fibers is also an important driving force for 
their development. 

11.3.2 Wood-Plastic Composites (WPCs} 

The term wood-plastic composite refers to any composite that contains wood 
(in any form) and a plastic matrix. Because of the limited thermal stability 
of wood, only thermoplastics that melt or can be processed at temperatures 
below 200°C are used in WPCs. Currently, most WPCs are made with poly
ethylene, both recycled and virgin, for use .in exterior building components. 
WPCs made with polypropylene typically are used in automotive applications 
and consumer products. Wood-polyvinyl chloride (PVC) composites typically 
used in window manufacturing are now being used in decking as well. 

Wood flour and very short fibers, rather than long individual wood fibers, 
are used most often in WPCs. Products typically contain approximately 50% 
wood. The relatively high bulk density and free-flowing nature of wood flour 
compared with wood fibers or other longer natural fibers, low cost, and avail
ability are attractive features for its use in WPCs. Common wood species 
used include pine, maple, and oak. Typical particle sizes are 10-80 mesh. 
Additives such as coupling agents, ultraviolet (UV) stabilizers, pigments, lu
bricants, fungicides, and foaming agents are used frequently to improve proc
essing and performance. 

The majority of WPCs are manufactured by profile extrusion, in which 
molten composite material is forced through a die to make a continuous pro
file of the desired shape. Extrusion lends itself to processing the high viscosity 
of the molten WPC blends and to shaping the long, continuous profiles com
mon to building materials. Preblended, free-flowing pellets of wood and other 
natural fibers mixed with thermoplastics are now available commercially for 
manufacturing WPCs. Other processing technologies such as injection mold
ing are also used to produce WPCs, but to a much lesser extent than extrusion. 

Wood flour is frequently added to thermoplastics to reduce cost. It also 
reduces shrinkage and improves part stiffness but often makes it more brittle. 
Most commercial WPC products are considerably less stiff than solid wood. 
Adding wood fibers rather than flour increases mechanical properties such as 
strength, elongation, and impact energy. There is a significant variability in 
the properties of WPCs reported in the literature, probably owing to differ
ences in the constituent properties. Therefore, properties should be determined 
experimentally to assess suitability of a WPC for a specific application. 

The greatest growth potential for WPCs is in building products that have 
limited structural requirements, such as decklng, feqcing, industrial flooring, 
landscape timbers, railings, and moldings. Although WPC decking is more 
expensive than pressure-treated wood, WPC decking requires lower mainte
nance, does not crack or splinter, and has higher durability. However, creep 
resistance, stiffness, and strength are lower than those of solid wood. Wood 
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fibers, wood flour, and rice hulls are the most common organic fillers used 
in decking. 

Window and door profiles represent another important area of WPC ap
plication. PVC is used most often as the thermoplastic matrix in these appli
cations because of its balance of thermal stability, moisture resistance, and 
stiffness. Sometimes wood-filled PVC is coextruded with an unfilled outside 
layer for increased durability. Another variation in this type of product hm 
wood-filled PVC and a composite with a foamed interior for easy nailing and 
screwing. 

Research and development efforts are being directed toward new applica
tions of WPCs. Some of these include roof shingles, roofing timber, wall 
studs, and waterfront applications. There is a strong movement in research 
toward more highly engineered WPCs with greater structural performance and 
more efficient design. 

11.3.3 Biopolymers 

Biopolymers or biodegradable polymers may be suitable as a matrix material 
for composite applications. Biopolymers may be obtained from renewable 
resources, synthesized microbially, or synthesized from petroleum-based 
chemicals. Biopolyester (polylactides and microbial polyesters), cellulosic 
plastics, soy-based plastics, and starch plastics are promising biopolymen 
obtained from renewable resources. Chemical structures of some biopolyes
ters are given in Fig. 11-1. Poly lactic acid (PLA) is a versatile biopolyme1 
derived from corn. Biocomposites from natural fibers and PLA are attracting 
interest. The bacterial polyester PHAs (polybeta-hydroxy alkanoate) are pro
duced from sugar by fermentation process. They are naturally produced b) 
transgenic plants from CO2 and sunlight. The copolymer of PHA, that is, poly-

Poly (alpha-hydroxy acid) 

Poly (beta-hydroxy acid) 

R = H, Poly(glycolic acid), PGA 
R = CH3, Poly(lactic acid), PLA 

R = CH3, Poly(beta-hydroxy butyrate), 
PHB 

R = CH3,C2H5, poly(beta-hydroxy 
butyrate-covalerate ), PHBV 

Figure 11-1. Structure of some important biopolyesters. 
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,8-hydroxy butyrate-CO-valerate (PHBV) is used successfully as matrix ma
terial in jute-fiber-based biocomposites. 

Nonfood applications of soybeans are being investigated at various U.S. 
universities. Soybeans typically contain about 20% oil and 40% protein. Both 
protein and oil from soybeans can be converted to biodegradable plastics 
usable in composites. Resin suitable for natural-fiber composites is produced 
by functionalization of soy oil. Epoxidized soybean oil (ESO) is used as a 
plasticizer or stabilizer for PVC. It also can be used as a reactive modifier, 
diluent, and toughener of the epoxy-resin system. Direct structural applica
tions of ESO are limited owing to its low cross-linking density and mechan
ical properties. 

11.4 COMPOSITES IN "SMART" STRUCTURES 

A "smart" structure ideally is one that is capable of sensing changes occur
ring to the structure due to its environment, analyzing this ·information, de
ciding on the actions necessary to optimize its performance, and then 
commanding the appropriate devices to initiate those actions. Thus a smart 
structure involves .gistributed sensors and actuators and one or more micro
processors that analyze the responses from the sensors and use control theory 
to command the actuators to act. The smart structures, often called intelligent 
structures, are modeled on biological systems with 

• Sensors acting as a nervous system 
• Actuators acting like muscles 
• Microprocessors acting as a brain to control the system 

The sensors in a smart structure can pick up changes to the external en
vironment (such as loads or shape change), as well as a changing internal 
environment (such as damage or failure). Tue actuators may bring about the 
alterations of system characteristics (such as stiffness or damping), as well as 
of system response (such as strain or shape), in a controlled manner. The 
actuating, sensing, and sign~-processing elements are incorporated into a 
structure for the purpose of influencing its states or characteristics, be they 
mechanical, thermal, optical, chemical, electrical, or magnetic. Many types 
of actuators and sensors are being considered, such as piezoelectric materials, 
shape-memory alloys, electrostrictive materials, magnetostrictive materials, 
electrorheologic fluids, and fiberoptics. These can be integrated with the main 
load-carrying !ltructure by surface .bonding or embedding without causing any 
significant changes in mass or structural stiffness of the system. 

To date, intelligent structures have not been built, but their feasibility is 
accepted. Laminated and composite materials provide an important advance
ment, helping the realization of intelligent structures. In the past, structures 
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were manufactured from large pieces of monolithic materials, which were 
machined, forged, or formed to a final structural shape. It is difficult to in
corporate active elements such as sensors and actuators into metallic com
ponents and structures. However, modern composite materials are built up 
from constitutive elements and allow for incorporation of active element~ 
within the structural form. One can envision the incorporation of an intelligen1 
ply in a laminate carrying actuators, sensors, processors, and interconnectiom 
within the laminated composite. The developments in microelectronics, bm 
architectures, switching circuitry, and fiberoptics are other important techno
logical advancements leading to intelligent structures. Development in the 
fields of information processing, artificial intelligence, and control disciplinei 
also are central to the emergence of intelligent structures. 

Much of the work relating to smart structures and materials is still at the 
research stage, with the aim of demonstrating the concepts and providing the 
feasibility of workable schemes in ·real structures. The advanced compos
ite materials are an obvious choice to host smart materials technologies 
Polymeric-matrix-based composites, with carbon, glass, and Kevlar fibers m 
the reinforcement, present the most benign host materials. Reinforced metals 
ceramics, and carbon are much more difficult systems to incorporate smar 
concepts in view of the high temperatures involved both in processing and ir 
operation. The first use of embedded sensors may be in process monitorini 
and control of the fabrication stage. This is particularly important in thid 
laminates based on thermosetting resin matrices, where exothermic reactiom 
can cause high temperatures in the center of the laminate, producing non 
uniform cure through the thickness and high thermal stresses that can lead tc 
cracking. 

Potential applications of smart structures include actively controlling vi 
bration, noise, damping, aeroelastic stability, shape, and stress distribution 
Applications range from space systems, fixed-wing and rotary-wing aircraft 
'automotive, civil structures, and machine tools. However, there are majo 
barriers to be overcome before this technology can be fully realized. 
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APPENDIX 1 

MATRICES AND TENSORS 

MATRIX DEFINITIONS 

A rectangular array of numbers of the form 

is called a matrix. The numbers a11 • • • amn are called the elements of the 
matrix. The horizontal lines are called rows or row vectors, and the vertical 
lines are called columns or column vectors of the matrix. A matrix with m 
rows and n columns is called an (m X n) matrix (read "m by n matrix"). 

Matrices are denoted by capital letters A, B, and so on or by (a;), (b;), and 
so forth, that is, by writing the general element of the matrix. 

In the double-subscript notation for the elements, the first subscript always 
denotes the row and the second subscript the column containing the given 
element. 

Example Al-1: Let 

A=[: 
15 

7 3 
11 6 
9 21 

1~] 
where A is a (3 x 4) matrix. The element a23 refers to 6 or, similarly, a 31 

refers to 15. 
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A matrix 

having only one row is called a row matrix or row vector. A matrix 

fr} 
having one column is called a column matrix or column vector. 

The transpose of an (m x n) matrix A = (a;) is defined as the (n x m) 
matrix formed by interchanging rows and columns and is denoted by AT. 
Thus the transpose of a row matrix is a column matrix and vice versa. 

Example Al-2: If 

A= [ ~ -~ ; J 
then 

Example Al-3: If 

b = (2 5 -7) 

then 

A matrix having the same number of rows and columns is called a 
square matrix, and the number of rows is called its order. Thus 

is a square matrix of order 3. 
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The principal or main diagonal of a square matrix goes from the upper 
left- to the lower right-hand corner of the matrix. Thus the principal di
agonal contains the elements a11 , aw ... , ann· 

A square matrix A = (aij), whose elements other than those in the prin
cipal diagonal are all zero; that is, aij = 0, for all i i= j, is called a diagonal 
matrix. For example, 

and 

are diagonal matrices. 
A diagonal matrix whose elements in the principal diagonal are all 1 is 

called a unit matrix or identity matrix and is denoted by I. For example, 
the three-rowed unit matrix is 

0 OJ 1 0 
0 1 

A square matrix A 
transpose: 

(a) is said to be symmetric if it is equal to its 

this is, aF = aij for all values of i and j. 
A square matrix A = (a;) is said to be antisymmetric or skew-symmetric 

if 

that is, ai; = -a;i for all values of i. and j. 
Note that for i = j, au = -a;;, which implies that the elements in the 

principal diagonal of a skew-symmetric matrix are all zero. 

Example Al-4: The matrices 

and 

are symmetric matrices. 
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Example Al-5: The matrices 

and 

are skew-symmetric matrices. 
Two (m x n) matrices A = (a;) and B = (b;) are said to be equal if, 

and only if, corresponding elements are equal, that is, 

for all values ofi and j. Then the following can be written: 

A=B 

Note that this definition of equality refers to matrices that have the same 
number of rows and the same number of columns. 

Example Al-6: The simple algebraic equations 

a=p+I 

b=q+6 

C = r - 3 

d=s+6 

may be given in the matrix form as 

[
a b] = [P + I 
C d r - 3 

q + 6] 
s + 6 

A determinant of order n is a square array of n2 quantities enclosed 
between two vertical bars 

a11 a12 aln 
a21 a22 a2n 

D= 

an! anz ann 

which has a definite value, as defined in the paragraphs that follow. 
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By deleting the ith row and the jth column from the determinant D, an 
(n - 1 )th-order determinant is obtained, which is called the minor of the 
element aij (which belongs to the deleted row and column) and is denoted 
by Mij. 

The minor Mij multiplied by ( - l)i+j is called the cofactor of aij and is 
denoted by Aij; thus 

A .. = (- l)i+jM .. 
IJ IJ 

A determinant D represents the sum of the products of the elements of 
any row or column and their respective cofactors. Thus the determinant D 
of order n (as defined earlier) means 

(i = I, 2, ... , or n) 

or 

(j = 1, 2, ... , or n) 

Example Al-7: Let a second-order determinant be 

Cofactors and minors of the determinant are 

The value of D may be calculated by its development by any row or 
column, for example, by the first row: 

Or by the first column: 
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Example Al-8: In the third-order determinant 

1 2 -1 
D = 3 6 0 

0 4 2 

the cofactors of the elements of the first row are 

A11 = M11 = 11 ~, = 12 

A12 = - M12 = - I~ ~ I = -6 

A 13 = M13 = ,~ 11 = 12 

Thus the value of the determinant is 

D = l X 12 + 2 X (-6) - l X 12 = -12 

MATRIX OPERATIONS 

Addition and subtraction of matrices are defined only for matrices having th~ 
same number of rows and the same number of columns. The sum of twc 
(m X n) matrices A = (a;) and B = (bi) is defined as the (m X n) matrb 
C = (cij) whose elements are 

i = 1, 2, ... , n 

j = 1, 2, ... , n 

and 

C=A+B 

can be written. Similarly, the matrix 

D = A - B = (aij - b;) 

is called the difference of A and B. 
A square matrix A may be written as the sum of a symmetric matrix } 

and a skew-symmetric matrix S, where 



R = -t(A + AT) and 

Example Al-9: Algebraic equations 

are equivalent to 

a=p+l 

b=q+6 

c=r+3 

d=s+S 
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[: !] = [~ ;] + [1 ~] 
Example Al-10: Let a square matrix be 

[

-3 

A= ~ -~ -!] 
The transpose of A is 

[-3 5 4] 
AT= -3 0 3 

6 -7 4 

The matrix A may be written in the form A = R + S, where 

R = ! 5 0 -7 + -3 0 3 = 1 0 -2 ([ -3 -3 6] [-3 5 4]) [-3 1 5] 
2 4 3 4 6 -7 4 5 -2 4 

The product of a matrix A = (a;) by a number of c is defined as the 
matrix (ca;) and is denoted by cA or Ac; thus 
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Ca21 
cA =Ac= ··· 

[

ca11 

... 
ca,,,1 ca1112 

··· calnl • •• ca2n 
... . 
... . 
... canm 

Let A = (a;) be an (m X n) matrix and let B = (b;) be an (r x p: 
matrix; then the product AB (in this order) is defined only when r = n anc 
is the (m x p) matrix C = Ccu) whose elements are 

N 

cij = a;1b1j + ai2b2j + · · · + a;nbnj = I a;kbkj 
k=l 

The process of matrix multiplication is illustrated by the following ex
ample: 

Example Al-11: Let 

A-[~ f fl and B=[; ~] 
-1 6 

Then the product AB is 

AB-[~ ; 1] [ ; ~] = [r ;~J 
1 2 -1 6 6 16 

Example Al-12: 

Example Al-13: 

(2 4 

[ 
6 12 3] 

I) = 10 20 5 
18 36 9 

Matrix multiplication is associative and distributive; that is, 

* l X 3 + 5 X 2 + 6(-1) = 7. 
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(AB)C = A(BC) = ABC 

(A + B)C = AC + BC 

C(A + B) = CA + CB 

provided A, B, and C are such that the expressions on the left are defined. 
Matrix multiplication is not commutative; that is, if A ad B are matrices 

such that both AB and BA are defined, then 

AB -=I= BA in general 

Example Al-14: 

but 

Thus the order of matrices in a matrix multiplication is very important. 
To be precise, it is stated that in the product AB the matrix B is premul
tiplied by the matrix A or, alternatively, that A is postmultiplied by B. 

An important property of matrix multiplication relates to the transpose 
of the matrices. The transpose of a product equals the product of the trans
posed matrices taken in reverse order; thus 

The inverse of a square matrix A of order n is defined as another matrix 
of order n that, when premultiplied or postmultiplied by the matrix A, 
results in an identity matrix. The inverse of the matrix A is denoted by 
A- 1• Thus 

A squre matrix A has an inverse if and only if the determinant (det) A 
=I= 0. The inverse of such a matrix A = (a;) may be obtained in the fol
lowing manner: 

1. Replace each element aii by its cofactor Aii in det A. 

2. Divide each element of this cofactor matrix by det A. 
3. Transpose of the result is the inverse matrix A-1

• 
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Example Al-15: If 

Example Al-16: Inverse of a diagonal matrix 

is simply 

Example Al-17: 

Example Al-18: 

0 
a22 ... 

... 
0 ... 

1 
0 

a11 1 
0 

a22 
A-I= 

0 0 

A=[-! 
-11 

<let A= 10 

A- 1 = [-~:6 
-0.8 

3 
-4 

6 

-1.5 
0.5 

-1.5 

n 
0 

1 

-!] 
13 

-g.s] 
-0.6 

A = [c?s e -sin e] 
sm e cos e 

<let A = cos2 e + sin2 e = 1 

A_ 1 = [ co_s e sin e J 
-sm e cos e 
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Example Al-19: 

[

cos e -sin e 
0
o
1

J 
A = sine cos e 

0 0 

A-· -[ ~;r6 ~; ~ n 
Example Al-20: 

HJ 
HJ 

Note that the inverse matrices in Examples Al-18-Al-20 satisfy the 
relationship 

A matrix that satisfies this relationship is called an orthogonal matrix. 

Example Al-21: 

[ 

COS2 0 
A= sin2 e 

-sine cos e 
detA = 1 

[ 

cos2 e 
A-1 = sin2 e 

sine cos e 

sin2 0 
cos2 e 

sin e cos e 

sin2 e 
cos2 0 

-sine cos e 

2 sine cos e J 
-2 sine cos e 
cos2 e - sin2 e 

-2 sin e cos eJ 
2 sine cos e 

cos2 0 - sin2 0 

The matrix A in this example is a very useful matrix. It is known as the 
trans! ormation matrix. Its application is illustrated later while di:scussing 
the tensor transformations and the transformation of stresses and strains. 
It may· be noted that the inverse of the transformation matrix is obtained 
by replacing e by - e in the transformation matrix. 

Matrix operations discussed in this appendix are almost always required in 
the laminate analysis calculations, as illustrated in Chap. 6. Accurate and 
efficient calculations required for the matrix operations have a direct,influence 
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on the accuracy and efficiency of laminate analysis. The matrix operations 
were illustrated in this section using simple examples. The operation could 
be completed easily by hand calculations because the matrices involved are 
of lower order. When higher-order matrices are involved, the calculations 
become tedious and time-consuming. Such calculations should be carried out 
with the help of computers for accurate results. Software programs for general 
calculations, such as MATLAB and Mathcad, are available commercially as 
mathematical tools that facilitate matrix operations and many other calcula
tions. It is recommended that the calculations such as matrix inversions and 
multiplications be carried out using these tools. Their use improves accuracy 
of results and minimizes probability of an error. 

TENSORS 

In engineering and physics, mathematical models are developed to describe 
physical conditions and phenomena. In the process, a number of useful con
cepts and definitions are evolved. Properties or quantities such as density, 
temperature, pressure, velocity, displacement, force, stresses, and strains are 
well known. It is interesting to examine some of these and the mathematical 
concepts involved. Properties such as density, temperature, and pressure are 
described completely when their magnitudes are given. Such properties are 
known as scalars and are described completely by a single number. Velocity, 
displacement, and force involve slightly advanced concepts. In addition to the 
magnitude, a direction has to be assigned to them to complete their descrip
tion. Such quantities are called vectors. Even more complicated quantities 
such as stress and strain require for their complete description not only the 
magnitude and direction but also the definition of the plane on which they 
act. A convenient way of defining a plane is by describing the direction of a 
normal to the plane. Thus a complete description of stress or strain requires 
a magitude and two directions. 

In many situations, the method of describing properties or quantities 
through one magnitude and one or more directions is inconvenient. A\lterna
tive methods of description are adopted quite frequently. One of the methods 
is to describe a quantity through· its components. For example, a vector may 
be represented by a line segment with its length proportional to the magnitude 
V of the vector and the direction parallel to the vector. In the case of a t-.vo
dimensional representation, the direction is indicated by an angle between the 
line segment and an arbitrarily fixed direction (or reference axis), as shown 
in Fig. Al-la. Alternatively, the vector may be represented by the length of 
its projections along two mutually perpendicular directions, such as the ref
erence axes x1 and x2 shown in Fig. Al-lb. The projections V1 and V2 are 
called the components of the vector in the x 1-x2 coordinate system. The vector 
is then indicated by V;, where the subscript i can assume values 1 or 2 only 
in a two-dimensional representation. In a three-dimensional representation, a 
vector is represented by three components along three mutually perpendicular 
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Figure A1-1. Representation of a vector by (a) a directed line segment and (b) components. 

axes, and consequently, the subscript i assumes values l, 2, or 3. In a similar 
manner, stress may be represented by an average force vector and unit length 
vector normal to the plane on which the force is acting (shown in Fig. Al-
2a). Alternatively, the stress may be represented by four components in a 
two-dimensional problem (see Fig. Al-2b) or by nine components in a three-

~F 

(a) 

Figure A1-2. Representation of stress as (a} an average force vector and a unit normal and 
(b) components. 
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dimensional problem. Each component of stress signifies the magnitude of 
the average force component in one of the arbitrarily fixed directions or the 
reference axes acting on a plane perpendicular to one of the axes. Therefore, 
the stress is represented by a symbol with two subscripts such as er ;p where 
each subscript signifies a particular direction. The subscripts i and j can in
dependently assume values 1 or 2 in a two-dimer.sional case and 1, 2, or 3 
in a three-dimensional case. By convention, the first subscript always indicates 
the direction of the normal, and the second subscript, the direction of the 
force component. Arbitrarily chosen directions frequently are taken to be 
mutually perpendicular, as in the Cartesian coordinate system. Thus the Car
tesian components of stresses in three dimensions are shown in Fig. Al-3. It 
may be noted that a typical component cr23 signifies the component along the 
x3 axis of the average force acting on a plane perpendicular to the x2 axis. 

It was pointed out in the preceding discussion that the choice of coordinate 
system is completely arbitrary. However, it is clear that the magnitude of the 
components of physical entities is influenced by the orientation of the coor
dinate system. It also should be clear that the physical phenomenon taking 
place at a point is not influenced by the choice of a coordinate system. This 
means that all operations performed with physical entities should be indepen
dent of the orientation of the coordinate system, and the components in it 
must be obtainable from the components in the original coordinate system by 
means of suitable transformation equations. The physical entities such as den
sity, temperature, pressure, velocity, displacement, force, stress, and strain 
transform according to specific transformation laws. A mathematical or phys
ical entity that with a change in the coordinate system transforms according 
to a specific law of transformation is called a tensor. The transformation laws 
are the specialty of a tensor. A precise definition of a tensor is given later. It 
may be mentioned here that the physical entities discussed earlier are all 
tensors, although of different orders. It becomes clear in a later discussion 

Figure A1-3. Cartesian components of stress. 
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that the scalar quantities such as density, temperature, and pressure are tensors 
of zero order; the vectors such as velocity, displacement, and force are first
order tensors; and stress and strain are second-order tensors. The transfor
mation laws for first-order tensors (i.e., vectors) are derived first in this section 
and then are generalized for tensors of aHy order. 

Consider an arbitrary vector V, as shown in Fig. Al-4. It components in 
the x1, Xi coordinate system are 

V1 = Vcos a 

Vi= V sin a 

(Al.1) 

Consider a second coordinate system x;, x; obtained by rotating the x1, Xi 

system counterclockwise through an angle e, as shown in Fig. Al-4. The 
components of the vector in the x;, x; coordinate systems are 

v; = V cos (a - fJ) = V cos a cos e + V sin a sine 

v; = V sin (a - f:J) = V sin a cos (} - V cos a sin e 

Substituting Eq. (Al.1) in Eq. (Al.2) gives 

v; = V1 cos e + V2 sine 

v; = Vi cos e - V1 sin e 

(Al.2) 

(Al.3) 

Equation (Al.3) represents the law for transforming components of a vector 
in one coordinate system to those in another. The equations are written in 
terms of the single angle e. Looking ahead to the generalization in three 
dimensions, it is seen that a single angle will be insufficient to describe the 
relative position of two sets of axes. As a concept that will be easily gener
alized, the four possible angles are introduced between the two coordinate 
systems, as indicated in Fig. Al-5. Define the cosines of the angles as 

Figure A 1-4. Definition of two-coordinate systems. 
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, X2 
Xz 

x' I 

Figure A 1-5. Definition of transformation angles in two dimensions. 

all = cos 811 = cos 9 

a 12 = cos 812 = cos (90 + 9) = -sin 9 

a21 = cos 821 = cos (90 - e) = sin 9 

a22 = cos 822 = cos 9 

Substituting Eq. (Al.4) in Eq. (Al.3) yields 

v; = a 11 V1 + a 21 V2 

V~ = a12V1 + a22V2 

(Al.4) 

(Al.5) 

Equations (Al .5) can be written in the index notations as a single equation 
as 

(Al.6) 

It may be pointed out here that while writing expanded equations in index 
notation and vice versa, the following rules must be followed: 

Rule 1. If a subscript occurs precisely once in one term of an expression 
or equation, it must occur precisely once in each term. It is to be suc
cessively assigned each value in its range. It is known as a live subscript 
or a free index. 

Rule 2. If a subscript occurs precisely twice in one term of an expression, 
it may or may not occur precisely twice in any other term. It is to be 
summed over its range of values., It is known as a dummy or summation 
subscript. 

With the help of these rules, the e~anded form of Eq. (Al.6) as Eq. (Al.5) 
and vice versa can be obtained easily. 

It may be observed that Eq. (Al.5) can be written in the matrix form as 
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or 

(Al.8) 

where the matrix 

(Al.9) 

is known as the transformation or rotation matrix. It is also called the direc
tion cosines matrix because its columns represent the direction cosines of the 
new axes with respect to the original axes. Further, with the help of definitions 
[Eq. (Al.4)], it is easy to see that the matrix (a;) is an orthogonal matrix (see 
Example Al-18) so that its transpose is its inverse also. Therefore, Eq. (Al.7) 
can be written in the inverse form as 

(Al.10) 

Equation (Al.10) now can be written in the index notation as 

(Al.11) 

Thus it has been established that the components V; and v; of a vector V in 
any two right-handed coordinate systems are related by Eq. (Al.6) or, equiv
alently, Eq. (Al.11). 

The laws of transforming components of stress in a coordinate system to 
the components in another coordinate system may be established by consid
ering equilibrium of an appropriate region whose boundaries are parallel to 
the axes in the two coordinate systems. Details of the procedure may be 
obtained in Myklestad [1] and Hodge [2]. The resulting transformation laws 
may be written in the index notation as 

(Al.12) 

or, alternatively, 

(Al.13) 
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where uij are the components in the x1x2 coordinate system and u:; in the 
x;x; coordinate system. The two coordinate systems are the same as indicatec 
in earlier discussions and shown in Fig. Al-5. The transformation matrix (aij: 
is the same as in the case of vector transformation [Eq. (Al.9)]. 

Stress is an example of a second-order tensor. The transformation lawi 
represented by Eqs. (Al.12) and (Al.13) are applicable to all second-orde1 
tensors; that is, uij and u:; may represent components of any second-orde1 
tensor in the coordinate systems. 

The transformation laws for the first-order and second-order tensors [giver 
by Eqs. (Al.6) and (Al.11)-(Al.13)] have been obtained for a two
dimensional case. Equations may be derived in a similar manner for a three
dimensional case also. However, in the index notations the transformatior 
equations for tensors in three dimensions are identical to those in two di
mensions, but the subscripts now may assume values 1, 2, and 3 instead oJ 
just 1 and 2. Thus the transformation matrix now consists of nine elementi 
because there are nine angles between the axes of the two coordinate systems 
The transformation matrix is 

(Al.14; 

where the definition of angles has been illustrated in Fig. Al-6 through the 
angles in the first column. Thus the three columns of the transformation ma
trix give the direction cosines of the three axes in the x; coordinate systerr: 
with respect to the X; coordinate system. The nine elements of the transfor
mation matrix are not independent, however. The relations between them exis1 
because both coordinate systems are Cartesian coordinates with mutually per
pendicular axes. The nine direction cosines may be determined in terms oJ 
the three Eulerian angles. The procedure is quite involved, however, and ar 

Figure A1-6. Definition of transformation angles in three dimensions. 
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interested reader may refer to a standard text on the subject such as that by 
Myklestad [1]. General rotation of the coordinate axes is not considered in 
this book. For the cases of rotation about one of the coordinate axes, the 
transformation matrix may be obtained directly by the definition [Eq. 
(Al.14)]. This is illustrated through some examples later in this section. It 
may be pointed out that the transformation matrix in three dimensions is also 
an orthogonal matrix like the one in two dimensions. 

The transformation laws may be generalized to higher-order tensors also, 
and thus the following definition of an nth-order tensor may be given. A 
tensor of order n is a quantity T that satisfies the following two conditions: 

1. In any right-handed coordinate system X;, Tis described by components 
T;

1
;,..-;" (2n components in two dimensions and 3n components in three 

dimensions). 
2. The components T;

1
;r;" and T;

1
;,...;" in any two right-handed coordinate 

systems are related by 

(Al.15) 

or, equivalently, by 

(Al.16) 

It now may be observed that the scalar quantities also satisfy the preceding 
definition of a tensor. Thus a scalar is a tensor of order zero. The tensor 
transformation equation for a third-order tensor is 

(Al.17) 

or 
(Al.18) 

and for a fourth-order tensor is 

or 

Now some applications of tensor transformations of interest are illustrated 
through examples. 
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Example Al-22: Write Eq. (Al.12) in its expanded form. 

First, summing over the dummy subscripts m, 

Summing over the dummy subscript n, 

Now the live subscripts i andj may be assigned values in four pairs as (1. 
1 ), ( 1, 2), (2, 1), and (2, 2) to yield the desired equations: 

It may be noted that if O'ij is symmetric in the X; coordinate system, o-;i 
will be symmetric in any x; coordinate system. 

Example Al-23: Write Eq. (Al.12) in the matrix form, and then, taking 
the definition of the elements (aij) from Eq. (Al.4), carry out the matrix 
multiplication to obtain four equations relating Ou and O';j· 

It may be noted that the cosine factors aij and stress components O' ij can 
be written separately in the matrix form. However, to obtain the expanded 
form of the right-hand side of Eq. (Al.12) through matrix multiplication, 
it will have to be written in a form consistent with the laws of matrix 
multiplication, as discussed earlier in this appendix. A careful observation 
will show that for this purpose, Eq. (Al.12) needs to be written as 

Writing in full: 



Substituting Eq. (Al.4): 

0-;2 ] = [ co~ e sin e J [o-ll 
ifz2 -sm (} cos (} lT21 
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-sine] 
cos e 

Now the matrix multiplication may be carried out to obtain 

0-;2 = (0-22 - 0-11) sin (} cos (} + lT12 cos2 (} - 0"21 sin2 (} 

0-;1 = (cr22 - <T11) sin e cos e - 0-12 sin2 e + 0"21 cos2 8 

o-;2 = 0"1 I Sin2 
(} - ( <T12 + O"z1) Sin (} COS (} + O"z2 COS2 (J 

In view of the symmetry of the stress tensor (u12 = o-21 ), the preceding 
four equations reduce to the followfng equations: 

o-; I = <Ti I COS2 
(} + <Tzz Sin2 0 + 20-12 Sin (} COS (} 

0-;2 = 0"11 sin2 8 + <T22 cos2 e - 20-12 sin e cos e 
<Tiz = 0-21 = -0-11 sin O COS O + <Tzz sin O COS O + <T12(COS2 0 - sin2 0) 

The preceding transformation equations are frequently written in the matrix 
form as 

sin2 (} 

cos2 e 
sin e cos e 

2 sin e cos e ]{cr11 } 
-2 sin (} COS O CF22 

COS2 0 - sin2 0 CF12 

The matrix in the preceding equation is frequently referred to as the 
transformation matrix. However, it has nothing to do with the tensor trans
formation matrix in three dimensions that is given by Eq. (Al.14). It is 
purely a coincidence that the transformation equations for a second-order 
two-dimensional symmetric tensor can be written in the preceding form. 
The array of (o-11 , o-w o-12) cannot be regarded as a vector or a three
dimensional first-order tensor. It always should be borne in mind that the 
preceding matrix equation has been derived from the general transforma
tion equation for a two-dimensional second-order tensor and has been writ
ten in the present form for convenience only. 
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It is interesting to note that the inverse of the preceding transformatio 
matrix is obtained by replacing fJ by-() (see Example Al-21) so that th 
transformation equations may be written as 

{

a 11 } [ cos
2 

8 sin
2 

8 
0"22 = sin2 8 cos2 fJ 
a 12 sin 8 cos 8 -sin 8 cos 8 

-2 sin 8 cos 8]{a; 1} 
2 sin 8 cos 8 Oiz 

cos2 8 - sin2 8 a; 2 

This equation can be obtained directly by expansion of Eq. (Al.13). A 
interested reader easily may find from arguments based on the geometr 
of the two coordinate systems why the inverse of the transformation matri 
is obtained by replacing 8 by - 8. 

Example Al-24: Obtain the transformation matrix when the x; coordinat 
axes are obtained by a rotation of an angle 8 of the X; coordinate axe 
about the x3 axis as shown in Fig. A 1-7. 

The angles between the axes of the two coordinate systems may be note 
from the figure as 

811 = 8 

821 = 900 - () 

831 = 900 

812 = 90° + 8 

822 = 8 

832 = 900 

Therefore, the transformation matrix becomes 

[

cos 8 
(au) = si~ 8 

-sin 8 0~] 
cos 8 

0 

813 = 90° 

823 = 900 

833 = oo 

Figure A1-7. Rotation of coordinate axes about x3 axis. 
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Figure A1-8. Definition of coordinate systems for Example A1-25. 

Example Al-25: Obtain the transform~tion matrix when the x; coordinate 
axes are obtained by reversing the direction of the x3 axis in the X; coor
dinate axes, as shown in Fig. Al-8. 

The required angles may be noted from Fig. A 1-8 as 

811 = oo 812 = 900 813 = 90° 

821 = 900 822 = oo 823 = 900 

831 = 900 832 = 900 833 = 180° 

The transformation matrix becomes 
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APPENDIX 

EQUATIONS OF THEORY 
OF ELASTICITY 

ANALYSIS OF STRAIN 

Whenever the relative positions of points in a body change from any cause, 
the body is in a state of deformation. The problem of determining the relative 
change in the positions of the points is purely geometric. Neither the causes 
that give rise to the deformations nor the laws according to which the body 
resists it are of any importance to its study. 

Discussion in this appendix is confined to only small deformations such 
as those that occur commonly in engineering structures and are of primary 
interest in this book. The small displacement of a particle, such as P in Fig. 
A2-1, can be resolved into components u, v, and w parallel to the coordinate 
axes x, y, and z, respectively. Consider a line element PA of length ,ix orig
inally lying parallel to the x axis. The displacement in the x direction of the 
point A, accurate to the first order in .ix, is 

au 
u +-,ix 

ax 

The increase in length of the element PA owing to deformation is thus (au/ 
ax) .ix. The change in length-initial-length ratio of a straight-line element is 
defined as the longitudinal strain e. Hence the strain at point P in the x 
direction is au/ ax. By considering the line elements originally lying parallel 
to the y and z axes, it can be shown that the strains in the y and z directions 
are given by av! ay and awl az. 

The shearing strain y is defined as .. the .decrease in value of the initial right 
angle between two line elements. To obtain an expression for the shearing 
strain, consider the distortion of the angle between the line elements PA and 
PB, as shown in Fig. A2-2. The displacements of the point A in they direction 
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~y ~-

x A7:lu 
u+6.~ 

A' 

Figure A2-1. Deformation of a line segment. 

and that of the point Bin the x direction are v + (av/ax) Ax and u + (au! 
ay) 6.y, respectively. The deformed line element P'A' is inclined to the initial 
direction of PA by the small angle aindicated in the figure, equal to av/ax. 
In the same manner, the angle between P'B' and PB is /3 = (aulay). Thµs 
the initial right angle APB is diminished by the angle (av! ax) + (au/ ay). This 
is the shearing strain 'YX), between the i.:,lanes xz and yz. The shearing strains 
between the planes xy and xz and the planes yx and yz can be obtained in the 
same manner. 

Thus the following six equations can be written to relate the six compo
nents of strain to the three components of displacement: 

au 
e=

x ax 
av 

e=-
Y ay 

au. aw 
'Yzx = az + ax 

aw 
€ =-

z az 

au av 
'Yxy = ay + ax 

These equations are often called the strain-displacement relations. 

(A2.1) 

The longitudinal and shearing strains can be found in any direction in a 
manner such as that illustrated in the preceding paragraphs. However, when 
the six strain components [defined by Eq. (A2.1)] are known, the strain in an 
arbitrary direction can be obtained in terms of the strains '=x, e:v, '=z, 'Yyz• r'..z, 
and 'Yxy and the angles between the arbitrarily chosen direction and the x, y, 

u+ ou 6.v 

)lj Ha·-
B I 

I 

6. ',.... f3 
I d. A' 

u P' _,._ __ ----T. ov A 

-=-r ~+-<->X 
P v Ax A ox 

'--------x 
Figure A2-2. Deformation of two orthogonal line segments. 
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and z axes. In a two-dimensional case, the strain E;, <• and y;Y along the x' 
and y' axes (shown in Fig. A2-3) can be obtained easily as 

,_ 2 e+ · 2 e+ · e e Ex - Ex COS Ey Slll 'Yxy Slll COS 

< = Ex sin2 8 + Ey COS
2 8 - 'Yxy sin 8 COS 8 (A2.2) 

)'.~. = 2(Ey - Ex) sin 8 COS 8 + 'Yx/COS2 8 - sin2 8) 

Similar transformation equations can be obtained for a three-dimensional 
case. A derivation of the transformation equations and other details relating 
to this appendix can be found in a standard text on the theory of elasticity 
[l, 2]. 

It may be noted that the transformations here [Eqs. (A2.2)] are not identical 
to the transformation equations for a two-dimensional, second-order tensor as 
obtained in Appendix 1. However, if a factor of ± is associated with the 
shearing strains, Eq. (A2.2) may be rewritten as 

, _ • 2 e 2 <1 ) 2 · e Ey - Ex Slll + Ey COS 8 - z'Yxy Slll 8 COS (A2.3) 

The transformation equations [Eq. (A2.3)] are now identical to those for a 
two-dimensional, second-order tensor. It can be shown easily that the three
dimensional strain components also obey the transformation equations for a 
second-order tensor, provided that a factor of± is associated with the shearing 
strains. Thus a second-order, symmetric strain tensor can be defined as fol
lows: 

(A,.2.4) 

y' y 

Figure A2-3. Definition of coordinate axes. 
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where i and j can assume values 1, 2, and 3 and the directions 1, 2, and 3 
correspond to the axes x, y, and z, respectively. The strains E;;, defined by Eq. 
(A2.4), are called the tensorial strains, whereas the strains Ex, Ey, · Ez, 'Yxy, r'xz• 

and r'yz, defined by Eq. (A2.l), are the engineering strains. It may be noted 
that the difference between the engineering and tensorial strains arises only 
in the shearing strains. A tensorial shearing strain is half the corresponding 
engineering shearing strain. Tensorial strains may be written in terms of the 
displacement gradients by substituting Eq. (A2.l) into Eq. (A2.4) so that 

f!'. .. = _21(u .. + u . .) 
lj l,J J,l 

(A2.5) 

where the comma denotes partial differentiation. 
Strain-displacement relations represent six strain components expressed in 

terms of three displacements, u, v, and w. If the strain components are given 
functions of x, y, and z, the relations are a system of six partial differential 
equations for the determination of the three displacements. Further, if the 
strains are prescribed arbitrarily, the six equations cannot, in general, be ex
pected to yield single-values, continuous solutions for u, v, and w. Hence 
certain conditions of noncontradiction must exist among the strains. These 
are known as conditions of strain compatibility. These can be derived by 
eliminating u, v, and w from Eq. (A2.l) through partial differentiation of 
strains and algebraic manipulation and with the knowledge that the displace
ments u, v, and w are continuous and well-behaved functions, and hence their 
order of differentiation is immaterial. In the case of a three-dimensional strain 
field, the following six equations represent the compatibility conditions: 

a2-y .xy a2 Ex a2 
Ey --=-+-ax ay ay2 ax2 

a2'Yy, a2
Ey a2€, --=-+-ay az az2 ay2 

a2'Yzx = a2€, + a2€x 
az ax ax2 az2 

a2€x = ! i_ (- a'Yyz + a-yzx + a'Yxy) 
ay az 2 ax ax ay az 

a2
Ey - 1 a (ar'yz - a-yzx + a-y.xy) 

az ax · 2 ay ax ay az 

a2
€, - 1 a (a'Yyz + a-yzx - a-yxy) 

ax ay 2 az ax ay az 

(A2.6) 
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ANALYSIS OF STRESS 

When external forces are applied to a solid body, their effect is transmitte1 
throughout the body by producing internal forces. The magnitude of interna 
forces at a point P of a body in equilibrium under the action of external force 
may be studied by considering an elemental area M around P, as shown iJ 
Fig. A2-4. The forces acting across this elemental area, because of the acti01 
of the external forces on the body, can be reduced to a resultant ar. The rati< 
!).T/ M gives the average force on the area M. The limiting value of the rati< 
!).T/ M as M approaches zero gives the intensity of the internal force at l 
and is called the stress. The limiting direction of the resultant !).T is tht 
direction of the stress. In general, the direction of !).T is inclined to the are: 
M, and thus the resultant !).T can be resolved into components parallel an< 
perpendicular to the area. The intensity of the force component perpendicula 
to the area is called the normal stress and is denoted by a. The intensity o 
the parallel force component is called the shearing stress and is denote< 
by T. 

When the orientation of M is changed, the resultant force !).T acting 01 

the area will, in general, be different. The new resultant force cannot bt 
calculated from the knowledge of the resultant force on only one orientati01 
of the elemental area. Thus the description of the state of stress or the intensit; 
of internal force at P is incomplete when the intensity of force at a point i: 
known only for one orientation of the area M. It can be shown that in , 
three-dimensional continuum, the state of stress at a given point can be de 
scribed completely when the magnitude of stresses on any three mutuall; 
perpendicular planes passing through the point is known. That is, the stres: 
components on an arbitrarily oriented plane can be calculated from the mag 
nitude of stresses on three mutually perpendicular planes. It is common t< 
take the three planes parallel to the three reference planes in the Cartesiai 
coordinates. Now the resultant force !).T acting on ;in elemental area M par 
allel to one of the reference planes can be resolved into three components ii 
the direction of the three reference axes, giving one normal and two shearin1 
stresses. The stress components are represented by symbols with two sub 

X 

)-, 

Figure A2-4. Internal forces at a point. 
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scripts such as <r;i· By convention, the first subscript indicates the orientation 
of the plane (i.e., the direction of an outward normal to the plane), and the 
second subscript indicates the direction of the force component. The three
dimensional stress components are shown in Fig. A2-5. It may be noted that 
a typical component <rxy signifies the component in the y direction of the 
average force acting on a plane perpendicular to the x axis. It also may be 
pointed out that the normal stresses a xx• aYY' and a zz are sometimes represented 
by single-subscripted symbols such as ax, <ry, and a,. The shearing-stress 
components are always denoted by the double-subscripted symbols but more 
often are denoted by T, as in this book. 

The positive directions of stress components are shown in Fig. A2-5. The 
sign convention can be stated in words as "on a plane where the outward 
normal is in the positive direction of a coordinate axis, all the stress com
ponents acting in the positive directions of the axes are positive." According 
to this convention, when the outward normal is in the negative direction of a 
coordinate axis, the stress components are positive when they act in the neg
ative directions of the axes. Therefore, the stress components on the hidden 
faces of the parallelopiped shown by dotted lines in Fig. A2-5 are also pos
itive. This sign convention is consistent with the convention of taking normal 
tensile stress to be positive. This sign convention is almost universally ac
cepted. 

The solid body considered here is in static equilibrium under the action of 
external forces. Therefore, each elemental volume of the body considered 
separately also will be in equilibrium under the action of internal forces. 
Equilibrium conditions are obtained by making the resultant forces and mo
ments acting on an elemental volume vanish. In the limit, when the dimen
sions of the elemental volume approach zero, the equilibrium conditions lead 
to what are known as the equilibrium equations. The equilibrium equations 
are partial differential equations relating variations of stress components in 
different directions. The most useful information concerning equilibrium con
ditions is obtained by considering equilibrium of a cubic volume element in 

y 

X 

Figure A2-5. Three-dimensional stress components. 
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the interior of the body and a tetragonal volume element on the surface o 
the body. The results of an equilibrium analysis are summarized in the fol 
lowing paragraphs. 

Consider a parallelopiped whose faces are parallel to the reference phnes 
as shown in Fig. A2-6. The stress components on the six faces are also show1 
in the figure. In the limit when the sides of the parallelopiped approach zero 
the equilibrium of moments about the reference axes leads to the followini 
symmetry conditions: 

(A2.7 

Thus there are only six independent stress components, namely, ux, <Ty, uz 
Txy• Tyz• and T zx· The state of stress at a given point is described completel) 
by giving these six stress components. 

Now the equilibrium of forces in the direction of the reference axes yield1 
the following differential equations: 

aux OTyx OT zx F O -+-+-+ = ax ay az x 

01",;y O<Ty OTZY 
-+-+-+F.=0 ax ay az > 

(A2.8 

OTXZ OTYZ au, F 0 -+-+-+ = ax ay az z 

X 

Figure A2-6. Equilibrium of a parallelepiped inside the body. , 
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where Fx, Fy, and Fz are the x, y, and z components, respectively, of the 
intensity of body forces (e.g., the gravitational and magnetic forces). In many 
problems, the body forces are negligible compared with the externally applied 
forces. The term equilibrium equations is employed commonly to refer to Eq. 
(A2.8) only. Equation (A2.8) can be written in the index notation as 

(A2.9) 

where, again, the comma refers to partial differentiation. Equilibrium of forces 
on a tetragonal volume element on the surface of the body, such as the one 
shown in Fig. A2-7, yields in the limit when the tetragon shrinks to a point 
P on the surface the following conditions: 

(A2.10) 

where nx, ny, and nz are the direction cosines of the outward normal to the 
surface at point P, and T.,, Tr and T, are the components of external forces 
acting at point P. Equilibrium conditions [Eq. (A2.10)] are known as the 
boundary conditions because they relate internal stresses to the external sur
face forces. Equation (A2.10) can be written in the index notation as 

(A2.ll) 

It was pointed out earlier that the components of stress in an arbitrary 
direction may be obtained from the six components of stress in a reference 
coordinate system. The transformation laws may be established by consid
ering equilibrium of appropriate infinitesimal volume elements. In a two-

Figure A2-7. Equilibrium of a tetragonal surface volume element. 
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dimensional case, the following transformation equations may be obtained b) 
considering equilibrium of triangular elements such as shown in Fig. A2-8: 

O'~ = O'x COS2 fJ + O'y Sin2 (J. + 2Txy Sin fJ COS fJ 

a;. = ax sin2 fJ + cry cos2 fJ - 2Txy sin fJ cos fJ 

~Y = ( cry - er) sin fJ cos fJ + Tx/ cos2 (J - sin2 fJ) 

(A2.12: 

Transformation equations for three-dimensional stress components also ma) 
be obtained in a similar manner. It will be observed that the transformatior 
equations for stresses are the transformation equations for a second-ordet 
tensor as obtained in Appendix 1. The stress-transformation equations may 
be written in the index notation as 

(A2.13) 

where aij are the direction cosines of the x', y', and z' axes with respect to 
the x, y, and z axes [Eq. (Al.14)]. Thus the stress is a second-order symmetric 
tensor. Further, since no assumption was made concerning material properties 
while deriving Eq. (A2.7), the stress tensor is symmetric for all materials 
(e.g., isotropic, orthotropic, or anisotropic materials). 

STRESS-STRAIN RELATIONS FOR ISOTROPIC MATERIALS 

The generalized Hooke law was stated in Chap. 5 [Eq. (5.40)]. It relates 
stresses and strains in an anisotropic material through 21 independent elastic 
constants. Subsequently, it was shown that for an orthotropic material, the 
number of independent elastic constants reduces to 9 [Eq. (5.61)] because of 
the symmetry in material properties with respect to certain planes. In an 
isotropic material, all planes are planes of symmetry, and thus the properties 
are independent of direction. It can be shown that the number of independent 
elastic constants for an isotropic material further reduces to only 2. The 

y' 
y y' y 

Figure A2-8. Equilibrium of two-dimensional triangular elements. 
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stress-strain relations for an isotropic material can be written in terms of 
engineering constants as 

(A2.14) 

where E is Young's modulus or elastic modulus, G is shear modulus or mod
ulus of rigidity, and v is the Poisson ratio. Out of the three material constants 
in Eq. (A2.14), only two are independent. The following equation relates the 
three constants with one another: 

G= E 
2(1 + v) 

(A2.15) 

Equation (A2.14) may be solved to obtain the stress components as explicit 
functions of strain components as follows: 

<rx = 2G( E\ + l :. 
2
v e) 

<ry = 2G( eY + 1 : 2v e) 
O"z = 2G( €z + 1 :. 2v e) 
Txy = G'Yxy 

Tyz = Gyyz 

Tzx = Gyzx 

(A2.16) 



540 EQUATIONS OF THEORY OF ELASTICITY 

Using the stress-strain relations [Eq. (A2. l 6)] and the strain-displacemen1 
relations [Eq. (A2.l)], the equilibrium equations [Eq. (A2.8)] can be derivec 
in terms of displacements as 

1 1 
v'2u + 

2 
V(V · u) + - F = O 

1 - v G 
(A2.17'. 

where u = ui + vj + wk 

F = F) + F_j + F,k 

n a. a. ak y=-1+-J+-
ax ay az 
a2 a2 a2 

v2=-+-+-
ax2 ay2 az2 

i, j, and k are unit vectors in the direction of the reference axes x, y, and z, 
respectively. Equation (A2.17) may be written in index notations as 

1 1 
U- .. + U- .. + -F = 0 

l,JJ 1 - 2 v J.Jt G ' (A2.18) 

For an imcompressible material, when v = ± and e = 0, Eqs. (A2. l 7) and 
(A2.18) have to be modified by writing e ( = V · u) in terms of the mean stress 
t( 0:, + aY + a,). Equations (A2. l 7) and (A2. l 8) are quite useful forms of 
the equilibrium equations for many problems of interest. 

The purpose of solving an elasticity problem is to obtain stresses, strains, 
and displacements at every point in a body subjected to known boundary 
loads or displacements. Therefore, in a three-dimensional problem there are 
a total of 15 unknowns (6 stresses, 6 strains, and 3 displacements). The 15 
unknowns can be solved for by using the elasticity equations discussed earlier. 
Specifically, the 15 equations needed for the solution are the 3 equilibrium 
equations [Eq. (A2.8)], 6 stress-strain relations [Eq. (A2.14) or (A2.16)], and 
6 strain-displacement relations [Eq. (A2.l)]. Note that the compatibility con
ditions are not considered as the equations to solve for the unknowns. They 
are the constraints on the strains and are used to eliminate arbitrariness in the 
solution for strains so that a unique solution for displacements is obtained. 
An elasticity problem may be viewed as having only 9 unknowns (6 stresses 
and 3 displacements) that may be solved for by using 3 equilibrium equations 
and 6 stress-displacement gradient relations. In this case, the strain
displacement relations are used to obtain the six strain components, and thus 
the compatibility conditions do not come into the picture because they are 
identically satisfied. In addition to the elasticity equations, 3 boundary con
ditions [Eq. (A2.10)] must be satisfied for a complete solution to the problem. 
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In fact, the elasticity equations are the same for all the problems, and what 
makes one problem different from another is the geometry of the body and 
the boundary conditions. Depending on the geometry and the boundary con
ditions, simplifying assumptions can be made and solution techniques suitable 
for different classes of problems developed. A large number of three
dimensional elasticity problems may be reduced to two- or one-dimensional 
problems and their solution obtained by solving a reduced number of equa
tions. A discussion, however, on the solution techniques of various classes of 
problems is beyond the scope of this book. An interested reader may, for this 
purpose, refer to a standard text on the theory of elasticity [l, 2]. 
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APPEND1X3 

LAMINATE 
ORIENTATION CODE 

Each laminate is unique in its properties and characteristics and hence must 
be distinctly identified whenever it is to be associated with specific quanti
tative or numerical data. Positive and concise identification of a laminate can 
be achieved through the use of a laminate orientation code. An adequate code 
must be able to specify as concisely as possible (1) the orientation of each 
lamina relative to a reference axis (the x axis in the text), (2) the number of 
laminae at each orientation, and (3) the exact geometric sequence of laminae. 
In the Standard Laminate Code, which is described in this appendix, it is 
assumed that all laminae are identical in thickness and properties. Special 
notations art used to indicate hybrid laminates. 

The Standard Laminate Code is best defined by the following detailed 
description of its features. 

STANDARD CODE ELEMENTS 

1. Each lamina is denoted by a number representing the angle in degrees 
between its fiber direction and the x axis. 

2. Individual adjacent laminae are separated in the code by a slash if their 
angles are different. 

3. The laminae are listed in sequence from one laminate face to the other, 
starting with the first lamina laid up, with brackets indicating the be
ginning and end of the code. 

4. Adjacent laminae of the same orientation are denoted by a numerical 
subscript. 
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Laminate Code 

45° 

[45/0/45/902'30] 

45° 

90° 

90° 

30° 

POSITIVE AND NEGATIVE ANGLES 

When adjacent laminae are oriented at angles equal in magnitude but opposite 
in sign, the appropriate use of plus ( +) and minus ( - ) signs is employed. 
Each + or - sign represents one lamina. Note that a numerical subscript is 
used only when the angles are of the same sign. Convention for the positive 
and negative angles should be consistent with the coordinate system chosen. 
This means that an orientation denoted positive in a right-handed coordinate 
system may be negative in another right-handed coordinate system. This is 
illustrated in Fig. A3-1, in which the signs of ± 45° laminae are reversed 
when the directions of y and z axes are reversed, whereas the x axis remains 
unaltered. 

o• 45° 90° ~45° 00 

X 

o• +45° 90° -45° o• z 

o• -45° 90° +45° o• z 
y 

X 

Figure A3-1. Sign convention for laminate orientation code. 
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Laminate Code 

45° 

-45° (±45/+30/0] 

-30° 

30° 

oo 

45° 

oo [45/0/-60zf30] 

-60° 

-60° 

30° 

45° 

45° [45if-452 /0] 

-45° 

-45° 

oo 

45° 

-45° [± + ±45/0] 

-45° 

45° 

45° 

-45° 

oo 

SYMMETRIC LAMINATES 

The laminates possessing symmetry of laminae orientations about the geo
metric midplane require specifying only half the stacking sequence. Sym
metric laminates with an even number of laminae list the laminae in sequence, 
starting at one face, but stopping at the plane of symmetry instead of contin
uing to the other face. The subscript S to the bracket indicates that only one
half the laminate is shown, with the other half symmetric about the midplane. 



SETS 545 

Laminate Code 

90° 

[90/0zf 45Js 

45° 

45° 

90° 

Symmetric laminates with an odd number of laminae are coded the same 
as even symmetric laminates, except that the center lamina, listed last, is 
overlined to indicate that half of it lies on either side of the plane of sym
metry: 

Laminate Code 

45° [Of 45/90Js 

90° 

45° 

SETS 

Repeating sequences of laminae are called sets and are enclosed. in parenthe
ses. A set is coded in accordance with the same rules that appl:x to a single 
lamina. 

Laminate Code 

45° 

90° [(45/0/90)21s 

45° or 

[45/0/90hs 

90° 

90° 
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oo 
45° 

90° 

oo 
45° 

Laminate Code 

45° 

oo 
90° [(45/0/90\] 

45° or 

oo [45/0/90]4 

90° 

45° 

oo 
90° 

45° 

oo 
90° 

HYBRID LAMINATES 

When referring to hybrid laminates, the standard code is partially modified. 
The modification generally consists of augmented subscripts to the normal 
lamina angle callouts that designate not only the number of laminae at each 
angle but also the generic fiber material of each. (Note that it is not the 
function of the code to define specific material systems, either for hybrid or 
nonhybrid laminates.) The code for hybrids is illustrated as follows: 

Laminate* Code 

oo B/Ep 

45° Gr/Ep [08 / ±45G/90G,Js 

-45° Gr/Ep 

90° Gr/Ep 

90° Gr/Ep 

-45° Gr/Ep 
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45° Gr/Ep 

0° B/Ep 

oo B/Ep 

oo B/Ep 

45° Gr/Ep 

90° Gr/Ep 

45° Gr/Ep 

oo B/Ep 

oo B/Ep 

*B = boron; Gr = graphite; Ep = epoxy. 



APPENDIX 

PROPERTIES OF 
FIBER COMPOSITES 

Physical, mechanical, and hygrothermal properties of IO commercial com
posites are given in Table A4- l. Eight of these composites are unidirectional, 
whereas the other two are fabric-reinforced. Fiber volume fraction ranges 
from 45-70%. The properties given here can be used for initial design pur
poses. However, final properties may be different owing to manufacturing 
variables and should be evaluated by experimental measurements. 

Stress-strain curves for carbon-epoxy (T300/N5208) laminates are shown 
in Figs. A4- l-A4-6. The curves for the unidirectional laminates (Figs. A4- l 
and A4-2) are linear to failure because they are controlled by the fibers. The 
in-plane shear-stress-strain curve (Fig. A4-3) is nonlinear because it is dom
inated by the matrix properties. In the transverse direction, the tensile curve 
(Fig. A4-4) is linear, whereas the compression curve (Fig. A4-5) is nonlinear 
because it can reach large strain values. The longitudinal tension and com
pression stress-strain curves for [ ±45] angle-ply laminate (Fig. A4-6) are 
nonlinear because the matrix is again dominant when the applied stre:-s is not 
in the fiber directions. 



Table A4-1 Properties of some commercial fiber composites 

Hygrothennal Expansion 
Elastic Constants Strengths Coeffieients 

Fiber Volume Density E I. E.- G,:r IT1,u u;,U IT111 a:;1! T1:11J a'- aT 
Material Description" Fraction Vr (g/cm3) (0Pa) (0Pa) v,:r (0Pa) (MPa) (MPa) (MPa) (MPa) (MPa) (I0-6/°C) (I0-6!°C) /31, /3-r 

Carbon-epoxy 0.70 1.60 181.0 10.30 0.28 7.17 1500 1500 40 246 68 0.02 22.5 0 0.6 
T300/N5208 

Carbon-epoxy 0.66 l.60 138.0 8.96 0.30 7.10 1447 1447 51.7 206 93 -0.3 28.1 0 0.4 
AS/H3501 

Carbon-PEEK 0.66 l.60 134.0 8.90 0.28 5.10 2130 1100 80 200 160 
.AS4/APC2 

Carbon-epoxy 0.66 1.60 203.0 11.20 0.32 8.40 3500 1540 56 150 98 
IM6/epoxy 

Carbon-epoxy 0.60 1.50 148.0 9.65 0.30 4.55 1314 1220 43 168 48 
T300/Fiberite 934 

Boron-epoxy 0.50 2.00 204.0 18.50 0.23 5.59 1260 2500 61 202 67 6.10 30.30 0 0.6 
B-4/N5505 

Glass-epoxy 0.45 1.80 38.6 8.27 0.26 4.14 1062 610 31 118 72 8.60 22.10 0 0.6 
E-glass-epoxy 

Aramid-epoxy 0.60 1.46 76.0 5.50 0.34 2.30 1400 235 12 53 34 -4.0U 79.0 0 0.6 
Kevlar 49/epoxy 

Carbon-epoxy 0.60 1.50 74.0 74.0 0.05 4.55 499 152 +58 352 46 
T300/Fiberite 934 
(13-mil) 

Carbon-epoxy 0.60 1.50 66.0 66.0 0.04 4.10 375 279 368 278 46 
T-300/Fiberite 934 
(7-mil) ---

"The first eight materials are unidirectional, while the last two are fabric reinforced. 
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Figure A4-1. Longitudinal tensile stress-strain curve for a unidirectional graphite-fiber (T300)
epoxy laminate. 

1.8.-----,----,----...----,-----,------, 

1.6 

1.4 

1.2 

al 

fl; 1 

g 
~0.8 
u5 

0.6 

0.4 

02 

2000 4000 6000 8000 10000 12000 
Strain µ, mm/mm 

Figure A4-2. Longitudinal compression stress-strain curve for a unidirectional graphite-fiber 
(T300)-epoxy laminate. 
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Figure A4-3. Shear stress-strain curve for-a unidirectional graphite-fiber (T300)-epoxy lami
nate. 
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Figure A4-4. Transverse tension stress-strain curve for a unidirectional graphite-fiber (T300)
epoxy laminate. 
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Figure A4-5. Transverse compression stress-strain curve for a unidirectional graphite-fibe 
(T300)-epoxy lamin_ate. 
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Figure A4-6. Longitudinal stress-strain curves for [±45] graphite-epoxy laminate. 



APPENDIX 

/ 
COMPUTER PROGRAMS 

FOR LAMINATE ANALYSIS 

Laminate analysis calculations are performed with the help of computers for 
accurate results. There are two types of software programs available for the 
calculations. The first type are essentially mathematical tools for general cal. 
culations (e.g., MATLAB, Mathcad, and MAPLE). Matrix inversions and 
multiplications, vector and matrix manipulations, and obtaining numerical val
ues using given formulas, which are frequently required for laminate analyses, 
can be carried out easily using these tools. These programs are easy to use 
and relatively inexpensive. Their use improves accuracy of results and mini
mizes probability of an error. 

The second type of software includes the finite-element analysis (FEA) 
codes to carry out complete structur<1:l analysis, including acoustic and ther
mal analyses. The FEA codes can be used to solve one-, two- and three
dimensional static and dynamic, linear and nonlinear problems involving 
isotropic and anisotropic materials. A list of commercial software programs, 
along with their sources, is given in Table AS-1. These programs also have 
several other useful features, such as flexibility regarding the use of a failure 
theory, iterative procedure for design analysis and strength calculations, hy
grothermal stress calculations, and excellent graphics for presentation of re
sults. These software programs require greater training in their application. 
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Table A5·1 Commercially available software packages 

Applications 

Mathematical 
tools 

Finite-element 
analysis codes 

Program 
Name 

MATLAB 

Math cad 

MAPLE 

ABAQUS 

AN SYS 

NASTRAN 

COSMOS 

LS-DYNA 

Source 

The MathWorks 
3 Apple Hill Drive 
Natick, MA 01760 
www.mathworks.com/ 
Mathsoft Engineering & Education, Inc. 
101 Main Street 
Cambridge, MA 02142 
www.mathsoft.com/ 
Maplesoft 
615 Kumpf Drive, Waterloo, 
Ontario, Canada N2V 1K8 
www.maplesoft.com/ 
ABAQUS, Inc. 
1080 Main Street 
Pawtucket, RI 02860 
www.abaqus.com/ 
ANSYS, Inc. 
275 Technology Dr. 
Canonsburg, PA 15317 
www.ansys.com/ 
MSC.Software Corporation 
2 MacArthur Place 
Santa Ana, CA 92707 
www.mscsoftware.com/ 
SolidWorks Corporation 
300 Baker Avanue 
Concord MA 01742 
www.solidworks.com/ 
Livermore Software Technology Corporation 
7374 Las Positas Road 
Livermore, CA 94551 
www.lstc.com/ 



an, 482 
1stic emission, 483 
tropic material, 175 
otropic material, 175 
otropy, 3 
ntrolled, 10, 11 
thermal expansion, 111 

nid fibers, see Kevlar 
iclave, 46, 47, 48 
age fiber stress, 139-140 
age stress criterion, 349 
; of symmetry, 63, 160 

an, 482 
molding, 46-48 
essure, 46, 47 
ocesses, 46-48 
lCUUm, 46, 47 
ging, 46 
,need orthotropic lamina, 

172 
ding 
'beams, 315 
' general laminates, 294 
' plates, 288 
:omposites, 499-503 
fibers, 499-501 
product, 499 
<led-fastened joints, 361 
ding mechanisms, 355-

356 
on fibers, 27-28 
y CVD, 27 
roperties of, 28 
indary-layer phenomenon, 

328 
kling, 296 
iad, 296 

critical, 298 
1ode, 296 
f plates, 295 
f square plate, 300 
n off method, 441 

can, 483 
bon black, 6 
bon-carbon composites, 

498-499 

Carbon fibers, 23-26 also see 
graphite fibers 

carbon yield, 24 
form of, 26 
PAN, 24 
precursor, 24 
process of nfuk.ing, 24, 35 
properties of, 25, 26 
roving of, 26 
yarn of, 26 

Cermets, 6 
oxide-based, 6 
carbide-based, 6 

Ceramic fibers, 28-29 
Alumina, 28, 29 
Fibers FP, 28, 29 
properties of, 29 
silicon carbide, 28, 29 

Charpy tests, 475 
Classical lamination theory, 

214 
CLT, see classical lamination 

theory 
COD, see crack-opening 

displacement 
Code, laminate orientation, 

544-548 
Coefficient of thermal 

expansion, 111 
Cold solders, 6 
Combustion method, 441 
Compliance curve, 467 
Compliance matching 

procedure, 467 
Compliance matrix, 184 

invariant form of, 194 
transformation of, 189 

Compliance tensor, 184 
Composite materials: 

applications of, 10-14 
bridge, 12-14 
characteristics of, 2-3 
classification of, 3-5 
consumption of, 12 
continuous fiber, 9 
cross-ply, 3 
definition of, 1-2 
degradation of, 426-429 

INDEX 

density of, 65-66, 440 
discontinuous fiber, 7, 9 
fabrication of, 41-60 
fiber-reinforced, 5, 7-10 
fibrous composite, 7-11 
growth of, 11 
hybrid, 9, 407-411 
multilayered, 7, 8 
particulate, 1, 5-7 
particle-reinforced, 5 
properties of, 2, 123-124, 

550-554 
quasi-isotropic, 147 
ribbon reinforced, 152-155 
short-fiber, 132-155 
single layer, 7, 8, 9 
tape reinforced, see ribbon 

reinforced 
unidirectional, 3, 9, 62-131 
use in U.S. industries, 12 

Compounding, 57 
Compression molding, 56 
Computer: 

laminate analysis through, 
272 

programs, 550 
software, commercial, 556 

Concentration, 2 
Constant-stress model, 80 
Constitutive equations, 192 

for laminates, 221. 224-225 
Contact Jay-up, 43 
Continuous fiber reinforced 

composite, 9 
Coupling agents, 16, 19 
Coupling coefficients, see 

Cross-coefficients 
Crack-driving force, 466 
Crack extension, 342 
Crack-extension force, 466 
Crack-extension force curve, 

466 
Crack-growth resistance, 466 
Crack-growth resistance curve, 

466,467 
Crack-length-estimation curve, 

467,469 
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Crack-opening displacement, 
467 

Crack opening mode, 342 
Creel, 49 
Critical buckling load, 298 
Critical fiber length, 136 
Critical volume fraction, 75, 

76, 146 
Cross-coefficients, 168-170 
Cross-linking, 42 
Cumulative weakening, 78 
Curing agent, 35 
Curing stresses, 268 

Damage: 
due to low velocity impact, 

411-416 
fatigue, 368 
identification, 481-488 
initiation, 96 

DCB see double-cantilever
beam 

Debonding, 96, 370 
of fibers, 399 

Degradation of composites, 
at elevated temperatures, 

426-429 
Delamination, 96 
Delamination crack, 370, 373, 

396,401 
DEN, see double edge notched 
Density, 57-58, 440 
Diffusion, mass, 106 
Diffusivity, 120 

longitudinal, 120, 121 
measurement of, 443 
transverse, 120, 121 

Discontinuous fiber reinforced 
composites, 

see Short-fiber composites 
Double-cantilever-beam, 472, 

473 
Double edge notched 

specimen, 465 
Drop-weight impact test, 476 
Ductility index, 409 

Edge delamination 
suppression, 335 

Edge effects, 324-335 
Effect of temperature and 

moisture on composite 
properties, 422-426 

Effective modulus, 252 
Elastic constants, 175, see also 

Engineering constants 
number of, 182 

relations with compliance 
matrix, 185 

relations with stiffness 
matrix, 185-187 

restrictions on, 187-189 
symmetry of, 175 
variation of, 170-172 

Elasticity methods, 83 
Electrical conductivity, 115, 

I 16, 118 
End effects, 78 
End tabs, 445, 446 
Energy absorbing mechanisms, 

396 
fiber breakage, 397 
fiber debonding, 399 
matrix cracking, 398 
matrix deformation, 398 

Energy curves, 471 
Engineering constants, 160 

determination of, see 
Testing of composites 

extremum value of, 170 
for orthotropic lamina, 160, 

161 
restrictions on, 187-189 
relations with compliance 

matrix, 185 
relations with stiffness 

matrix, 185-187 
transformation of, 166-172 
variation of, 170-172 
variations with fiber 

orientation, 169-172 
Environmental interaction 

effects, 416-431 
Epoxy, 36-38 

properties of, 37 
Epoxy resin, 36 
Equations of motion, 302 
Experimental characterization, 

431-495 
See also Testing of 

composites 

Fabrication of composites, 41-
60 

by bag molding, 46-48 
by contact lay-up, 43 
by hand lay-up, 43--45 
by resin transfer molding, 

49 
by stamping, 57 
by thermoforming, 57, 58 
ceramic matrix, 59-60 
filament winding, 49-51 
metal matrix, 58-59 
molding compounds, 53 

prepregs, 55 
pultrusion, 51-53 
thermoplastic resin 

55-58 
thermosetting resin 

42-55 
Failure: 

envelop, 204-205, 2 
initiation, 88, 96 

microscopic, 335 
internal, 96 
load, 97 
models, 78-79 
modes of, 96-108 
shear, 107, 109 

Failure criteria, see als 
Failure theories 

for biaxial stress fie! 
205 

for notched composi 
maximum distortion 

91 
Whitney-Nuismer, 3, 

Failure theories: 
maximum strain, 20( 
maximum stress, l 9i 
maximum work, 203 
Tsai-Hill, 203 

Fatigue, 368-395 
characterization of, 3 
crack arrest in, 370 
crack branching in, 3 
cross-ply cracks in, 3 

372 
damage, 370 
damage initiation, 37 
delamination crack, 3 
empirical relations fo 

386 
factors influencing be 

378 
Goodman-Boller 

relationship, 384 
influence of mean str1 

383 
influence on propertie 

375-377 
of high modulus fiber 

composites, 386-
of short fiber composi 

390-395 
schematic representati 

373-374 
shear, 382-383 
S-N curve, 375 

Fibers: 
advanced, 16-30 
aramid, 7, 26 
average stress on, 139 
boron, 27-28 



eaking of, 96, 100-101, 
397 

1ckling of, 102, 103 
:rbon, 23-26 
:ramie, 28 
1opped, 10 
itical length of, 136 
ushing of, 107 
:bonding of, 399 
1d effects, 133 
iber FP, 28 
lass, 7, 16-23 
cake, 17 
composition, 18 
end, see strand 
production of, 17, 18 
properties, 18, 19 
roving, 21 
sizes, 17 
staple, 17, 18 
strand, 17 
surface treatment of, 18-

20 
yield, 21 

:raphite, 7, 33-26 
see also Carbon-fibers 

neffective length of, 136 
(evlar, 26-27 
oad transfer length of, 136 
nan-made, 7 
nicrobuckling of, 102 
Jolyethylene, 28-30 
Jroperties of, 7, 8 
,ullout, 100-101 
;ilicon carbide, 28 
Spectra, 29 
,er aspect ratio, 140 
ier composites, 
applications of, 10-14 
properties of, 10 
oer packing, 124 
oer pullout, 396, 399-401 
oer splitting, 106, 107 
ber volume fraction 
minimum, 75, 146 
critical, 75, 146 
berglass, see glass fibers 
ber-reinforced composites, 

7-10 
fament winding, 49-51 
patterns, 50, 51 
Hers, 39 
inorganic, 6 

.nite element analysis codes, 
555,556 

inish, 18 
iakes, 6 
mica, 6 

racture mechanics, 335-355 

Fracture mechanics concepts, 
338-346 

Fracture process in 
composites, 336-338 

Fracture process in impact, 
395-396 

Fracture process zone, 397 
Fracture surface work, 341 
Fracture toughness 

measures of, 338 
of composite 1;:lminates, 

346-349 
Fundamental frequency, 303 

Gel coat, 43 
Generalized Hooke's law, 175 
Generally orthotropic lamina, 

164 
Glass fibers, 7, 16-23 

cake, 17 
composition, 18 
chopped-strand mat, 22 
continuous-strand mat, 22 
coupling agent, 18 
E-, 19 
end, 17 
fabric, 23 
finish, 18 
forms of, 21-23 
mat, 22 
milled, 23 
production of, 17-18 
properties of, 8, 18, 19 
roving, 21 
S-, 19 
sizes, 17 

compatible, 18, 19 
temporary, 18 

staple, 17-18 
strand, 17 
surface treatment of, 15 
surfacing mat, 22 
veil, 22 
woven roving, 22 
yarn, 23 

Goodman-Boller relationship, 
383,384 

Graphite fibers, 23 
from PAN, 24 
precursor, 24 
tows, 26 

Gel coating, 43 

Haplin-Tsai equations 
for ribbon reinforced 

composites, 154 
for shear modulus, 93 
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for short-fiber composites, 
141-144 

for transverse modulus, 85 
for transverse transport 

properties, 115 
Hand lay-up technique, 43 
Hole size effect, 349 
Homogeneity, 3 
Hooke's law, 174 

for generally isotropic 
material, 174-177 

for generally orthotropic 
material, 174-177 

for isotropic material, 181-
182 

for specially orthotropic 
material, 177-180 

for transversely isotropic 
material, 180-181 

generalized, 175 
in contracted notation, 179-

180 
Hybrid, see hybrid composites 
Hybrid composites, 9, 397, 

407-411 
Hybrid laminates, 3, 5 
Hybridization, 407 
Hygrothermal forces, 268 
Hygrothermal moments, 268 
Hygrothermal stresses, 263-

273 
Calculations, 264-273 

IITRI test fixture, 450 
Impact: 

energy absorbed, 396 
energy absorbing 

mechanisms, 396-401 
failure modes, 396-401 
initiation energy, 408 
low velocity, damage due 

to, 411-416 
propagation energy, 408 
hybrid composites, 407-411 
strength of short-fiber 

composites, 152 
Charpy, 475 
drop weight, 476 
instrumented Charpy, 477 
lzod, 475-476 

Impact energy values for 
materials, 408 

Impact properties, 
effect of materials variables 

on, 401-407 
effect of testing variables 

on, 401-407 
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Impact properties (Continued) 
of unidirectional fiber-epoxy 

composites, 410 
Ineffective length, 136 
Interfacial bond, 79 
Interfacial area, 1 
Interfacial conditions, 79 
Initiation energy, 405, 408 
Intelligent structures, 503 
Interlaminar fracture 

toughness, 
determination of, 471-
475 

Interlaminar shear strength, 
determination of, 324-
335, 471 

Interlaminar stresses, 471, 472 
approximate solutions for, 

330--334 
concepts of, 324-326 
determination of, 326-328 
effect of stacking sequence 

on, 328-330 
Invariant forms of 

compliance matrix, 194-196 
stiffness matrix, 194-195 

Isotropic composite, 132 
Isotropy, 3, 159 
Izod tests, 475 

J-curve, 471 
J-integral, 345-346 

critical, 4 70 
determination of, 4 70-4 71 
energy interpretation, 470 

Joints 
adhesively bonded, 355-360 

advantages of, 359 
configuration, 356-357 
design of, 355 
failure modes, 357 
stresses in, 358 

bonded-mechanically 
fastened, 361-362 

for composite structures. 
355 

mechanically fastened, 360--
361 

advantages of, 361 
disadvantages of, 361 
failure modes of, 36 

K-calibration factor, 465 
K,-curve, see crack extension 

force curve 
Kevlar fibers, 26-27 

chemistry of, 26 

properties of, 27 
Knee of stress-strain curve, 

250 

Lamina, 63, 158, see also 
Orthotropic lamina 

Laminate: 
analysis after initial failure, 

247-262 
analysis of, 213-281 
analysis through computers, 

272-277 
angle-ply, 228-229 
constitutive equations for, 

221, 224-225 
cross-ply, 228-229 
curing stresses, 268 
definition of, 158 
description system, 225-

226, see also laminate 
orientation code 

effective modulus, 251 
fracture mechanics of, 335-

355 
hygrothermal forces in, 268 
hygrothermal moments in, 

268 
hygrothermal stresses in, 

263-272 
interlaminar stresses in, 

324-335, 471 
load carrying capacity of, 

255 
mechanical strains in, 266 
netting analysis, 280 
orientation code, 544-549 
primary modulus, 250 
quasi-isotropic, 229-230 
residual stresses, 268 
resultant force, 218 
resultant moment, 218 
secondary modulus, 250 
specially orthotropic, 228 
stacking sequence, 219, 

328, 544-549 
stiffness matrices, 221 
strains in, 238 
strength analysis, 274-276 
stress analysis, 273-274 
stresses and strains in, 

determination of, 238-
247 

stresses in, 238 
symmetric, 227-228 
thermal strain, 263 
thermal stresses, see 

Laminate, 
hygrothermal stresses 

unidirectional, 228-2 
Laminated beams 

bending of, 315-318 
buckling of, 318-319 
free vibrations of, 31 · 
governing equations J 

314 
Laminated plates 

bending of, 288 
buckling of. 295 
equilibrium equations 

283-286 
free vibrations of, 30 
governing equations f 

283 
in terms of 

displacements, 2: 
288 

Laminates, 8, 158 
bidirectional, 10 

Laser shearography, 488 
Law of mixtures, see Rt 

mixtures 
Load coefficients, 290 
Load sharing, 71-73 
Load transfer length, 131 
Longitudinal direction, t 
Longitudinal stiffness: 

factors influencing, 76 
prediction of, 68-69 

Longitudinal strength: 
factors influencing, 76 
prediction of, 75-76 

Low velocity impact, 41 
damage due to, 411-4 

Mass diffusion, 117-123 
Major Poisson's ratio, 95 
Mandrel, 50 
MAPLE, 555, 556 
Mat, 10, 22 

chopped-strand, 22-23 
continuous-strand, 22-
surfacing, 22-23 

Material axes, 63 
Mathcad, 520, 555, 556 
MATLAB,520, 555,556 
Matrix material, 2, 7, 30-

Bismaleimides, 38 
effect of temperature a1 

moisture on, 422-
elevated temperature, 

degradation at, 421 
429 

epoxy,36-38 
metals, 39,41 
microcracking, 96 
phenolics, 38 



1stics, 30-40 
lyester, 34-35 
,Iyimides, 38 
,Iymers, 30-40 
~yl esters, 38 
ix (mathematical): 
dition, 514 
lumn, 510 
finitions, 509 
terminant, 513 
agonal, 511 
ements of, 509 
entity, 511 
verse, 517 
ultiplication, 516 
1erations, 514-520 
thogonal, 519 
incipal diagonal of. 511 
w, 510 
.ew symmetric, 511 
uare, 510 
.btraction, 514 
mmetric, 511 
msformation of, 519 
mspose of, 5 I 0 
tit, 511 
:ix digestion method, 441 
:ix dissolution method, 

441 
rix ductility, 150 
.imum strain. theory, 200-

203 
.imum stress theory, 197-

200 
.imum work theory, 203-

205 
.sure of fiber orientation, 

148 
.surement of 
jtical crack growth 

resistance, 464 
·itical I-integral, 470 
·itical strain-energy release 

rate, 463 
·itical stress-intensity 

factor, 464 
ensity, 440 
iffusivity, 444-445 
exure properties, 459 
npact properties, 475 
1-plane shear properties, 

452 
1terlaminar fracture 

toughness, 471 
1terlaminar shear strength, 

471 
1easures of fracture 

toughness, 463 
1echanical properties, 445-

481 

moisture absorption, 444-
445 

moisture expansion 
coefficients, 444-445 

physical properties, 440-
445 

properties in compression, 
449 

properties in tension, 445 
stiffness and strength, see 

testing of composites 
thermal expansion 

·
0coefficients, 442 

void volume fraction, 442 
volume 

0

frnction, 441 
weight fractions, 441 

Microbuckling of fibers, 102, 
. 103 

in extension niode, I 02 
in shear mode, 102, 103 

Micromechanics of transverse 
failure, 88 

Microscopic failure initiation, 
3,35 

Milled fibers, 23 
Minimum volume fraction: 

of short fiber composite, 
146 

of unidirectional composite, 
76 

Minor Poisson's ratio, 95 
Modulus: 

effective, 252 
longitudinal, 68, 160 
primary, 250, 375 
residual, 375 
secondary, 250, 375 
shear, 91-95, 160 
of short-fiber composites, 

141-145 
transverse, 80-91, 141, 160 

Moisture absorption, I I 4 
Moisture expansion 

coefficients, 114 
longitudinal, 114 
transverse, 114 

Mold release, 43 
Molding compounds, 10, 53-

55 
BMC, 42, 53 
bulk, 42, 53 
DMC, 53 
dough, 53 
prepregs, 42, 55 
sheet, 42, 53, 54 
SMC, 42, 53, 54 

Nanocomposites, 7, 496-498 
Clay-reinforced, 7 
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Nanotube-reinforced, 7 
Nanotubes, 7, 496 

Single walled, 497 
Multi-walled, 497 

Natural fibers, 499 
properties of, 500 

Navier's approach 
NDE, see nondestructive 

evaluation 
Neutral axis, 460 
Nodal lines, 304 
Nondestructive evaluation, 

481-488 
Nondestructive evaluation 

techniques: 
acoustic emission, 483 
laser shearography, 488. 

489 
thermography, 486 
ultrasonics, 481 
X-radiography, 485 

Notch sensitivity, 346 
Notched-bend tests, 464-465 
Notched plate, 465 
Notched-plate test, 472, 473 

Orthotropic lamina, 161 
analysis of, 158 
balanced, 172 
engineering constants of, 

160. 166 
generally, 161 
shear strength, importance 

of sign, 205-209 
specially, 161 
strength of, 196-209 
strength under biaxial 

stresses, 196-209 
stress-strain relations in 

arbitrary direction, 
164-166 

transformation of 
engineering constants, 
166-174 

variation of elastic 
constants, 170-172 

Orthotropic materials, 158-
160, see also 
Orthotropic lamina 

definition of, 158-160 
deformation behavior of, 

159 
Hooke's law for, 160-174 

PAN, 24 
Particulate composites, I, 5-7 
Plasma spraying, 59 
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Plastics, see polymers 
Platelets, 2, 496 
Ply, 63 
Point of instability, 466 
Point-stress criterion, 349 
Poisson's ratio: 

major, 95, 161 
minor, 95, 161 
orediction of, 95 
restriction on, 188, 189 

Polyester, 34-36 
properties of, 35, 36 

Polyethylene fibers, 28-30 
Dyneema, 29 
properties of, 29 
Spectra, 29 

Polymerization, 42 
Polymers, 30-40 

crystalline melt 
temperatures of, 32 

epoxy, 36-38 
properties of, 37 

glass transition temperatures 
of, 32, 33 

melting point of, 32 
network, 31 
polyester, 34-35 

properties of, 35, 36 
properties of, 31-34 

epoxy resin, 37 
phenolics. 38 
polyester resin, 34 
polyimide, 38 
thermoplastic resins, 40 

thermoplastic, 31, 38-39 
high temperature, 39 
properties of, 39, 40 

thermosets, 31 
temperature for 

processing of, 32 
thermosetting, 31 

Preform, 10 
Preimpregnated fibers, see 

prepregs 
Premixes, 42 
Prepregs, 9, 42, 55 
Primary modulus, 375 
Propagation energy, 405, 408 
Properties of fiber composites, 

550-554 
Properties of unidirectional 

composites, 123-124 
Pultruded shapes, 51, 52 

Quasi-isotropic laminate, 229-
230 

R-curve, see crack-growth 
resistance curve 

Rail shear test, 458 
Reinforcements, 2 

geometry of, 3 
orientation of, 3 

Reinforcing material, 2 
Residual strength, 376 . 
Residual stresses, 79-80, 268 
Resin transfer molding (RTM), 

49 
vacuum assisted (VARTM), 

49 
Resultant forces, 218 
Resultant moments, 218 
Ri~bon-reinforced composites, 

152-155 
Halpin-Tsai equations for, 

154 
in-plane transverse modulus 

of, 154 
Rule of mixtures, 69 

for density, 65 
for longitudinal diffusivity, 

120 
for longitudinal modulus, 

69 
for Poisson's ratio, 96 
for stress, 68 
for transport properties, 114 

Sandwich cross-beam, 459 
Secondary cracks, 398 
Secondary modulus, 250, 375 
Self-consistent models, 84, 85 
Self-similar crack growth, 337 
SEN, see single edge notched 
Series solution, 290 
Shear coupling, 164 
Shear deformation theory 

first-order, 306-311 
higher-order, 311-314 

Shear failure, 107, 109 
Shear-lag analysis, 134 
Shear modulus, 91-95, 160 
Shear strain: 

engineering, 180, 534-535 
tensorial, 180, 535 

Shear strength, 197 
Shearography, laser, 488 
Short beam shear test, 472 
Short-fiber composites, 132-

157 
critical fiber length, 136 
critical fiber volume fraction 

of, 146, 147 
effect of matrix ductility on 

properties of, 150-152 

examples of, 133 
failure initiation of, J 
fatigue of, 390-395 
impact strength of, 1. 
ineffective fiber leng1 
load transfer length, 
matrix ductility, effec 

150-152 
minimum fiber volun 

fraction of, 146, 
modulus of, 140 

prediction of, 141 
randomly oriented, 

randomly oriented, l· 
ribbon reinforced, 15 
strength of, 140, 145 

prediction of, 145 
strength of random fl 

composite, 147, 
stress distribution in, 

139 
theories of stress trar 

for, 133-140 
Single edge notched sp, 

465 
Sizes, 17, 18-20 

compatible, 18, 19 
temporary, 18 

Smart structl!res, 503 
S-N curve, 378 
Software packages, 

commercially a, 
556 

Sound deadener, 6 
Specially ortbotropic .la 

161 
stress-strain relations 

161-164 
under plane stress, 1: 

constitutive equati1 
192 

stiffness coefficien 
183 

Specially orthotropic m 
177 

Specific stiffness, 7-8, 
Specific strength, 7-8, 
Speckle effect, 488 
Spray-up, 44, 45 
Stamping, 57 
Staple fibers, 18 
Static fatigue, 417 
Sta tic fatigue of fibers, 
Static-rupture of fibers, 
Stiffness: 

factors influencing, 7 
methods of predictin 

longitudinal, 68 
residual, 376 
transverse, 84-87 



ess matrix, 183 
1ding, 221 
1pling, 221 
:ineering constants, 

relations with, 185-187 
ensional, 221 
orthotropic materials, 

183 
ariant form of, 194 
ersion of, 238 
:ractured plies, 248 
thesis of, 218-221 
1sformation of, 189 

lysis of, 532-535 
1patibility conditions, 

535 
:rmination of, 238 
ineering, 180, 535 
;hanical, 26t; 
;orial. 180, 535 
1sformation equation, 

534 
-displacement relations, 

533 
-energy release rate, 

339-341 
ical, 341 
magnification factor, 90 

-stress relations, see 
Stress-strain relations 

:th: 
ors influencing, 76-80 
situdinal compressive, 

103-106, 197 
situdinal tensile, 75-76, 

197 
:hed, 351-355 
,rthotropic lamina, 196 
1uasi-isotropic laminate, 

257 
dual, 376 
hort-fiber composite, 
145-149 

sverse, 87-91, 197 
>ries of, 197-205 
th reduction factor, 90 
thening mechanisms, 3, 
5 

ysis of, 536-540 
ndary conditions, 537, 
539 

ng, 268 
rmination of, 238-247 
ilibrium equations, 539 
rothermal, 263-272 
rlaminar, 324-335 
lual, 79-80, 268 

sign convention for, 205, 
537 

symmetry of, 538 
thermal, see, hygrothermal 
transformation, 539-540 

Stress concentration factor, 88, 
90 

Stress corrosion, 419 
features of, 416 
of glass fibers, 419-422 
of GRP, 419-422 

Stress-intensity factor, 339, 
341-344 

critical, 464 
determination of, 464-470 
relation with strain energy 

release rate, 342 
Stress-rupture characteristics, 

429-431 
Stress-rupture of fibers, 418 
Stress-strain relations, 160 

for anisotropic materials, 
175-176 

for generally orthotropic 
lamina, 164-166 

for isotropic materials, 540 
for specially orthotropic 

lamina, 161-164 
generalized, 17 5 
in terms of engineering 

constants, 163 
Surface energy, 341 
Surfacing mat, 44 
Symmetric laminates, 227 

Tensors: 
definition of, 527 
laws of transformation, 527 

Tests, 
bend, four point, 459, 460 
bend, three point, 459, 460 
compression, 449 
coupon, [±45],, 455 
coupon, off-axis, 456 
double cantilever beam, 472 
flexural, 459 
fracture toughness, 463 
impact, 475 

drop weight, 476 
Charpy, 476 
Izod, 476 

in-plane shear, 452 
Iosipescu shear, 453 
notched plate, 472 
picture frame, 458 
rail shear, 458 
sandwich cross beam, 459 
sandwich beam, 448 
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short beam shear, 472 
tension, 445 
torsion tube, 452 

Testing of composites: 
bending, 459 
Charpy, 475-481 
compression, 449 
drop weight, 476 
flexural, 459 
four-point bending, 459 
fracture toughness, 463-475 
in-plane shear, 452-459 

Iosipescu, 453 
[ ± 45], coupon, 455 
off-axis coupon, 456 
torsion tube, 452 

instrumented Charpy, 475-
481 

Izod, 475-481 
notched bend, 465 
notched plate, 463 
off-axis shear, 457 
off-axis tension, 447 
picture frame, 458 
rail shear, 458 
sandwich crossbeam, 459 
short beam shear. 472 
tension, 445-449 
three point bending, 459 

Thermal stresses 
concepts of, 263-264 

Thermography, 486-488 
pulse-echo, 487 
through transmission. 487 

Thickness shear, 472 
Transverse shear 

deformations due to, 306-
311 

effects of, 306 
Transverse splitting, 102 
Transversely isotropic, 63, 160 
Theories of failure, see failure 

theories 
Theories of stress transfer, 

133-140 
Thermal conductivity, 115-

117 
Thermal expansion 

coefficients, 108-114 
longitudinal, 111 
trans verse, 111 

Thermal strains, 264 
Thermal stress, see 

Hygrothermal stress 
Thermoforming, 57 
Them10plastic polymers, 31 

properties of, 40 
Total impact energy, 405 
Transformation: 

matrix, 190 
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Transformation ( Continued) 
of strain, 534 
of stress, 539 
relations. 190 

Transport properties, 114 
Transverse: 

isotropy, 63 
splitting, 102-106 
stiffness, 80-87 
srrength, 87-91 

Transverse direction, 63 
Tsai-Hill theory, 203 

Ultrasonics, 481-483 
pitch-catch method of, 481, 

482 
pulse-echo method of, 481, 

482 
through transmission 

method of, 482, 483 
Unidirectional composites: 

anisotropy of thermal 
expansion, 112 

coefficient of thermal 
expansion, 108-114 

critical volume fraction, 75-
76 

expansion coefficients, 108-
114 

failure initiation, 74 
failure mechanism of, 74 
failure modes, 96-108 
longitudinal behavior of, 67 
longitudinal stiffness, 68-71 
longitudinal strength, 75-76 

factors influencing, 76 
statistical models for, 77 

mass diffusion in, 117-123 
model for, 68 
moisture in, 114 
minimum volume fraction, 

75 
Poisson's ratio, 95 

major, 95 
minor, 95 
prediction of, 95-96 

properties of, typical, 113, 
123, 124 

shear modulus of, 91-95 
prediction of, 91 
Haplin-Tsai equations for, 

93 
thermal conductivities, 115-

117 
thermal expansion, 108-114 
transport properties, 114 
transverse stiffness, 80-87 
transverse strength, 87-91 

prediction of, 90 

empirical approa 
91 

transversely isotror 
Unstable crack growtl 

Variation of stresses i 
laminate. 216-

Veil, 23, 44 
Voids. 67 

volume fraction, 6~ 
Void content, 67 
Volume fraction, 64, , 

critical, 76, 146. 
definition of, 65:_6( 
minimum, 75, 146 

Weight fractions, 2, 6 
Whitney-Nuismer fail 

criteria, 349-'.1 
for notched compo 

349-355 
Winding angle, optim 
Wood-plastic compos 

502 

X-radiography, 485~ 
penetrant-enhanced 




